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Abstract

This paper investigates single and multiple prize contests as incentive
mechanisms for the private provision of public goods, under the assumptions
of income heterogeneity and incomplete information about income levels.
We compare experimentally a one-prize contest with a three-prize contest
in a case where theory predicts that several prizes maximise revenues. We
find that, contrary to the theoretical predictions, total contributions are
significantly higher in the one-prize contest. In both treatments contribu-
tions converge towards theoretical predictions over successive rounds, but
the effects of repetition are different: convergence is fast in the one-prize
treatment, while gradual and with some undershooting in the three-prize
treatment. Focusing on individual income types, the better performance
of the single-prize contest is largely explained by the contributions of high-
income individuals: a single larger prize provides a more effective incentive
for richer individuals than three smaller prizes.
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1 Introduction

Prizes are commonly used as incentives in various spheres of human activity,
from sports to education and research. The economic literature has analyzed
extensively the use of contests as incentive mechanisms in different areas, such as
rent-seeking activities, technological races and compensation schemes in labour
markets, among others (see, as examples, Tullock, 1980; Lazear and Rosen, 1981;
Broecker, 1990; Taylor, 1995; Fullerton and McAfee, 1999). The present study
focuses on the application of contests as incentive devices for the private provision
of public goods.

A number of recent papers have investigated, both theoretically and through
the use of experiments, the use of prize-based mechanisms (either stochastic or
deterministic) to incentivize contributions to public goods, showing that they can
be an effective way to overcome free riding (e.g. Morgan, 2000; Morgan and
Sefton, 2000; Goeree et al., 2005; Orzen, 2005; Schram and Onderstal, 2007;
Faravelli, 2007; Corazzini et al., 2007). A fundamental question, related to the
use of contests, is the optimal allocation of prizes. For a given total prize sum, is
the award of a single prize more effective than multiple prizes? Or is the opposite
true? As Moldovanu and Sela (2001, p. 543) put it: “The award of a single prize
seems consistent with a general intuition about the efficiency of rewarding only
the best (and supposedly ablest) competitor. But, the prevalence of multiple-prize
contests is obvious in the real world”.

Several theoretical studies have analyzed multiple-prize contests. The relative
efficiency of single and multiple-prize contests depends on the specific setting of
the model. Expected effort is generally independent of the number of prizes, for
a given total prize, in symmetric settings. Barut and Kovenock (1998) analyze
symmetric multiple-prize all-pay auctions with complete information. They focus
on risk-neutral, unconstrained agents and show that only mixed strategy equilibria
exist. Expected expenditures are maximized by driving the value of the lowest
prize to zero, but are invariant across all configurations of prizes that leave the
lowest prize equal to zero. Faravelli (2007) studies multiple-prize contests as a
means to finance public goods, with risk neutral agents and symmetric linear cost,
but asymmetric endowments. Incomes are drawn from a continuous distribution
function and are private information. Asymmetry and incomplete information
enable to characterize a monotone equilibrium, in which the contribution is strictly
increasing in the endowment. As in Barut and Kovenock (1998), it is optimal to
set the last prize equal to zero, but total expected contribution is independent of
the distribution of the total prize sum among the prizes.

Multiple prizes may maximize total exerted effort when either risk-aversion
(e.g. Glazer and Hassin, 1988) or some form of asymmetry is introduced. Moldovanu
and Sela (2001) study a multiple-prize contest where unconstrained agents differ
in the ability to exert effort, and the ability is private information. When costs
are either linear or concave, a high ability individual will invest more in the con-
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test allocating only one prize, that maximizes the total expected effort exerted
by the bidders. However, when costs are convex this is not necessarily the case
and multiple prizes could be optimal. Szymanski and Valletti (2005) consider a
contest where three unconstrained players, who differ in their ability, compete for
prizes. Ability is common knowledge and marginal costs are constant. In order to
maximize total expected effort the third prize must be set equal to zero. However,
it is not obvious how to optimally share the total prize sum between the first and
second prize. The authors focus on two scenarios. In the case of two (equally)
strong players and one weak agent, one prize maximizes total effort. This is be-
cause the weak player is bound to lose and let the strong agents compete between
themselves, bidding zero. However, when one strong player faces two weak op-
ponents (with equal ability), two prizes are optimal, because the second prize
increases the competition between the weak agents.

Limited empirical evidence is available on the relative performance of single-
and multiple-prize contests. Schmidt et al. (2005) compare the performance of
three different stochastic contests through the use of a laboratory experiment:
a single prize, a three-prize and a proportionate-prize lottery, with equal total
prize.1 If the players are risk neutral, the three treatments are equivalent. How-
ever the proportionate-prize lottery raises higher revenue than the multiple prize,
which outperforms the single prize treatment, indicating that the subjects may
be risk averse. Landry et al. (2006) conduct a field experiment on charity giving,
comparing voluntary contributions, single and multiple prize lotteries (where an
agent may win more than one prize). Lotteries increase participation rates by 100
percent compared to voluntary contributions. Further, multiple-prize lotteries
raise slightly less revenue than single-prize.

Overall, the optimal allocation of prizes in contests is virtually unexplored
from an experimental perspective, and the existing results are not conclusive.
Furthermore, while distinct theoretical models provide different reasons to explain
why more prizes may be optimal, from an empirical perspective it is not clear
which characteristics may drive this result.

This paper presents an experimental analysis of single and multiple-prize con-
tests as incentive mechanisms for the private provision of public goods. We
compare two treatments in a between-subject design, focusing on two extreme
scenarios, for a given total prize: a one-prize contest (winner takes all) and a
three-prize contest (three highest bid receive an equal prize).2 We focus on a set-
ting characterized by asymmetric agents, in which theory predicts that multiple

1A subject’s bid entitles him to lottery tickets. In the first treatment one ticket is randomly
drawn and the holder wins the prize; in the second treatment three tickets are randomly drawn
and the holders win the prizes (notice that a subject may win more than one prize); in the last
treatment each subject is awarded a share of the prize equal to the proportion of his tickets
relative to those of the entire group.

2In our design, contrary to Schmidt et al. (2005) and Landry et al. (2006), a subject cannot
win more than one prize.
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prizes should be more effective than a single prize. This setting follows Faravelli
(2007), assuming income heterogeneity and incomplete information about income
levels3. However, we introduce a discrete, rather than a continuous, distribution
of incomes. This assumption has a similar effect as the introduction of asymmetry
in Szymanski and Valletti (2005), and it implies that total expected contributions
are maximized by awarding more than one prize.

