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Abstract
In the paper a general framework for large scale modeling of macro-

economic and �nancial time series is introduced. The proposed ap-
proach is characterized by simplicity of implementation, performing
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walking on/ just saying nothing and showing no tears/ it is then,/ as human beings,/ that
the roots of our souls grow deeper. This paper is dedicated to the loving memory of A.

1



well independently of persistence and heteroskedasticity properties,
accounting for common deterministic and stochastic factors. Monte
Carlo results strongly support the proposed methodology, validating
its use also for relatively small cross-sectional and temporal samples.
By means of the proposed approach, new insights on US money mar-
ket dynamics during the subprime and euro area �nancial crises are
achieved. Moreover, three common factors, bearing the interpreta-
tion of level, slope and curvature factors, are extracted from the term
structure of OIS spreads; we �nd the latter conveying additional infor-
mation, relatively to commonly used credit risk measures like the TED
or the BAA-AAA corporate spreads, which might be exploited, also
within a composite indicator, for the construction of a risk barometer
and real-time macroeconomic forecasting.

JEL classi�cation: C22, E43, G01
Key words: long and short memory, structural breaks, common

factors, principal components analysis, fractionally integrated het-
eroskedastic factor vector autoregressive model, subprime crisis, euro
area sovereign debt crisis.
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1 Introduction

In the paper a general strategy for large-scale modeling of macroeconomic
and �nancial data, set within the factor vector autoregressive model (F-VAR)
framework, is proposed.1 Following the lead of dynamic factor model (DFM)
analysis proposed in Geweke (1977), it is assumed that a small number of
structural shocks be responsible for the observed comovement in economic
data; it is also assumed that commonalities across series is described by com-
mon deterministic factors, or break processes. As the common factors are
unobserved, accurate estimation may fail in the framework of small scale
vector autoregressive (VAR) models, but succeed when cross-sectional infor-
mation is employed to disentangle common and idiosyncratic features.
The proposed FI-HF-VAR model can be understood as a uni�ed frame-

work for large-scale econometric modeling, allowing for accurate investigation
of cross-sectional and time series properties, independent of persistence and
heteroskedasticity properties of the data, from comovement to impulse re-
sponses, forecast error variance and historical decomposition analysis. Monte
Carlo results strongly support the proposed methodology.
Consistent and asymptotically normal estimation can be conjectured, as

the proposed iterative multi-step estimation algorithm, similar to Stock and
Watson (2005), bears the interpretation of QML estimation, performed via
the EM algorithm (Dempster et al., 1977). The iterative procedure can also
be augmented by an additional step, based on the Granger and Jeon (2004)
thick modelling strategy, providing median estimates of the parameters of
interest and robust standard errors.
By employing a gap or cyclical representation, the proposed FI-HF-VAR

model bridges the F-VAR and (the most recent) G-VAR literature, as, simi-
larly to Dees et al. (2010) and Pesaran and Smith (2011), a weakly stationary
cyclical representation is employed; yet, similarly to Bai and Ng (2004), both
stationary and non stationary factors are allowed for, and principal compo-
nents analysis (PCA), rather than cointegration analysis, is employed for
the estimation of the factors. Estimation of common unobserved features by
means of time domain PCA is promising, as recent asymptotic results, i.e.,
Bai (2003, 2004) and Bai and Ng (2004), have proved consistency and asymp-
totic normality under various conditions, covering the exact and approximate
factor model case, with weakly stationary (short memory) or I(1) integrated
processes, both in levels and di¤erences, also conditionally heteroskedastic;
the validity of PCA for the intermediate case of long-memory processes is
also conjectured, and supporting Monte Carlo results are provided in Morana

1The literature on F-VAR models is large. See Stock and Watson (2011) for a survey.
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(2007) and in this study as well. Consistency and asymptotic normality for
the Kalman �ltering augmented PCA approach is also established by Doz et
al. (2011).
The dynamic properties of US LIBOR-OIS spreads (OIS spreads) over

the period May 2002 through August 2012, covering relevant events for the
US money market, i.e., the subprime and euro area sovereign debt crises, are
investigated by means of the proposed approach. Among the main empirical
results, we �nd that three common components, bearing the interpretation
of level, slope and curvature factors, can be extracted from the OIS spreads
term structure; the latter are characterized by a deterministic trend com-
ponent (break process) and strongly persistent and heteroskedastic �uctu-
ations about trend (long memory cyclical component); two common break
processes, describing the long-term evolution of OIS spreads conditional vari-
ances, bearing the interpretation of level and slope factors for the volatility
term structure, are also found. Moreover, we �nd that the two waves of
money market stress, associated with the BNP Paribas episode in August
20072 and Lehman Brothers bankruptcy in September 2008, respectively,
have lead to a wide increase in both the mean and variance OIS spreads
trend levels and to a sizable increase in the persistence of money market
shocks; while at the short-end of the term structure mean and variance trend
components have progressively converged back to pre-crisis levels since De-
cember 2008, �uctuations about much higher mean values, than prevailing
before the crisis, can be noted at its medium- to long-end, also over the post-
subprime crisis period; moreover, persistence of money market shocks has
not reverted back to pre-crisis intensity, actually even further increasing over
the post-crisis period. A sizable increase in OIS spreads mean trend levels
at the medium- to long-end of the term structure is �nally associated with
the beginning of the euro area sovereign debt crisis in February 2010 and its
spillover to the Italian economy in September 2011.
By comparing the forward-looking properties of the OIS spreads term

structure factors with alternative measures of credit/liquidity risk and �nan-
cial fragility, we then �nd the former conveying additional information, rela-
tively to commonly used measures like the TED or the BAA-AAA corporate
spreads, which might be exploited, also within a composite indicator, for the
construction of a risk barometer and real-time macroeconomic forecasting.
To our knowledge no such an in depth study on the consequences of the

subprime and euro area sovereign debt crisis on the US money market has so
far been contributed in the literature; the empirical results show that accu-

2On Agust 7 2007 the French bank BNP Paribas closed two of its investment funds,
exposed to subprime mortgage risk, marking the beginning of the 2007-2009 �nancial crisis.
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rate modeling of the OIS spreads empirical properties and the understand-
ing of the recent �nancial turmoil do require the comprehensive modeling
framework proposed in the paper. Other empirical implementations of the
proposed methodology, involving, for instance, the modeling of realized mo-
ments of �nancial returns and macroeconomic variables, can be envisaged,
and suggestions for further applications provided as well.
After this introduction, the paper is organized as follows. In section two

the econometric methodology is presented, while in section three the Monte
Carlo analysis is performed; the empirical investigation of US money market
dynamics during the subprime �nancial crisis, the ensuing recession, and the
euro area sovereign debt crisis is provided in section four; �nally, conclusions
are drawn in section �ve.

2 The FI-HF-VAR model

The proposed modeling framework allows for di¤erent sources of persistence,
in both the conditional mean and variance, for a n-dimensional real valued
vector process xt, covering most of the cases of interest for empirical analy-
sis using macroeconomic and �nancial data. The most general speci�cation
allows for I(d) persistence (0 � d � 1), structural breaks and common fac-
tors, both in the mean and variance. Several models are then nested in this
speci�cation, which can be derived through appropriate restrictions.
Hence, consider the following fractionally integrated heteroskedastic fac-

tor vector autoregressive (FI-HF-VAR) model

xt � ���t � �fft = C(L)(xt�1 � ���t�1 � �fft�1) + vt (1)

vt � iid(0;�v)

P (L)D(L)ft = �t = H
1=2
t  t (2)

 t � iid(0; Ir);

where xt is a n-dimensional vector of real valued integrated and heteroskedas-
tic processes subject to structural breaks, t = 1; :::; T , in deviation from the
unobserved common deterministic (�t) and stochastic (ft) factors, where
�t is a m-dimensional vector of common break processes, m � n, with
n�m matrix of loadings ��; ft is a r-dimensional vector of integrated het-
eroskedastic common factors, r � n, of order di in mean and bi in variance,
0 � di � 1, 0 � bi � 1, i = 1; :::; r, with n � r matrix of loadings �f ;
C(L) � C0L

0+C1L+C2L
2+ :::+CsL

s is a �nite order matrix of polynomi-
als in the lag operator with all the roots outside the unit circle, Cj, j = 0; ::; s,
is a square matrix of coe¢ cients of order n; vt is a n-dimensional vector of
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zero mean idiosyncratic i.i.d. shocks, with contemporaneous covariance ma-
trix �v, assumed to be coherent with the condition of weak cross-sectional
correlation of the idiosyncratic components (Assumption E) stated in Bai
(2003, p.143).
Moreover, P (L) � Ir+P1L+P2L

2+ :::+PuL
u is a �nite order matrix of

polynomials in the lag operator with all the roots outside the unit circle, Pj,
j = 1; ::; u, is a square matrix of coe¢ cients of order r;  t is a r-dimensional
vector of common zero mean i.i.d. shocks, with identity covariance matrix
Ir, E [ itvjs] = 0 all i; j; t; s, respectively; D(L) is a r � r diagonal matrix
in the lag operator, speci�ed according to the integration order (in mean) of
the common stochastic factors, i.e.,

D(L) � (1� L)Ir;

for the case of I(1) integration (di = 1);

D(L) � Ir;

for the I(0) case or no integration (short memory) case (di = 0);

D(L) � diag
�
(1� L)d1 ; (1� L)d2 ; :::; (1� L)dr

	
;

for the case of fractional integration (I(d), long memory) (0 < di < 1)3, where
(1�L)di is the fractional di¤erencing operator; the latter admits a binomial
expansion, which can be compactly written in terms of the Hypergeometric
function, i.e.,

(1� L)di = F (�di; 1; 1;L)

=
1P
k=0

� (k � di) � (k + 1)
�1 � (�di)�1 Lk

=
1P
k=0

�kL
k; (3)

where � (�) is the Gamma function.

2.1 The conditional variance process

Ht = V ar(ftj
t�1) � diag fh1;t; h2;t; :::; hr;tg is the r�r conditional variance-
covariance matrix for the unconditionally and conditionally orthogonal com-
mon factors ft. Consistent with the constant conditional correlation model

3See Baillie (1996) for an introduction to long memory processes.
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of Bollerslev (1990) and Brunetti and Gilbert (2000), the ith generic element
along the main diagonal of Ht is

mi(L)hi;t = wi;t + ni(L)�
2
i;t; i = 1; :::; r; (4)

where

ni(L) � 1� �i(L)� (1� �i(L))(1� L)bi (5)

for the case of fractional integration (long memory) in variance (0 < bi < 1);

ni(L) � 1� �i(L)� (1� �i(L))(1� L) (6)

for the case of I(1) integration in variance (bi = 1);

ni(L) � 1� �i(L)� (1� �i(L)) (7)

for the I(0) or no integration (short memory) in variance case (bi = 0); in all
cases

mi(L) � 1� �i(L) (8)

�i(L) = �i(L) + �i(L) (9)

�i(L) � �i;1L+ �i;2L
2 + :::+ �i;qL

q (10)

�i(L) � �i;1L+ �i;2L
2 + :::+ �i;pL

p; (11)

and all the roots of the �i(L) and �i(L) polynomials are outside the unit
circle.
A factor structure in thewi;t component may also be allowed for by writing

wi;t = �g;igt; (12)

where gt is a l-dimensional vector of common break processes in variance,
l � r, with r � l matrix of loadings �g, and �g;i being its ith row.
The conditional variance process hi;t� V ar(fi;tj
i;t�1), i = 1; :::; r, is

therefore of the FIGARCH (p; bi; z) type (Baillie et al., 1996), with z =
max fp; qg or the IGARCH (p; q) type (Engle and Bollerslev, 1986) for the
fractionally integrated and integrated case, respectively, and of theGARCH (p; q)
type (Bollerslev, 1986) for the non integrated case, augmented by a time-
varying intercept wi;t in the conditional variance equation.
Di¤erent speci�cations for wi;t have been suggested in the literature, i.e.,

a spline function (Engle and Rangel, 2008), a Gallant (1984) �exible func-
tional form (Baillie and Morana, 2009), a spline-dummy function (Cassola
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and Morana, 2012), a general smooth transition logistic function (Amado
and Terasvirta, 2008), a Markov switching mechanism (Hamilton and Susmel,
2004); in all cases alternating regimes, recurrent or not recurrent, are allowed
for in the conditional variance equations. The above mentioned mechanisms,
may also be implemented for the modelling of structural breaks in the mean
of the processes (�t); see Hamilton (1989), Enders and Lee (2004), Gonzalez
et al. (2009), Cassola and Morana (2012), Baillie and Morana (2012).
The following ARCH(1) representation can be obtained from each of

the three above models

hi;t =
wi;t
mi(1)

+
ni(L)

mi(L)
�2i;t i = 1; :::; r (13)

= w�i;t +  i(L)�
2
i;t; (14)

where w�i;t =
wi;t
mi(1)

and  i(L) =
ni(L)

mi(L)
=  1;iL+  2;iL

2 + ::::

The term w�i;t then bears the interpretation of break in variance process,
or time-varying unconditional variance process (no integration case), or long-
term conditional variance level (unit root and fractional integration cases).
To guarantee the non negativity of the conditional variance process at

each point in time all the coe¢ cients in the ARCH(1) representation must
be non-negative, i.e.,  j;i � 0 for all j � 1 and w�i;t > 0 for any t. Su¢ cient
conditions, for various parameterization, can be found in Baillie et al. (1996),
Engle and Bollerslev (1986), Bollerslev (1986), Baillie and Morana (2009),
Conrad and Hag (2006), and Chung (1999).

2.2 Examples of nested models

From (1) and (2), by settingD(L) = Ir,H
1=2
t = �

1=2
� , p = m, �t = �;�� = In,

the I(0) homoskedastic F-VAR(s; u) model

xt � �� �fft = C(L)(xt�1 � �� �fft�1) + vt (15)

vt � iid(0;�v)

P (L)ft = �t; (16)

�t � iid(0;��)

is then obtained; moreover, by allowing H1=2
t to evolve according to (4), (7),

and (8)-(11), with wi;t = wi, mi(L) � 1��iL and �i(L) = �iL+�iL, the I(0)
F-VAR(s; u)-GARCH(1,1) model is obtained; also, by assuming (5) rather
then (7), the I(0) F-VAR(s; u)-FIGARCH(1,b,1) is obtained. Applications of
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the latter models for the modeling of macroeconomic variables in stationary
form and �nancial returns may be envisaged. See, for instance, Morana
(2012) for a large-scale application to the modeling of the global economy
and the macro-�nance interface.
Moreover, by setting D(L) � (1� L)Ir, the I(1) F-VAR(s; u) model

xt � �� �fft = C(L)(xt�1 � �� �fft�1) + vt (17)

vt � iid(0;�v)

P (L)(1� L)ft = �t; (18)

�t � iid(0;��)

is obtained, as well as, by, imposing the same restrictions as above, the I(1)
F-VAR(s; u)-GARCH(1,1) and F-VAR(s; u)-FIGARCH(1,b,1) models. Ap-
plications of the latter models for the modeling of non-stationary macroeco-
nomic variables and �nancial asset prices may be envisaged.
In addition to interest rate spreads term structure modeling, other ap-

plications of the most general framework contributed in the paper may also
be envisaged, as for instance for the modeling of in�ation rates and realized
moments of �nancial returns.

2.3 The reduced fractional VAR form

Depending on persistence properties of the data, the vector autoregressive
representation (VAR) for the factors ft and the series xt can be written as
follows:

i) for the case of fractional integration (long memory) (0 < di < 1), by
taking into account the binomial expansion in (3), it follows P (L)D(L) �
I��(L), �(L) = �1L1+�2L2+ :::; where �i, i = 1; 2; :::, is a square matrix
of coe¢ cients of dimension r; by substituting (2) into (1), the in�nite order
vector autoregressive representation for the factors ft and the series xt can
then be written as�

ft
xt � ���t

�
=

�
��f (L) 0
��(L) C(L)

� �
ft�1

xt�1 � ���t�1

�
(19)

+

�
�
t

"t

�
;

�
�
t

"t

�
=

�
I
�f

�
[
p
ht
0
 t] +

�
0
vt

�
;
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where ��f (L) = �(L)L�1 and ��(L) = [In � C(L)L] �f�(L)L
�1; since the

in�nite order representation cannot be handled in estimation, a truncation
to a suitable large lag for the polynomial matrix �(L) is required.4 Hence,

�(L) =

p�X
j=1

�jL
j;

ii) for the case of integration (di = 1), it should be �rstly recalled that

P (L)D(L) � P (L)(1� L)

� (Ir � �L)� (P1L+ P2L
2 + :::+ PuL

u)(1� L)

with � = Ir.
The latter may be rewritten in the equivalent polynomial matrix form

Ir � �1L� �2L2 � :::� �u+1Lu+1

where �i, i = 1; :::; u + 1; is a square matrix of coe¢ cients of dimension r,
and

�1 + �2 + :::+ �u+1 = � = Ir

Pi = � (�i+1 + �i+2 + :::+ �u+1) ; i = 1; 2; :::; u:

Then, the (�nite order) vector autoregressive representation for the fac-
tors ft and the series xt can be written as in (19), with ��f (L) = �(L)L�1

and ��(L) = [In � C(L)L] �f�(L)L
�1;

iii) for the case of no integration (short memory) (di = 0), the (�-
nite order) vector autoregressive representation for the factors ft and the
series xt can still be written as in (19), but recalling that D(L) � Ir,
and therefore P (L)D(L) = P (L), then, ��f (L) = P (L)L�1 and ��(L) =
[In � C(L)L] �fP (L)L

�1.

4Monte Carlo evidence reported in Chan and Palma (1998) suggests that the truncation
lag should increase with the sample size and the complexity of the ARFIMA representation
of the long memory process, still remaining very small relatively to the sample size. For
instance, for the covariance stationary fractional white noise case and a sample of 100
observations truncation can be set as low as 6 lags, while for a sample of 10,000 observations
it should be increased to 14 lags; for the case of a covariance stationary ARFIMA (1,d,1)
process and a sample of 1,000 observations truncation may be set to 30 lags.

10



2.4 Estimation

Estimation of the model can be implemented following a multi-stage iterative
procedure, similar to Stock and Watson (2005), consisting of the following
steps.
� Step 1: persistence analysis. Stationarity/non stationarity tests and

structural break tests are carried out on the series of interest (xt) in order to
determine their persistence properties, i.e., deterministic and/or stochastic.
At this stage each component xi;t, i = 1; :::; n, of the vector time series

xt is decomposed into its purely deterministic (trend/break process; b̂i;t) and
purely stochastic (break-free, l̂i;t = xi;t � b̂i;t) parts. As neglected structural
breaks may lead to processes which appear to show persistence of the long
memory or unit root type (Perron, 1989; Granger and Hyung, 2004; Diebold
and Inoue, 2001), procedures allowing for structural breaks when testing for
the integration order should be employed (Baillie and Morana, 2009, 2012;
Beckers et al., 2006; Enders and Lee, 2005; Perron, 1989; McCloskey and
Perron, 2011; Phillips and Shimotsu, 2004; Dolado et al., 2005; Perron and
Qu, 2010; Ohanissian et al., 2008; Shimotsu, 2006; Morana, 2009). An
estimate of the stochastic persistence parameter is however only required at
Step 4, where the analysis is performed on each of the common factors, as in
Bai and Ng (2004).5

� Step 2: initialization. The initialization stage yields an initial es-
timate of the common deterministic (break processes) (�t) and stochastic
factors (ft) and the C(L) polynomial matrix, i.e., an initial estimate of the
equation system in (1).

�� Hence, the initial estimate of the m � n common break processes
is obtained by means of Principal Components Analysis (PCA) implemented
using the estimated break process b̂i;t, i = 1; :::; n, collected in the vector b̂t,
yielding �̂�;t � H��̂t = �̂

�1=2
b Â

0
b̂t, where �̂b is the m �m diagonal matrix

of the non zero eigenvalues of �̂b̂, the estimated reduced rank (m < n)
n�n variance-covariance matrix of the (estimated) break processes b̂i;t, Â is
the n � m matrix of the associated orthogonal eigenvectors, and H� is an
invertible square matrix of order m.

��Next, the initial estimate of the r � n common stochastic factors is
obtained by means of PCA implemented using the estimated break-free series

5While from a theoretical point of view a linear combination of processes with di¤erent
orders of integration is integrated of order equal to the highest one among those shown
by the processes involved in the linear combination, empirically it can be di¢ cult to
accurately determine the order of integration of a linear combination process, depending
on the relative variance of the various components. Note that the proposed approach is
not a¤ected by this latter drawback.
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l̂i;t, i = 1; :::; n, collected in the vector l̂t, yielding f̂�;t � Hf f̂t = �̂
�1=2
l B̂0l̂t,

where �̂l is the r � r diagonal matrix of the non zero eigenvalues of �̂l̂, the
estimated reduced rank (r < n) n � n variance-covariance matrix of the
(estimated) break-free processes l̂t, B̂ is the n � r matrix of the associated
orthogonal eigenvectors and Hf is an invertible square matrix of order r.

