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Abstract

Micro-founded dynamic stochastic general equilibrium (DSGE) models appear to be particularly suited
for evaluating the consequences of alternative macroeconomic policies. Recently, increasing e¤orts have
been undertaken by policymakers to use these models for forecasting, although this proved to be problem-
atic due to estimation and identi�cation issues. Hybrid DSGE models have become popular for dealing
with some of model misspeci�cations and the trade-o¤ between theoretical coherence and empirical �t,
thus allowing them to compete in terms of predictability with VAR models. However, DSGE and VAR
models are still linear and they do not consider time-variation in parameters that could account for inher-
ent nonlinearities and capture the adaptive underlying structure of the economy in a robust manner. This
study conducts a comparative evaluation of the out-of-sample predictive performance of many di¤erent
speci�cations of DSGE models and various classes of VAR models, using datasets for the real GDP, the
harmonized CPI and the nominal short-term interest rate series in the Euro area. Simple and hybrid
DSGE models were implemented including DSGE-VAR and Factor Augmented DGSE, and tested against
standard, Bayesian and Factor Augmented VARs. Moreover, a new state-space time-varying VAR model
is presented. The total period spanned from 1970:1 to 2010:4 with an out-of-sample testing period of
2006:1-2010:4, which covers the global �nancial crisis and the EU debt crisis. The results of this study
can be useful in conducting monetary policy analysis and macro-forecasting in the Euro area.
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1 Introduction

The development of dynamic stochastic general equilibrium (DSGE) models that build on explicit micro-
foundations with optimising agents was witnessed in recent years. Major advances in estimation methodology
provided with various speci�cations of these models that are able to compete, in terms of data �t and
predictability with more standard time-series models, such as vector autoregressions. The new micro-founded
DSGE models appear to be particularly suited for evaluating the consequences of alternative macroeconomic
policies, as shown in the works of Smets and Wouters (2003, 2004), Del Negro and Schorfheide (2004),
Adolfson et al. (2008) and Christiano et al. (2005). Model validation using DSGE models allows the
econometrician to establish a link between structural features of the economy and reduced form parameters,
which was not always possible with the usual large-scale macroeconomic models. The combination of rich
structural models, novel solution algorithms and powerful simulation techniques has allowed researchers
to develop the so-called "New Macro-econometrics" (Fernandez-Villaverde, 2009). However, the calibrated
DSGE models are typically too stylized to be taken directly to the data and often yield weak results (Stock and
Watson, 2001; Ireland, 2004). As reported in Schorfheide (2010), DSGEs face many important challenges
such as the fragility of parameter estimates, statistical �t and the weak reliability of policy predictions.
Sometimes DSGE models exhibit nonlinearities, even if the common practice is to solve and estimate a
linearized version with Gaussian shocks. In addition, a number of papers report the lack of volatility modeling
or parameter drifts using ad-hoc DSGE models applied to the Great Moderation period such as Kim and
Nelson (1999), McConnell and Pérez-Quirós (2000), Clarida et al. (2000), Lubik and Schorfheide (2004),
Canova and Gambetti (2004), Primiceri (2005), Cogley and Sargent (2005), Sims and Zha (2006), Justiniano
and Primiceri (2008) and Benati and Surico (2009).
Increasing e¤orts have been undertaken to use these models also for forecasting. DSGE models were not

considered as forecasting tools until the works of Smets and Wouters (2003, 2004) on the predictability of
DSGE models compared to alternative non-structural models. In the macro-econometric literature, hybrid
or mixture DSGE models have become popular for dealing with some of the model misspeci�cations as well
as the trade-o¤ between theoretical coherence and empirical �t (Schorfheide, 2010). They are categorized in
additive hybrid models and hierarchical hybrid models. The hybrid models provide a complete analysis of the
data law of motion and better capture the dynamic properties of the DSGE models. In the recent literature,
di¤erent attempts of hybrid models have been introduced for solving, estimating and forecasting with DSGEs.
Sargent (1989) and Altug (1989) proposed augmenting a DSGE model with measurement error terms that
follow a �rst order autoregressive process, known as the DSGE-AR approach. Ireland (2004) proposed a
method that is similar to the DSGE-AR, but imposing no restriction on the measurement errors, assuming
that residuals follow a �rst-order vector autoregression (DSGE-AR à l�Ireland). A di¤erent approach called
DSGE-VAR was proposed by Del Negro and Schorfheide (2004) and was based on the works DeJong et al.
(1996) and Ingram and Whiteman (1994). The main idea behind the DSGE-VAR is the use of the VAR
representation as an econometric tool for empirical validation, combining prior information derived from
the DSGE model in estimation. However, it has several problems. One of the main problems in �nding a
statistical representation for the data by using a VAR, is over�tting due to the inclusion of too many lags and
too many variables, some of which may be insigni�cant. The problem of over�tting results in multicollinearity
and loss of degrees of freedom, leading to ine¢ cient estimates and large out-of-sample forecasting errors. It
is possible to overcome this problem by using the well-known "Minnesota" priors (Doan et al., 1984). The
use of "Minnesota" priors has been proposed to shrink the parameters space and thus overcome the curse of
dimensionality. Following this idea in combining the DSGE model information and the VAR representation,
two alternative econometric tools have been also introduced: the DSGE-FAVAR (Consolo et al., 2009) and
the Augmented VAR-DSGE model (Fernández-de-Córdoba and Torres, 2010). The main idea behind the
Factor Augmented DSGE (DSGE-FAVAR) is the use of factors to improve the statistical identi�cation in
validating the models. Consequently, the VAR representation is replaced by a FAVAR model as the statistical
benchmark.
So far, DSGE models ignore stochastic volatility and parameter drifts, and they only consider linear