At the theoretical level, we show that, with a single prize, an asymmetric
equilibrium arises in which contributions are increasing with income. In addition,
the asymmetry of incomes may be crucial for the optimal allocation of prizes:
while it is still optimal to set the last prize equal to zero, if the prize is large
enough the single-prize contest presents a loss of revenue due to the discontinuity
in the possible endowments. On the other hand, in the multiple-prize mechanism
the symmetric equilibrium identified by Barut and Kovenock (1998) emerges. All
agents behave symmetrically and several prizes raise more revenue than a single
prize.

Empirically, our main finding is that, contrary to the theoretical predictions,
total contributions are significantly higher in the one-prize contest. Focusing
on individual income levels, the better performance of the single-prize contest
is largely explained by the contributions of high-income individuals. In both
mechanisms, contributions tend to converge towards the theoretical predictions
over successive rounds, but the effects of repetition are different: convergence is
fast with one prize, while gradual and with some undershooting with three prizes.

In order to interpret the results on the relative efficiency of the two mechanisms
we also compare empirical and theoretical contributions within each treatment.
We find that in the single-prize contest contributions are significantly higher than
theoretical predictions both on aggregate and, disaggregating by income types, at
the lower end of the income distribution. In the three-prize contest contributions
are not significantly different from the theoretical predictions over the 20 periods,
while in the final 5 rounds they are lower than predictions on aggregate and at
both ends of the income distribution.

The rest of the paper is organized as follows. Section 2 describes the experi-
mental design and procedures. Section 3 presents the theory and the predictions
for our design. Section 4 describes the experimental results. Section 5 concludes
with a summary of the main findings and a discussion of the implications of the
analysis.

2 Experimental Design

The experiment is based on a standard linear public good game and compares two
treatments in a between-subject design: in the first treatment contributions to the

3Contrary to Moldovanu and Sela (2001) and Szymanski and Valletti (2005), in our model
asymmetry is not in the ability but in the budget constraint.
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public good are incentivized with a one-prize contest (1PC), while in the second
treatment the incentive mechanism is a three-prize contest (3PC). The total prize
sum is the same across the two treatments. The design is similar to the one used in
Orzen (2005), while introducing income heterogeneity and incomplete information
about the income of other subjects.

We ran three sessions for each treatment, with sixteen subjects participating in
each session, for a total of 96 subjects. Each session consisted of 20 rounds. In each
round, subjects played a linear public good game, choosing how to allocate their
endowment between an individual and a group account.4 In both treatments, a
subject received 2 points for each token allocated to the individual account, while
he received 1 point for each token allocated by him or by any other member of
his group to the group account. The incentive mechanisms in the two treatments
implied the same financial commitment (total prize) for the fundraiser, but differed
in the way prizes (extra points) could be earned by subjects. In 1PC, in each round
the member of the group who allocated the highest amount to the group account
won the single prize of 240 points. In 3PC, in each round the three group members
who allocated the highest amounts to the group account won a prize of 80 points
each. In both treatments, in case of ties among one or more group members, the
winner was determined randomly.

At the beginning of each session the sixteen subjects were randomly and anony-
mously assigned an endowment of either 120, 160, 200, or 240 tokens. Subjects
were informed that in each round each subject would receive the same endowment
as determined at the beginning of the session. Incomplete information about other
subjects’ endowments was introduced by adopting a strangers matching rule, as
in Andreoni (1998). At the beginning of each round, subjects were randomly and
anonymously rematched in groups of four. Therefore, in each round subjects did
not know the identity and the endowment of the other three members of their
group. They only knew that the endowment of each of the other group members
could be either 120, 160, 200, or 240 tokens with equal probabilities.

Group matching for each of the twenty rounds was determined randomly be-
fore the beginning of the experiment in the following way. Four pools of four
subjects were formed, each containing the four different income types (120, 160,
200, 240). Each of the four groups was formed by randomly drawing one subject
from each pool. As a consequence, within every group each member could have
an endowment of 120, 160, 200, or 240 tokens with equal probability.5 Having
formed the four groups for each round in this way, the same sequence of group
matchings for the twenty rounds was used in each session of both treatments.

The experiment was run in May 2006 at the Experimental Economics Lab of

4The language used in the instructions did not refer to contributions or public goods, but
asked subjects to allocate tokens to either an “individual account” or a “group account”.

5Note that in every round there were four subjects for each of the four possible endowments,
so that the average endowment was 180 tokens.
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the University of Milan Bicocca.6 In each session, subjects were randomly assigned
to a computer terminal at their arrival. To ensure public knowledge, instructions
were distributed and read aloud (see Appendix A for the instructions). Moreover,
to ensure individual understanding of the public good game and the incentive
mechanism, sample questions were distributed and the answers privately checked
and, if necessary, explained to the subjects.

At the end of each round, subjects were informed about their payoffs from the
group account, the individual account and from the prize. At the end of the last
round subjects were informed about their total payoff expressed in points and
euros. They were asked to answer a short questionnaire on the individual un-
derstanding of the experiment and socio-demographic information, and were then
paid in private using an exchange rate of 1000 points per euro. On average sub-
jects earned 12.25 euros for sessions lasting about 50 minutes, including the time
for instructions. Participants were mainly undergraduate students of Economics
and were recruited through an on-line system.

3 Theory and Predictions

This section presents the theoretical predictions for the two experimental treat-
ments. Concerning the single prize contest, we study a linear public good game
financed through an all-pay auction in which one prize is awarded, assuming that
players have heterogeneous endowments and information is complete. We solve the
game for N players, who can have any possible endowment, for any positive level
of prize. We show that when the prize is not too high, only mixed strategy equilib-
ria exist. An asymmetric equilibrium arises in which contributions are increasing
with income. The equilibrium for a subject under incomplete information about
the incomes of other players consists of a randomization over the mixed strategies
he would play in all the possible group configurations he faces, according to their
corresponding probabilities. With regard to the three-prize contest we solve the
game of incomplete information played by the subjects in our experiment. We
show that, if the prize is not too high, there exists a unique symmetric mixed
strategy equilibrium in which all agents choose their contribution from the same
distribution function.