�� Finally, conditional on the initial estimate of the common deter-
ministic and stochastic factors, the initial estimate of the polynomial matrix
C(L) and �f and �� factor loading matrices is obtained by means of OLS es-
timation of the equation system in (1). This can be obtained by �rst (OLS)
regressing the actual series xt on the estimated common break processes
and stochastic factors to obtain �̂f and �̂�; alternatively, �̂� = Â�̂

1=2
b

and �̂f = B̂�̂
1=2
l , as yield by PCA; then, the gap vector is computed as

xt � �̂��̂�;t � �̂f f̂�;t, and Ĉ(L) is obtained by means of OLS estimation of
the VAR model in (1).
Several criteria are available for the selection of the number of common

stochastic factors, ranging from heuristic or statistical eigenvalue-based ap-
proaches (Jackson, 1993; Kapetanios, 2010; Cragg and Donald, 1997; Gill
and Lewbel, 1992, Robin and Smith, 2000), to the variance test of Connor
and Korajczyk (1993), and the more recent information criteria (Stock and
Watson, 1998; Forni et al., 2000; Bai and Ng, 2002) and �primitive�shock
(Bai and Ng, 2007; Stock and Watson, 2005) based procedures.
� Step 3: the iterative procedure. An updated estimate of the equa-

tion system in (1) is obtained as follows.
�� First, a new estimate of the m common deterministic factors, and

their factor loading matrix, can be obtained by the application of PCA to
the (new) stochastic factor-free series xt�

h
I � Ĉ(L)L

i
�̂f f̂�;t, yielding �̂

(new)
�

and �̂(new)�;t .6

�� Next, conditional on the new common break processes and their
factor loading matrix, the new estimate of the common long memory factors
is obtained from the application of PCA to the (new) break-free processes
l̂
(new)
t = xt � �̂(new)� �̂

(new)
�;t , yielding �̂(new)f and f̂ (new)�;t .7

�� Finally, conditional on the new estimated common break processes
and long memory factors, the new estimate of the gap vector xt��̂(new)� �̂

(new)
�:t �

�̂
(new)
f f̂

(new)
�;t is obtained, and the new estimate Ĉ(L)(new) can be computed

6Alternatively, �̂(new)� can be obtained by regressing xt on �̂
(new)
�;t (and the initial esti-

mate f̂�;t), using OLS.
7Alternatively, �̂(new)f can be obtained by regressing xt on f̂

(new)
�;t (and the updated

estimate �̂(new)�;t ), using OLS. This would also yield a new estimate �̂(new)� to be used in
the computation of the updated gap vector.
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by means of OLS estimation of the VAR model in (1).
�� The procedure described in step 3 is iterated until convergence,

yielding the �nal estimates �̂(fin)� , �̂(fin)�;t , �̂(fin)f , f̂ (fin)�;t , and Ĉ(L)(fin).
Note that the proposed iterative procedure bears the interpretation of

QML estimation performed by means of the EM algorithm. In the E-step
the unobserved factors are estimated, given the observed data and the current
estimate of model parameters, by means of PCA; in theM -step the likelihood
function is maximized (OLS estimation of the C(L) matrix is performed) un-
der the assumption that the unobserved factors are known, conditioning on
their E-step estimate. Convergence to the one-step QML estimate is en-
sured, as the value of the likelihood function is increased at each step. Note
that the Expectation step of the EM algorithm relies on consistent estimation
of the unobserved components by means of PCA. In this respect it should
be noted that min

np
n;
p
T
o
consistency and asymptotic normality of PCA

for I(0) and I(1) (non cointegrated) unobserved common factors has been
established in Bai (2003, 2004) under general conditions. While there are
no asymptotic results for the application of PCA to fractionally integrated
and trend stationary processes, supporting Monte Carlo evidence is provided
by Morana (2007) and in this study.8 Moreover, likewise in the Maximiza-
tion step of the EM algorithm,

p
T consistent and asymptotically normal

estimation of the polynomial matrix C(L) is yield by OLS estimation of the
VAR model for the I(0) gap series, holding the latter as they were actually
observed. As shown by Bai and Ng (2006, 2008), when the unobserved fac-
tors are estimated by means of PCA in the E-step, the generated regressors
problem is in fact not an issue for consistent estimation in the M -step, due
to faster vanishing of the estimation error, provided

p
T=N ! 0 for linear

models, and T 5=8=N ! 0 for non linear models.
� Step 4: restricted estimation of the full model. Once the �nal

estimate of the equation system in (1) is available, the reduced VAR form in
(19) is estimated as follows:

i) for the case of fractional integration (long memory) (0 < di < 1), the
fractional di¤erencing parameter is (consistently) estimated �rst, for each
component of the common factor vector f̂ (fin)�;t , yielding the estimates d̂i,
i = 1; :::; r, collected in D̂(L) matrix; then, P̂ (L) is obtained by means
of OLS estimation of the V AR(u) model for the (estimated) fractionally
di¤erenced common long memory factors (D̂(L)f̂ (fin)�;t )9; hence, I � �̂(L) =

8The use of PCA for the estimation of common deterministic trends has previously
been advocated by Bierens (2000). Yet, details cannot be found in the published version
of his paper.

9Alternatively, for the covariance stationary long memory case only, consistent and
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P̂ (L)D̂�(L), where D̂�(L) is the r-dimensional diagonal polynomial matrix
in the lag operator containing the pth order (p > u) truncated binomial
expansion of the elements in D̂(L). Then, �̂�f (L) = �̂(L)L

�1 and �̂�(L) =h
In � Ĉ(L)(fin)L

i
�̂
(fin)
f �̂(L)L�1;

ii) for the I(1) case (di = 1), �̂�f (L) = �̂(L)L
�1, where �̂(L) is obtained by

means of OLS estimation of the V AR(u+1) model for the (estimated) com-

mon stochastic factors (f̂ (fin)�;t ); then �̂�(L) =
h
In � Ĉ(L)(fin)L

i
�̂
(fin)
f �̂(L)L�1;

iii) for the case of no integration (short memory) (di = 0), �̂�f (L) =
P̂ (L)L�1 where P̂ (L) is obtained by means of OLS estimation of the V AR(u)
model for the (estimated) common stochastic factors (f̂ (fin)�;t ); then �̂�(L) =h
In � Ĉ(L)(fin)L

i
�̂
(fin)
f P̂ (L)L�1.

By taking the estimated factors (and fractional di¤erencing parameter)
as they were actually observed, again standard asymptotic theory would
then apply. The VAR representation of the FI-HF-VAR model can then be
inverted (see the next section for details) and impulse response and forecast
error variance decomposition analysis performed.
� Step 5: simulation. Following the thick modelling strategy of Granger

and Jeon (2004), a further step can be added to the procedure, in order to
compute median estimates of the parameters of interest, impulse responses
and forecast error variance decomposition, as well as their con�dence inter-
vals.
� Step 6: conditional variance analysis. Conditional variance analy-

sis can be carried out using a procedure similar to the O-GARCH model of
Alexander (2002):

i) �rstly, conditional variance estimation is carried out factor by factor,
using the estimated factor residuals �̂t, yielding ĥi;t, i = 1; 2; :::; r; QML
estimation can be performed in a variety of settings, ranging from standard
GARCH(p; q) (Bollerslev, 1986) and FIGARCH(p; b; z) (Baillie et al., 1996)
models to their �adaptive� generalizations (Engle and Rangel, 2008; Bail-
lie and Morana, 2009; Amado and Terasvirta, 2008; Hamilton and Susmel,
2004), in order to allow for di¤erent sources of persistence in variance;

ii) secondly, consistent with the assumptions of conditional and uncondi-
tional orthogonality of the factors, the conditional variance-covariance (Hx;t)

asymptotically normal estimation of the VARFIMA model can be obtained by means of
Conditional-Sum-of-Squares (Robinson, 2006), exact Maximum Likelihood (Sowell, 1992),
or Indirect (Martin and Wilkins, 1999) estimation. See also Baillie and Morana (2012).
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and correlation (Rx;t) matrices for the actual series may be estimated as

Ĥx;t = �̂fĤt�̂
0
f + �̂v (20)

R̂x;t = Ĥ
��1=2
x;t Ĥx;tĤ

��1=2
x;t ; (21)

where Ĥt = diag
n
ĥ1;t; ĥ2;t; :::; ĥr;t

o
and Ĥ�

x;t = diag
n
ĥx1;t; ĥx2;t; :::; ĥxn;t

o
.

Relaxing the assumption of conditional hortogonality is also feasible in
the proposed framework, as the dynamic conditional covariances, i.e., the
o¤-diagonal elements in Ht, can be obtained, after step i) above, by means
of the second step in the estimation of the Dynamic Conditional Correlation
model (DCC; Engle, 2002) or the Dynamic Equicorrelation model (DECO;
Engle and Kelly, 2008).

2.4.1 Reduced form and structural vector moving average repre-
sentation of the FI-HF-VAR model

In the presence of unconditional heteroskedasticity, the computation of the
impulse response functions and the forecast error variance decomposition
(FEVD) should be made dependent on the estimated unconditional variance
for each regime. In the case of (continuously) time-varying unconditional
variance, policy analysis may then be computed at each point in time. For
some of the conditional variance models considered in the paper, i.e., the
FIGARCH and IGARCH processes, the population unconditional variance
does not actually exist; in the latter cases the wi;t component just bears the
interpretation of long term level for the conditional variance; policy analy-
sis is still feasible, yet subject to a di¤erent interpretation, FEVD referring,
for instance, not to the proportion of forecast error (unconditional) variance
accounted for by each structural shock, but to the proportion of forecast er-
ror (conditional) long term variance accounted for by each structural shock.
With this caveat in mind, the actual computation of the above quantities is
achieved in the same way as in the case of well de�ned population uncondi-
tional variance.
Hence, the computation of the vector moving average (VMA) representa-

tion for the FI-HF-VAR model depends on the persistence properties of the
data. The following distinctions should then be made.
For the short memory case, i.e., the zero integration order case (di = 0),

the VMA representation for the xt � ���t process can be written as

xt � ���t = G(L)�t + F (L)vt; (22)

where G(L) � �fP (L)�1 and F (L) � [I � C(L)L]�1.
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For the long memory case (0 < di < 1) and the case of I(1) non stationar-
ity (di = 1), the VMA representation should be computed for the di¤erenced
process (1� L) (xt � ���t) yielding

(1� L) (xt � ���t) = G(L)+�t + F (L)+vt; (23)

whereG(L)+ � �f (1� L)P (L)�1 = (1� L)G(L) and F (L)+ � (1� L) [I � C(L)L]�1 =
(1� L)F (L).
Moreover, for the long memory case, the generic lag polynomial element in

G(L)+, i.e., gi (L)
+, can be written in terms of the Hypergeometric function

gi (L)
+ = F (di � 1; 1; 1;L)

=
1P
k=0

� (k + di) � (k + 1)
�1 � (di)

�1 Lk

=
1P
k=0

�kL
k:

Impulse responses for the xt����t process can then be �nally computed

as I +
kP
j=1

G+j and I +
kP
j=1

F+j , k = 1; 2; :::

Identi�cation of structural shocks The identi�cation of the structural
shocks in the FI-HF-VAR model can be implemented in two steps. Firstly,
denoting by �t the vector of the r structural common factor shocks, the re-
lation between reduced and structural form common shocks can be written
as �t = H�t; where H is square and invertible. Therefore, the identi�ca-
tion of the structural common factor shocks amounts to the estimation of
the elements of the H matrix. It is assumed that E [�t�

0
t] = Ir, and hence

H��H
0 = Ir. As the number of free parameters in �� is r(r + 1)=2, at

most r(r + 1)=2 parameters in H�1 can be uniquely identi�ed through the
�� = H�1H 0�1 system of nonlinear equations in the unknown parameters
of H�1. Additional r(r � 1)=2 restrictions need then to be imposed for ex-
act identi�cation of H�1, by constraining the contemporaneous or long-run
responses to structural shocks; for instance, recursive (Choleski) or non re-
cursive structures can be imposed on the VAR model for the common factors
through exclusion or linear/non-liner restrictions, as well as sign restrictions,
on the contemporaneous impact matrix H�1.10

Secondly, by denoting  t the vector of n structural idiosyncratic distur-
bances, the relation between reduced form and structural form idiosyncratic

10See Kilian (2011) for a recent survey.
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shocks can be written as  t = �vt, where � is square and invertible. Hence,
the identi�cation of the structural idiosyncratic shocks amounts to the esti-
mation of the elements of the � matrix. It is assumed that E [ t 

0
t] = In,

and hence ��v�0 = In. Then, in addition to the n(n + 1)=2 equations pro-
vided by � = ��1�0�1, n(n� 1)=2 restrictions need to be imposed for exact
identi�cation of ��1, similarly to what required for the common structural
shocks.
Note that preliminary to the estimation of the �v matrix, v̂t should be ob-

tained from the residuals of an OLS regression of "̂t on �̂t; the latter operation
would grant orthogonality between common and idiosyncratic residuals.
The structural VMA representation can then be written as

xt � ���t = G�(L)�t + F �(L) t; (24)

where G�(L) = G(L)H�1, F �(L) = F (L)��1, or

(1� L) (xt � ���t) = G
�
(L)�t + F

�
(L) t; (25)

where G
�
(L) = G+(L)H�1, F

�
(L) = F (L)+��1, according to persistence

properties, and E
�
 i;t�

0
j;t

�
= 0 any i; j.

3 Monte Carlo analysis

Consider the following data generation process (DGP) for the N -dimensional
vector process xt

xt � ���t � �fft = C(xt�1 � ���t�1 � �fft�1) + vt (26)

vt � iid(0; �2IN);

where C is a N � N matrix of coe¢ cients, �� and �f are N � 1 vectors
of loadings, and �t and ft are the common deterministic and long memory
factors, respectively, at time period t, with

(1� �L)(1� L)dft = �t: (27)

Then, for the conditionally heteroskedastic case it is assumed

�t =
p
ht t  t � iid(0; 1)

[1� �L� �L](1� L)b
�
�2t � �2�

�
= [1� �L]

�
�2t � ht

�
; (28)
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while
�t � iid(0; 1) (29)

for the conditionally homoskedastic case.
Di¤erent values for the autoregressive idiosyncratic parameter �, common

across the N cross-sectional units (C = �IN), have been considered, i.e., � =
f0; 0:2; 0:4; 0:6; 0:8g, as well as for the fractionally di¤erencing parameter d =
f0; 0:2; 0:4; 0:6; 0:8; 1g and the common factor autoregressive parameter �,
setting � = f0:2; 0:4; 0:6; 0:8g for the non integrated case and � = f0; d=2g for
the fractionally integrated and integrated cases; � > � is always assumed in
the experiment. For the conditional variance equation it is assumed � = 0:05
and � = 0:90 for the short memory case, and � = 0:05, � = 0:30 and b = 0:45
for the long memory case. The inverse signal to noise ratio is given by �2=�2�,
taking values �2=�2� = f4; 2; 1; 0:5; 0:25g. Finally, �� and �f are set equal to
unitary vectors.
Moreover, in addition to the structural stability case, i.e., �t = � = 0,

two designs with breaks have been considered for the component �t; i.e.,
i) the single step change in the intercept at the midpoint of the sample

case, i.e.,

�t =

�
0 t = 1; :::; T=2
4 t = T=2 + 1; :::; T

;

ii) the two step changes equally spaced throughout the sample case, with
the intercept increasing at one third of the way through the sample and then
decreasing at a point two thirds of the length of the sample, i.e.,

�t =

8<:
0 t = 1; :::; T=3
4 t = T=3 + 1; :::; 2T=3
2 t = 2T=3 + 1; :::; T

:

The sample size investigated is T = 100; 500, and the number of cross-
sectional units is N = 30. For the no breaks case also other cross-sectional
sample sizes have been employed, i.e., N = 5; 10; 15; 50.
The number of replications has been set to 2,000 for each case.
The performance of the proposed multi-step procedure has then been as-

sessed with reference to the estimation of the unobserved common stochastic
and deterministic factors, and the � and � autoregressive parameters. Being
not contributed by the proposed approach, the location of the break points
and the value of the fractional di¤erencing parameter are taken as known.
Concerning the estimation of the common factors the Theil�s inequality

coe¢ cient (IC) and the correlation coe¢ cient (Corr) have then been em-
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ployed in the evaluation, i.e.,

IC =

vuut 1

T

TX
t=1

(zt � ẑt)
2=(

vuut 1

T

TX
t=1

z2t +

vuut 1

T

TX
t=1

ẑ2t );

Corr = Cov(zt; ẑt)=
p
V ar(zt)V ar(ẑt);

where zt = �t; ft is the true unobserved component and ẑt its estimate. The
above statistics have been computed for each Monte Carlo replication and
then averaged.

3.1 Results

The results for the non integration case are reported in Figures 1-2 (and 5,
columns 1 and 3), while Figures 3-4 (and 5, columns 2 and 4) refer to the frac-
tionally integrated and integrated cases (the integrated case, independent of
the type of integration, thereafter). In all cases results refer to the estimated
parameters for the �rst equation in the model. Since the results are virtually
una¤ected by the presence of conditional heteroskedasticity, for reasons of
space, only the heteroskedastic case is discussed. Moreover, only the results
for the � = d=2 case are reported for the integrated case, as similar results
have been obtained for the � = 0 case.11

3.1.1 The structural stability case

As is shown in the plots, for a cross-sectional sample size N = 30 units, a
negligible downward bias for the � parameter can be noted (-0.02 and -0.03,
on average, for the non integrated and integrated case, respectively, and
T = 100; -0.01 and -0.006, respectively, and T = 500; Figure 5), decreasing
as the serial correlation spread, �� � or d� �, or the sample size T , increase,
independent of the (inverse) signal to noise ratio.
Di¤erently, the downward bias in � is increasing with the degree of per-

sistence of the common factor d, the (inverse) signal to noise ratio s=n�1, and
the serial correlation spread, �� � or d� �, yet decreasing with the sample
size T (Figures 1 and 3).
For the non integrated case (Figure 1), there are only few cases (��

� = 0:4; 0:6; 0:8) when a 10%, or larger, bias in � is found, occurring when the
series are particularly noisy (s=n�1 = 4); for the stationary long memory case
a 10% bias, or smaller, is found for s=n�1 � 2, while for the non stationary
11A full set of results is available in the working paper version of this paper or upon

request from the author.
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long memory case for s=n�1 � 1 and a (relatively) large sample (T = 500)
(Figure 3). Increasing the cross-sectional dimension N yields improvements
(see the next section).
Also very satisfactory is the estimation of the unobserved common sto-

chastic factor, as the IC statistic is always below 0.2 (0.14 (0.10), on average,
for T = 100 (T = 500) for the non integrated case; 0.06 (0.03), on average,
for T = 100 (T = 500) for the integrated case). Moreover, the correlation
coe¢ cient between the actual and estimated common factors is always very
high, 0.98 and 0.99, on average, respectively, for both sample sizes (Figures
2 and 4).

Results for smaller and larger cross-sectional samples In Figures
1-2 and 3-4 (center plots) the bias for the � parameter and the correlation
coe¢ cient between the actual and estimated common factors are also plotted,
for di¤erent cross-sectional dimensions, i.e., N = 5; 10; 15; 50, for the non
integrated and integrated cases, respectively; statistics for the � parameter
are not reported, as the latter is always unbiasedly estimated, independently
of the cross-sectional dimension.
As is shown in the plots, the performance of the estimator crucially de-

pends on T , N , and s=n�1.
For the non integrated case (Figure 1), when the (inverse) signal to noise

ratio is low, i.e., s=n�1 � 0:5, the downward bias is already mitigated by
using a cross-sectional sample size as small as N = 5; for the case of T = 100
observations; as N increases, similar results are obtained for higher s=n�1,
i.e., N = 10; 15 and s=n�1 � 1, orN = 50 and s=n�1 � 4. For a larger sample
size, i.e., T = 500, similar conclusions hold, albeit, for the N = 5 case, the
(inverse) signal to noise ratio can be higher, i.e., s=n�1 � 1; similarly for the
N = 10; 15 case with s=n�1 � 2.
For the integrated case (Figure 3) conditions are slightly more restrictive;

in particular, for the stationary long memory case, when the (inverse) signal
to noise ratio is low, i.e., s=n�1 � 0:5, the downward bias is already mitigated
by setting N = 5 and T = 100; similar results are obtained for higher s=n�1

and N , i.e., N = 10; 15 and s=n�1 � 1; 2, or N = 50 and s=n�1 � 4.
Similar conclusions can be drawn for T = 500, albeit, holding N constant,
accurate estimation is obtained also for higher s=n�1. Similarly also for the
non stationary case (long memory or I(1)); yet, holding T constant, either
larger N; or lower s=n�1, would be required for accurate estimation.
The above �ndings are corroborated by the estimated correlation coef-

�cients between the actual and estimated common factors (Figures 2 and
4), showing that satisfactory estimation (a correlation coe¢ cient higher than
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0.9) can be obtained also in the case of a small temporal sample size, provided
the (inverse) signal to noise ratio is not too high, and/or the cross-sectional
dimension is not too low (s=n�1 � 1 and N = 5; s=n�1 � 2 and N = 10;
s=n�1 � 4 and N = 15).