properties and no time-variation in parameters. However, the same applies to standard vector autoregressive
(VAR) modelling introduced by Sims (1980). Even though the VAR model is proven to be a reliable forecast-
ing tool, the classical VAR modelling fails to take into account the inherent nonlinearities of the economy. In
these cases, time-varying parameters seem to be attractive alternatives. Time varying autoregressive (TVP-
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VAR) models have been developed since the early 1980�s (Prado and West, 2001). The TVP-VAR model
enables capturing a possible time-varying nature of underlying structure in the economy in a �exible and
robust manner. Time varying VAR models led to new methods of time series decomposition and analysis
as presented with applications in Primiceri (2005). Dahlhaus (1997, 2000) developed asymptotic estimators
and results.
In this study, we conduct an exhaustive empirical exercise that includes the comparison of the out-of-

sample predictive performance of estimated DSGE models with that of standard VARs, Bayesian VARs and
Factor Augmented VARs estimated on the same data set for the Euro area economy. We focus on many
di¤erent speci�cations of the DSGE models, i.e., the simple DSGE, the DSGE-VAR and speci�cally on the
Factor Augmented DSGE (DSGE-FAVAR) model. Moreover, a new time-varying multivariate state-space
estimation method for TVP-VAR processes is presented. The state space model has been well studied by
Harvey (1990) and Durbin and Koopman (2002). For the TVP-VAR model, the parameters are estimated
using a multivariate speci�cation of the standard Kalman �lter (Harvey, 1990), while the likelihood estimation
is performed with a suitable multivariate extension of the Kim and Nelson (1999) method. We are also
interested in the forecastability of the new TVP-VAR model in comparison to the DSGE class and the other
VAR models. We use time series data from 1970:1 to 2010:4 for the real GDP, the harmonized CPI and the
nominal short-term interest rate and we produce their forecasts for the out-of-sample testing period 2006:1-
2010:4. The motivation comes from a group of recent papers that compares the forecasting performance
of DSGE against VAR models. This includes Smets and Wouters (2004), Ireland (2004), Del Negro and
Schorfheide (2004), Del Negro et al. (2007), Adolfson et al. (2008), Christo¤el et al. (2008), Rubaszek and
Skrzypczynski (2008), Ghent (2009), Kolosa et al. (2009), Consolo et al. (2009), Fernandez-de-Cordoba and
Torres (2010), among others. The investigated time period includes the �nancial crisis of 2007-2009 and the
EU debt crisis starting in early 2010, associated with the widening of bond yield spreads and the rise of
credit default swaps, concerning Eurozone countries such as Greece, Ireland, and Portugal. The empirical
validation included in the present study attempts to infer on whether the estimated models can be used for
monetary policy analysis and macro-variable forecasting in the Euro area.
The remainder of this paper is organized as follows. Section 2 describes the standard and Bayesian VAR

as well as the Factor Augmented VAR model. In section 3 the simple DSGE model is analyzed, and the
hybrid DSGE-VAR and DSGE-FAVAR models are described in detail. Section 4 presents the time-varying
multivariate state-space TVP-VAR model. In section 5 the data are described and the empirical results of
the comparative forecasting evaluation are illustrated and analyzed. Finally, section 6 concludes.

2 VAR Models

2.1 Classical VAR

As suggested by Sims (1980), the standard unrestricted VAR, has the following compact format

Yt = Xt�+U (1)

where Yt is a (T � n) matrix with rows Y 0t ; and X is a (T � k) matrix (k = 1+ np; p =number of lags) with
rows X 0

t = [1; Y
0
t�1; :::; Y

0
t�p]. U is a (T � n) matrix with rows u0t, � is a (k � n) = [�0;�1;:::;�p]0, while the

one-step ahead forecast errors ut have a multivariate N(0;�u) conditional on past observations of Y:

2.2 Bayesian VAR

The Bayesian VAR, as described in Litterman (1981), Doan et al. (1984), Todd (1984), Litterman (1986) and
Spencer (1993) has become a widely popular approach to dealing with overparameterization. One of main
problems in using VAR models is that many parameters need to be estimated, although some of them may
be insigni�cant. Instead of eliminating longer lags, the BVAR imposes restrictions on these coe¢ cients by
assuming that they are more likely to be near zero than the coe¢ cients on shorter lags. Obviously, if there are
strong e¤ects from less important variables, the data can counter this assumption. Usually, the restrictions
are imposed by specifying normal prior distributions with zero means and small standard deviations for all
coe¢ cients, with a decreasing standard deviation as the lags increase. The only exception is the coe¢ cient
on a variable�s �rst lag that has a mean of unity. Litterman (1981) used a di¤use prior for the constant. The
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means of the prior are popularly called the "Minnesota Priors" due to the development of the idea at the
University of Minnesota and the Federal Reserve Bank at Minneapolis1 .
Formally speaking, these prior means can be written as follows

�i � N(1; �2�i) and �j � N(0; �2�j ); (2)

where �i denotes the coe¢ cients associated with the lagged dependent variables in each equation of the VAR,
while �j represents any other coe¢ cient. The prior variances �2�i and �

2
�j
specify the uncertainty of the

prior means, �i = 1 and �j = 0, respectively. The speci�cation of the standard deviation of the distribution
of the prior imposed on variable j in equation i at lag m, for all i; j and m, denoted by S(i; j;m), is speci�ed
as follows

S(i; j;m) = [w � g(m)� F (i; j)] �̂i
�̂j
; (3)

where

F (i; j) =

�
1 if i = j

kij otherwise, 0 � kij � 1
(4)

is the tightness of variable j in equation i relative to variable i and by increasing the interaction, i.e. it is
possible for the value of kij to loosen the prior (Dua and Ray, 1995). The ratio �̂i

�̂j
consists of estimated

standard errors of the univariate autoregression, for variables i and j. This ratio scales the variables to account
for di¤erences in the units of measurement, without taking into account the magnitudes of the variables. The
term w measures the standard deviation on the �rst lag, and also indicates the overall tightness. A decrease
in the value of w results in a tighter prior. The function g(m) = m�d; d > 0 is the measurement of the
tightness on lag m relative to lag 1, and is assumed to have a harmonic shape with a decay of d, which
tightens the prior on increasing lags. Following the standard Minnesota prior settings, we choose the overall
tightness (w) to be equal to 0.3, while the lag decay (d) is 1 and the interaction parameter (kij) is set equal
to 0.5.