3.1 Single-Prize Contest

Consider N players and the set of endowments Z = (z1, ..., zS) such that 0 < z1 <
. . . < zS. Each player has an endowment which takes value from the set Z. Call

n[zi] the number of players with endowment zi ∈ Z such that
S∑

i=1
n[zi] = N . The

players’ endowments and their number are common knowledge. With no loss of

6The experiment was computerized using the z-Tree software (Fischbacher, 2007).
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generality, assume that n[zi] ≥ 0 for 1 ≤ i ≤ S − 1 and n[zS] ≥ 1. Players play a
public good game in which each individual has to choose how much to contribute
to the public good. At the same time they take part in an all-pay auction in which
a prize Π > 0 is awarded to the agent who contributes the most. The bidders are
risk-neutral and they all value the prize equally.

The payoff for a player with endowment zi who contributes gi is given by

β(zi − gi) + βE[Π, gi, g−i] + gi + G−i

where G−i represents the sum of all other players’ contributions and 1 < β <
N .7

We divide our analysis in two parts: n[zS] > 1 and n[zS] = 1.

3.1.1 More than One Player with the Highest Endowment

We study first the case in which n[zS] > 1. There exist three possible scenarios:
the prize level can be “high”, “medium” or “low”. In the next two propositions,
we show that if and only if the prize level is “high” there exists a quasi-symmetric
pure strategy equilibrium, in which agents with the same endowment behave
identically.8

Proposition 1 When n[zS] > 1 and zS ≤ βΠ
n[zS ](β−1)

, there exists a quasi-symmetric
pure strategy equilibrium in which players with endowment zS contribute their full
endowment, while if there are other agents with lower endowments they all con-
tribute 0.

Proposition 2 When n[zS] > 1 and βΠ
n[zS ](β−1)

< zS, there exist no quasi-symmetric
pure strategy equilibria.

If the prize level is “medium” only the agents with the highest endowment will
submit non-zero bids.

Proposition 3 When βΠ
n[zS ](β−1)

< zS < βΠ
β−1

and n[zS] > 1 there exists a mixed
strategy equilibrium in which:

• players with endowment zS contribute their full endowment with probability p
and with probability 1−p they choose their contribution from the distribution

function F (g) = ( (β−1)g
βΠ

)
1

n[zS ]−1 on the interval [0, a], such that F (a) = 1 −
p, where a < zS and p is the unique solution to the following equation
1−(1−p)n[zS ]

n[zS ]p
= (β−1)zS

βΠ
;

• players with endowments lower than zS contribute 0.

7Note that in our experiment β = 2.
8See Appendix B for the proofs of all the propositions contained in this section.
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Finally, if the prize level is “low” only the players with endowments higher
than βΠ

β−1
will contribute positive amounts.

Proposition 4 When zS ≥ βΠ
β−1

and n[zS] > 1, there exists a mixed strategy
equilibrium in which:

• players with endowment zi ≥ βΠ
β−1

choose their contributions from the distri-

bution function F (g) = ( (β−1)g
βΠ

)
1

m−1 on the interval [0, βΠ
β−1

], where m is the

number of players with endowment greater or equal than βΠ
β−1

;

• all other players contribute 0.

3.1.2 Only One Player with the Highest Endowment

We look now at the case where n[zS] = 1. First we will prove that only mixed
strategy equilibria exist.

Proposition 5 When n[zS] = 1 there exist no pure strategy equilibria.

There exist two possible cases: when the prize level is “low” and when it is
“high”. Let us start focusing on the first scenario.

Proposition 6 When zS−1 ≥ βΠ
β−1

and n[zS] = 1, there exists a mixed strategy
equilibrium in which:

• players with endowment zi ≥ βΠ
β−1

choose their contributions from the distri-

bution function F (g) = ( (β−1)g
βΠ

)
1

m−1 on the interval [0, βΠ
β−1

], where m is the

number of players with endowment greater or equal than βΠ
β−1

;

• all other players contribute 0.

When the prize level is “high”, specifically zS−1 < βΠ
β−1

, if the strategy space
is continuous, and ties are broken by randomly assigning the prize to one player,
then no equilibrium exists. In order to avoid this problem, given that we are
interested in the theoretical predictions of an experiment, where the strategy
space is discrete, we will assume that there exists a smallest currency unit strictly
above zS−1 (see Che and Gale, 1997).9

Proposition 7 When zS−1 < βΠ
β−1

and n[zS] = 1, there exists a mixed strategy
equilibrium in which:

9The non-existence of the equilibrium is due to a discontinuity in the payoffs. Another way
to avoid this problem would be to always break ties in favour of the player with the higher
budget.
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• the player with endowment zS chooses his contribution from the distribution
function H(g) = (β−1)g

(βΠ)
1

n[zS−1] (βΠ−(β−1)(zS−1−g))

n[zS−1]−1

n[zS−1]

on the interval [0, zS−1]

and puts a mass equal to βΠ−(β−1)zS−1

βΠ
on the smallest currency unit strictly

above zS−1;

• players with endowment zS−1 contribute zero with probability

(βΠ−(β−1)zS−1

βΠ
)

1
n[zS−1] and choose their contribution from the distribution func-

tion

L(g) = (βΠ−(β−1)(zS−1−g)
βΠ

)
1

n[zS−1] on the interval (0, zS−1];

• all other players contribute zero.

3.2 Three-Prize Contest

Consider the case where contributions are incentivized through an all-pay auction
where three equal prizes are awarded to the three agents who contribute the most.
As in the previous case, the players’ endowments are private information and are
drawn from a discrete distribution which is common knowledge. The payoff for a
player with endowment zi who contributes gi is given by

β(zi − gi) + βE[π, gi, g−i] + gi + G−i

where π is the value of each of the three prizes. We derive the equilibrium of
the game in which four players take part and the lowest possible endowment is
greater than βπ

β−1
. Let us first prove the following proposition.

Proposition 8 There exist no symmetric pure strategy equilibria.

Proof. Notice first that any contribution g > βπ
β−1

is dominated by g = 0.
Suppose that there exists a symmetric pure strategy equilibrium in which every
agent plays g ∈ [0, βπ

β−1
). Then agent i would have an incentive to increase his

bid by ε arbitrarily close to zero and win one prize for sure. Suppose now that
there exists a symmetric pure strategy equilibrium where all players contribute
g = βπ

β−1
. Then player i would have an incentive to bid zero.

Given that no symmetric equilibria exist in pure strategies, we turn our atten-
tion to mixed strategy equilibria.

Proposition 9 There exists a unique symmetric mixed strategy equilibrium in
which all agents choose their contribution from the distribution function F (g) =
3

√
g
π
− g

βπ
− 1 + 1 on the interval [0, βπ

β−1
].
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Proof. Any contribution g > βπ
β−1

is dominated by g = 0. Because the lowest

possible endowment is greater than βπ
β−1

, although each player’s endowment is
private information, the game is equivalent to a game with complete information
in which none of the players is constrained.