3.1.2 The structural change case

While concerning the estimation of the � parameter no sizable di¤erences
can be found for the designs with structural change, relatively to the case
of structural stability12, the complexity of the break process may on the
other hand a¤ect estimation accuracy for the � parameter, worsening as the
number of break points increases, particularly when the temporal sample size
is small (T = 100).
Yet, for the no integration case (Figure 1), already for T = 500; the

performance is very satisfactory for both designs, independently of the (in-
verse) signal to noise ratio s=n�1; di¤erently, for T = 100 the performance
is satisfactory (at most a 10% bias) only when the series are not too noisy
(s=n�1 � 1). Also, similar to the structural stability case, the (downward)
bias in the � parameter is increasing with the degree of persistence of the
common factor d, the (inverse) signal to noise ratio s=n�1, and �� � or d�
�, yet decreasing with the sample size T .
Coherent with the above results, satisfactory estimation of the unobserved

common stochastic factor (Figure 2) and break process can also be noted
(Figure 5, columns 1-3); for the common stochastic factor, the IC statistic
is in fact always below 0.2 for the T = 500 case (0.11 and 0.13, on average,
for the single break point and two-break points case, respectively) and below
0.3 for the T = 100 case (0.17 and 0.20, on average), while the actual and
estimated common factors are strongly correlated: for T = 100 (T = 500),
on average, the correlation coe¢ cient is 0.96 (0.98) for the single break point
case and 0.93 (0.97) for the two-break points case. Very accurate is also the
estimation of the common break process (the IC statistic is never larger than
0.15 for T = 100 and 0.075 for T = 500).
Concerning the integrated case, some di¤erences relatively to the non

integrated case can be noted; as shown in Figure 5 (columns 2-4), albeit the
recovery of the common break process is always very satisfactory across the
various designs, independently of the sample size (the IC statistic is never
larger than 0.14), performance slightly worsens, as the complexity of the

12The average bias is -0.04 and -0.01, independent of the break process design and
integration properties, when T = 100 and T = 500, respectively. Moreover, similar to the
structural stability case the bias is decreasing as �� �, d� �, or the sample size T increase,
independent of the (inverse) signal to noise ratio.
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break process and persistence intensity (d) increase: the average correlation
coe¢ cient between the estimated and actual break processes falls from 1
when d = 0:2 (single break point case) to 0.93 when d = 1 (two-break point
case).
Moreover, concerning the estimation of the common stochastic factor

(Figure 4), for the covariance stationary case (d < 0:5) results are very close
to the non integrated case, i.e., an IC statistic (not reported) always below
0.2 for the T = 500 case (0.12 and 0.14, on average, for the single break point
and two-break points case, respectively) and below 0.3 for the T = 100 case
(0.21 and 0.24, on average, respectively); the correlation coe¢ cient is also
very high (0.94 and 0.91, on average, T = 100; 0.97 and 0.96, on average,
T = 500).
Di¤erently, for the non stationary case performance is worse, showing av-

erage IC statistics (not reported) of 0.32 (0.32) and 0.42 (0.44), respectively,
for the single and two-break points case and T = 100 (T = 500); the average
correlation coe¢ cient is 0.79 (0.78) and 0.68 (0.66), respectively.
Consistent with the above results is also the worsening in the estimation

of the common factor autoregressive parameter �; for the d = 0:8 and d = 1
case, while comparable results to the short memory case can be found for
d < 0:5.

4 LIBOR-OIS spreads: empirical properties
and information content

The recent turbulence in money, credit and �nancial markets has raised some
questions about the �controllability�by central banks of the term structure of
interest rates. In fact, while central banks have generally kept close control of
very-short term unsecured money market rates (i.e., for overnight interbank
deposits) and were also able to keep a steady in�uence on some longer-term
money market interest rates (i.e., overnight index swap rates and general
collateral repo rates), they seemed at pain to steer the evolution of the term
structure of unsecured money market rates (i.e., LIBOR rates), particularly
in the early stages of the subprime crisis.
The role of liquidity and counterparty (credit) risks, in explaining money

market spreads dynamics and their term structure, is a much debated issue in
this respect. On the one side of the debate the subprime crisis has been seen
as one of banking solvency (Taylor and Williams, 2009; Afonso et al., 2011);
hence, liquidity interventions by the Fed during the crisis have been criti-
cized for being either wrong or misguided and, at best, having had no e¤ect.
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On the other side of the debate the crisis has been seen as evolving through
various stages, being the initial stage marked mainly by liquidity problems,
that subsequently �metastasized�into a solvency crisis; in this view, Fed liq-
uidity injections have been seen as rather appropriate and successful, at least
during the �rst stages of the turbulence (see Christensen, 2009; Christensen
et al., 2009; Armantier et al., 2008; Wu, 2011; Frank and Hesse, 2009).
The paper contributes to the debate by assessing the empirical properties

of term structure of US LIBOR-OIS spreads (OIS spreads, thereafter)13,
over the period May 6 2002 through August 3 2012. One- and two-week and
one- through twelve-month maturities, for a total of 14 time series and 2675
working days, are considered. The data source is REUTERS. The time span
investigated allows to gauge insights on risk dynamics not only during the
early stages of the subprime crisis, but also over its post-crisis evolution, as
well as during the recent euro area sovereign debt crisis. As both LIBOR
and OIS rates incorporate expectations of the average overnight rate until
maturity, the latter cancel out when computing OIS spreads using rates of
the same maturity. Then, if the resulting spreads are positive it is likely that
this is due to counterparty risk, which is priced in the LIBOR rate but not
in the OIS rate. Nevertheless, the spread is also likely to re�ect liquidity
funding/hoarding risk, as well as the state of investors con�dence.14 Overall,
LIBOR-OIS spreads can be seen as indicators of banks�assessment of the
creditworthiness of other �nancial institutions and liquidity conditions, and
more generally as a measure of stress conditions in the interbank market.
As is shown by the empirical results, accurate modeling of the persistence

properties of US OIS spreads and the understanding of the e¤ects of the
recent �nancial crises do require a comprehensive strategy, actually made
available by the proposed FI-HF-VAR model.

13LIBOR is the acronym for London interbank o¤ered rate; LIBOR rates are the �oating
rates of interest that banks apply to lend money to each other at various maturities. OIS is
the acronym for Overnight Index Swap; OIS rates are the �xed rates of swaps contracts for
various maturities, whereby one party to the contract pays the �xed rate and in exchange
receives the average overnight interest rate over the maturity of the contract. US OIS
spreads are then based on LIBOR Eurodollar rates and OIS rates derived from the Federal
Reserve�s Fed Funds rate.
14If a bank has a rating downgrade its credit lines are tightened as a result, exposing it

to higher �nancing risk; moreover, faced with larger uncertainty about the valuation of its
own assets and the availability of longer-term funding, a banks would also be led to build
up �excess reserves�(Allen et al., 2009; Caballero and Krishnamurthy, 2008). Moreover,
a higher spread (high LIBOR) might signal decreased willingness to lend by major banks,
while a lower spread might signal a more liquid interbank market.
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4.1 Testing for structural breaks

The investigation of the persistence properties of the OIS spreads term struc-
ture is based on testing for structural breaks and long memory.
The structural break analysis is performed using the Bai and Perron

(1998) UDmax test, implemented on OIS spreads data (xi;t: x1wt ; :::; x12mt )
sampled at di¤erent frequency; �rstly, structural break tests are carried out
using calendar month OIS level observations and the number and location
of breaks determined also by means of information criteria (BIC, LWZ); this
implies that no regimes lasting less then twenty/twenty-three working days
are estimated. Then, in order to re�ne the estimated breaks location, the
UDmax test is performed using daily data, within a range of data centered
about the break-point determined by the monthly data analysis. The results
of the structural break analysis are reported in Table 1.
As shown in Table 1 (Panel A and B), while breaks are similarly located

along the OIS spreads term structure, some di¤erences are found between
levels and volatilities and the short- and long-end of the term structure con-
cerning their number. In fact, three break points can be detected for the
OIS spreads series in level at the short-end of the term structure, i.e., for
the 1-week, 2-week and 1-month maturities, while �ve break points can be
detected for all the other maturities. Moreover, two breaks in volatility are
found for all the maturities.
Concerning OIS spreads level series (Table 1, Panel A), the �rst break

point may be located between August 9 and 14 2007, depending on maturity:
the money market stress which set in since August 8 2007, following the
BNP Paribas episode, was indeed sizable, as the average spread moved from
a range of 7b.p.-13b.p. to a range of 40b.p.-78b.p. until September 15 2008.
The crisis triggered interventions by the European Central Bank and the
US Federal Reserve, injecting overnight funds of e 95 billions and US$38
billions, respectively, on August 9 and August 10 2007. Additional measures
were taken by the ECB, the US Federal Reserve and other central banks in
the following days.15

Moreover, the second break point may be located between September
16 and 19 2008, according to maturity: since Lehman Brothers bankruptcy
(September 15 2008) OIS spreads climbed rapidly, to reach maximum val-
ues in the range of 272b.p. to 354b.p. between October 8 and October 13
2008, according to maturity (144b.p. to 230b.p. on average, over the period
September through December 2008). In the face of major di¢ culties in the
banking sector in the US and Europe, various forms of liquidity injection

15See Brunnermeier (2009) and Acharya and Richardson (2009) for an assessment of the
US subprime crisis.
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and unconventional monetary policy measures were taken by central banks,
aiming at defreezing the interbank and credit markets, and easing the bank-
ing sector from the burden of unperforming loans, as well as to facilitate its
recapitalization, supported by governments interventions.16

Starting from mid-October 2008, spreads have progressively narrowed,
albeit with di¤erent speed across maturities, i.e., at a quicker pace for shorter
than longer maturities. In particular, the location of the third break point
can be set between December 9 and 12 2008 for the one-week, two-week and
1-month rates, and on December 17 2008 for the remaining maturities. For
the former maturities average OIS spreads levels, similar to those prevailing
before the subprime crisis, can be found since January 2009 through the end
of the sample (August 3 2012); for longer maturities only a sizable contraction
in the average OIS spreads levels can be noted, as they have kept �uctuating
about much higher values than those prevailing before the crisis.
Finally, the post-subprime crisis period is marked by two additional break

points at the medium- long-end of the OIS spreads term structure. The for-
mer, i.e., the fourth break point, is located between August 24 and September
11 2009, according to maturity, following the end of the US recession (June
2009, according to the NBER�s Business Cycle Dating Committee): the con-
traction in OIS spreads levels after August/September 2009 is sizable for ma-
turities beyond 1-month, i.e., from 9b.p.-85b.p. (December 9 2008 through
August 21 2009) to 8b.p.-63b.p. (August 24 2009 through September 5 2011).
The latter, i.e., the �fth break point, is located between September 6 and 12
2011, according to maturity, corresponding to the spillover of the euro area
sovereign debt crisis to Italy; since September 2011 OIS spreads levels have
sizably increased, i.e., 8b.p.-90b.p. on average, climbing up to 19b.p.-91b.p.
(2-month to 1-year maturities) on June 1 2012; some reversion to lower values
can be noted thereafter (up to August 3 2012, the last day in our sample).17

16See Veronesi and Zingales (2009) and Bianco (2012) for a summary of government
measures in support of the US banking system. See Krishnamurthy and Vissing-Jorgensen
(2011) and D�Amico et al. (2012) for an account of the e¤ects of the quantitative easing
policy implemented by the Fed in 2008-2009 and 2010-2011. See also Reis (2009).
17Some relevant events along the EMU sovereign debt crisis time-line are as follows:

April 11 2010, when EMU leaders agreed on a e 30 billion bailout plan for Greece; April
27 2010, when S&P dowgraded Greece debt below investment rating and Portugues debt
two notches, also issuing a negative outlook; April 28 2010, when S&P downgraded Spain
debt to AA-; May 8 2010, when EMU leaders agreed on a e 100 billion bailout plan
for Greece; November 22 2010, when Ireland accepted the EMU-IMF bailout package;
September 19 2011, when S&P downgraded Italy�s public debt one notch from A to A-,
October 13 2011, when S&P downgraded Spain�s public debt one notch from AA to AA-,
November 25 2011, when S&P downgraded Belgium�s public debt one notch from AA+ to
AA, January 13 2012, when S&P downgraded Italy�s public debt two notches to BBB+, as
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Di¤erently, two break points can be detected for the volatility proxy,
computed as absolute changes in the OIS spreads levels, i.e., �i;t = j�xi;tj.18
As shown in Table 1 (Panel B), the former is located between July 25 2007
and August 2 2007 and the latter between December 22 2008 and February
11 2009, marking therefore three volatility regimes, similarly to what found
for the short-end of the OIS spread levels term structure: the pre-subprime
crisis period (May 6 2002 through August 8 2007); the subprime crisis pe-
riod (August 9 2007 through December 23 2008)19, which may be related to
the two waves of money market stress triggered by the BNP Paribas episode
(August 8 2007 through September 15 2008, the former) and Lehman Broth-
ers bankruptcy (September 16 2008 through December 23 2008, the latter);
the post-subprime crisis period (December 24 2008 through August 3 2012),
associated with the subprime crisis resolution and the successive euro area
sovereign debt crisis, which, while started already in February 2010 with the
negative assessment by the EU-IMF of Greece�s public �nances, spread to
Portugal, Spain and Ireland by November 2010, to eventually spill over to
Italy by September 2011.
A sizable increase on average volatility can be noted over the subprime

crisis period relatively to the pre-crisis period, i.e., from a range 1b.p.-4b.p.
to 5b.p.-8b.p.; a similarly sizable contraction can be noted over the post-
subprime crisis period, as average volatility dampened to values even smaller
than the pre-crisis period, in the range 0.5b.p.-1.4 b.p.

4.1.1 Estimating the structural break process

Candidate break processes are estimated by means of an OLS regression of
each OIS spread level (xi;t: x1wt ; :::; x12mt ) on dummies (Dm;j, j = 1; ::; 5)
computed according to the �ndings of the structural break analysis; the re-
gression functions are then speci�ed as follows

xi;t = bi;t + ei;t i = 1; :::; 14 (30)

bi;t = �i;0 +

kX
j=1

�i;jDm;j;t +

kX
j=1


i;j (Dm;j;t � Tt) ;

well public debt for France, Austria, Spain and other �ve euro area members, maintaining
AAA rating only for Finland, Germany, Luxembourg and the Netherlands. See De Santis
(2012) for an account of the euro area sovereign debt crisis.
18Monthly �gures are obtained by means of the realized volatility estimator, computed

using calendar month daily observations.
19For the OIS spreads level series the end of the subprime crisis regime is selected

between December 9 and 17 2008, according to maturity.
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where k = 3; 5, according to maturity. In particular, Dm;1 is a (�rst �nancial
stress wave) step dummy variable with unity value over the period August
9/14 2007 through August 3 2012 inclusive, Dm;2 is a (second �nancial stress
wave) step dummy variable with unity value over the period September 16/19
2008 through August 3 2012 inclusive, Dm;3 is a (�rst �nancial stress resolu-
tion) step dummy variable with unity value over the period December 9/18
2008 through August 3 2012 inclusive, Dm;4 is a (second �nancial/economic
stress resolution) step dummy variable with unity value over the period Au-
gust 24/September 11 2009 through August 3 2012 inclusive, Dm;5 is a (euro
area crisis) step dummy variable with unity value over the period September
6/12 2011 through August 3 2012 inclusive. The above dummies have also
been interacted with a linear time trend (Tt = 1; 2; :::; 2675).
Similar regressions are performed using volatility proxies

j�xi;tj = ci;t + ui;t i = 1; :::; 14 (31)

ci;t = �i;0 +

qX
j=1

�i;jDv;j;t;

where q = 2 for all the OIS spreads maturities. For the latter case Dv;1 is a
(�nancial stress wave) step dummy variable with unity value over the period
July 25/August 2 2007 to August 3 2012 inclusive, Dv;2 is a (�nancial stress
resolution) step dummy variable with unity value over the period December
22 2008/February 9 2009 to August 3 2012 inclusive.
An exponential smoother is applied to the estimated break processes b̂i;t

and ĉi;t, in order to yield smooth transition across regimes; the smoothing
parameter p in

ks;i;t = psi;t�1 + (1� p)ki;t, (32)

where ki;t = b̂i;t; ĉi;t is the generic break process to be smoothed, t = 1; :::; T ,
is selected in order to best �t (R2) the transition across regimes to actual
data. This yields p = 0:69 for the OIS spreads level series and p = 0:51
for the OIS spreads volatility series. Validation of the estimated candidate
break processes is performed by assessing the long memory properties of the
corresponding break-free series (see next section).

4.2 Long memory analysis

Due to structural change in mean and variance, normalized break-free OIS
spreads series are computed, i.e., l̂i;t =

xi;t�b̂s;i;t
�̂i;t

, where �̂i;t is the estimated
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unconditional standard deviation for the break-free series over the three se-
lected volatility regimes, i.e., �̂i;t = �̂1 over the period May 6 2002 through
July 25/August 2 2007; �̂i;t = �̂2 over the period July 26/August 3 2007
through December 22 2008/February 9 2009; �̂i;t = �̂3 over the period De-
cember 23 2008/February 10 2009 through August 3 2012.
Long memory analysis is then performed for both the series in levels

(xi;t) and break-free (l̂i;t), using the broad band log-periodogram estimator
(BBLP) of the fractional di¤erencing parameter proposed by Moulines and
Soulier (1999); additional testing against spurious long memory is performed
by means of the Dolado et al. (1995) augmented Dickey-Fuller test (DGM)
and the Shimotsu (2006) KPSS test (SKPSS), both modi�ed to account for
a non linear (smooth) break process in computing critical values, and the
LM-test proposed by Demetrescu et al. (2006) (LM). A similar analysis is
carried out for the volatility proxies, both in levels (j�xi;tj) and break-free
(v̂i;t = j�xi;tj � ĉs;i;t).
As shown in Table 2 (columns 1 and 2), strong persistence can be found for

the OIS spreads series, both in levels and break-free (Panel A); the estimated
fractional di¤erencing parameter is in the range 0.85 to 1.10 and 0.46 to 0.69,
for the series in levels and break-free, respectively. A statistically signi�cant
hump-shaped pro�le can be noted in the cross-section of persistence, the
latter increasing with maturity up to the two-month horizon and decreasing
thereafter.
A joint test for the null hypothesis of equal fractional di¤erencing parame-

ter across the OIS spreads term structure, i.e., H0 : d1 = d2 = ::: = dn = �d,
n = 14, versus H1 : H0 is incorrect, where �d is the mean value of the esti-
mates of the fractional di¤erencing parameter across series, can be carried
out using the Wald test statistics

Ŵ
f
=
�
T d̂
��1

(T�T 0)
�1
�
T d̂
�
; (33)

similarly to Ohanissian et al. (2008), where d̂ =
�
d̂1 d̂2 � � � d̂n

�0
is the

multivariate BBLP estimator, � = diag
�
�2
d̂1

�2
d̂2

� � � �2
d̂n

�
its asymp-

totic variance-covariance matrix,

T
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=
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1� 1

n
� 1
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� 1
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� 1
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1CCCCA ;

which has an asymptotic �2(n�1) distribution under the null hypothesis. As
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shown in Table 3 (columns 1 and 2; last row), the test yields values of 37.2 and
56.4 for the series in levels and break-free, respectively, pointing to rejection
of the null hypothesis of homogeneous persistence across the OIS spreads
term structure.
Implementation of the DGM and DKH tests requires the estimation of

the following OLS regression

yi;t = �iy
�
i;t�1 +

pX
j=1

ai;jyi;t�j + "i;t t = 1; :::; T; (34)

where yi;t = (1 � L)d̂i l̂i;t, i = 1; :::; 14, y�i;t�1 = l̂i;t�1 for the DGM test

and y�i;t�1 =
t�1X
j=1

yt�j
j
for the DKH test. The null hypothesis of long memory

persistence of degree d̂i, against the alternative of I(0) plus smooth non linear
break process type of persistence (DGM) or di¤erent degree of long memory
persistence (DKH), is H0 : �i = 0 against H1 : �i 6= 0; and is tested using
the t-ratio test statistics

t�i = �̂i=�̂�̂i ; (35)

which, for the DGM test, has a non standard asymptotic distribution in the
nonstationary long memory case and a N(0; 1) distribution for the stationary
long memory case; a N(0; 1) distribution, for both the stationary and nonsta-
tionary long memory case, for the DKH test. The order of the augmentation
term is selected according to the deterministic rule of Schwert (1989), i.e.,
by setting p = 4 � (T=100)1=4. Critical values for the DGM test are com-
puted through Monte Carlo simulation in order to match the features of the
estimated candidate break processes.
The modi�ed Shimotsu (2006) KPSS statistic is �nally de�ned as

�i;nlbp = T�2
TX
t=1

S2i;t=s
2
i;p, (36)

where Si;t =
tX

k=1

yi;k; s
2
i;p =

1

T

TX
t=1

y2i;t +
2

T

pX
q=1

�
1� q

p+1

� TX
t=q+1

yi;tyi;t�q, and

yi;t = (1�L)d̂i l̂i;t. The null hypothesis of long memory persistence of degree
d̂i, against the alternative of I(0) plus smooth non linear break process type
of persistence, is then tested. The distribution of the test statistics under
the null is non standard and therefore critical values are obtained through
Monte Carlo simulation.
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As shown in Table 2 (Panel A), the null of long memory is never rejected
at the 1% level by the DKH and DGM tests, while the null of I(0) plus non
linear break process is always rejected by the SKPSS test at the 1% level
(apart from the 1-week and 2-week maturities (5% level). The results of
the tests are then coherent with the �ndings of long memory for the break-
free series, also validating the estimated break processes, as antipersistence
(�0:5 < d̂i < 0) is induced by the removal of a spurious break process
(Granger and Hyung, 2004).
Evidence of long memory can also be detected for the volatility series,

both in levels and break-free; the estimated fractional di¤erencing parameter
is in the range 0.31 to 0.41 and 0.16 to 0.26, for the series in levels and break-
free, respectively (Table 2, Panel B). Di¤erently from what found for the OIS
spreads levels, evidence of common persistence across the term structure can
be found as well (Ŵ

f
statistics; last row in Table 2), with average estimated

values for the fractional di¤erencing parameters equal to 0.35 and 0.19, re-
spectively. Evidence of genuine long memory in volatility is also con�rmed
by the results of the SKPSS, DGM and DKH tests.