2.3 Factor Augmented VAR

A recent strand in the econometric literature mainly by Stock and Watson (2002), Forni and Reichlin (1996,
1998) and Forni et al. (1999, 2000) has shown that very large macroeconomic datasets can be properly
modelled using dynamic factor models, where the factors can be considered as an "exhaustive summary of
the information " in the data. The rationale underlying dynamic factor models is that the behavior of several
variables is driven by few common forces, the factors, plus idiosyncratic shocks. Hence, the factors-approach
can be useful in alleviating the omitted variable problem in empirical analysis using traditional small-scale
models. Bernanke and Boivin (2003) and Bernanke et al. (2005) utilized factors in the estimation of VAR
to generate a more general speci�cation. Chudik and Pesaran (2011) illustrated how a VAR augmented by
factors could help in keeping the number of estimated parameters under control without loosing relevant
information.
LetXt denote an N�1 vector of economic time series andYt a vector ofM�1 observable macroeconomic

variables which are a subset of Xt: In this context, most of the information contained in Xt is captured by
Ft, a k�1 vector of unobserved factors. The factors are interpreted as an addition to the observed variables,
as common forces driving the dynamics of the economy. The relation between the "informational" time series
Xt, the observed variables Yt and the factors Ft is represented by the following dynamic factor model:

1The basic principle behind the "Minnesota" prior is that all equations are centered around a random walk with drift. This
idea has been modi�ed by Kadiyala and Karlsson (1997) and Sims and Zha (1998). In Ingram and Whiteman (1994), a real
business cycle model is used to generate a prior for a reduced form VAR, as a development of the "Minnesota" priors procedure.
Also, a prior is placed on the parameters of a simple linearized DSGE, which is then compared with a Bayesian VAR in a
forecasting exercise. Smets and Wouters (2003) extend this to medium scale New Keynesian models used in policy analysis.
This approach has the advantage of providing information about which behavioural mechanisms produce forecast error or policy
scenarios. However, it seems that it often fails to empirically �t compared to models with no behavioural structure. In Del
Negro and Schorfheide (2004) and Del Negro, Schorfheide, Smets and Wouters (2007), a DSGE prior is also developed for a
VAR.
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Xt = �
fF+�yYt + et (5)

where �f is a N�k matrix of factor loadings, �y is a N�M matrix of coe¢ cients that bridge the observable
Yt and the macroeconomic dataset, and et is the vector of N � 1 error terms. These terms are mean zero,
normal distributed, and uncorrelated with a small cross-correlation. In fact, the estimator allows for some
cross-correlation in et that must vanish as N goes to in�nity. This representation nests also models where Xt

depends on lagged values of the factors (Stock and Watson, 2002).

2.3.1 Identi�cation of the factors

For the estimation of the FAVAR model equation (5), we follow the two-step principal components approach
proposed by Bernanke et al. (2005). In the �rst step factors are obtained from the observation equation by
imposing the orthogonality restriction F0F=T = I:This implies that F̂ =

p
T Ĝ, where Ĝ are the eigenvectors

corresponding to the K largest eigenvalues of XX
0
; sorted in descending order. Stock and Watson (2002)

showed that the factors can be consistently estimated by the �rst r principal components of X, even in
the presence of moderate changes in the loading matrix �. For this result to hold it is important that the
estimated number of factors, k, is larger or equal than the true number r: Bai and Ng (2000) proposed a
set of selection criteria to choose k that are generalizations of the BIC and AIC criteria. In the second
step, we estimate the FAVAR equation replacing Ft by F̂t: Following Bernanke et al. (2005), Yt is removed
from the space covered by the principal components. In a recent paper, Boivin et al. (2009) impose the
constraint that Yt is one of the common components in the �rst step, guaranteeing that the estimated latent
factors F̂t recover the common dynamics which are not captured by Yt. The authors, comparing the two
methodologies, concluded that the results are similar. As in Bernanke et al. (2005) we partition the matrix
Xt in two categories of information variables: slow-moving and fast-moving. Slow-moving variables (e.g.,
real variables such as wages or spending) do not respond contemporaneously to unanticipated changes in
monetary policy, while fast-moving (e.g., interest rates) respond contemporaneously to monetary shocks. We
proceed to extracting two factors from slow variables and one factor from fast variables and we call them
respectively "slow factors" and "fast factor". As suggested by Bai and Ng (2000) we use information criteria
to determine the number of factors but, as they are not so decisive, we limit the number of factors to three
(two slows and one fast) to strike a balance between the variance of the original series explained by the
principal components and the di¤erence in the parameterization of the VAR and the FAVAR. It is also worth
noting that the factors are not uniquely identi�ed, but this is not a problem in our context because we will
not attempt a structural interpretation of the estimated factors. Finally, having determined the number of
factors, we specify a Factor Augmented VAR by considering only one-lag of the factors according to BIC
criterion. The potential identi�cation of the macroeconomic shocks can be performed according to Bernanke
et al. (2005) using the Cholesky decomposition.