Assume that three agents choose their contributions from the distribution
function F (g) on the interval [0, βπ

β−1
]. In order for this to be an equilibrium the

remaining player i must be indifferent to play any g ∈ [0, βπ
β−1

]. Hence his expected
payoff from playing g must be

βzi + βπ((F (g))3 + 3(F (g))2(1− F (g)) + 3F (g)(1− F (g))2)

−(β − 1)g + G−i = βzi + G−i

The above expression can be rewritten as

βπF (g)
(
(F (g))2 − 3(F (g)) + 3

)
= (β − 1)g

This equation has a unique real root given by F (g) = 3

√
g
π
− g

βπ
− 1 + 1.

3.3 Hypotheses

The theoretical predictions for the two treatments of the experiment, based on
the results in the previous sections, are reported in Table 1. The single-prize
contest has a quasi-symmetric mixed strategy equilibrium, in which agents with
the same income behave identically. Expected contributions are increasing in the
subjects’ incomes and the average total contribution is 203 tokens. The three-prize
contest has a unique symmetric mixed strategy equilibrium. Recall that in the 3PC
treatment π = 40. Hence, in equilibrium all agents choose their contribution from
the distribution function F (g) = 3

√
g
80
− 1+1 on the interval [0, 80]. The expected

individual contribution is 60 for all subjects, and the average total contribution
is 240 tokens.

The different features of the equilibria in the two treatments can be explained
as follows. In the single-prize contest the prize is sufficiently high for any player
to randomize over his full support. This implies that subjects are differently con-
strained and in equilibrium agents with higher incomes contribute more than those
who have lower incomes. In the three-prize contest bidding zero dominates any
contribution greater than 80 tokens. Because any subject can afford to contribute
up to 80, the game is actually a symmetric one and has a completely symmetric
equilibrium.

The asymmetry in the equilibrium for the single-prize contest also explains why
total expected contribution is lower in 1PC than in 3PC. Under a discrete income
distribution, in the single-prize contest a subject with an endowment higher than
the lowest one will face opponents with a strictly lower endowment with positive
probability. In this case he will not have any incentive to bid more than the
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highest of his opponents’ endowments, resulting in a loss of revenue with respect
to the game with a continuous distribution.10 This is obviously not the case for
the three-prize contest, where none of the agents is constrained.

Summing up, the experiment is designed to test the following hypotheses:

H1 Total contributions to the public good are higher with three prizes than with
one prize.

H2 Average contributions to the public good are higher with three prizes than
with one prize for low-income individuals, while the opposite holds for high-
income individuals.

H3 Average contributions are steeply positively related to income in the one-
prize contest, while independent of income in the three-prize contest.

4 Results

This section presents the experimental results. We start with a comparison of the
two treatments in terms of average contributions and disaggregating by income
level. Next, in order to interpret the results on the relative efficiency of the two
mechanisms, we compare empirical and predicted contributions within each treat-
ment, considering average contributions both over all subjects and by individual
income types. Finally, we examine the experimental data at individual-level.

4.1 Comparison between treatments

Figure 1 displays average contributions over rounds for the two treatments. In
both treatments average contributions tend to converge to the theoretical predic-
tions over successive rounds, but the effects of repetition are quite different. In the
1PC contributions decline in the first 6 rounds, then remain relatively stable well
above the average predicted level (50.8). In the 3PC contributions fall steadily
throughout the first 18 rounds, to then stabilize well below the average predicted
level (60).

Table 2 reports individual contributions, by treatment, averaging over all sub-
jects and by individual endowment types, over all 20 rounds and breaking down
the sample into individual sub-periods (rounds 1-5, 6-10, 11-15, and 16-20). Over-
all, contrary to the theoretical predictions, the 1PC does better than the 3PC:
considering all rounds and income types, average contributions are 72 tokens in
1PC and 64.2 tokens in 3PC. This result is indeed much stronger if we consider the
final rounds, after there has been some learning. In the last five rounds average
contributions are 65.3 tokens in the 1PC and 41.4 tokens in the 3PC .

10With a continuous income distribution the two contests would raise the same total expected
revenue of 240 tokens (see Faravelli, 2007).
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The difference in contributions between the two incentive mechanisms is statis-
tically significant. Table 3 presents Wilcoxon rank-sum tests of the null hypothesis
that contributions to the public good are the same across treatments.11 Given
that the theoretical model predicts the direction of departure from the null hy-
pothesis (e.g. 3PC>1PC averaging over all income types), we use the relevant one
sided-tests. Considering all income types and the whole sample the test statistic
is negative but not significant, owing to the different effects of repetition in the
two treatments. However, focusing on the last ten or the last five rounds, test
statistics are negative and strongly significant. Overall, the results indicate that,
contrary to the theoretical predictions, average contributions to the public good
are higher in 1PC than in 3PC.

Result 1: The one-prize contest generates significantly higher contri-
butions to the public good than the three-prize contest.

So far we have considered average contributions over all subjects. We now fo-
cus on individual income levels and compare the two mechanisms at different ends
of the income distribution. Figure 2 compares the two incentive mechanisms for
each income level. In both treatments contributions depend positively on incomes.
However, while average contributions are steeply increasing in income in the 1PC,
they are weakly related to income in 3PC. As a result, average contributions are
relatively similar across treatments for incomes up to 200, whereas they are very
different for high-income individuals (240). This indicates that a single (larger)
prize provides a more effective incentive for richer individuals than three smaller
prizes. The lower average contribution in the 3PC is largely explained by the low
contributions of the highest income type. Figure 3 compares the two mechanisms
by endowment level over successive sub-periods. The graphs indicate that while
the two mechanisms display similar profiles in the initial rounds, over successive
rounds the single-prize contest tends to dominate the multi-prize contest through-
out the income distribution. Indeed, the results in table 2 indicate that the 1PC
significantly dominates 3PC for high-income types over the 20 rounds and for all
income types in the final 5 rounds.

Result 2: The one-prize contest provides a significantly more effec-
tive incentive mechanism than the three-prize contest for high-income
individuals over the 20 rounds, and for all income levels in the last 5
rounds.