4.2.1 Fractional di¤erencing parameter constancy tests

Persistence stability over time has been investigated by splitting the sample
according to two di¤erent scenarios. The �rst scenario assumes a permanent
break in persistence occurring after August 8 2007; the second scenario, in
addition to the previous break, allows for a second change in persistence
occurring after December 8 2008. The two scenarios are then consistent with
the structural break analysis carried out using the OIS spreads series in levels.
The null hypothesis is therefore H0 : di;1 = di;2 = �di, i = 1; :::; 14, versus

H1 : H0 is incorrect, for the �rst scenario and H0 : di;1 = di;2 = di;3 = �di, i =
1; :::; 14, versus H1 : H0 is incorrect, for the second scenario. In both cases
�di is the mean value of the estimates of the fractional di¤erencing parameter
across regimes. The above test can be carried out considering each series at
the time and all series jointly. In the �rst case, when the analysis is performed
for each series at the time, the Wald test statistic in (33) has elements de�ned
as

d̂ =
�
d̂i;1 d̂i;2

�0
, � = diag

�
�2
d̂i;1

�2
d̂i;2

�
and T

(1;2)
=
�
1� 1

2
�1
2

�
for

the �rst scenario and

d̂ =
�
d̂i;1 d̂i;2 d̂i;3

�0
, � = diag

�
�2
d̂i;1

�2
d̂i;2

�2
d̂i;3

�
and T

(2;3)
=

�
1� 1

3
�1
3

�1
3

�1
3

1� 1
3
�1
3

�
for the second scenario. This yields the Wald test statistic Ŵ

i;2
and Ŵ

i;3
,

i = 1; :::; 14, for the �rst and second scenario, respectively.
In the second case, when the test is performed jointly for all series (n =
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14), the elements of the Wald test statistics in (33) are de�ned as d̂ =�
d̂1;1 d̂1;2 � � � d̂n;1 d̂n;2
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for the �rst scenario, and d̂ =
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, � =
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for the second scenario. This yields the Wald test statistics Ŵ

j;2
and Ŵ

j;3
for

the �rst and second scenario, respectively.
The Wald test in (33) is also employed to test for the null hypothesis

of equality of the fractional di¤erencing parameter across the OIS spreads
term structure for each of the subsamples determined according to the above
scenarios. This yields the Wald test statistics Ŵpre and Ŵc=p for the pre-crisis
and crisis/post crisis subsamples, respectively, for the �rst scenario; Ŵpre, Ŵc

and Ŵpost for the pre-crisis, crisis and post-crisis subsamples, respectively, for
the second scenario.
As shown in Table 3, there is strong evidence of temporal instability in

the fractional di¤erencing parameter for each of the OIS spreads and both
scenarios. The null of temporal stability is always rejected at the 5% level,
apart from the 2-month maturity, for the �rst scenario, while it is rejected
for any maturity for the second scenario (column 5, Ŵ

i;2
; column 6, Ŵ

i;3
).

Coherently, the null hypothesis of temporal stability is also strongly rejected
when assessed jointly for all series (Ŵ

j;2
and Ŵ

j;3
; last row in Table 3).

As a consequence of the subprime crisis, a sizable increase in persistence
can then be detected along the whole OIS spreads term structure, from sta-
tionary long memory for the pre-crisis period (apart from the 2-week through
5-month maturities), to non stationary long memory for the crisis and post
crisis periods.
Moreover, while the null of equal fractional di¤erencing parameter across

the term structure is rejected for the pre-crisis period (Ŵpre, column 1, last
row), the latter is largely not rejected for the crisis and post-crisis periods (Ŵc
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and Ŵpost; columns 6 and 7, last row). Average estimates of the fractional
di¤erencing parameter are 0.47 and 0.72 for the pre-crisis and crisis/post-
crisis periods, respectively, for the �rst scenario; 0.47, 0.55 and 0.93 for the
pre-crisis, crisis and post-crisis periods, respectively, for the second scenario.
To assess the robustness of the �ndings, the LM fractional di¤erencing

parameter constancy test of Hassler and Meller (2008) is also implemented.
The test is related to the LM test of Demetrescu et al. (2006) and requires
the estimation of the following augmented OLS regression

yi;t = �iy
�
i;t�1 +  iDt(�)y

�
i;t�1 +

pX
j=1

ai;jyi;t�j + "i;t t = 1; :::; T (37)

where yi;t = (1 � L)d̂i l̂i;t, i = 1; :::; 14, y�i;t�1 =
t�1X
j=1

yt�j
j
, and Dt(�) is a

dummy variable taking a zero value over the subsample t = 1; :::; [�T ] and
unity value over the subsample t = [�T ] + 1; :::; T , with break fraction �
varied over the interval [�; 1� �] and � 2 (0; 1=2). The null hypothesis of
constant long memory persistence of degree d̂i, against the alternative of
d̂i +  i persistence, is H0 :  i = 0 against H1 :  i 6= 0, and is tested using
the supremum of the sequence of squared t-ratio test statistics

sup
�2[�;1��]

t2 i(�); (38)

where t i =  ̂i=�̂ ̂i. In the empirical implementation, following Hassler
and Meller (2009), the order of the augmentation term is determined as
p = 4 � (T=100)1=4, while the break fraction is set to � = 0:15; critical values
are tabulated using Monte Carlo simulation.
The results of the test reported in Table 3 are for the statistics t2 i(�)

computed with reference to the candidate break dates employed in the two
above scenarios, i.e., August 9 2007 and December 8 2008, in addition to
the two candidate break points selected by the Hassler and Meller (2009)
test. As shown in the table, a change in persistence can be detected for the
various maturities, taking place already in June 2007 for the 5- to 12-month
maturities and in the aftermath of the subprime crisis (September 12 2007)
for shorter maturities; the evidence is clear-cut (1% signi�cance level) for all
the maturities, apart from the very short-end of the term structure. A second
change in persistence (1% level) can also be detected, taking place after the
selected end point for the crisis period (December 8 2008), i.e., in December
17 2008 for the 1- to 12-month maturities, and in February 7 2009 for the 1-
and 2-week maturities.
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Di¤erently, as shown in Table 4, the null of common degree of persistence
across the volatility term structure is never rejected at the 5% level (Ŵpre,
Ŵc=p, Ŵc and Ŵpost statistics); similarly, no rejection of the null hypothesis
of constant persistence across regimes is found for both scenarios, each ma-
turity (Ŵi;2; Ŵi;3) and for all maturities jointly (Ŵj;2; Ŵj;3). The evidence
of persistence constancy is also con�rmed by the Hassler and Meller (2009)
test, which does not allow to reject the null of stability of the fractional
di¤erencing parameter, at the 5% level, for any maturity.

4.3 Testing for common deterministic and stochastic
factors

Principal components analysis is employed to assess the presence of common
factors driving the term structure of OIS spreads levels and volatilities. The
analysis is carried out for the estimated break processes (b̂s;i;t: b̂1ws;t ; :::; b̂

12m
s;t ;

ĉs;i;t: ĉ1ws;t ; :::; ĉ
12m
s;t ) and corresponding break-free series (l̂i;t: l̂1wt ; :::; l̂1yt ; v̂i;t:

v̂1wt ; :::; v̂12mt ), as well as for the OIS spreads levels and volatilities (xi;t: x1wt ; :::;
x1yt ; j�xi;tj: j�x1wt j ; :::; j�x12mt j). Results are reported in Table 5.
As is shown in Table 5 (columns 1-3), the �rst principal component ac-

counts for the bulk of total variance for the OIS spreads levels (xi;t, 95%;
column 1) and for about 90%, or over, of the variance for the 2-month and
longer maturities; the second principal component accounts for a residual
4% of total variance, yet explaining a sizable proportion of the variance for
each of the shortest maturities, i.e., about 40% for the 1-week, 2-week and
1-month OIS spreads (column 2). Similar �ndings can be noted for the OIS
spreads break process and break-free series (b̂s;i;t, columns 3-4; l̂i;t, columns
5-6). Moreover, the third principal component accounts for residual common-
alities involving some of the maturities at the short-end of the term structure
for the OIS spreads actual and break processes, while involving intermediate
maturities for the break-free series.
Similar results can be noted for the OIS spreads volatility proxies, as the

�rst three principal components account for about 100% of total variance
for the actual volatility series (j�xi;tj, columns 10-12) and their break-free
components (ĉs;i;t, columns 16-18); the latter evidence is consistent with the
�nding of three common long memory factors for the OIS spreads break-free
series (l̂i;t), which, according to ARCH tests, are strongly heteroskedastic (the
p-value of the test is zero for each of the factors; not reported). In particular,
for the actual volatility series, the �rst principal component accounts for
about 76% of total variance and for about 65% to 90% of the variance for
the 2-month and longer maturities; the second principal component accounts
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for a residual 15% of total variance and for about 50% of the variance for
the shortest maturities; �nally, the third principal component accounts for
5% of total variance and for about 20% of the variance for maturities within
the 1- through 4-month interval; similar �ndings can be noted for the break-
free volatility series. Di¤erently, 100% of total variance for the volatility
break processes is accounted for by their �rst two principal components; the
latter explain 96% and 4% of total variance, respectively; while the former
component accounts for a proportion of variance in the range 70% to 99%
for the volatility proxies, the second component accounts for up to 30% of
the variance for maturities at the short-end of the volatility term structure.
According to the estimated loadings reported in Table 6, the extracted

principal components bear the interpretation of level, slope and curvature
factors for each subset of the series considered (levels and volatilities). In
fact, in all cases the �rst factor is loaded on to each of the corresponding
series with loading of the same sign, while opposite signs at the short- and
long-end of the term structure can be noted for the loadings of the second
principal component; moreover, similar signs at the short- and long-end of
the term structure, yet opposite for intermediate maturities, can be noted
for the loadings of the third principal component.
On the basis of the proposed interpretation and results, the �rst three

principal components are selected for the break-free OIS spreads level and
volatility series, while the �rst three principal components are selected for
the OIS spreads break processes in mean and only the �rst two principal
components for the OIS spreads break processes in volatility.
As shown in Figure 6, the �rst principal component estimated from the

common break processes well tracks the overall level of the OIS spreads series,
while the two additional components yield a correction mostly relevant at
the short-end of the term structure. Moreover, consistent with the results
of the long memory analysis, deviations from the overall level of the OIS
spreads are indeed strongly persistent: full sample BBLP estimates of the
fractional di¤erencing parameter for the three (normalized) break-free OIS
spreads common factors are in the range 0.46 to 0.60, 0.53 on average, and
not statistically di¤erent at the 1% level. Di¤erently, weaker persistence can
be noted for the volatility factors, in the range 0.12 to 0.19, 0.16 on average.

4.3.1 Testing for persistence stability in the common factors

As for the break-free series, persistence stability tests are carried out consid-
ering two scenarios; the �rst scenario assumes a permanent break in persis-
tence occurring after August 8 2007; the second scenario, in addition to the
previous break, allows for a second change occurring after December 8 2008.

34



As shown in Table 7, consistent with the results yield by the univariate
analysis, temporal instability in the degree of persistence can also be noted
for the factors extracted from the OIS spread break-free level components,
while constant persistence is found for the corresponding volatility factors;
in particular, evidence of a strong increase in the persistence of the common
stochastic factors (in mean) can be detected and associated with the e¤ects
of the subprime �nancial crisis. In fact, while stationary long memory, in
the range 0.32 to 0.48, 0.40 on average, characterizes the pre-crisis sample,
non-stationary long memory is found for the crisis/post-crisis (0.66 to 0.72),
crisis (0.55 to 0.76) and post-crisis (0.73 to 0.87) periods. According to the
Ŵi;2 and Ŵi;3 statistics, the increase in persistence is statistically signi�cant
at the 5% level for each factor, and at the 1% level for all the factors jointly
(Ŵj;2 and Ŵj;3 statistics), for both scenarios. Additional evidence of instabil-
ity in the persistence parameter is provided by the Hasller and Meller (2009)
test, pointing to statistically signi�cant t2 i(�) statistics (1% level) also when
computed with reference to the candidate break dates, i.e., August 9 2007
and December 8 2008; the optimally selected dates for the two break points
are also located in the aftermath of the �nancial crisis (August 17-20 2007;
October 5 2007) and few days earlier than Lehman Brothers bankruptcy
(September 4-8, 2008).
In �gure 7, the results of BBLP moving window estimation of the per-

sistence parameter for the three common factors in mean are presented.20

The increase in persistence in the aftermath of the trigger events for the two
waves of money market stress, associated with the BNP Paribas (Agust 8
2007) and Lehman Brothers bankruptcy (September 15 2008), can clearly be
noted in the plots; interestingly, while the BNP Paribas episode is associated
with a swift increase in persistence, a smooth change followed the setting in
of the crisis, as the Lehman Brothers episode might only be associated with
an acceleration in its pace. On the basis of the overall �ndings, two break
points in the persistence parameters are then selected for each common fac-
tor in mean, with break points located in August 9 2007 and September 16
2008.

4.4 Estimation of the FI-HF-VAR model

On the basis of the BIC information criterion, a sixth order diagonal VAR
speci�cation is selected for the P (L) matrix in (2), with D(L) matrix set
according to the results of the long memory analysis; di¤erently, a ninth order
diagonal VAR speci�cation is selected for the C(L) matrix in (1). Moreover,

20Window size is set to 500 observations.
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the ith generic element along the main diagonal of the conditional variance-
covariance matrixHt in (4) is of the FIGARCH(1; bi; 1) type, augmented with
a time-varying intercept; consistent with the �ndings of the structural break
analysis, the latter is allowed to show a factor structure, with two common
break processes in variance, i.e., the time-varying intercept component wi;t
for the ith generic conditional variance process is speci�ed as

wi;t =
�
�i;1 �i;2

� � g1;t
g2;t

�
; (39)

where the common break processes g
j ;t and factor loadings �i;j, j = 1; 2, are

also estimated by PCA implemented within the iterative procedure followed
for the maximization of the log-likelihood function.
As shown in Table 8, the �nal estimates of the common stochastic and

deterministic factors obtained for the conditional mean model are compa-
rable with their starting estimate, both in terms of proportion of explained
variance, total and for each series, as well as in terms of their interpretation
as level, slope and curvature factors.
In fact, the �rst principal component accounts for the bulk of total vari-

ance for the OIS spreads (not normalized) break-free series (75%; column
1) and the estimated break processes (95%; column 4), and for no less than
70% of the variance for the 2-month and longer maturities; the latter com-
ponents are loaded with the same sign across the term structure, consistent
with their level factor interpretation (trend -break process- and persistent
deviation about trend -long memory component).
Moreover, the second principal component accounts for residual 13% and

4% of total variance for the (not normalized) break-free series and estimated
break processes, respectively, yet explaining a sizable proportion of variance
for each of the shortest maturities, i.e., about 40% for the 1-week, 2-week and
1-month OIS spreads (columns 2 and 5); the latter components are loaded
with opposite signs at the short- and medium- to long-end of the OIS spreads
term structure, consistent with their slope factor interpretation.
In addition, the third principal component accounts for residual common-

alities involving some of the maturities at the short-end of the term structure
only; the latter is loaded with opposite signs at the short-/long- and medium-
end of the OIS spreads term structure, consistent with its curvature factor
interpretation. By adding to the estimated common long memory factors
conditional mean, obtained from (2), the corresponding estimated common
break process, the overall estimate of the level, slope and curvature factors
is �nally obtained; for instance, the level factor is computed by adding to
the estimated conditional mean for the �rst common long memory factor the
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�rst estimated common break process; the slope and curvature factors are
then obtained analogously.
Also, the �rst two principal components extracted from the common long

memory factors conditional variance break processes (wi;t), consistent with
the �ndings for the OIS spreads volatility proxies, account for 100% of their
total variance (Table 8); while the former component explains 84% to 99%
of the variance for the level, slope and curvature factor long-term (trend)
conditional variances, the latter accounts for up to 16% of the variance for
the level factor long-term conditional variance only. According to their esti-
mated loadings, an interpretation in terms of level and slope factors for the
OIS spreads variance term structure can then be provided to the estimated
common break processes in variance.
Finally, from the estimation of the FIGARCH part of the model, consis-

tent with the results of the long memory analysis, strong evidence of persis-
tence in variance can be found for the three common long memory factors;
a fractional di¤erencing parameter (bi) in the range 0.30 through 0.40 is, in
fact, estimated for their conditional variance processes (Table 8). The higher
persistence in variance detected by means of the FIGARCH model than by
using the BBLP estimator is not surprising, due to the likely noisiness of the
volatility proxies employed, which may impart a downward bias to the BBLP
estimator.
The estimated level, slope and curvature factors, and their estimated con-

ditional standard deviation, contrasted with the corresponding trend/permanent
components, are plotted in Figure 8; as is shown in the plots, the estimated
conditional mean and standard deviation factors well describe the e¤ects of
the subprime crisis, pointing to a persistent increase in the level factor and in
its volatility during the �nancial turmoil triggered by the BNP Paribas event
(August 8 2007) and Lehman Brothers bankruptcy (September 15 2008), as
well as in the volatility of the slope and curvature factors. Some permanent
e¤ects of the crisis (up to the end of the investigated sample, i.e., August 3
2012) can also be noted in the plots, as the trend component for all the term
structure factors has not reverted to pre-crisis levels, while deviations about
trend have become both less volatile and more persistent. Moreover, as shown
by the (smoothed) conditional correlations (versus the 1-week OIS spread)
plotted in Figure 9, the crisis also had the e¤ect of decreasing the comove-
ment between the short- and long-end of the OIS spreads term structure;21 as
reported in Table 9 (Panel B), as a statistically signi�cant contraction in the
average conditional correlation coe¢ cient for the post-crisis period, versus
the crisis period, can indeed be found for the shortest OIS spread maturities,

21A full set of results is available upon request from the author.
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i.e., 1-week through 3-month, versus the longest ones, i.e., 7-month/9-month
through 1-year.