3 Time-varying parameter VAR model

Time varying autoregression (TVP-VAR) models have been developed since the early 1980�s. Primiceri (2005)
used them in analyzing macroeconomic policy issues. The TVP-VAR model enables capturing a possible time-
varying nature of underlying structure in the economy in a robust manner. In this paper, we propose a novel
time-varying multivariate state-space estimation method for VAR models. Regarding the parameters of the
TVP-VAR as state parameter variables, TVP autoregression could easily form a state space model. The state
space model has been well studied by Harvey (1990) and Durbin and Koopman (2002). According to Kalman
(1960, 1963), in a state-space representation the signal extraction is implemented through a model that links
the unobserved and observed variables of the system. To estimate a state space model, several methods
have been developed. Kalman �ltering involves sequentially updating a linear projection on the vector of
interest. The state-space representation is given by a system of two vector equations. First, the state or
transition equation describes the dynamics of the state vector containing the unobserved variables we estimate,
while the second equation represents the observation or measurement equation linking the state vector to
the vector containing the observed variables. For the TVP-VAR models, the parameters are estimated
using a multivariate speci�cation of the standard Kalman �lter (Harvey, 1990) . The likelihood estimation
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requires repeating the �ltering many times in order to evaluate the likelihood for each set of the time-varying
parameters until we reach the maximum. This is performed with a suitable multivariate extension of the
Kim and Nelson (1999) method. The calculation of the Hessian for the estimation of the variance-covariance
matrix is done with the Broyden-Fletcher-Goldfarb-Shano (BFGS) optimization algorithm. Other algorithms
can also be used with the same results, e.g., the DFP and the Levenberg-Marquardt. The parameters could
be also estimated with the use of the Zellner g-prior and in this case the numerical evaluation of the posterior
distributions is performed with Gibbs sampling (Kim and Nelson, 1999).
The TVP-VAR can be expressed as

yt = �0;t +�1;tyt�1 + � � �+�p;tyt�p + ut (6)

in which �0;t is a k�1 vector of time-varying intercepts, �i;t (i = 1; : : : ; p) are k�k matrices of time-varying
coe¢ cients and ut are homoscedastic or heteroscedastic reduced-form residuals with a covariance matrix 
t.
This could be transformed into a multivariate state-space form. First, consider the following state-space
system:

yt = Zt�t + "t (7)

�t = Tt�t�1 + �t (8)

The �rst equation is known as the measurement or observation equation and presents that part of the system
than can physically be measured, while the second is the state equation �t the vector of state variables.
The variables in this equation may or may not be observable. In the case at hand, they are not observable
but will be estimated by the Kalman �lter. Zt is a matrix of known or unknown time varying coe¢ cients
and matrix Tt, the state transition matrix. Finally, "t is N

�
0; �2

�
while �t in multivariate normal with

an expected value of zero and a homoscedastic covariance matrix of Q2 . The unknown parameters - called
hyperparameters - are the elements of the matrices and the variances of the noise processes to be estimated.
This is accomplished by maximizing the likelihood function which is presented below for one time period

Lt = �
1

2

TX
t=1

ln 2� � 1
2

TX
t=1

ln ft �
1

2

TX
t=1

�2t
ft

(9)

where �t is the one�step ahead residual at time t and ft is its variance. It is calculated recursively using the
following equations:

�tjt�1 = Tt�t (10)

Ptjt�1 = TtPtT
0
t +Q (11)

�t = yt � Zt�tjt�1 (12)

ft = ZtPtjt�1Z
0
t + �

2 (13)

�t = �tjt�1 +Ptjt�1Z
0
t�t=ft (14)

Pt = Ptjt�1 �Ptjt�1Z0tZtPtjt�1=ft (15)

Hence, Equations (10) to (15) that generate an estimate of the state vector and its covariance matrix Pt are
known as the Kalman �lter. Given starting values we get an estimate of the unknown regression coe¢ cients.
Then using this information in the likelihood function, one may then estimate the hyperparameters of the
model. Once these estimates have been obtained, we have an estimate of the state vector, the recursive

2One basic assumption here is that the variance of the error term is constant. This assumption will be relaxed to allow for
heteroscedasticity in future applications.
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residuals and their variance, and we can also generate an estimate of the updated residual vector et =
yt � Zt�t.
The framework for a multivariate version of the Kalman �lter is provided by Harvey (1990) and it is

based on a time series analogue of the seemingly unrelated regression equation (SURE) model introduced
into econometrics by Zellner (1963). Harvey (1990) refers to it as a system of seemingly unrelated time series
equations (SUTSE) model. The simplest SUTSE model is the multivariate random walk plus noise process:

yt = �t + "t; t = 1; : : : ; T (16)

�t = �t�1 + �t (17)

where �t is an N � 1 vector of local level components and "t, and �t are vectors of multivariate white noise
with mean zero and covariance matrices �" and �� respectively. As in the univariate model, "t and �t are
assumed to be uncorrelated with each other in all time periods. The variables are linked via the o¤-diagonal
elements �" and ��. An important property of the SUTSE system is that its form remains unaltered when
it is subject to contemporaneous aggregation. A linear time-invariant univariate structural model can be
written in the SUTSE state space form for N variables

yt = (z
0 
 IN )�t + "t (18)

�t = (T
 IN )�t�1 + (R
 IN )�t (19)

with V ar("t) = �" and V ar(�t) a block diagonal matrix with the blocks being �k, k = 1; :::; g. For example,
in the three-variate case, the variance of the error component in the state equation is

V ar (�t) =

24 �� 0 0
0 �� 0
0 0 �!