11Note that, because of the random rematching mechanism, independence of subject-level
observations could be violated. However, the characteristics of the experimental design are
such that the dependence across individual observations can be considered negligible, both
theoretically and empirically (see Corazzini et al., 2007).
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4.2 Actual and predicted contributions

Figure 4 compares empirical and predicted contributions within each treatment.
As predicted by the theory, contributions are positively related to income in the
1PC, although not as steeply as in the theoretical prediction, while they are
relatively flat in the 3PC. Subjects tend to over-contribute in 1PC for all income
types, except the highest. In 3PC the high-income types over-contribute, while the
contributions of subjects with the lowest income (120) are below the theoretical
prediction. Tables 4 and 5 report results of sign tests of the null hypothesis that
the empirical and theoretical contributions are the same within each treatment,
over the twenty rounds or by sub-periods. Averaging over all twenty rounds, over-
contributions in 1PC are statistically significant when aggregating over all-income
types, and for low-income individuals (120 and 160). A similar pattern applies to
individual sub-samples. The results for 3PC indicate that actual and predicted
contributions are not significantly different, both on aggregate and by individual
income type.

Figures 5 and 6 display empirical and predicted contributions by income type
in each of the two treatments, separately for each sub-period. Focusing on the final
rounds, the corresponding results from tables 3 and 4 indicate that contributions
in 1PC are significantly higher than theoretical predictions for incomes 120 and
160. In 3PC contributions are significantly lower than theoretical predictions for
incomes 120 and 240.

Result 3: In the one-prize contest contributions are significantly
higher than theoretical predictions at the lower end of the income
distribution and on aggregate, both averaging over the 20 periods and
by individual sub-periods. In the one-prize contest contributions are
not significantly different from predictions over the 20 periods, while
in the final 5 rounds they are lower than predictions on aggregate and
at both ends of the income distribution.

4.3 Individual Observations

Finally, we compare the performance of the two mechanisms focusing on individual-
level observations. Figures 7 and 8 present the histograms and the corresponding
cumulative distribution functions of individual relative contributions for the two
treatments.12 The main difference between the two treatments is that in 1PC
the distribution of contributions is more disperse, and subjects choose extreme
values (0 and, to a lesser extent, 100%) much more often than in 3PC. However,
contributions are clustered around low levels in 3PC. The cumulative distribution
for 1PC lies above that for 3PC only up to a relative contribution of about 23 per

12Relative contributions are calculated as absolute contributions divided by the subject’s
income.
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cent. Figures 9 and 10 present the same information on the distribution of indi-
vidual observations separately for each income level. The same pattern observed
at the aggregate level applies to individual income types. The differences between
the distributions for the two treatments become more and more pronounced as
we consider higher income levels.

5 Conclusions

This paper presented an experimental analysis of single and multiple-prize con-
tests as incentive mechanisms for the private provision of public goods, under the
assumptions of income heterogeneity and incomplete information about income
levels. The main objective was to assess the relative performance of a one-prize
contest and a three-prize contest, both at the aggregate level and by individ-
ual income type, in a setting where theory predicts that several prizes maximize
contributions.

The key finding from the experimental analysis is that, contrary to theoretical
predictions, total contributions are significantly higher in the one-prize contest.
This result is even stronger when considering the final rounds of the experiment.
In both mechanisms, contributions tend to converge towards the theoretical pre-
dictions over successive rounds, but the effects of repetition are different: con-
vergence is fast with one prize while gradual and with some undershooting with
three prizes. Focusing on individual income levels, the better performance of the
single-prize contest is largely explained by the higher contributions of high-income
individuals.

In order to interpret the results on the relative efficiency of the two mecha-
nisms, we also compared empirical and predicted contributions within each treat-
ment. We found that in the 1PC contributions are significantly higher than the-
oretical predictions at the lower end of the income distribution and on aggregate.
In 3PC contributions are not significantly different from predictions over the 20
periods, while in the final 5 rounds they are lower than predictions on aggregate
and at both ends of the income distribution. Finally, we compared the perfor-
mance of the two incentive mechanisms focusing on individual-level observations.
Overall, the distribution of individual contributions in the 1PC is characterised
by a much higher fraction of extreme values, and in particular zero contributions,
than in the 3PC. However, contributions tend to be clustered around low levels
in the 3PC.

What can explain the main result that a single-prize mechanism is relatively
more efficient than a multiple-prize mechanism? One possible interpretation is
that a multiple-prize contest is a relatively less familiar mechanism, or can be
perceived as more difficult, so that it provides a less effective incentive. Another
explanation of the divergence between the results and the theoretical predictions
could lie in the assumption of risk neutrality. To the extent that, with small
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amounts at stake, subjects tend to be risk lovers, the more egalitarian structure of
the three-prize contest could provide a less effective incentive. A third possibility
lies in the flat structure of prizes in the three-prize contest. We studied two
extreme scenarios: winner-take-all versus a case where all bids except the lowest
are awarded an equal prize. It is possible that removing the constraint of prizes
being equal, a multiple-prize contest with differentiated prizes would provide a
better incentive mechanism.

The results of our experiment indicate that a multiple-prize contest is less effec-
tive than a single-prize contest, for a given total prize, as an incentive mechanism
for the private provision of public goods. This result is in contrast to the theoret-
ical predictions of expected revenues being independent of the number of prizes
in symmetric settings, or multiple-prizes raising higher revenues in asymmetric
settings, as in our experimental design. Exploring the possible explanations of
the rejection of the theoretical predictions will be the object of future research.
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Appendix A: Instructions

Welcome. Thanks for participating in this experiment. If you follow the instruc-
tions carefully and make good decisions you can earn an amount of money that
will be paid to you in cash at the end of the experiment. During the experiment
you are not allowed to talk or communicate in any way with other participants.
If you have any questions raise your hand and one of the assistants will come to
you to answer it. The rules that you are reading are the same for all participants.

General rules
There are 16 people participating in this experiment. At the beginning of

the experiment each participant will be assigned randomly and anonymously an
endowment of either 120, 160, 200, or 240 tokens with equal probabilities.

The experiment will consist of 20 rounds. In each round you will have the same
endowment that has been assigned to you at the beginning of the experiment. In
each round you will be assigned randomly and anonymously to a group of four
people. Therefore, of the other three people in your group you will not know the
identity and the endowment, that could be 120, 160, 200, or 240 tokens with equal
probabilities.

How your earnings are determined
In each round you have to decide how to allocate your endowment between an

INDIVIDUAL ACCOUNT and a GROUP ACCOUNT, considering the following
information:

• for each token that you allocate to the INDIVIDUAL ACCOUNT you will
receive 2 points.

• for each token allocated to the GROUP ACCOUNT (by you or by any other
of the members of your group), every group member will receive 1 point.