4.4.1 A fragility indicator

Recent contributions to the literature on coincident (thermometer) and forward-
looking (barometer) �nancial fragility/risk indicators have focused on credit
risk measures, rather than credit volumes gaps, which are more useful for
real-time prediction. For instance, Schwaab et al. (2011) provide a systemic
credit risk measure, contrasting the actual realization of a default probility-
based indicator for the �nancial sector with its predicted value according to
macro-�nancial fundamentals. Bagliano and Morana (2011, 2012) propose a
�nancial fragility indicator, based on the common component in the TED,
agency and corporate spreads22, yielding a systemic credit risk measure as
well, re�ecting the state of the Government, Governmental Agencies, and
private sector bond markets. Moreover, while an improved measure of the
corporate spread is provided by Gilchrist and Zakrajsek (2012), Cassola and
Morana (2012) propose a decomposition of the euro area OIS spreads term
structure in level, slope and curvature factors, yielding insights on the three
interrelated features of funding/hoarding liquidity risk, credit/counterparty
risk, and investor con�dence.
In Figure 10, the OIS spreads level factor (LEV ), the TED spread

(TED), the BAA�AAA spread (COR) and the mortgage spread (MOR)23

are plotted over time; the shaded areas in the plots correspond to the most
recent US recession, as dated by NBER�s Business Cycle Dating Committee,
i.e., December 2007 through June 2009, and the euro area crisis, decomposed
into three subperiods, marked by the negative assessment by the EU-IMF
of Greece�s public �nances in February 2010, the spreading of the crisis to
Portugal, Spain and Ireland by November 2010, and its spillover to Italy by
September 2011. The data source is FRED2.
As shown in the plots all the spread indicators appear to be informa-

22The TED spread, i.e., the spread between the 3-month LIBOR rate (Euro dollar
deposit rate) and the yield on 3-month Treasury bills, being the di¤erence between an
unsecured deposit rate and a risk-free rate, yields a measure of credit and liquidity risk;
di¤erently, the spread between BAA-rated and AAA-rated corporate bonds (BAA�AAA)
yields a measure of corporate default risk, as well as a measure of investors�risk-taking
attitude, a contraction in the corporate spread signalling an increase in the demand for
riskier bonds relative to safer ones; moreover, the agency spread is the spread between
the 30-year Fannie Mae/Freddie Mac bonds yield and the 30-year Treasury bonds yield,
measuring stress in the mortgage market.
23The mortgage spread is the spread between the conventional 30-year mortgage rate

and 30-year Treasury bonds yield, measuring stress in the mortgage market.
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tive concerning the dating of the recession ensuing from the subprime crisis;
in particular, from eyeball inspection, TED and LEV show some leading
indicator property, sharply increasing before its beginning; however, LEV ,
albeit strongly correlated with TED (the correlation coe¢ cient for the two
series is 0.65), does appear to contain also di¤erent information, pointing, for
instance, to persisting stress in the interbank market over the period March
through May 2009, not signalled by the TED; overall, LEV , MOR and
TED date quite closely the end of the US recession, while COR lags some-
what behind. Di¤erently from the other measures, LEV also shows some
coincident indictor properties for the EA sovereign debt crisis, particularly
concerning its beginning in February 2010 and its transmission to Italy in
September 2011.
In Figure 10 (top plot), a composite fragility measure (FRAG), computed

as the common component in the LEV , TED, COR and MOR, i.e., their
�rst principal component, is also plotted.24 The latter accounts for 80% of
total variance, and for 44% (LEV ) to 71% (COR) of the variance for each
individual series. By re�ecting several dimensions of economic and �nancial
fragility, i.e., interbank market stress-credit/liquidity risk and mortgage mar-
ket and corporate sector conditions, the latter might also be useful as risk
barometer.
The forward-looking properties of the proposed indicators are assessed by

means of an out of sample forecasting exercise, with reference to their ability
of predicting industrial production, in�ation and unemployment rate dynam-
ics. Di¤erent horizons are considered, i.e., 1-month, 3-month, 6-month and
12-month, while the forecasting sample is from August 2007 through July
2012. In order to make macroeconomic and risk indicators frequencies con-
sistent, the OIS spreads term structure level, slope and curvature factors are
�rstly computed recursively using daily data; then, a monthly �gure is com-
puted by averaging the daily �gures over the calendar month. Averaging over
calendar month is also employed for the TED, COR and MOR indicators.
Forecasts for the macroeconomic variables of interest are computed by

means of VAR models, using di¤erent speci�cations, i.e., the F model, in-
cluding the estimated level (LEV ), slope and curvature factor conditional
means; the F1 model, including LEV only; the F2 model, including the
estimated slope factor conditional mean only; the F3 model including the
estimated curvature factor conditional mean only; the C model including
the composite indicator (FRAG) constructed from the common component
in LEV , TED, COR and MOR; the CF model, including FRAG and the

24The estimated weights are 1.194, 1.214, 0.622 and 1.078 for the LEV , COR, TED
and MOR series, respectively.
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estimated slope and curvature factors conditional means. The above mod-
els are contrasted with other VAR speci�cations, considering alternative risk
measures to OIS spreads term structure factors; in particular, the A1 model,
including the corporate spread (COR); the A2 model including the TED
spread; the A3 model including the mortgage spread (MOR); the B model,
including the Federal funds rate and the term spread (computed using 10-
year and 3-month Treasury constant maturity rate bonds and bills); the B1
model, including the Federal funds rate only; the B2 model, including the
term spread only; �nally, the �no change�forecasting model (NAIV E) and
an autoregressive model (AR) for the macroeconomic variables of interest
are considered as well.
The assessment of the forecasting properties of the various models is per-

formed by means of the root mean square forecast error (RMSFE) and the
Theil�s inequality (IC) statistics. In order to make conclusions robust to lag
selection, forecasts are generated from speci�cations containing up to 5 lags;
then, the best outcome for each forecasting model, across dynamic speci�-
cations, is reported in Table 10 for any horizon. Note that, by comparing
the performance of the various VAR models against the AR model, the ex-
cess information contained in the proposed indicators, relatively to the past
history of the own macroeconomic variables, can be assessed.
As shown in Table 10 (Panel A), concerning the prediction of unem-

ployment rate dynamics, the C model performs best at the 1- and 3-month
horizons, while the CF model yields the best outcome at longer horizons; yet,
while the IC statistic selects CF as best model also at the 1-year horizon,
the A2model is selected according to the RMSFE statistics. The C and CF
models �nally yield the most synchronous forecasts, in terms of correlation
coe¢ cient, with actual unemployment rate dynamics. Finally, the excess in-
formation content of the proposed risk indicators can be easily gauged by
comparing C, CF and AR model �gures: a 5% to 50% reduction in the IC
and RMSFE statistics can be noted across forecasting horizons, therefore
pointing to the usefulness of the proposed indicators.
Moreover, also concerning industrial production dynamics (Table 10, Panel

B), VAR models containing OIS spreads term structure information perform
best: according to the RMSFE statistic, F2 at the 1-, 6- and 12-month hori-
zons; F at the 3-month horizon; according to the IC statistic, F at the 3- and
6-month horizon; F2 at the 12-month horizon; CF at the 1-month horizon.
Also sizable is the excess information provided by the proposed credit risk
indicators: 5% to 30% reductions in the IC and RMSFE statistics can be
noted across horizons; moreover, also very sizable is the correlation between
actual and forecasted values using the F , F2 and CF models.
Finally, interesting results are also obtained for in�ation rate forecasting
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(Table 10, Panel C) at short horizons, as F3 and CF perform best at the
1-month horizon according to the RMSFE and IC statistics, respectively;
a 20% reduction in the RMSFE and IC statistics, relatively to AR model
�gures, and fairly correlated forecasted and actual values, can also be noted.
Overall, the above �ndings look promising concerning the real-time use of

the proposed indicators for macroeconomic forecasting and as risk barometer.

4.5 Impulse responses and forecast error variance de-
composition

Due to instability in variance, impulse response analysis and forecast error
variance decomposition have been made dependent on the estimated volatil-
ity regimes, i.e., structural common factor shocks have been computed using
the estimated variance-covariance matrix �̂�;s, where s = pre-crisis, crisis,
post-crisis. As the orthogonality of the common factors is imposed over the
full sample, and therefore does not necessarily hold over each subsample,
the identi�cation of the structural common factor shocks, and therefore the
estimation of the H matrix (Hs, being regime dependent) in the structural
VMA representation of the FI-HF-VAR model in (25) requires 3 additional
restrictions (r(r�1)=2; r = 3), which are imposed through a recursive speci�-
cation for the structural form of the system of equations in (2), assuming the
level factor ordered �rst and the curvature factor last; then, the Hs matrix is
estimated by means of the Choleski decomposition of the contemporaneous
variance-covariance matrix of the reduced form common factor innovations,
yielding Ĥs = chol(�̂�1�̂;s).
Due to the possible dependence of the results on the selected ordering,

impulse responses are also carried out by assuming a diagonal structure for
the �̂�;s matrix and, therefore, for the matrix Hs, as it would be implied by
the orthogonality of the common factors over each subsample; the results of
the impulse response analysis obtained from the latter model are fully coher-
ent, in terms of sign, pro�le and magnitude, with those obtained by means
of the recursive structure, which is evidence of robustness of the �ndings to
identifying restrictions.25.
Moreover, the identi�cation of the idiosyncratic shocks requires additional

91 restrictions (n(n�1)=2; n = 14), which are similarly imposed by selecting
25In terms of magnitude of the median contemporaneous impact, absolute deviations

no larger than 0.4b.p., 0.09 b.p. on average, are found for the OIS spreads responses to
the slope factor shock; �gures for the curvature factor shock are 1b.p. for the median
impact and 0.2b.p. on average. By construction, no di¤erences for the responses to the
slope factor shock are found for the two identi�cation strategies. Detailed results are not
reported for reasons of space; they are however available upon request from the author.
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a recursive structure for the system of equations in (1). The latter assumes
the 1-week rate spread ordered �rst and the 1-year spread ordered last, and
therefore contemporaneous forward transmission of shocks along the OIS
spreads term structure, yet only delayed (one-day at least) feedback from
longer to shorter maturities. Hence, the � matrix in the structural VMA
representation of the FI-HF-VAR model in (25) is estimated by means of the
Choleski decomposition of the contemporaneous variance-covariance matrix
of the idiosyncratic innovations, i.e., �̂�1 = chol(�̂v̂).

4.5.1 Impulse response analysis

The results of the impulse response analysis are reported in Figure 10-12,
where median impulse responses, with 90% signi�cance bands, are plotted
for the three regimes investigated, over a twenty-�ve-day horizon; for reasons
of space, only selected maturities, i.e., 1-week, 1-month, 3-month, 6-month,
9-month and 1-year, are considered.26

As shown in the �gures, independently of the regime considered, the in-
terpretation of the structural common persistent shocks in terms of level,
slope and curvature factor shocks is supported by the results of the impulse
response analysis; in fact, a 1-standard deviation level shock drives upwards
the whole OIS spreads term structure (Figure 10), while responses of op-
posite sign can be noted at the short- and medium-/long-end of the OIS
spreads term structure, following a 1-standard deviation slope shock; more-
over, responses of opposite sign can be noted at the short-/long-end of the
OIS spreads term structure, relatively to intermediate maturities, following
a 1-standard deviation curvature shock.
Consistent with the �nding of long memory in the common stochastic

factors, the e¤ects of the level, slope and curvature factor shocks tend to
fade away slowly, showing a hyperbolic rate of decay, being still statistically
signi�cant also after twenty days. By comparing impulse responses to each
shock across regimes, it can be noted that the subprime crisis has lead to an
increase in the persistence of all the common shocks, enduring also after its
end.
Moreover, the crisis also had the e¤ect of magnifying the contemporane-

ous impact of all the common shocks. For instance, for the level shock, a
three to �ve fold larger e¤ect can be noted for the crisis regime (7b.p. to
11b.p.) relatively to the pre-crisis regime (1.7b.p. to 2.6b.p), while a two
to three fold larger e¤ect can be noted for the post-crisis period (5b.p, to
7.5b.p.); results for the other common persistent shocks are similar, i.e., -

26A full set of results is available from the author upon request.
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0.4b.p. to 0.75b.p., -1b.p. to 3b.p., and -1b.p. to 2b.p., for the pre-crisis,
crisis, and post-crisis periods, respectively, for the slope factor shock; �gures
for the curvature factor shock are -0.2b.p. to 1.5b.p., -0.8b.p. to 5b.p. and
-0.5b.p. to 3b.p., for the three regimes, respectively.

4.5.2 Forecast error variance decomposition

The results of the median forecast error variance decomposition (FEVD) are
reported in Table 11. For reasons of space only a selection of the results is
reported, i.e., FEVD at the 1-day and 20-day horizons, for the three regimes
considered.27

As shown in Table 11, independently of the regime considered, some con-
clusions can be drawn concerning the relevance of money market shocks.
Firstly, the slope factor shock is most important at the short-end of the

term structure, independently of the horizon considered (1-day or 20-day);
the latter also accounts for some �uctuations at the long-end of the term
structure.
Secondly, the level factor shock is the key driver of OIS spreads �uctua-

tions from the 2-month maturity onwards, playing a stronger role at longer
(20-day) than shorter (1-day) horizons.
Thirdly, the curvature factor shock accounts for �uctuations common to

intermediate maturities, i.e., 2-month to 4-month, as well as to the short-
(1-week) and long- (1-year) end of the term structure.
Fourthly, idiosyncratic �uctuations are more important at the short-end

of the term structure than for longer maturities.
Additional interesting �ndings, related to the consequences of the sub-

prime �nancial crisis, can also be noted.
Firstly, while the impact (1-day) contribution of the slope factor shock to

short-end term structure �uctuations (1-week through 1-month maturities) is
fairly unchanged, i.e., 30%, a sizable increase can be noted at longer horizons
(20-day), i.e., from 40% (pre-crisis) to 54% (crisis) and then 60% (post-crisis);
similarly, in relative terms, for the 2-week and 1-month maturities.
Secondly, independent of the maturity and horizon, the contribution

of the level factor shock to OIS spreads �uctuations has increased across
regimes, more sizably during the crisis than post-crisis periods, and for
short/long maturities than for intermediate maturities (in terms of relative
changes); for instance, the contribution of the level factor shock to 1-week
OIS spread �uctuations (20-day horizon) has increased from 20% (pre-crisis)
to 30% (crisis) and then 32% (post-crisis); �gures for the 1-year maturity are

27A full set of results are available from the author upon request.
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63%, 86% and 88%, while for the 4-month maturity are 82%, 95% and 97%,
respectively.
Thirdly, the increasing contribution of the level factor shock to OIS

spreads �uctuations across regimes has been matched by a progressive con-
traction in the contribution of the other shocks, i.e., slope and curvature fac-
tors and idiosyncratic; in particular, the decreased contribution of the slope
and curvature factor shocks, accounting for some common �uctuations at the
short- and long-end of term structure, may explain their declining comove-
ment detected by the conditional correlation analysis (Table 10). Overall, the
crisis appears to have magni�ed the role of persistent and common shocks
over idiosyncratic shocks, and, among the former, the contribution of level
over slope and curvature factor shocks.

5 Conclusions

In the paper the fractionally integrated heteroskedastic factor vector autore-
gressive (FI-HF-VAR) model is introduced. The proposed approach shows
minimal pretesting requirements, performing well independently of integra-
tion properties of the data and sources of persistence, i.e., deterministic or
stochastic, accounting for common features of di¤erent kinds, i.e., common
integrated (of the fractional or integer type) or non integrated stochastic fac-
tors, also heteroskedastic, and common deterministic break processes. Con-
sistent and asymptotically normal estimation, by means of an iterative multi-
step algorithm, similar to Stock and Watson (2005), can be conjectured. The
iterative procedure may also be augmented by an additional step based on
the Granger and Jeon (2004) thick modelling strategy, providing median es-
timates of the parameters of interest and robust standard errors. Moreover,
the approach is easy to implement and e¤ective also in the case of very large
systems of dynamic equations. An extensive Monte Carlo analysis strongly
supports the proposed methodology.
The dynamic properties of US OIS spreads, over the subprime and euro

area sovereign debt crises, are investigated by means of the proposed ap-
proach. Among the main empirical results, we �nd that three common com-
ponents, bearing the interpretation of level, slope and curvature factors, can
be extracted from the OIS spreads term structure; the latter are characterized
by deterministic trend component and strongly persistent and heteroskedas-
tic �uctuations about trend; two common break processes, describing the
long-term evolution of OIS spreads conditional variances, bearing the inter-
pretation of level and slope factors for the volatility term structure, are also
found.
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Moreover, the subprime crisis has lead to a wide increase in both the
mean and variance of OIS spreads trend levels and to a sizable increase in
the persistence of money market shocks; while at the short-end of the term
structure mean and variance trend components have progressively converged
back to pre-crisis levels, at the medium- long-end �uctuations about much
higher mean values, than prevailing before the crisis, have persisted over the
post-crisis period as well; moreover, persistence of money market shocks has
not reverted back to pre-crisis intensity, actually even further increasing over
the post-crisis period. A sizable increase in OIS spreads mean trend level at
the medium- to long-end of the term structure can also be associated with
the beginning of the euro area sovereign debt crisis and its spillover to the
Italian economy. Should wide OIS spreads become a long-lasting feature of
the US money market, surely important challenges for theoretical models
of the yield curve and for the pricing of interest rate and credit derivatives
would then raise.
By �nally comparing the forward-looking properties of the OIS spreads

term structure factors with alternative measures of credit/liquidity risk and
�nancial fragility, we �nd the former conveying additional information, rela-
tively to commonly used measures like the TED or theBAA�AAA corporate
spreads, which might be exploited, also within a composite indicator, for the
construction of a risk barometer and real-time macroeconomic forecasting.
To our knowledge no such a comprehensive study on the consequences

of the subprime and euro area sovereign debt crisis on the US money mar-
ket has previously been contributed to the literature; the proposed modeling
framework does appear to be needed for an accurate modeling of OIS spreads
empirical properties and the understanding of the recent �nancial turmoil.
Other empirical implementations, involving for instance the modeling of re-
alized moments of �nancial returns and macroeconomic variables, can be
envisaged, and suggestions for further applications are provided as well.
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Table 1: OIS spreads, Bai-Perron structural breaks tests. 
Panel A: OIS spreads levels 

   PrC C1 C2 PoC1 PoC2 PoC3 
 UDmax Break Points Mean mean mean mean mean mean
1wx  39.9 8/9/07;  9/16/08; 12/9/08  0.074 0.403 1.437 0.129 0.082 0.078 

2wx  47.8 8/9/07;  9/16/08; 12/10/08 0.079 0.446 1.565 0.172 0.088 0.102 

1mx  47.9 8/9/07;  9/19/08; 12/12/08 0.087 0.493 1.839 0.217 0.095 0.134 

2mx  69.6 8/9/07; 9/19/08; 12/17/08; 8/24/09; 9/12/11 0.099 0.611 2.097 0.558 0.121 0.237 

3mx  84.1 8/9/07; 9/19/08; 12/18/08; 8/24/09; 9/12/11 0.108 0.692 2.210 0.770 0.151 0.354 

4mx  105.3 8/10/07; 9/19/08; 12/17/08; 9/7/09; 9/9/11 0.109 0.727 2.240 0.963 0.201 0.439 

5mx  107.1 8/10/07; 9/19/08; 12/17/08; 9/10/09; 9/7/11 0.112 0.759 2.270 1.108 0.261 0.511 

6mx  128.6 8/14/07; 9/19/08; 12/17/08; 9/9/09; 9/12/11 0.117 0.784 2.299 1.222 0.321 0.588 

7mx  141.9 8/14/07; 9/19/08; 12/17/08; 9/10/09; 9/6/11 0.118 0.772 2.284 1.271 0.379 0.642 

8mx  165.6 8/10/07; 9/19/08; 12/17/08; 9/10/09; 9/9/11 0.121 0.756 2.263 1.314 0.435 0.691 

9mx  193.7 8/10/07; 9/19/08; 12/17/08; 9/11/09; 9/6/11 0.122 0.740 2.241 1.351 0.489 0.740 

10mx  217.7 8/9/07; 9/19/08; 12/17/08; 9/11/09; 9/6/11 0.124 0.729 2.218 1.380 0.538 0.790 

11mx  232.8 8/9/07; 9/19/08; 12/17/08; 9/11/09; 9/8/11 0.125 0.714 2.192 1.407 0.586 0.842 

12mx  261.6 8/9/07; 9/19/08; 12/17/08; 9/11/09; 9/6/11 0.125 0.701 2.164 1.432 0.635 0.898 

 
Panel B: OIS spreads volatilities 

   PrC C PoC 
 UDmax Break Points mean mean mean
1| |wx  55.7 8/2/07; 1/2/09 0.010 0.074 0.007 

2| |wx  59.8 8/2/07; 12/23/08 0.007 0.068 0.005 

1| |mx  82.9 8/2/07; 12/22/08 0.007 0.052 0.005 

2| |mx  71.9 8/2/07; 2/2/09 0.007 0.047 0.005 

3| |mx  64.8 8/2/07; 2/2/09 0.009 0.047 0.006 

4| |mx  74.2 8/2/07; 1/3/09 0.012 0.050 0.007 

5| |mx  82.1 7/27/07; 2/11/09 0.015 0.052 0.007 

6| |mx  97.0 7/25/07; 2/11/09 0.018 0.058 0.008 

7| |mx  106.7 7/25/07; 2/3/09 0.021 0.060 0.009 

8| |mx  118.0 7/25/07; 2/11/09 0.024 0.064 0.010 

9| |mx  124.2 7/25/07; 2/9/09 0.028 0.067 0.011 

10| |mx  128.5 7/25/07; 1/28/09 0.031 0.070 0.012 

11| |mx  127.3 7/25/07; 2/2/09 0.034 0.073 0.013 

12| |mx  128.8 7/25/07; 2/2/09 0.037 0.077 0.014 

 
The Table reports the results of the Bai-Perron (1989) UDmax test, carried out using monthly OIS spreads levels and volatilities over the 
period May 2002 through July 2007, and the estimated break points using daily data. The daily volatility proxy is computed from the 

absolute first differences of the OIS spreads levels (| ∆x |). Mean values for the series over the various regimes, computed using daily 
data, are also reported: Pre-crisis: 5/6/02 - 8/8/07 (PrC), Crisis: pre-Lehman 8/9/07 - 9/15/08 (C1), Crisis: post-Lehman 9/16/08 -12/8/08 
(C2), Post-crisis I: 12/9/08 - 8/21/09 (PoC1), Post-crisis II:  8/24/09- 9/5/11 (PoC2), Post-crisis III: EA crisis 9/6/11-8/3/12 (PoC3). The 

results are reported for the various OIS spreads maturities available, i.e., from 1-week (
1wx ) to one-year (

12mx ). 
 