35 (20)

A more general formulation of the SUTSE model does not constrain V ar (�t) to be diagonal and hence
V ar (�t) need not be block diagonal. Indeed the SUTSE formulation can be generalized further to allow
quantities such as z;�";T;R and V ar (�t) to change deterministically over time. As shown in Harvey (1986),
the time-domain treatment still goes through. The Kalman �lter may be applied to (18) and (19), the number
of sets of observations needed to form an estimator of �t , with �nite MSE matrix being the same as in the
univariate case. The conditions for the �lter to converge to a steady state are an obvious generalization of the
conditions in the univariate case. Given normality of the disturbances, the log-likelihood function is of the
prediction error decomposition form. The decoupling of the Kalman �lter is related to the result which arises
in a SURE system where OLS applied to each equation in turn is fully e¢ cient if each equation contains the
same regressors. Hence, all the information needed for estimation, prediction and smoothing can be obtained
by applying the same univariate �lter to each series in turn. Consider the multivariate random walk plus
noise model. If the signal-to-noise ratio is q (i.e., ��=�" = q), the Kalman �lter for this model is

�t+1jt = �tjt�1 +Kt

�
yt ��tjt�1

�
; t = 2; : : : ; T (21)

and

Pt+1jt = Ptjt�1 �Ptjt�1F�1t Ptjt�1 + q�" (22)

where

Kt = Ptjt�1F
�1
t (23)

and

Ft = Ptjt�1 +�" (24)

Let wt denote a positive scalar for t = 2; : : : ; T and suppose that Ptjt�1, the MSE matrix of the N � 1 vector
�tjt�1, is proportional to �", i.e. Ptjt�1 = wt�". It then follows from (22) that Pt+1jt is of the same form,
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that is, Pt+1jt = wt+1�" with wt+1 = (wt + wtq + q) = (wt + 1). Furthermore if Ptjt�1 = wt�" the gain
matrix in (21) is diagonal, that is

Kt = wt�" (wt�" +�")
�1
= [wt= (wt+1)] IN (25)

Suppose that the above Kalman �lter is started o¤ in such a way that P2j1 is proportional to �"; that is
P2j1 = p

2j1�", where p2j1 is a scalar. Since Ptjt�1 must continue to be proportional to �", it follows from (25)
that the elements of �t+1jt, can be computed from the univariate recursions. It also follows that wt, must be
equal to p

tjt�1 for all t = 2; : : : ; T . The starting values �2j1 = y1 and P2j1 = �� +�" = (1 + q)�" equally
correspond to the use of a di¤use prior, and the use of these starting values leads to the exact likelihood
function for y2; : : : ;yT in the prediction error decomposition form

logL = � (T � 1)N
2

log 2� � 1
2

TX
t=2

log jFtj �
1

2

TX
t=2

v0tF
�1
t vt (26)

However, the decoupling of the Kalman �lter allows the elements of vt, to be computed from the univariate
recursions. Furthermore

Ptjt�1 = p
tjt�1�" (27)

and so

Ft = Ptjt�1 +�" = ft�"; t = 3; : : : ; T (28)

where ft =
�
p
tjt�1 + 1

�
. Substituting from (28) into (26) gives

logL = � (T � 1)N
2

log 2� +
(T � 1)
2

log
����1" ��� N

2

TX
t=2

log ft �
1

2

TX
t=2

1

ft
v0t�

�1
" vt (29)

Di¤erentiating (29) with respect to the distinct elements of ��1" leads to the ML estimator of �" being

~�" = (T � 1)�1
TX
t=2

f�1t vtv
0
t (30)

for any given value of q. The ML estimators of q and �" can therefore be obtained by maximizing the
concentrated likelihood function

logLc = �
(T � 1)N

2
log 2� � (T � 1)

2
log
���~�"���� N

2

TX
t=2

log ft (31)

with respect to q. Once the parameters have been estimated, prediction and smoothing can be carried out.
The predictions of future observations are obtained from the univariate recursions

MSE
�
~yT+ljT

�
= fT+ljT�"; l = 1; 2; : : : (32)

where

fT+ljT = pT+ljT + 1 (33)

The decoupling of the Kalman �lter can be shown in a similar way for the time-varying system

yt = (z
0
t 
 IN )�t + "t; V ar ("t) = ht�� (34)

�t = (Tt 
 IN )�t�1 + (Rt 
 IN )�t; V ar (�t) = Qt 
�� (35)

where Qt =diag(q1; : : : ; qk). The more general formulation does not constrain Qt to be diagonal, although,
as in the univariate model, restrictions are needed on Qt for the model to be identi�able. All the results on
estimation and prediction carry through, with Pt+1jt = P�t+1jt
��, where P�t+1jt is the MSE matrix for the
univariate model (Harvey 1986, 1990).
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4 DSGE Modeling

Only recently and after the seminal work of Smets and Wouters (2003, 2004) the DSGE models have been
considered as forecasting tools in macroeconomic literature. Model validation, estimation and calibration
are crucial issues in DSGE structure. The main problems are reported in Canova (1994). Calibrated DSGE
models often yield fragile results, when traditional econometric methods are used for estimation (Smets and
Wouters 2003; Ireland 2004). Following this idea of combining the DSGE model information and the VAR
representation, among other models that have been proposed in the literature, in this study we use the
DSGE-VAR and DSGE-FAVAR hybrid models.