[1PC]
In each round you can win a prize of 240 points on the basis of the following

rules. The member of your group who allocates the highest amount to the GROUP
ACCOUNT is the winner of the prize. In case of ties among one or more group
members, the winner is determined randomly.

At the end of each round the computer will display how many tokens you have
allocated to the two accounts and how many points you have obtained from each
of the two accounts, from the prize, and in total. At the end of the experiment
the total number of points you have obtained in the 20 rounds will be converted
in Euros at the rate 1000 points = 1 Euro. The resulting amount will be paid to
you in cash.

[3PC]
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In each round you can win one of 3 prizes of 80 points each on the basis of
the following rules. The members of your group who allocate the three highest
amounts to the GROUP ACCOUNT are the winners of the three prizes. In case
of ties among one or more group members, the winner is determined randomly.

At the end of each round the computer will display how many tokens you have
allocated to the two accounts and how many points you have obtained from each
of the two accounts, from the prize, and in total. At the end of the experiment
the total number of points you have obtained in the 20 rounds will be converted
in Euros at the rate 1000 points = 1 Euro. The resulting amount will be paid to
you in cash.
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Appendix B

Proof of Proposition (1). If all players with endowment zS contribute their
full endowment each of them has an expected payoff of

βzs +
βΠ

n[zS]
− (β − 1)zS + G−i

which is greater or equal than the payoff he could get from any other choice
g ∈ [0, zS).13

If there are other players with lower endowments it is equally obvious that
contributing 0 is for them a dominant strategy.
Proof of Proposition (2). In order to prove this it is enough to show that
there exist no equilibria in which players with endowment zS play according to
the same pure strategy. The proof is in two parts.

i) Consider first the case in which βΠ
n[zS ](β−1)

< zS ≤ βΠ
β−1

. Suppose that players

with endowment zS contribute g ∈ [0, zS), then player i has an incentive to raise
his own bid by an amount ε and win the prize. Equally, if all of them contribute
zS, then player i has an incentive to contribute 0.

ii) Consider now the case in which zS > βΠ
β−1

. Notice first that any contri-

bution g > βΠ
β−1

is dominated by g = 0. Suppose that players with endowment

zS contribute g ∈ [0, βΠ
β−1

). Player i has an incentive to raise his own bid by an

amount ε and win the prize. On the other hand if all of them contribute g = βΠ
β−1

,
then player i has an incentive to deviate and contribute nothing.
Proof of Proposition (3). The proof is in five parts.

Let us first focus on the players with endowment zS and show that, when they
are the only active bidders, the candidate equilibrium is indeed an equilibrium.

i) Assume that all but one of the n[zS] players with endowment zS choose their

contribution from the distribution function F (g) = ( (β−1)g
βΠ

)
1

n[zS ]−1 on the interval

[0, a], where 0 < a < zS. Then the expected payoff of the remaining player i from
contributing g ∈ [0, a] is given by

βzS + βΠ(F (g))n[zS ]−1 − (β − 1)g + G−i

= βzS + G−i

which is independent of g.
Assume now that n[zS]−1 players contribute their full endowment with prob-

ability p. Player i’s expected prize from contributing zS is given by

βΠ
n[zS ]−1∑

j=0

1

j + 1

(
n[zS]− 1

j

)
pj(1− p)n[zS ]−j−1 (1)

13In all the proofs G−i represents the sum of all other agents’ contributions.
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where
(

n[zS ]−1
j

)
pj(1 − p)n[zS ]−j−1 represents i’s probability of tying with j other

players, while βΠ
j+1

is his expected prize when he ties with j others. Applying

binomial rules expression (1) can be rewritten as

βΠ
1− (1− p)n[zS ]

n[zS]p

and therefore player i’s expected payoff from playing zS is given by

βzS + βΠ
1− (1− p)n[zS ]

n[zS]p
− (β − 1)zS + G−i

For this to be an equilibrium player i’s expected payoff from contributing zS must
be equal to his expected payoff from choosing any g ∈ [0, a], which means that

βzS + βΠ
1− (1− p)n[zS ]

n[zS]p
− (β − 1)zS + G−i

= βzS + G−i

Therefore p must satisfy the following

1− (1− p)n[zS ]

n[zS]p
=

(β − 1)zS

βΠ
(2)

ii) We are going to prove that there is a unique solution to equation (2). This
equation can be rewritten as

1− (1− p)n[zS ] =
n[zS](β − 1)zS

βΠ
p

Notice that the left hand side is concave while the right hand side is linear. Fur-
ther, given the restrictions on zS, it is the case that 1 < n[zS ](β−1)zS

βΠ
< n[zS]. When

p = 0 both sides of the equation are equal to zero. When p = 1 the left hand side
is equal to 1 while the left hand side is strictly greater than 1. Finally, notice that
the slope of the left hand side when p = 0 is n[zS], which is steeper than the right
hand side. Therefore there must be a unique solution for p ∈ (0, 1].

iii) We want to show that a, such that F (a) = 1 − p, is strictly less than zS.
We will prove it by contradiction. Assume the opposite, then it should be the
case that F (zS) ≤ 1− p. Given equation (2), the latter can be rearranged as

1− (1− p)n[zS ] ≤ n[zS]p(1− p)n[zS ]−1 (3)

When p = 0 both sides are equal to 0. The first derivative of the left hand side
is equal to n[zS] (1− p)n[zS ]−1, while the first derivative of the right hand side

is n[zS] (1− p)n[zS ]−1 − (n[zS] − 1)n[zS]p(1 − p)n[zS ]−2. Notice that the former is
strictly greater than the latter for any p on the interval (0, 1]. Therefore the left
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hand side of inequality (3) is strictly greater than the right hand side for any
positive probability, which contradicts our assumption.

iv) What we have just shown means that the players will not choose any
contribution from the interval (a, zS). Let us check that this is the case. Assume
that all other players play according to the candidate equilibrium while player i
contributes g ∈ (a, zS). Then i wins the prize with probability (1 − p)n[zS ]−1 =
(β−1)a

βΠ
and his expected payoff is

βzS + βΠ((
(β − 1)a

βΠ
)

1
n[zS ]−1 )n[zS ]−1 − (β − 1)g + G−i

= βzS + (β − 1)a− (β − 1)g + G−i

which is strictly less than βzS + G−i. Therefore contributing 0 dominates any
choice g ∈ (a, zS).

v) Let us now show that, when players with endowment zS play according to
the equilibrium candidate, it is a dominant strategy for all the other players to
contribute nothing. Suppose that zS−1 > a. Point iv) proves that contributing
0 dominates any g ∈ (a, zS−1]. On the other hand, if a player i with endowment
zi < zS contributes gi ∈ (0, a] then his expected payoff is

βzi + βΠ(
(β − 1)gi

βΠ
)

n[zS ]

n[zS ]−1 − (β − 1)gi + G−i

Given that

(
(β − 1)gi

βΠ
)

n[zS ]

n[zS ]−1 <
(β − 1)gi

βΠ

it must be the case that contributing 0 is a dominant strategy for all players with
endowment lower than zS.