Table 2: Full sample estimates of the fractional differencing parameter and long memory tests: OIS spreads levels and volatilities 
Panel A: OIS spreads levels Panel B: OIS spreads volatilities 

 level  (x) break-free (l) SKPSS DGM DKH  level  (|Δx|) break-free (v) SKPSS DGM DKH 

1wx  0.885 (0.039) 0.519 (0.039) 0.021 -2.773 -2.233 1| |wx  0.308 (0.039) 0.175 (0.039) 0.571 0.174 0.181 

2wx  0.973 (0.039) 0.603 (0.039) 0.025 -2.011 -0.787 2| |wx  0.325 (0.039) 0.211 (0.039) 0.471 1.142 0.568 

1mx  1.019 (0.039) 0.691 (0.039) 0.055 -2.286 -1.182 1| |mx  0.366 (0.039) 0.243 (0.039) 0.476 0.755 0.550 

2mx  1.082 (0.039) 0.688 (0.039) 0.051 -3.826 -2.103 2| |mx  0.394 (0.039) 0.236 (0.039) 0.502 -0.738 -0.010 

3mx  1.098 (0.039) 0.689 (0.039) 0.051 -3.238 -1.751 3| |mx  0.409 (0.039) 0.257 (0.039) 0.491 -1.318 -0.222 

4mx  1.074 (0.039) 0.668 (0.039) 0.067 -2.808 -2.019 4| |mx  0.390 (0.039) 0.232 (0.039) 0.686 -1.569 -0.461 

5mx  1.055 (0.039) 0.643 (0.039) 0.078 -2.473 -1.903 5| |mx  0.377 (0.039) 0.201 (0.039) 1.080 -1.602 -0.533 

6mx  1.017 (0.039) 0.592 (0.039) 0.107 -2.218 -1.858 6| |mx  0.364 (0.039) 0.181 (0.039) 1.418 -1.658 -0.648 

7mx  1.002 (0.039) 0.575 (0.039) 0.116 -2.147 -1.898 7| |mx  0.341 (0.039) 0.164 (0.039) 1.728 -1.057 -0.392 

8mx  0.983 (0.039) 0.550 (0.039) 0.127 -2.147 -1.966 8| |mx  0.331 (0.039) 0.146 (0.039) 2.065 -1.225 -0.540 

9mx  0.958 (0.039) 0.505 (0.039) 0.174 -1.904 -1.697 9| |mx  0.333 (0.039) 0.162 (0.039) 2.203 -0.384 -0.106 

10mx  0.944 (0.039) 0.503 (0.039) 0.166 -2.008 -1.865 10| |mx  0.331 (0.039) 0.158 (0.039) 2.511 -0.644 -0.308 

11mx  0.928 (0.039) 0.484 (0.039) 0.202 -1.955 -1.834 11| |mx  0.319 (0.039) 0.150 (0.039) 2.566 -0.105 0.015 

12mx  0.908 (0.039) 0.461 (0.039) 0.241 -1.927 -1.778 12| |mx  0.325 (0.039) 0.159 (0.039) 3.034 0.486 0.434 

       
mean 0.995 (0.039) 0.584 (0.039) mean 0.351 (0.039) 0.191 (0.039) 

Wf 37.155 (0.0004) 56.375 (0.0000) Wf 8.498 (0.8097) 12.223 (0.5094) 
 
In the Table the estimated fractional differencing parameter, obtained using the Moulines and Soulier (1999) broad band log periodogram estimator (BBLP), is reported for the OIS spreads series in 
levels (x; column 1) and break-free (l; column 2) in Panel A, and for the OIS spreads volatility series in levels (| Δx |; column 1) and break-free (v; column 2) in Panel B. Standard errors are reported 
in brackets, while mean  is the estimated mean value of the fractional differencing parameter across maturities. The results of the Shimotsu (2006) (SKPSS, column 3), Dolado et. al. (1995) (DGM, 
column 4), and Demetrescu et al. (2006) (DKH, column 5) long memory tests are also reported for the OIS spreads levels (Panel A) and volatilities (Panel B). The tabulated critical values at the 1%, 
5% and 10% significance level are -4.866, -4.332, -3.924, respectively, for the DGM test; 0.032, 0.021, 0.016, respectively, for the SKPSS test; -2.575, -1.96, -1.645, respectively, for the DKH test. 
Finally, the Wald test for the null hypothesis of equal fractional differencing parameter across maturities (Wf) is reported in the last row of the Table, with p-value in brackets. The results are for the 

various OIS spreads maturities available, i.e., from 1-week (
1wx ) to one-year (

12mx ). 
 
 
 
 
 
 
 



Table 3: Fractional differencing parameter subsample estimates and constancy tests: OIS spreads levels 
 BBLP – subsamples Equality tests across subsamples HM persistence break test 

 Pre-crisis Crisis+Post-crisis Crisis Post-crisis Wi,2 Wi,3 HMb HMmax,b Date HMe HMmax,e Date 
1wx  0.396 (0.055) 0.705 (0.056) 0.413 (0.109) 0.739 (0.066) 15.393 (0.0001) 18.045 (0.0001) 5.744 5.818 9/12/2007 8.811 8.869 7/2/2008 

2wx  0.529 (0.055) 0.754 (0.056) 0.543 (0.109) 0.904 (0.066) 8.108 (0.0044) 21.335 (0.0000) 5.158 5.187 9/12/2007 8.937 9.286 7/2/2008 

1mx  0.658 (0.055) 0.854 (0.056) 0.650 (0.109) 0.936 (0.066) 6.231 (0.0126) 14.576 (0.0007) 8.661 8.690 9/12/2007 7.549 9.343 12/17/2008 

2mx  0.661 (0.055) 0.787 (0.056) 0.801 (0.109) 1.009 (0.066) 2.550 (0.1103) 13.984 (0.0009) 14.642 14.862 9/12/2007 13.137 16.398 12/17/2008 

3mx  0.627 (0.055) 0.837 (0.056) 0.816 (0.109) 1.069 (0.066) 7.070 (0.0078) 24.848 (0.0000) 24.099 24.505 9/12/2007 20.248 26.707 12/17/2008 

4mx  0.588 (0.055) 0.744 (0.056) 0.717 (0.109) 1.016 (0.066) 3.902 (0.0482) 22.044 (0.0000) 48.212 48.311 9/12/2007 32.430 52.644 12/17/2008 

5mx  0.535 (0.055) 0.762 (0.056) 0.671 (0.109) 1.035 (0.066) 8.308 (0.0039) 30.397 (0.0000) 68.586 69.536 6/12/2007 48.445 71.116 12/17/2008 

6mx  0.482 (0.055) 0.734 (0.056) 0.600 (0.109) 0.973 (0.066) 10.196 0.0014) 31.525 (0.0000) 85.460 88.589 6/12/2007 59.277 84.822 12/17/2008 

7mx  0.437 (0.055) 0.702 (0.056) 0.579 (0.109) 0.961 (0.066) 11.278 (0.0008) 36.911 (0.0000) 95.827 99.125 6/12/2007 67.510 97.558 12/17/2008 

8mx  0.398 (0.055) 0.677 (0.056) 0.552 (0.109) 0.953 (0.066) 12.521 (0.0004) 39.628 (0.0000) 110.558 114.791 6/12/2007 75.426 110.940 12/17/2008 

9mx  0.364 (0.055) 0.656 (0.056) 0.542 (0.109) 0.913 (0.066) 13.761 (0.0002) 40.290 (0.0000) 126.253 131.522 6/12/2007 88.581 122.541 12/17/2008 

10mx  0.351 (0.055) 0.636 (0.056) 0.510 (0.109) 0.893 (0.066) 13.081 (0.0003) 40.227 (0.0000) 116.760 120.323 6/12/2007 84.513 117.137 12/17/2008 

11mx  0.327 (0.055) 0.621 (0.056) 0.477 (0.109) 0.881 (0.066) 13.987 (0.0002) 41.943 (0.0000) 122.487 127.610 6/12/2007 87.733 121.338 12/17/2008 

12mx  0.307 (0.055) 0.604 (0.056) 0.451 (0.109) 0.866 (0.066) 14.216 (0.0002) 44.091 (0.0000) 129.910 134.434 6/12/2007 102.408 129.304 12/17/2008 

  
 

 mean 0.476 (0.055) 0.720 (0.056) 0.545 (0.109) 0.929 (0.066) 

 
Wpre: 66.945 

(0.0000)
Wc/p: 24.040  

(0.0453) 
Wc: 16.162  

(0.3036) 
Wpost: 16.487  

(0.2845) 
Wj,2: 140.602 

(0.0000) 
Wj,3: 419.844  

(0.0000) 
 
In the Table the estimated fractional differencing parameter, obtained using the Moulines and Soulier (1999) broad band log periodogram estimator (BBLP), with standard error in brackets, is 
reported for the OIS spreads level break-free series (x) for various subsamples, determined according to two scenarios: the first scenario assumes a permanent break in the persistence parameter 
occurring after August 8 2007; the second scenario, in addition to the previous break, allows for a permanent change occurring after December 8 2008. The pre-crisis sample therefore corresponds to 
the period May 6 2002 through August 7 2007 and the crisis/post-crisis sample to the period August 8 2007 through August 3 2012, for the first scenario; in addition to the pre-crisis sample, the 
crisis sample refers to the period August 8 2007 through December 8 2008 and the post-crisis sample to the period December 9 2008 through August 3 2012, for the second scenario. The Wald test 
for the null hypothesis of equal fractional differencing parameter across the term structure (Ws; s = pre, c/p, c, post) and estimated mean values (mean) for each subsample, as well as Wald tests for 
the null hypothesis of equal fractional differencing parameter across regimes for each maturity (Wi,2, Wi,3) and for all the maturities jointly (Wj,2, Wj,3) are also reported; p-values for the Wald tests are 
reported in brackets. Finally, the results of the Hassler and Meller (2009) test (HM) are reported with reference to the beginning (HMb) and the end (HMe) of the crisis period and for the two break 
points selected by the HM statistic (HMmax,b and HMmax,e); tabulated critical values are 5.398, 6.904 and 10.287 for the 10%, 5% and 1% significance level, respectively. The results are reported for 

the various OIS spreads maturities available, i.e., from 1-week (
1wx ) to one-year (

12mx ). 
 
 
 
 
 



Table 4: Fractional differencing parameter subsample estimates and constancy tests: OIS spreads volatilities 
 BBLP – subsamples Equality tests across subsamples HM persistence break test 

 Pre-crisis 
Crisis+Post-

crisis 
Crisis Post-crisis Wi,2 Wi,3 HMb HMmax,b Date HMe HMmax,e Date 

1| |wx  0.231 (0.055) 0.128 (0.056) 0.318 (0.109) 0.250 (0.066) 1.717 (0.4237) 0.504 (0.9180) 0.377 0.604 5/18/2007 2.382 2.256 1/22/2009 

2| |wx  0.197 (0.055) 0.171 (0.056) 0.304 (0.109) 0.236 (0.066) 0.111 (0.9461) 0.811 (0.8468) 0.119 0.081 5/18/2007 4.525 6.422 1/22/2009 

1| |mx  0.221 (0.055) 0.256 (0.056) 0.272 (0.109) 0.326 (0.066) 0.195 (0.9073) 1.500 (0.6823) 0.091 0.046 5/18/2007 2.598 3.198 1/22/2009 

2| |mx  0.239 (0.055) 0.255 (0.056) 0.414 (0.109) 0.198 (0.066) 0.040 (0.9801) 2.912 (0.4053) 0.339 0.002 5/18/2007 0.372 6.057 8/6/2009 

3| |mx  0.248 (0.055) 0.288 (0.056) 0.446 (0.109) 0.224 (0.066) 0.258 (0.8789) 3.220 (0.3589) 0.239 0.082 5/18/2007 0.288 4.683 8/6/2009 

4| |mx  0.232 (0.055) 0.265 (0.056) 0.415 (0.109) 0.151 (0.066) 0.177 (0.9153) 4.289 (0.2319) 0.319 0.022 5/18/2007 1.397 4.609 8/6/2009 

5| |mx  0.257 (0.055) 0.187 (0.056) 0.372 (0.109) 0.245 (0.066) 0.782 (0.6763) 1.078 (0.7823) 0.207 0.256 5/18/2007 0.330 2.303 8/6/2009 

6| |mx  0.265 (0.055) 0.152 (0.056) 0.337 (0.109) 0.250 (0.066) 2.068 (0.3555) 0.470 (0.9254) 0.329 0.651 5/18/2007 0.382 0.978 8/6/2009 

7| |mx  0.250 (0.055) 0.151 (0.056) 0.287 (0.109) 0.238 (0.066) 1.594 (0.4506) 0.149 (0.9854) 0.189 0.319 5/18/2007 0.365 0.040 8/6/2009 

8| |mx  0.237 (0.055) 0.125 (0.056) 0.266 (0.109) 0.275 (0.066) 2.025 (0.3632) 0.200 (0.9776) 0.230 0.387 5/18/2007 0.291 0.551 8/6/2009 

9| |mx  0.236 (0.055) 0.142 (0.056) 0.221 (0.109) 0.281 (0.066) 1.429 (0.4895) 0.349 (0.9506) 0.711 1.049 5/18/2007 0.498 0.940 8/6/2009 

10| |mx  0.219 (0.055) 0.154 (0.056) 0.199 (0.109) 0.284 (0.066) 0.683 (0.7108) 0.730 (0.8661) 0.426 0.707 5/18/2007 0.439 1.911 8/6/2009 

11| |mx  0.212 (0.055) 0.128 (0.056) 0.214 (0.109) 0.249 (0.066) 1.150 (0.5626) 0.194 (0.9786) 0.650 1.042 5/18/2007 0.431 1.608 8/6/2009 

12| |mx  0.209 (0.055) 0.144 (0.056) 0.220 (0.109) 0.274 (0.066) 0.692 (0.7074) 0.583 (0.9004) 0.411 0.617 5/18/2007 0.590 2.040 8/6/2009 

  
 

 Mean 0.476 (0.055) 0.720 (0.056) 0.545 (0.109) 0.929 (0.066) 

 
Wpre: 1.584 

(0.9999)
Wc/p: 7.216  

(0.9261) 
Wc: 5.201  
(0.9828) 

Wpost: 16.487  
(0.2845) 

Wj,2: 12.922 
(0.5326) 

Wj,3: 16.990  
(0.9488) 

 
In the Table the estimated fractional differencing parameter, obtained using the Moulines and Soulier (1999) broad band log periodogram estimator (BBLP), with standard error in brackets, is 
reported for the OIS spreads volatility break-free series (| Δx |) for various subsamples, determined according to two scenarios: the first scenario assumes a permanent break in the persistence 
parameter occurring after August 8 2007; the second scenario, in addition to the previous break, allows for a permanent change occurring after December 8 2008. The pre-crisis sample therefore 
corresponds to the period May 6 2002 through August 7 2007 and the crisis/post-crisis sample to the period August 8 2007 through August 3 2012, for the first scenario; in addition to the pre-crisis 
sample, the crisis sample refers to the period August 8 2007 through December 8 2008 and the post-crisis sample to the period December 9 2008 through August 3 2012, for the second scenario. The 
Wald test for the null hypothesis of equal fractional differencing parameter across the term structure (Ws; s = pre, c/p, c, post) and estimated mean values (mean) for each subsample, as well as Wald 
tests for the null hypothesis of equal fractional differencing parameter across regimes for each maturity (Wi,2, Wi,3) and for all the maturities jointly (Wj,2, Wj,3) are also reported; p-values for the Wald 
tests are reported in brackets. Finally, the results of the Hassler and Meller (2009) test (HM) are reported with reference to the beginning (HMb) and the end (HMe) of the crisis period and for the two 
break points selected by the HM statistic (HMmax,b and HMmax,e); tabulated critical values are 5.398, 6.904 and 10.287 for the 10%, 5% and 1% significance level, respectively. The results are 

reported for the various OIS spreads maturities available, i.e., from 1-week (
1wx ) to one-year (

12mx ). 
 
 



 
Table 5: OIS spreads, principal components analysis, proportion of explained variance, total and for each series 

Panel A: Principal components analysis implemented on: 

 OIS spreads (x ) break processes (b) break-free OIS spreads (l)  OIS volatilities (|∆x|) volatility break processes (c) break-free volatilities (v) 

 pcm1 pcm2 pcm3 μm1 μm2 μm3 fm1 fm2 fm3  pcv1 pcv2 pcv3 μv1 μv2 μv3 fv1 fv2 fv3

tot 0.949 0.043 0.007 0.954 0.036 0.008 0.792 0.117 0.045 Tot 0.762 0.150 0.046 0.959 0.037 0.002 0.624 0.231 0.071 
                    
1wx  0.434 0.427 0.118 0.458 0.416 0.111 0.321 0.493 0.055 1| |wx  0.353 0.532 0.065 0.759 0.232 0.002 0.333 0.556 0.056 

2wx  0.514 0.415 0.062 0.510 0.400 0.086 0.375 0.528 0.026 2| |wx  0.389 0.488 0.011 0.691 0.296 0.007 0.396 0.474 0.009 

1mx  0.596 0.363 0.002 0.578 0.373 0.026 0.522 0.300 0.001 1| |mx  0.505 0.121 0.188 0.736 0.246 0.010 0.498 0.079 0.219 

2mx  0.806 0.174 0.013 0.810 0.157 0.023 0.760 0.018 0.173 2| |mx  0.645 0.066 0.235 0.833 0.124 0.030 0.672 0.025 0.241 

3mx  0.887 0.092 0.018 0.886 0.083 0.028 0.841 0.004 0.123 3| |mx  0.694 0.034 0.214 0.878 0.087 0.024 0.714 0.008 0.213 

4mx  0.951 0.032 0.016 0.949 0.031 0.019 0.918 0.000 0.053 4| |mx  0.796 0.007 0.142 0.934 0.047 0.003 0.784 0.000 0.147 

5mx  0.980 0.007 0.010 0.979 0.008 0.011 0.946 0.006 0.020 5| |mx  0.866 0.001 0.077 0.972 0.005 0.021 0.844 0.015 0.073 

6mx  0.991 0.000 0.006 0.991 0.000 0.006 0.957 0.015 0.002 6| |mx  0.893 0.019 0.025 0.980 0.000 0.016 0.849 0.051 0.019 

7mx  0.994 0.003 0.002 0.996 0.001 0.002 0.942 0.029 0.000 7| |mx  0.894 0.047 0.003 0.993 0.004 0.001 0.833 0.091 0.001 

8mx  0.989 0.010 0.000 0.992 0.007 0.000 0.937 0.039 0.007 8| |mx  0.891 0.069 0.001 0.978 0.013 0.005 0.819 0.121 0.005 

9mx  0.977 0.022 0.001 0.981 0.018 0.001 0.925 0.041 0.023 9| |mx  0.865 0.099 0.009 0.965 0.032 0.001 0.778 0.159 0.022 

10mx  0.963 0.035 0.002 0.967 0.030 0.003 0.904 0.048 0.036 10| |mx  0.845 0.113 0.020 0.957 0.037 0.004 0.750 0.176 0.041 

11mx  0.944 0.050 0.006 0.949 0.044 0.006 0.885 0.054 0.048 11| |mx  0.824 0.121 0.032 0.948 0.050 0.002 0.722 0.181 0.061 

12mx  0.922 0.067 0.010 0.927 0.061 0.011 0.850 0.061 0.066 12| |mx  0.799 0.127 0.041 0.929 0.068 0.003 0.690 0.186 0.072 

 
The Table reports the results of principal components analysis implemented on OIS spreads levels (x) and volatilities (|Δx|), their estimated break processes (b, c) and break-free (l, v) components. 
The first row (tot) shows the fraction of total variance explained by the first three principal components extracted from the actual OIS spreads level (pcm1,  pcm2,  pcm3) and volatility (pcv1, pcv2, pcv3) 
series, and the first three principal components extracted from their estimated break processes (μm1, μm2, μm3;  μv1, μv2, μv3) and break-free components (fm1,  fm2, fm3; fv1,  fv2, fv3); the subsequent fifteen 
rows display the fraction of the variance of each individual series attributable to the extracted principal components for each set of series (actual, break, and break-free processes). Results are for the 

various OIS spreads maturities available, i.e., from 1-week (
1wx ) to one-year (

12mx ).  