4.1 Simple DSGE model

Simple DSGE models with forward-looking features are usually referred to as a benchmarks in the literature.
In a DSGE setup the economy is made up of four components. The �rst component is the representative
household with habit persistent preferences. This household maximizes an additively separable utility func-
tion which is separable into consumption, real money balances and hours worked over an in�nite lifetime.
The household gains utility from consumption relative to the level of technology, real balances of money, and
disutility from hours worked. The household earns interest from holding government bonds and earns real
pro�ts from the �rms. Moreover, the representative household pays lump-sum taxes to the government. The
second component is a perfectly competitive, representative �nal goods producer which is assumed to use a
continuum of intermediate goods as inputs, and the prices for these inputs are given. The producers of these
intermediate goods are monopolistic �rms which use labour as the only input. The production technology is
the same for all the monopolistic �rms. Nominal rigidities are introduced in terms of price adjustment costs
for the monopolistic �rms. Each �rm maximizes its pro�ts over an in�nite lifetime by choosing its labour
input and its price. The third component is the government which spends in each period a fraction of the
total output, which �uctuates exogenously. The government issues bonds and levies lump-sum taxes, which
are the main part of its budget constraint. The last component is the monetary authority, which follows a
Taylor rule regarding the in�ation target and the output gap. There are three economic shocks: an exoge-
nous monetary policy shock (in the monetary policy rule), and two autoregressive processes, AR(1), which
model government spending and technology shocks. To solve the model, optimality conditions are derived
for the maximization problems. After linearization around the steady-state, the economy is described by the
following system of equations

~xt = Et[~xt+1]�
1

�
( ~Rt � Et[~�t+1]) + (1� �g)~gt + �Z

1

�
~zt (36)

~�t = �Et[~�t+1] + �[~xt � ~gt] (37)

~Rt = �R ~Rt�1 + (1� �R)( 1~�t +  2~xt) + �R;t (38)

~gt = �g~gt�1 + �g;t (39)

~zt = �z~zt�1 + �z;t; (40)

where x is the detrended output (divided by the non-stationary technology process), � is the gross in�ation
rate, and R is the gross nominal interest rate. The tilde denotes percentage deviations from a steady state or,
in the case of output, from a trend path (King, 2000; Woodford, 2003). The model can be solved by applying

the algorithm proposed by Sims (2002). De�ne the vector of variables ~Zt =
�
~xt; ~�t; ~Rt; ~gt; ~zt; Et~xt+1; Et~�t+1

�
and the vector of shocks as �t = (�R;t; �g;t; �z;t). Therefore the previous set of equations, (36) - (40), can be
recasted into a set of matrices (�0;�1; C;	;�) accordingly to the de�nition of the vectors ~Zt and �t

�0 ~Zt = C + �1 ~Zt�1 +	�t +��t (41)

where �t+1, such that Et�t+1 � Et (yt+1 � Etyt+1) = 0, is the expectations error.
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As a solution to (41), we obtain the following transition equation as a policy function

~Zt = T (�) ~Zt�1 +R (�) �t (42)

and in order to provide the mapping between the observable data and those computed as deviations from
the steady state of the model we set the following measurement equations as in Del Negro and Schorfheide
(2004):

� lnxt = ln 
 +�~xt + ~zt
� lnPt = ln�

� + ~�t

lnRat = 4
h
(ln r� + ln��) + ~Rt

i (43)

which can be also casted into matrices as

Yt = �0 (�) + �1 (�) ~Zt + vt (44)

where Yt = (� lnxt;� lnPt; lnRt)
0, vt = 0 and �0 and �1 are de�ned accordingly. For completeness,

we write the matrices T , R, �0 and �1 as a function of the structural parameters in the model, � =�
ln 
; ln��; ln r�; �; � ;  1;  2; �R; �g; �Z ; �R; �g; �Z

�0
. Such a formulation derives from the rational expecta-

tions solution. The evolution of the variables of interest, Yt, is therefore determined by (42) and (44) which
impose a set of restrictions across the parameters on the moving average (MA) representation. Given that
the MA representation can be very closely approximated by a �nite order VAR representation, Del Negro
and Schorfheide (2004) propose to evaluate the DSGE model by assessing the validity of the restrictions
imposed by such a model with respect to an unrestricted VAR representation. The choice of the variables to
be included in the VAR is however completely driven by those entering in the DSGE model regardless of the
statistical goodness of the unrestricted VAR.

4.2 DSGE-VAR

Del Negro-Schorfheide�s (2004) approach is to use the DSGE model to build prior distributions for the VAR.
Basically, the estimation initializes with an unrestricted VAR of order p

Yt = �0 +�1Yt�1 + :::+�pYt�p + ut (45)

In compact format:

Y = X�+U (46)

Y is a (T � n) matrix with rows Y 0t ; X is a (T � k) matrix (k = 1 + np; p =number of lags) with rows
X 0
t = [1; Y

0
t�1; :::; Y

0
t�p], U is a (T �n) matrix with rows u0t and � is a (k � n) = [�0;�1;:::;�p]0:The one-step-

ahead forecast errors ut have a multivariate normal distribution N(0;�u) conditional on past observations
of Y: The log-likelihood function of the data is a function of � and �u

L(Yj�;�u) / j�uj�
T
2 exp

�
�1
2
tr
�
��1u (Y0Y ��0X0Y �Y0X�+�0X0X�)

��
(47)

The prior distribution for the VAR parameters proposed by Del Negro and Schorfheide (2004) is based
on the statistical representation of the DSGE model given by a VAR approximation. Let ��xx; �

�
yy; �

�
xy and

��yx be the theoretical second-order moments of the variables Y and X implied by the DSGE model, where

�� (�) = ���1xx (�) ��xy (�)
�� (�) = ��yy (�)� ��yx (�) ���1xx (�) ��xy (�)

(48)

The moments are the dummy observation priors used in the mixture model. These vectors can be interpreted
as the probability limits of the coe¢ cients in a VAR estimated on the arti�cial observations generated by
the DSGE model. Conditional on the vector of structural parameters in the DSGE model �, the prior
distributions for the VAR parameters p(�;�uj�) are of the Inverted-Wishart (IW) and Normal forms