The same is true when zS−1 ≤ a.
Proof of Proposition (4). Suppose that zl−1 < βΠ

β−1
while zl ≥ βΠ

β−1
, with

1 ≤ l ≤ S, and call m =
S∑

i=l
n[zi] the number of players with endowment greater

or equal than βΠ
β−1

. If l = 1 then consider zl−1 to be zero. The proof is in four
parts.

i) Notice first that any strategy above βΠ
β−1

is dominated by contributing 0.

ii) Let us focus on the interval (zl−1,
βΠ
β−1

] where only m players are active.
Assume that all but one of the m players choose their contribution from the
distribution function F (g) on the interval (zl−1,

βΠ
β−1

]. In order for this to be an

equilibrium the remaining player i must be indifferent to play any g ∈ (zl−1,
βΠ
β−1

].
Hence his expected payoff from playing g must be

βzi + βΠ(F (g))m−1 − (β − 1)g + G−i = βzi + G−i + c

where c ≥ 0.
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This means that on the interval (zl−1,
βΠ
β−1

] any player with endowment greater
than zl−1 randomizes according to the following distribution function

F (g) = (
(β − 1)g + c

βΠ
)

1
m−1

Note that F ( βΠ
β−1

) ≤ 1 implies that c must be equal to 0 and therefore we have a
unique solution

F (g) = (
(β − 1)g

βΠ
)

1
m−1 (4)

iii) Suppose that l = 1. When the other N−1 players choose their contribution
from F (g) on the interval [0, βΠ

β−1
], then player i’s expected payoff is equal to

βzi + G−i

independently of his contribution on the same interval.
iv) If l > 1 then point v) of the proof of Proposition (3) shows that con-

tributing 0 is a dominant strategy for all players with endowment less than βΠ
β−1

,

while players with higher endowments will randomize according to F (g) from the
interval [0, βΠ

β−1
].

Proof of Proposition (5). The proof is in two parts.
i) Consider the case zS−1 < βΠ

β−1
. Suppose that there exists a pure strategy

equilibrium characterised by the strategy profile [g1, . . . , gi, . . . , gN ], where gi is
the contribution chosen by the generic player i. Call gh the highest contribution.
If gh > zS−1 then the player with endowment zS could marginally lower his bid
and increase his payoff. If gh < zS−1 then there is at least one player who could
deviate and contribute gh + ε, winning the prize and making a positive profit. If
gh = zS−1 and a player with endowment zS−1 is contributing gh, then the player
with the highest endowment has an incentive to deviate and contribute zS−1 + ε.
If gh = zS−1 and the players with endowment zS−1 are contributing strictly less
than gh, then the player with endowment zS could lower his bid increasing his
payoff.

ii) Consider the case zS−1 ≥ βΠ
β−1

. Notice that any strategy g > βΠ
β−1

is domi-
nated by g = 0. As we have done above, suppose that there exists a pure strategy
equilibrium characterised by the strategy profile [g1, . . . , gi, . . . , gN ] and call gh

the highest contribution. If gh < βΠ
β−1

then there is at least one player who has

an incentive to deviate and contribute gh + ε. If gh = βΠ
β−1

and only one player is

contributing gh, then he could lower his bid. If gh = βΠ
β−1

and two or more players
are bidding gh, then each one of them would be better off by contributing zero.
Proof of Proposition (6). Proof as in Proposition (4)
Proof of Propositio (7). Assuming that the players with budgets zS−1 and zS

are the only ones who submit positive bids, we show that by playing according to
the equilibrium candidate they make each others indifferent between any possible

21



choice. We then go on to prove that if they play in such a way it is a dominant
strategy for all other players to contribute zero. The proof is in three parts.

i) Let us start supposing that the players with endowments strictly lower than
zS−1 contribute zero. Note first that the player of type zS can guarantee himself a
positive surplus by submitting a bid above zS−1. We want to show that if players
with endowment zS−1 choose their contribution from L(g), and play zero with

probability (βΠ−(β−1)zS−1

βΠ
)

1
n[zS−1] , then the agent with the highest endowment is

indifferent between any choice on the interval (0, zS−1]. His payoff from playing
g ∈ (0, zS−1] will be

βzS + βΠ(L(g))n[zS−1] − (β − 1)g + G−i

= βzS + βΠ(
βΠ− (β − 1)(zS−1 − g)

βΠ
)− (β − 1)g + G−i

= βzS + βΠ− (β − 1)zS−1 + G−i

which indeed does not depend on g.
ii) Suppose now that the player with endowment zS randomizes according to

H(g) on the interval [0, zS−1] and puts a mass equal to βΠ−(β−1)zS−1

βΠ
on the smallest

currency unit strictly above zS−1.
14 If all other agents of type zS−1 play according

to L(g), and contribute zero with probability (βΠ−(β−1)zS−1

βΠ
)

1
n[zS−1] , then the payoff

of a player with zS−1 from a choice g ∈ [0, zS−1] is given by

βzS + βΠ(L(g))n[zS−1]−1H(g)− (β − 1)g + G−i

= βzS + βΠ(
βΠ− (β − 1)(zS−1 − g)

βΠ
)

n[zS−1]−1

n[zS−1]

(β − 1)g

(βΠ)
1

n[zS−1] (βΠ− (β − 1)(zS−1 − g))
n[zS−1]−1

n[zS−1]

−(β − 1)g + G−i

= βzS + G−i

which again is independent of g. It should be clear now why it is necessary to
assume that there exists a smallest unit strictly above zS−1. If this was not the
case the player with the highest endowment would have a mass point at zS−1. But
then, if ties are broken by randomly assigning the prize to one player, an agent of
type zS−1 would have an incentive to deviate and bid all his endowment.

iii) Finally, we want to show that if the agents of type zS−1 and zS play as
we described then it is a dominant strategy for all other players to contribute
zero. If a player i with endowment zi < zS−1 contributes g ∈ (0, zi] his payoff is

14Note that, acording to H(g), player zS ’s bid is strictly positive and therefore no ties are
possibile at zero.