 
 
 
 
 



 
Table 6: OIS spreads, principal components analysis, estimated loadings 

Panel A: Principal components analysis implemented on: 

 OIS spreads (x ) break processes (b) break-free OIS spreads (l)  OIS volatilities (|∆x|) volatility break processes (c) break-free volatilities (v) 

 pcm1 pcm2 pcm3 μm1 μm2 μm3 fm1 fm2 fm3  pcv1 pcv2 pcv3 μv1 μv2 μv3 fv1 fv2 fv3 

                    
1wx  0.235 -0.175 0.093 0.026 -0.010 0.001 0.608 -0.649 0.310 1| |wx  0.039 -0.040 0.014 0.026 -0.010 0.001 0.030 -0.038 0.012 

2wx  0.264 -0.178 0.070 0.023 -0.010 0.001 0.663 -0.681 0.172 2| |wx  0.036 -0.034 0.005 0.023 -0.010 0.001 0.029 -0.032 0.004 

1mx  0.309 -0.181 0.013 0.018 -0.007 0.001 0.752 -0.510 -0.058 1| |mx  0.028 -0.012 -0.014 0.018 -0.007 0.001 0.022 -0.009 -0.014 

2mx  0.413 -0.144 -0.039 0.017 -0.004 -0.002 0.875 -0.178 -0.393 2| |mx  0.028 -0.007 -0.014 0.017 -0.004 -0.002 0.022 -0.004 -0.013 

3mx  0.480 -0.116 -0.051 0.018 -0.004 -0.002 0.922 -0.100 -0.322 3| |mx  0.029 -0.005 -0.013 0.018 -0.004 -0.002 0.023 -0.002 -0.013 

4mx  0.527 -0.073 -0.051 0.021 -0.003 0.001 0.954 -0.015 -0.208 4| |mx  0.031 -0.002 -0.011 0.021 -0.003 0.001 0.023 0.000 -0.010 

5mx  0.567 -0.036 -0.044 0.022 -0.001 -0.002 0.975 0.067 -0.129 5| |mx  0.033 0.001 -0.008 0.022 -0.001 -0.002 0.024 0.003 -0.007 

6mx  0.603 -0.003 -0.036 0.025 0.000 -0.002 0.979 0.117 -0.041 6| |mx  0.036 0.004 -0.005 0.025 0.000 -0.002 0.025 0.006 -0.004 

7mx  0.619 0.023 -0.020 0.027 0.001 -0.001 0.970 0.176 0.009 7| |mx  0.038 0.007 -0.002 0.027 0.001 -0.001 0.026 0.009 -0.001 

8mx  0.632 0.048 -0.004 0.030 0.002 -0.001 0.967 0.212 0.062 8| |mx  0.041 0.009 0.001 0.030 0.002 -0.001 0.027 0.010 0.002 

9mx  0.643 0.072 0.011 0.032 0.004 -0.001 0.961 0.220 0.133 9| |mx  0.043 0.012 0.004 0.032 0.004 -0.001 0.028 0.012 0.005 

10mx  0.655 0.093 0.025 0.035 0.005 0.001 0.950 0.242 0.168 10| |mx  0.045 0.014 0.006 0.035 0.005 0.001 0.029 0.014 0.007 

11mx  0.665 0.114 0.039 0.037 0.006 0.001 0.940 0.257 0.192 11| |mx  0.047 0.015 0.008 0.037 0.006 0.001 0.029 0.015 0.009 

12mx  0.675 0.136 0.052 0.039 0.007 0.001 0.921 0.276 0.228 12| |mx  0.050 0.017 0.009 0.039 0.007 0.001 0.030 0.016 0.010 

 
The Table reports the estimated factor loadings for the first three principal components extracted from the actual OIS spreads level (x, pcm1,  pcm2,  pcm3) and volatility (| Δx |, pcv1, pcv2, pcv3) series, 
and the first three principal components extracted from their estimated break processes (b, μm1, μm2, μm3 ; c, μv1, μv2, μv3) and break-free components (l, fm1,  fm2, fm3; v, fv1,  fv2, fv3). Results are for the 

various OIS spreads maturities available, i.e., from 1-week (
1wx ) to one-year (

12mx ).  

 
 
 
 
 
 
 
 



Table 7:Fractional differencing parameter full and subsample estimates and constancy tests: OIS spreads break-free series levels and volatilities common factors 
Level BBLP – full 

sample 
BBLP – subsamples Equality tests across subsamples 

HM persistence break test 

 
 

Pre-crisis 
Crisis+Post-

crisis 
Crisis Post-crisis Wi,2 Wi,3 HMb HMmax,b Date HMe HMmax,e Date 

fm1 
0.595 

 (0.039) 
0.482  

(0.055) 
0.711  

(0.056) 
0.755 

(0.144) 
0.872 

(0.061) 
8.455 

(0.0146) 
22.791 (0.0000) 72.791 75.119 8/17/2007 48.229 75.922 9/8/2008 

fm2 
0.460 

 (0.039) 
0.318  

(0.055) 
0.718  

(0.056) 
0.639 

(0.144) 
0.798 

(0.061) 
25.755 

(0.0000) 
34.323 (0.0000) 14.061 14.385 10/5/2007 24.635 24.388 9/4/2008 

fm2 
0.499 

 (0.039) 
0.396 

(0.055) 
0.655  

(0.056) 
0.547 

(0.144) 
0.727 

(0.061) 
10.767 

(0.0046) 
16.004 (0.0000) 28.025 28.043 8/20/2007 41.012 44.194 9/4/2008 

   
 

 
Mean 

0.528  
(0.039) 

0.399  
(0.055) 

0.695  
(0.056) 

0.647 
(0.109) 

0.799 
(0.066) 

Wf 
Wf : 6.150 
(0.0462) 

Wpre: 4.444 
(0.2173) 

Wc/p: 0.753  
(0.8606)  

Wc: 1.053  
(0.7886) 

Wpost: 
2.797  

(0.4240) 

Wj,2: 44.978 
(0.0000) 

Wj,3: 73.119  
(0.0000<) 

           
Volat BBLP – full 

sample 
BBLP – subsamples Equality tests across subsamples 

HM persistence break test 

 
 

Pre-crisis 
Crisis+Post-

crisis 
Crisis Post-crisis Wi,2 Wi,3 HMb HMmax,b Date HMe HMmax,e Date 

fv1 
0.193 

(0.039) 
0.240 (0.055) 

0.182 
 (0.056) 

0.379 
(0.109) 

0.268 
(0.066) 

0.546 
(0.7609) 

1.283 (0.7331) 0.220 0.604 9/7/2007 0.287 1.168 1/11/2008 

fv2 
0.175 

(0.039) 
0.266 (0.055) 

0.145  
(0.056) 

0.250 
(0.109) 

0.283 
(0.066) 

2.354 
(0.3082) 

0.080 (0.9941) 1.942 1.990 8/16/2007 0.528 1.677 12/4/2007 

fv3 
0.119 

(0.039) 
0.190 (0.055) 

0.084  
(0.056) 

0.158 
(0.109) 

0.253 
(0.066) 

1.790 
(0.4086) 

0.786 (0.8529) 0.317 0.488 12/8/2006 0.891 2.359 5/6/2009 

   
 

 
Mean 

0.162  
(0.039) 

0.232 
(0.055) 

0.137  
(0.056) 

0.262 
(0.109) 

0.268 
(0.066) 

Wf 
Wf : 1.918 
(0.3832) 

Wpre: 0.983 
(0.6117) 

Wc/p: 1.523  
(0.6768) 

Wc: 16.162 
(0.3036) 

Wpost: 
16.487  

(0.2845) 

Wj,2: 4.690 
(0.1960) 

Wj,3: 1.918  
(0.3832) 

 
In the Table the estimated fractional differencing parameter obtained using the Moulines and Soulier (1999) broad band log periodogram estimator (BBLP) is reported for the first three principal 
components extracted from the normalized OIS spreads break-free series (fm1,  fm2,  fm3) and the first three principal components extracted from the OIS spreads break-free volatility series (fv1,  fv2  and 
fv3), with standard error in brackets. In addition to full sample estimates, various subsamples estimates, determined according to two scenarios, are reported; the first scenario assumes a permanent 
break in the persistence parameter occurring after August 8 2007; the second scenario, in addition to the previous break, allows for a permanent change occurring after December 8 2008. The pre-
crisis sample therefore corresponds to the period May 6 2002 through August 7 2007 and the crisis/post-crisis sample to the period August 8 2007 through August 3 2012, for the first scenario; in 
addition to the pre-crisis sample, the crisis sample refers to the period August 8 2007 through December 8 2008 and the post-crisis sample to the period December 9 2008 through August 3 2012, for 
the second scenario. The Wald test for the null hypothesis of equal fractional differencing parameter across factors (Ws; s = f, pre, c/p, c, post) and estimated mean values (mean) for the full sample 
and each subsample, as well as Wald tests for the null hypothesis of equal fractional differencing parameter across regimes for each factor (Wi,2, Wi,3) and for all factors jointly (Wj,2, Wj,3) are also 
reported; p-values for the Wald tests are reported in brackets. Finally, the results of the Hassler and Meller (2009) (HM) test are reported with reference to the beginning (HMb) and the end (HMe) of 
the crisis period and for the two break points selected by the HM statistic (HMmax,b and HMmax,e); tabulated critical values are 5.398, 6.904 and 10.287 for the 10%, 5% and 1% significance level, 
respectively. 



Table 8: OIS spreads, FI-H-FVAR estimates 
 Proportion of explained variance Factor loadings Proportion of explained variance  

 
break-free OIS spreads  

(x-b) 
break processes (b) Common long memory factors Common break processes Conditional variance processes 

 fm1 fm2 fm3 μm1 μm2 μm3 fm1 fm2 fm3 μm1 μm2 μm3  g1 g2  

tot 0.746 0.136 0.047 0.956 0.036 0.001       tot 0.993 0.007  
           
1wx  0.372 0.493 0.086 0.444 0.402 0.116 0.020 (.006) -0.063 (.009) 0.000 (.015) 0.051 (.002) -0.117 (.010) 0.081 (.012)  

2wx  0.506 0.422 0.027 0.492 0.386 0.088 0.023 (.006) -0.056 (.009) 0.013 (.010) 0.058 (.002) -0.116 (.007) 0.049 (.006)  1h  2h  3h  

1mx  0.634 0.087 0.036 0.563 0.356 0.020 0.027 (.005) -0.028 (.009) 0.051 (.013) 0.069 (.001) -0.113 (.003) -0.029 (.022) g1 0.836 0.997 0.976 

2mx  0.801 0.018 0.126 0.720 0.142 0.024 0.027 (.003) -0.017 (.005) 0.017 (.006) 0.093 (.001) -0.069 (.004) -0.112 (.014) g2 0.1636 0.001 0.002 

3mx  0.863 0.005 0.091 0.806 0.076 0.026 0.029 (.003) -0.014 (.004) -0.003 (.006) 0.106 (.001) -0.039 (.004) -0.127 (.008) Factor loadings 

4mx  0.908 0.001 0.037 0.894 0.029 0.017 0.029 (.002) -0.006 (.003) -0.021 (.007) 0.114 (.001) -0.004 (.003) -0.108 (.008) ,1i  2.511 3.262 4.017 

5mx  0.899 0.015 0.009 0.924 0.007 0.009 0.028 (.002) 0.001 (0.003) -0.027 (.007) 0.120 (.001) 0.023 (.003) -0.081 (.009) ,2i  -0.406 0.034 0.226 

6mx  0.872 0.041 0.000 0.928 0.000 0.005 0.027 (.002) 0.007 (.003) -0.028 (.007) 0.126 (.001) 0.048 (.002) -0.058 (.010) FIGARCH parameters 

7mx  0.889 0.060 0.004 0.918 0.001 0.001 0.026 (.002) 0.011 (.003) -0.020 (.004) 0.126 (.001) 0.064 (.001) -0.019 (.008)   
0.092 
(.103) 

0.000 
(.) 

0.000 
(.) 

8mx  0.892 0.080 0.011 0.897 0.007 0.000 0.026 (.002) 0.013 (.002) -0.011 (.002) 0.126 (.001) 0.079 (.001) 0.020 (.006)   
0.292 
(.144) 

0.008 
(.030) 

0.076 
(.043) 

9mx  0.865 0.101 0.024 0.869 0.016 0.001 0.025 (.002) 0.016 (.003) -0.001 (.003) 0.126 (.001) 0.094 (.003) 0.055 (.005) b  
0.415 
(.044) 

0.395 
(.014) 

0.326 
(.024) 

10mx  0.826 0.116 0.039 0.841 0.026 0.002 0.025 (.002) 0.019 (.003) 0.007 (.004) 0.126 (.001) 0.107 (.004) 0.087 (.004)     

11mx  0.770 0.123 0.056 0.810 0.037 0.005 0.025 (.002) 0.021 (.004) 0.016 (.007) 0.125 (.001) 0.120 (.005) 0.117 (.005) BICcv 0.556 -0.403 -1.452 

12mx  0.691 0.130 0.071 0.776 0.049 0.008 0.025 (.002) 0.023 (.004) 0.026 (.009) 0.124 (.001) 0.134 (.006) 0.150 (.006) BICsys -124.921   

 

The Table reports the results of the estimation of the FI-HF-VAR model, implemented on the OIS spreads maturities available, i.e., from 1-week (
1wx ) to one-year (

12mx ). Columns 1-6 contain 
the proportion of total variance (tot) accounted for by the first three principal components,  for the OIS spread break-free series (x-b; columns 1-3) and the OIS spread break processes (b; columns 4-
6). Columns 1-12 contain results for the conditional mean processes, while columns 13-16 contain results for the conditional variance processes. In columns 1-6 the first row (tot) shows the fraction 
of total variance explained by the first three principal components extracted from the OIS spreads break-free series (fm1,  fm2, fm3) and estimated break processes (μm1, μm2, μm3); the subsequent fifteen 
rows display the fraction of the variance of each individual series attributable to the extracted principal components for each set of series, i.e., OIS spreads break-free series and estimated break 
processes. In columns 13-15 the first row (tot) shows the fraction of total variance explained by the first two principal components extracted from the conditional variance break processes for the 
common long memory factors (g1,  g2); then, in rows 5-6 the proportion of variance of each individual conditional variance break process attributable to the extracted principal components is 
reported. Factor loadings for the common stochastic and deterministic factors in mean and variance are reported in columns 7-12 and 14-16 (rows 8-9), respectively. Parameters for the FIGARCH 
component in the conditional variance model are reported in rows 11-13; finally, the BIC information criterion is reported for each conditional variance equation (BICcv) and for the whole system 
(BICsys). Standard errors are reported in brackets. 

 



Table 9: FI-H-FVAR estimates; conditional correlations    
Panel A: Pre-crisis versus crisis correlations 

pre / crisis 1wx  
2wx  

1mx  
2mx  

3mx  
4mx  

5mx  
6mx  

7mx  
8mx  

9mx  
10mx  

11mx  
12mx  

1wx   0.988 0.756 0.772 0.738 0.595 0.476 0.365 0.310 0.259 0.201 0.156 0.122 0.081 

2wx  0.986  0.849 0.849 0.793 0.634 0.511 0.404 0.365 0.333 0.293 0.263 0.241 0.210 

1mx  0.719 0.822  0.944 0.819 0.631 0.521 0.447 0.473 0.510 0.542 0.567 0.592 0.604 

2mx  0.746 0.829 0.930  0.962 0.847 0.763 0.699 0.706 0.716 0.713 0.705 0.695 0.672 

3mx  0.708 0.762 0.772 0.950  0.957 0.901 0.847 0.836 0.819 0.784 0.747 0.707 0.655 

4mx  0.542 0.572 0.538 0.807 0.948  0.987 0.958 0.939 0.905 0.850 0.792 0.730 0.657 

5mx  0.406 0.430 0.407 0.707 0.883 0.985  0.991 0.975 0.941 0.884 0.823 0.755 0.678 

6mx  0.281 0.308 0.323 0.633 0.822 0.955 0.991  0.992 0.965 0.915 0.858 0.792 0.717 

7mx  0.218 0.265 0.360 0.648 0.814 0.934 0.972 0.991  0.990 0.958 0.914 0.860 0.795 

8mx  0.161 0.230 0.413 0.667 0.798 0.895 0.931 0.957 0.988  0.989 0.962 0.922 0.871 

9mx  0.093 0.185 0.459 0.668 0.757 0.828 0.861 0.894 0.947 0.986  0.992 0.969 0.934 

10mx  0.040 0.151 0.495 0.660 0.711 0.754 0.783 0.820 0.890 0.950 0.989  0.993 0.972 

11mx  0.001 0.127 0.530 0.649 0.660 0.674 0.696 0.735 0.820 0.899 0.960 0.990  0.993 

12mx  -0.043 0.095 0.548 0.621 0.594 0.582 0.598 0.639 0.737 0.833 0.914 0.963 0.991  

 
Panel B: Post-crisis versus crisis correlations 

post / crisis 1wx  
2wx  

1mx  
2mx  

3mx  
4mx  

5mx  
6mx  

7mx  
8mx  

9mx  
10mx  

11mx  
12mx  

1wx   0.988 0.756 0.772 0.738 0.595 0.476 0.365 0.310 0.259 0.201 0.156 0.122 0.081 

2wx  0.988  0.849 0.849 0.793 0.634 0.511 0.404 0.365 0.333 0.293 0.263 0.241 0.210 

1mx  0.729 0.825  0.944 0.819 0.631 0.521 0.447 0.473 0.510 0.542 0.567 0.592 0.604 

2mx  0.743 0.822 0.933  0.962 0.847 0.763 0.699 0.706 0.716 0.713 0.705 0.695 0.672 

3mx  0.699 0.753 0.781 0.952  0.957 0.901 0.847 0.836 0.819 0.784 0.747 0.707 0.655 

4mx  0.520 0.553 0.546 0.808 0.946  0.987 0.958 0.939 0.905 0.850 0.792 0.730 0.657 

5mx  0.370 0.399 0.407 0.701 0.875 0.983  0.991 0.975 0.941 0.884 0.823 0.755 0.678 

6mx  0.230 0.262 0.312 0.617 0.805 0.947 0.989  0.992 0.965 0.915 0.858 0.792 0.717 

7mx  0.158 0.208 0.338 0.622 0.788 0.921 0.968 0.990  0.990 0.958 0.914 0.860 0.795 

8mx  0.091 0.162 0.379 0.630 0.764 0.878 0.924 0.956 0.988  0.989 0.962 0.922 0.871 

9mx  0.016 0.107 0.411 0.621 0.716 0.806 0.852 0.893 0.947 0.986  0.992 0.969 0.934 

10mx  -0.040 0.067 0.438 0.607 0.665 0.731 0.774 0.820 0.892 0.952 0.990  0.993 0.972 

11mx  -0.080 0.040 0.467 0.592 0.614 0.653 0.689 0.738 0.824 0.903 0.962 0.991  0.993 

12mx  -0.124 0.006 0.479 0.562 0.548 0.562 0.594 0.646 0.745 0.840 0.919 0.965 0.992  

 
The Table reports the average conditional correlation coefficients computed over the pre-crisis sample (May 6 2002 through August 7 
2007), the crisis sample (August 8 2007 through  December 8 2008) and the post-crisis sample (December 9 2008 through August 3 
2012). The upper triangular matrix, in both Panel A and B, contains results for the crisis sample; the lower triangular matrix in Panel A 
contains figures for the pre-crisis sample, while the lower triangular matrix in Panel B contains figures for the post-crisis sample. 
Figures in bolds are statistically different, at the 5% significance level, across the regimes considered. The test for homogeneity of the 
correlation coefficients is based on the Fisher’s Z-transform (Paul, 1989). The results are reported for the various OIS spreads maturities 

available, i.e., from 1-week (
1wx ) to one-year (

12mx ). 
 