�u j� � IW ((�T��u (�) ; �T � k; n)
� j�u; � � N

�
�� (�) ;�u 
 (�T�XX (�))�1

� (49)
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where the parameter � controls the degree of model misspeci�cation with respect to the VAR: for small
values of � the discrepancy between the VAR and the DSGE-VAR is large and a sizeable distance is gen-
erated between the unrestricted VAR and DSGE estimators. Large values of � correspond to small model
misspeci�cation and for � = 1 beliefs about DSGE misspeci�cation degenerate to a point mass at zero.
Bayesian estimation could be interpreted as estimation based on a sample in which data are augmented by
a hypothetical sample in which observations are generated by the DSGE model, the so-called dummy prior
observations (Theil and Goldberg, 1961; Ingram and Whiteman, 1994). Within this framework � determines
the length of the hypothetical sample. The posterior distributions of the VAR parameters are also of the
Inverted-Wishart and Normal forms. Given the prior distribution, posterior distributions are derived by the
Bayes theorem

�u j�;Y � IW
�
(�+ 1)T �̂u;b (�) ; (�+ 1)T � k; n

�
(50)

� j�u; �;Y � N
�
�̂b (�) ;�u 
 [�T�XX (�) +X0X]

�1
�

(51)

�̂b (�) = (�T�XX (�) +X
0X)

�1
(�T�XY (�) +X

0Y) (52)

�̂u;b (�) =
1

(�+ 1)T

h
(�T�Y Y (�) +Y

0Y)� (�T�XY (�) +X0Y) �̂b (�)
i

(53)

where the matrices �̂b (�) and �̂u;b (�) have the interpretation of maximum likelihood estimates of the VAR
parameters based on the combined sample of actual observations and arti�cial observations generated by
the DSGE. Equations (50) and (51) show that the smaller � is; the closer the estimates are to the OLS
estimates of an unrestricted VAR. Instead, the higher � is, the closer the VAR estimates will be tilted
towards the parameters in the VAR approximation of the DSGE model (�̂b (�) and �̂u;b (�)). In order to
obtain a non-degenerate prior density (49), which is a necessary condition for the existence of a well-de�ned
Inverse-Wishart distribution and for computing meaningful marginal likelihoods, � has to be greater than
�MIN

�MIN � n+ k

T
; k = 1 + p� n

p = lags

n = endogenous variables.

Hence, the optimal lambda must be greater than or equal to the minimum lambda
�
�̂ � �MIN

�
.

Essentially, the DSGE-VAR tool allows the econometrician to draw posterior inferences about the DSGE
model parameters �: Del Negro and Schorfheide (2004) explain that the posterior estimate of � has the
interpretation of a minimum-distance estimator, where the discrepancy between the OLS estimates of the
unrestricted VAR parameters and the VAR representation of the DSGE model is a sort of distance function.
The estimated posterior of parameter vector � depends on the hyperparameter �. When � ! 0, in the
posterior the parameters are not informative, so the DSGE model is of no use in explaining the data.
Unfortunately, the posteriors (51) and (50) do not have a closed form and we need a numerical method to
solve the problem. The posterior simulator used by Del Negro and Schorfheide (2004) is the Markov Chain
Monte Carlo Method and the algorithm used is the Metropolis-Hastings acceptance method. This procedure
generates a Markov Chain from the posterior distribution of � and this Markov Chain is used for Monte Carlo
simulations. The optimal � is given by maximizing the log of the marginal data density

�̂ = argmax
�>�MIN

ln p(Yj�)

According to the optimal lambda
�
�̂
�
, a corresponding optimal mixture model is chosen. This hybrid model

is called DSGE-VAR
�
�̂
�
and �̂ is the weight of the priors. It can also be interpreted as the restriction of the

theoretical model on the actual data.
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4.3 DSGE-FAVAR

According to Bernanke et al. (2005), a FAVAR benchmark for the evaluation of a DSGE model will include
a vector of observable variables and a small vector of unobserved factors extracted from a large data-set of
macroeconomic time series, that capture additional economic information relevant to model the dynamics
of the observables. In this study we implement the DSGE-FAVAR model of Consolo et al. (2009). The
statistical representation has the following speci�cation:

�
Yt

Ft

�
=

�
�11(L) �12(L)
�21(L) �22(L)

��
Yt�1
Ft�1

�
+

�
uYt
uFt

�
(54)

Yt = (� lnxt;� lnPt; lnRt)

Ft =
�
F s1t; F

s
2t; F

f
3t

�
where Yt are the observable variables included in the simple DSGE model and Ft is a small vector of
unobserved factors relevant to modelling the dynamics of Yt (F s1t; F

s
2t are the two slow factors and F

f
3t is the

fast factor). The system reduces to the standard VAR when �12(L) = 0. Importantly, and di¤erently from
Boivin and Giannoni (2006), this FAVAR is not interpreted as the reduced form of a DSGE model at hand.
In fact, in this case the restrictions implied by the DSGE model on a general FAVAR are very di¢ cult to
trace and model evaluation becomes even more di¢ cult to implement. A very tightly parameterized theory
model can have a very highly parameterized reduced form if one is prepared to accept that the relevant
theoretical concepts in the model are a combination of many macroeconomic and �nancial variables. The
DSGE-FAVAR is implemented in the same way as the DSGE-VAR.