22



represented by

βzS + βΠ(L(g))n[zS−1]H(g)− (β − 1)g + G−i (5)

= βzS + βΠ(
βΠ− (β − 1)(zS−1 − g)

βΠ
)

(β − 1)g

(βΠ)
1

n[zS−1] (βΠ− (β − 1)(zS−1 − g))
n[zS−1]−1

n[zS−1]

− (β − 1)g + G−i

= βzS + (
βΠ− (β − 1)(zS−1 − g)

βΠ
)

1
n[zS−1] (β − 1)g − (β − 1)g + G−i

= βzS + (β − 1)g((
βΠ− (β − 1)(zS−1 − g)

βΠ
)

1
n[zS−1] − 1) + G−i

On the other hand, if he plays g = 0 he gets a payoff equal to βzS +G−i. Note

that (βΠ−(β−1)(zS−1−g)
βΠ

)
1

n[zS−1] < 1 and we conclude that expression (5) is strictly
lower than βzS + G−i.
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Table 1: Theoretical predictions for the experiment

Incomes Total
Treatments 120 160 200 240
1PC 5 28 68 102 203
3TPC 60 60 60 60 240

Note: contributions are rounded to the nearest integer.

Table 2: Average absolute contributions: by endowment and rounds

Rounds
Endowment 1 - 20 1-5 6-10 11-15 16-20
1PC-120 42.8 43.8 41.8 45.4 40.1
1PC-160 65.1 67.0 68.4 52.6 72.5
1PC-200 81.6 113.8 71.9 74.0 66.5
1PC-240 98.6 134.5 98.5 79.3 82.2
Average 72.0 89.8 70.2 62.8 65.3

3PC-120 49.8 70.9 57.3 42.1 29.0
3PC-160 60.4 77.4 66.0 52.9 45.5
3PC-200 81.4 111.1 86.2 73.3 55.0
3PC-240 65.3 126.7 68.7 29.6 36.0
Average 64.2 96.5 69.5 49.5 41.4

Note: contributions are expressed as number of tokens.
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Table 3: Tests of equality between treatments by endowment

Rounds
Endowment 1-20 1-5 6-10 11-15 16-20
120 1.57 4.19 3.14 -1.05 -1.57

(0.06) (0.00) (0.00) (0.15) (0.06)
160 -1.05 1.05 -0.52 0.26 -3.14

(0.15) (0.15) (0.30) (0.40) (0.00)
200 -0.52 0.00 1.57 0.00 -3.66

(0.30) (0.50) (0.94) (0.50) (0.00)
240 -4.19 0.00 -2.09 -3.66 -4.19

(0.00) (0.50) (0.02) (0.00) (0.00)
Overall -1.06 2.90 0.86 -1.88 -5.81

(0.15) (0.00) (0.20) (0.03) (0.00)
Note: the table reports Wilcoxon rank-sum tests (normalized z-statistics) for the hypothesis
that the median of the difference between individual contributions to the public good in the two
treatments (3PC-1PC) is zero. P-values (in brackets), based on the standard normal distribu-
tion, refer to one-sided tests as predicted by the theory.

Table 4: Tests for predicted contributions: 1PC

Rounds
Endowment 1-20 1-5 6-10 11-15 16-20
120 1.00 0.83 0.92 1.00 1.00

(0.00) (0.04) (0.01) (0.00) (0.00)
160 1.00 0.92 1.00 0.67 1.00

(0.00) (0.01) (0.00) (0.39) (0.00)
200 0.58 0.83 0.50 0.42 0.58

(0.77) (0.04) (1.00) (0.77) (0.77)
240 0.33 0.67 0.50 0.25 0.25

(0.39) (0.39) (1.00) (0.15) (0.15)
Overall 0.73 0.81 0.73 0.58 0.71

(0.00) (0.00) (0.00) (0.31) (0.01)
Note: the table reports results of sign tests of the hypothesis that the median of the empirical
distribution is equal to the theoretical prediction. The statistics reported are the number of
positive differences (as a fraction of the total, excluding ties). P-values (in brackets) refer to
two-sided tests based on the binomial distribution.
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Table 5: Tests for predicted contributions: 3PC

Incomes
Endowment 1-20 1-5 6-10 11-15 16-20
120 0.25 0.55 0.42 0.25 0.00

(0.15) (1.00) (0.77) (0.15) (0.00)
160 0.33 0.55 0.42 0.33 0.33

(0.39) (1.00) (0.77) (0.39) (0.39)
200 0.67 1.00 0.64 0.55 0.42

(0.39) (0.00) (0.55) (1.00) (0.77)
240 0.50 1.00 0.42 0.08 0.09

(1.00) (0.00) (0.77) (0.01) (0.01)
Overall 0.44 0.78 0.47 0.30 0.21

(0.47) (0.00) (0.77) (0.01) (0.00)
Note: the table reports results of sign tests of the hypothesis that the median of the differences
between empirical and theoretical individual contributions is zero. The statistics reported are
the number of positive differences (as a fraction of the total, excluding ties). P-values (in
brackets) refer to two-sided tests based on the binomial distribution.
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Figure 1: Average contributions over time
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Figure 2: Average contributions by endowment
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Figure 3: Average contributions, by endowment and rounds
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Figure 4: Empirical and predicted contributions, by endowment

0
20

40
60

80
10

0
To

ke
ns

120 160 200 240
Endowment

Empirical Theoretical

1PC

0
20

40
60

80
10

0
To

ke
ns

120 160 200 240
Endowment

Empirical Theoretical

3PC

30



Figure 5: Empirical and predicted contributions over rounds: one prize
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Figure 6: Empirical and predicted contributions over rounds: three prizes
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Figure 7: Distribution of contributions, by treatment
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Figure 8: Cumulative distribution of contributions, by treatment
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Figure 9: Distribution of contributions, by treatment and endowment

0
.0

2
.0

4
.0

6
.0

8

0 50 100 0 50 100

1PC 3PC

Density

kdensity contribution

Contribution for income=120

0
.0

2
.0

4
.0

6

0 50 100 0 50 100

1PC 3PC

Density

kdensity contribution

Contribution for income=160

0
.0

2
.0

4
.0

6

0 50 100 0 50 100

1PC 3PC

Density

kdensity contribution

Contribution for income=200

0
.0

2
.0

4
.0

6

0 50 100 0 50 100

1PC 3PC

Density

kdensity contribution

Contribution for income=240

Figure 10: Cumulative distrib. of contributions, by treatment and endowment
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