 
 
 
 
 
 



Table 10: Out of sample forecasting analysis    
Panel A: Unemployment rate changes

Step NAIVE AR B B1 B2 F F1 F2 F3 A1 A2 A3 C CF 
COR              

1 0.449 0.411 0.426 0.422 0.412 0.586 0.515 0.549 0.475 0.614 0.602 0.580 0.670 0.632
3 0.550 0.508 0.536 0.552 0.513 0.748 0.623 0.777 0.480 0.692 0.792 0.758 0.808 0.809
6 0.540 0.401 0.531 0.499 0.411 0.729 0.519 0.793 0.344 0.619 0.732 0.732 0.755 0.859
12 0.493 0.142 0.514 0.392 0.159 0.557 0.295 0.638 0.090 0.376 0.584 0.613 0.559 0.696
               

RMSFE               
1 0.239 0.213 0.207 0.207 0.211 0.185 0.193 0.196 0.206 0.178 0.180 0.200 0.167 0.177 
3 0.600 0.502 0.471 0.460 0.506 0.368 0.431 0.410 0.508 0.400 0.359 0.449 0.322 0.322
6 1.189 1.032 0.925 0.900 1.036 0.818 0.911 0.763 1.011 0.880 0.684 0.892 0.726 0.570
12 2.448 2.047 1.683 1.737 2.068 1.878 2.012 1.547 2.011 2.661 1.530 1.773 1.780 1.991 
               

U               
1 0.492 0.509 0.504 0.508 0.507 0.445 0.463 0.476 0.489 0.411 0.446 0.478 0.407 0.414 
3 0.449 0.436 0.433 0.427 0.437 0.339 0.378 0.398 0.475 0.343 0.350 0.394 0.271 0.279 
6 0.461 0.479 0.450 0.446 0.479 0.370 0.421 0.377 0.505 0.386 0.354 0.418 0.307 0.246
12 0.499 0.589 0.493 0.507 0.590 0.490 0.519 0.445 0.603 0.539 0.412 0.498 0.459 0.402

 
Panel B: Industrial production growth rate

Step NAIVE AR B B1 B2 F F1 F2 F3 A1 A2 A3 C CF 
COR              

1 0.441 0.458 0.486 0.483 0.402 0.589 0.463 0.625 0.490 0.467 0.588 0.592 0.555 0.582 
3 0.557 0.483 0.614 0.563 0.495 0.732 0.517 0.770 0.509 0.608 0.686 0.771 0.664 0.678 
6 0.569 0.311 0.534 0.434 0.336 0.671 0.405 0.706 0.325 0.483 0.569 0.675 0.547 0.667 
12 0.407 0.010 0.402 0.246 0.048 0.459 0.115 0.462 -0.004 0.162 0.275 0.415 0.258 0.435 
               

RMSFE               
1 1.163 0.985 0.994 0.965 1.021 0.917 0.994 0.895 1.009 1.009 0.930 0.968 0.916 0.928 
3 2.839 2.281 2.087 2.137 2.312 1.858 2.257 1.909 2.290 2.266 1.899 2.063 1.977 2.090 
6 5.546 4.768 4.324 4.354 4.730 4.022 4.771 3.857 4.758 5.261 3.944 4.228 4.272 4.827 
12 12.531 8.785 8.202 8.300 8.992 11.069 8.819 7.591 8.820 15.814 8.124 8.285 8.844 14.373 
               

U               
1 0.521 0.558 0.523 0.551 0.559 0.463 0.533 0.463 0.508 0.527 0.509 0.513 0.491 0.461
3 0.476 0.502 0.459 0.498 0.497 0.382 0.482 0.427 0.508 0.435 0.448 0.419 0.405 0.395 
6 0.480 0.577 0.508 0.540 0.567 0.414 0.536 0.447 0.595 0.504 0.497 0.473 0.472 0.429 
12 0.581 0.699 0.569 0.625 0.687 0.572 0.672 0.560 0.717 0.683 0.607 0.581 0.644 0.615 

 
Panel C: Inflation rate

Step NAIVE AR B B1 B2 F F1 F2 F3 A1 A2 A3 C CF 
COR               

1 0.588 0.338 0.381 0.402 0.394 0.591 0.378 0.533 0.598 0.371 0.511 0.418 0.350 0.604 
3 0.336 0.162 0.111 0.103 0.180 0.120 -0.032 0.175 0.146 0.091 0.071 0.203 0.009 0.097 
6 0.085 0.080 -0.079 -0.077 0.043 -0.079 -0.213 -0.039 0.083 -0.027 -0.031 0.054 -0.160 -0.115 
12 -0.130 -0.135 -0.409 -0.368 -0.312 -0.247 -0.111 -0.426 0.071 -0.116 -0.218 -0.188 -0.248 -0.202 
               

RMSFE               
1 0.460 0.435 0.438 0.428 0.421 0.382 0.438 0.397 0.364 0.468 0.400 0.421 0.455 0.376 
3 1.548 1.077 1.104 1.093 1.072 1.137 1.197 1.157 1.119 1.254 1.143 1.142 1.256 1.230 
6 3.238 1.672 1.714 1.690 1.645 1.818 1.808 1.839 1.715 2.070 1.841 1.845 2.044 2.140 
12 6.243 2.067 2.087 2.079 2.035 2.463 2.198 2.346 2.101 3.323 2.431 2.418 2.616 3.571 
               

U               
1 0.498 0.554 0.535 0.526 0.539 0.429 0.535 0.455 0.438 0.529 0.469 0.514 0.533 0.426 
3 0.616 0.559 0.577 0.585 0.568 0.592 0.641 0.545 0.565 0.590 0.566 0.537 0.633 0.607 
6 0.721 0.519 0.559 0.579 0.539 0.569 0.590 0.538 0.524 0.608 0.543 0.520 0.622 0.609 
12 0.817 0.415 0.469 0.467 0.440 0.504 0.461 0.451 0.424 0.600 0.461 0.445 0.526 0.616 

 
The Table reports the results of the out of sample forecasting analysis for the unemployment rate (in changes; Panel A), the industrial production growth 
rate (Panel B) and the CPI inflation rate (Panel C), at different horizons, i.e., 1-month, 3-month, 6-month and 12-month; the forecasting sample is from 
August 2007 through July 2012. The reported statistics are the simple correlation coefficient between actual and forecasted values (COR), the root mean 
square forecast error (RMSFE) and the Theil’s IC coefficient. Forecasts are generated from AR/VAR models with up to 5-lags; the best outcome for each 
forecasting indicator is then reported in the table for any horizon. In addition to the “no change” forecasting model (NAIVE) and the autoregressive 
model, including information about the own target variable only (AR), VAR models for the target variable and various indicators are employed, i.e., the B 
model, including the Federal funds rate and the term spread; the B1 model, including the Federal funds rate only; the B2 model, including the term spread 
only; the F model, including the estimated level, slope and curvature factor conditional means; the F1 model, including the estimated level factor 
conditional mean only; the F2 model, including the estimated slope factor conditional mean only; the F3 model, including the estimated curvature factor 
conditional mean only;  the A1 model, including the corporate spread; the A2 model, including the TED spread; the A3 model, including the mortgage 
spread; the C model, including the composite indicator constructed from the common component in the estimated level factor and the TED, corporate and 
mortgage spreads (FRAG); the CF model, including FRAG and the estimated slope and curvature factor conditional means. 



Table 11: forecast error variance decomposition 
  Pre-crisis sample Crisis sample Post-crisis sample 
  Common factors shocks Idiosyncratic shocks Common factors shocks Idiosyncratic shocks Common factors shocks Idiosyncratic shocks 
 Horizon f1 f2 f3 all Own other all f1 f2 f3 all own other all f1 f2 f3 all own other all 

1wx  
1 16.9 44.5 11.6 73.0 27.0 0.0 27.0 22.6 45.4 10.4 78.5 21.5 0.0 21.5 29.3 48.0 8.8 86.0 14.0 0.0 14.0 

20 18.6 42.1 10.9 71.5 28.5 0.0 28.5 29.2 55.2 6.2 90.6 9.4 0.0 9.4 32.0 59.7 5.3 97.1 2.9 0.0 2.9 

2wx  
1 24.8 45.0 4.9 74.7 13.4 11.8 25.3 31.6 44.4 4.1 80.2 19.6 0.2 19.8 40.0 45.3 3.5 88.8 8.9 2.3 11.2 

20 28.7 44.9 4.9 78.5 11.4 10.1 21.5 39.3 51.9 2.4 93.7 6.3 0.1 6.3 41.9 54.4 2.1 98.3 1.3 0.3 1.7 

1mx  
1 38.8 32.8 2.7 74.3 20.1 5.5 25.7 45.8 29.6 2.3 77.7 21.9 0.4 22.3 54.8 28.2 1.8 84.8 15.2 0.0 15.2 

20 33.1 23.9 2.0 59.1 32.2 8.7 40.9 51.5 30.7 1.2 83.4 16.3 0.3 16.6 59.0 34.0 1.1 94.0 6.0 0.0 6.0 

2mx  
1 67.4 5.9 11.1 84.3 10.2 5.4 15.7 77.8 5.3 9.3 92.3 7.1 0.6 7.7 84.1 4.5 6.1 94.7 5.0 0.3 5.3 

20 67.3 5.1 9.9 82.2 12.1 5.7 17.8 86.1 5.6 4.9 96.5 3.2 0.3 3.5 89.2 5.5 3.9 98.7 1.3 0.1 1.3 

3mx  
1 73.3 1.3 12.1 86.7 5.4 7.9 13.3 82.3 1.1 9.1 92.6 3.3 4.1 7.4 88.0 0.9 6.0 94.9 2.4 2.7 5.1 

20 74.8 1.1 11.0 86.9 5.3 7.8 13.1 91.1 1.2 5.0 97.3 1.2 1.5 2.7 93.8 1.1 4.0 99.0 0.5 0.6 1.0 

4mx  
1 80.8 0.0 7.6 88.3 6.2 5.5 11.7 89.8 0.0 5.4 95.2 1.6 3.2 4.8 93.2 0.0 3.7 96.9 1.0 2.1 3.1 

20 81.8 0.0 6.7 88.5 6.1 5.4 11.5 95.4 0.0 2.8 98.2 0.6 1.2 1.8 97.0 0.0 2.3 99.4 0.2 0.4 0.6 

5mx  
1 84.1 0.7 3.1 87.9 6.1 6.0 12.1 93.5 0.7 2.4 96.6 1.0 2.4 3.4 95.7 0.5 1.6 97.8 0.6 1.6 2.2 

20 80.6 0.6 2.6 83.8 8.3 7.9 16.2 96.5 0.6 1.2 98.3 0.5 1.2 1.7 97.8 0.6 1.0 99.4 0.2 0.4 0.6 

6mx  
1 84.4 3.3 0.7 88.4 7.2 4.3 11.6 93.3 2.8 0.6 96.7 1.4 1.9 3.3 95.3 2.3 0.4 97.9 0.7 1.3 2.1 

20 79.2 2.7 0.5 82.4 11.2 6.4 17.6 95.1 2.7 0.3 98.1 0.8 1.1 1.9 96.4 2.7 0.2 99.3 0.2 0.4 0.7 

7mx  
1 83.5 4.5 0.0 87.9 9.3 2.8 12.1 94.7 3.8 0.0 98.5 0.6 0.9 1.5 95.7 3.1 0.0 98.8 0.4 0.8 1.2 

20 80.0 3.7 0.0 83.7 12.7 3.6 16.3 95.7 3.6 0.0 99.3 0.3 0.4 0.7 96.1 3.5 0.0 99.7 0.1 0.2 0.3 

8mx  
1 85.4 5.6 0.6 91.6 6.2 2.2 8.4 93.5 4.6 0.4 98.6 0.9 0.6 1.4 95.1 3.7 0.3 99.1 0.5 0.4 0.9 

20 86.2 4.9 0.5 91.5 6.2 2.2 8.5 94.8 4.5 0.2 99.5 0.3 0.2 0.5 95.3 4.3 0.2 99.8 0.1 0.1 0.2 

9mx  
1 82.4 6.7 2.4 91.5 7.6 0.9 8.5 91.0 5.6 1.7 98.4 0.9 0.7 1.6 93.3 4.6 1.1 98.9 0.6 0.4 1.1 

20 84.9 6.0 2.2 93.1 6.2 0.7 6.9 93.2 5.5 0.9 99.5 0.3 0.2 0.5 93.8 5.4 0.7 99.8 0.1 0.1 0.2 

10mx  
1 77.9 7.3 4.6 89.7 8.2 2.1 10.3 88.1 6.4 3.2 97.6 0.6 1.8 2.4 91.2 5.1 2.2 98.5 0.5 1.0 1.5 

20 80.9 6.6 4.1 91.6 6.6 1.7 8.4 91.4 6.3 1.7 99.3 0.2 0.5 0.7 92.3 6.1 1.4 99.8 0.1 0.2 0.2 

11mx  
1 73.4 7.8 6.9 88.1 5.5 6.3 11.9 84.7 7.0 5.1 96.8 0.9 2.3 3.2 88.4 5.7 3.6 97.7 0.7 1.7 2.3 

20 74.2 6.9 6.1 87.1 6.1 6.8 12.9 89.1 7.0 2.7 98.7 0.4 0.9 1.3 90.5 6.8 2.2 99.5 0.2 0.4 0.5 

12mx  
1 64.9 8.0 9.0 81.9 7.9 10.1 18.1 80.0 7.7 7.4 95.0 0.6 4.4 5.0 84.8 6.3 5.2 96.3 0.7 2.9 3.7 

20 62.6 6.7 7.5 76.8 10.4 12.8 23.2 85.9 7.8 3.8 97.5 0.3 2.2 2.5 88.1 7.7 3.2 99.0 0.2 0.8 1.0 

 
The Table reports for each OIS spread series, i.e., from 1-week (

1wx ) to one-year (
12mx ), the median forecast error variance decomposition at the one-day and twenty-day horizons, obtained from 

the structural VMA representation of the FI-HF-VAR model. Three subsamples are considered, i.e., the pre-crisis sample (May 6 2002 through August 7 2007), the crisis sample (August 8 2007 
through December 8 2008) and the post-crisis sample (December 9 2008 through August 3 2012). For each OIS spread series and subsample, the percentage of forecast error variance attributable to 
each common factor shock (f1, f2, and f3,) and their sum (all), as well as to the own idiosyncratic shock (own), the sum of the other idiosyncratic shocks (other), and all the idiosyncratic shocks jointly 
(all), are reported. 



 

Figure 1: In the figure Monte Carlo bias and RMSE statistics, concerning the estimation of the autoregressive parameter (φ) for the conditionally heteroskedastic common I(0) factor, are plotted for the case of no breaks (top and 
center plots) and one (break 1) and two (break 2) breaks (bottom plots). Results are reported for various values of the persistence spread φ‐ρ (0.2, 0.4, 0.6, 0.8) against various values of the (inverse) signal to noise ratio (s/n)‐1 (4, 2, 
1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross‐sectional units N is 30, and the number of replications for each case is 2,000. For the no breaks case, Monte Carlo bias statistics are also reported for 
other sample sizes N (5, 10, 15, 50) (center plots).  
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Figure 2: In the figure Monte Carlo Carlo Theil index (IC) and correlation coefficient (Corr) statistics, concerning the estimation of the conditionally heteroskedastic common I(0) factor, are plotted for the case of no breaks (top and 
center plots) and one (break 1) and two (break 2) breaks (bottom plots). Results are reported for various values of the persistence spread φ‐ρ (0.2, 0.4, 0.6, 0.8) against various values of the (inverse) signal to noise ratio (s/n)‐1 (4, 2, 
1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross‐sectional units N is 30, and the number of replications for each case is 2,000. For the no breaks case, Monte Carlo correlation coefficient statistics are 
also reported for other sample sizes N (5, 10, 15, 50) (center plots). 
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Figure 3: In the figure Monte Carlo bias statistics, concerning the estimation of the autoregressive parameter (φ) for the conditionally heteroskedastic common I(d) factor ( 0 1d  ), are plotted for the case of no breaks (top and 
center plots) and one (break 1) and two (break 2) breaks (center and bottom plots). Results are reported for the various values of the persistence spread d‐ρ (0.2, 0.4, 0.6, 0.8, 1) against various values of the (inverse) signal to noise 
ratio (s/n)‐1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross‐sectional units N is 30, and the number of replications for each case is 2,000. For the no breaks case, Monte Carlo bias statistics are 
also reported for other sample sizes N (5, 10, 15, 50) (center plots).  
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Figure 4: In the figure Monte Carlo Carlo correlation coefficient (Corr) statistics, concerning the estimation of the conditionally heteroskedastic common I(d) factor ( 0 1d  ), are plotted for the case of no breaks (top and center 
plots) and one (break 1) and two (break 2) breaks (bottom plots). Results are reported for various values of the persistence spread d‐ρ (0.2, 0.4, 0.6, 0.8, 1) against various values of the (inverse) signal to noise ratio (s/n)‐1 (4, 2, 1, 
05, 0.25). The sample size T is 100 and 500 observations, the number of cross‐sectional units N is 30, and the number of replications for each case is 2,000. For the no breaks case, Monte Carlo correlation coefficient statistics are 
also reported for other sample sizes N (5, 10, 15, 50) (center plots). 
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Figure 5: In the figure average Monte Carlo bias statistics, concerning the estimation of the autoregressive idiosyncratic parameter (ρ) (top plots), and Theil index (IC) and correlation coefficient (Corr) statistics (center and bottom 
plots) are plotted for the non integrated (I(0)) and integrated (I(d),  0 1d  ) cases. Results are reported for various values of the persistence spreads φ‐ρ (0.2, 0.4, 0.6, 0.8) and d‐ρ (0.2, 0.4, 0.6, 0.8, 1). The sample size T is 100 
and 500 observations, the number of cross‐sectional units N is 30, and the number of replications for each case is 2,000.  
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Figure 6: common estimated components from OIS spreads break process and normalized 
break-free series. 
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Figure 7: Moulines and Soulier (1999) broad band log periodogram moving window estimates of the fractional differencing 
parameter, plus and minus one standard error; estimates are for the first three principal components (PC) extracted from the OIS 
spreads normalized break-free series. 
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Figure 8: FI-H-FVAR model estimates of common factors in mean and variance.  
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Figure 9: FI-H-FVAR model estimates of conditional correlations; various OIS spreads montly 
maturities (m) versus the 1-week OIS spread maturity (1w). 
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Figure 10: Risk measures: composite fragility indicator (FRAG), TED spread (TED), corporate spread (COR), OIS spreads level factor (LEV), mortgage spread (MOR); shaded areas refer to the 
December 2007 through June 2009 US recession (REC) and the three phases of the euro area sovereign debt crisis, i.e. Febraury 2010 through October 2010 (EA1), November 2010 through August 
2011 (EA2) and September 2011 through July 2012 (EA3). 
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Figure 11: Impulse responses to 1 standard error level factor shock for various maturities, from 1-week (1w) to 1-year (12m); top plots refer to the pre-crisis period, center plots to the crisis period 
and bottom plots to the post-crisis period. 
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Figure 12: Impulse responses to 1 standard error slope factor shock for various maturities, from 1-week (1w) to 1-year (12m); top plots refer to the pre-crisis period, center plots to the crisis period 
and bottom plots to the post-crisis period. 
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Figure 13: Impulse responses to 1 standard error curvature factor shock for various maturities, from 1-week (1w) to 1-year (12m); top plots refer to the pre-crisis period, center plots to the crisis 
period and bottom plots to the post-crisis period.  
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