5 Empirical results

The dataset consists of a panel of 46 quarterly macroeconomic time series for the Euro Area from the AWM
database (Fagan et al., 2001), spanning the period from 1970:1 to 2010:4. The AWM database includes
publicly available data produced by Eurostat and reported in the ECB Monthly Bulletin with a supplement
for aggregated country data. Data prior to 1996 are drawn from the last version of the AWM database, while
the current version extends the series to 2010:4 with a �xed composition of the Euro area with 17 members.
The complete dataset is used to extract factors for FAVAR and DSGE-FAVAR models. The forecasting
exercise conducted in this paper uses three series: the real GDP (symbolized as YER in AWM database),
the seasonally adjusted Harmonized Consumer Price Index (symbolized as HICPSA) - both taken in �rst
di¤erence logarithmic transformation - and the nominal Short-term Interest Rate (symbolized as STN). In
this paper we use the AWM symbols for each variable, respectively. The panel data has been transformed
to induce stationarity. The series are considered in level, logarithms, �rst or second di¤erences according to
series characteristics3 . Following Bernanke et al. (2005) we partition the data in two categories of information
variables: slow and fast. Slow-moving variables (e.g., wages or spending) do not respond contemporaneously
to unanticipated changes in monetary policy, while fast-moving variables (e.g., asset prices and interest rates)
do respond contemporaneously to monetary shocks.

3The Appendix contains a detailed description of all series and their corresponding transformations.
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Table 1: Prior Distributions for the DSGE model parameters

Name Range Density Starting value Mean Standard deviation
ln 
 R Normal 0.500 0.500 0.250
ln�� R Normal 1.000 1.000 0.500
ln r� R+ Gamma 0.500 0.500 0.250
� R+ Gamma 0.040 0.030 0.150
� R+ Gamma 3.000 3.000 0.500
 1 R+ Gamma 1.500 1.500 0.250
 2 R+ Gamma 0.300 0.125 0.100
�R [0; 1) Beta 0.400 0.500 0.200
�G [0; 1) Beta 0.800 0.800 0.100
�Z [0; 1) Beta 0.200 0.200 0.100
�R R+ Inv.Gamma 0.100 0.100 0.139
�G R+ Inv.Gamma 0.300 0.350 0.323
�Z R+ Inv.Gamma 0.400 0.875 0.430

Note: The model parameters ln 
; ln��; ln r�; �R; �g; and �z are scaled by 100 to convert them into percentages.

The Inverse Gamma priors are of the form p(�j�; s) / �
���1

e��s
2=2�2 , where v=4 and s equals 0.2, 0.5, and 0.7,

respectively. Approximately 1.5% of the prior mass lies in the indeterminacy region of the parameter space. The
prior is truncated to restrict it to the determinacy region of the DSGE model .

We compare the out-of-sample forecasting performance of VAR models including BVAR and FAVAR,
of the DSGE class including DSGE-VAR, DSGE-FAVAR and of the multivariate state space TVP-VAR, in
terms of the Mean Squared Forecast Error (MSFE) and Mean Absolute Forecast Error (MAFE) for di¤erent
lag speci�cations (one to four). The YER, HICPSA and STN forecasts are estimated for the out-of-sample
testing period 2006:1-2010:4, while the in-sample spans from 1970:1 to 2005:4. As in Marcellino (2003, 2004)
and Brüggemann et al. (2008), the forecasting investigation for quarterly Euro area data is performed over
the one-, two-, four- and eight-quarter-ahead horizon with a rolling estimation sample. In particular, the
models are re-estimated each quarter over the forecast horizon to update the estimate of the coe¢ cients,
before producing the quarter-ahead forecasts. Finally, in order to evaluate the models�forecast accuracy, we
use the cross-model test statistic of Diebold and Mariano (1995).

The prior distribution for the DSGE model parameters (�), which are similar to the priors used by Del
Negro and Schorfheide (2004), are illustrated in Table 1. The forecasted values are produced implementing
the DSGE-VAR (�̂), where the �̂ is chosen by the numerical procedure for each estimation. In the forecasting
evaluation, the DSGE-VAR is estimated with a di¤erent number of lags on the sample spanning from 1970:2
to 2005:4. The parameter � is chosen from a grid which is unbounded from above. In our empirical exercise,
the log of the marginal data density is computed over a discrete interval, ln p(Y j�;M): The minimum value,
�min =

n+k
T , is model dependent and is related to the existence of a well-de�ned Inverse-Wishart distribution.

For completeness, it is worth mentioning that � = 0 refers to the VAR model with no prior and it is not
possible to compute the marginal likelihood in this particular case. Therefore, we can show the log of marginal
data density for any value of � larger than �min: Thus, �min depends on the degrees of freedom in the VAR.
Table 2 shows the main results related to the DSGE-VAR implemented using a di¤erent number of lags

(from one up to four) across the di¤erent steps ahead (1,2,4 and 8) implemented in the forecasting exercise.
Each minimum � (�MIN ) is given by the features of the model (number of observations, number of endogenous
variables, number of lags) and the optimal lambda (�̂) is calculated using the Markov Chain Monte Carlo
with Metropolis Hastings acceptance method (100,000 replications)4 . The ln p(Y jM) is the log marginal data
density for the DSGE model speci�cations computed based on Geweke�s (1999) modi�ed harmonic mean
estimator. The Bayes factor (ratio of posterior odds to prior odds) (Schorfheide 2010) helps in understanding
the improvement of the log marginal data density of a speci�c model compared to a benchmark model, which
for the MCMC exercise is the DSGE-VAR (4) (i.e., the Akaike and Schwartz information criteria select 4

4The lambda grid is composed of {0, 0.05, 0.08, 0.10, 0.12, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70,
0.75, 0.80, 0.85, 0.90, 1, 5, 10}.
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Table 2: Optimal lambda for the DSGE-VAR calculated with Markov Chain Monte Carlo and Metropolis
Hastings method

�MIN �̂ �̂� �MIN
�̂��MIN

�MIN
ln p(Y j�̂;M) Bayes Factor

One-step ahead
DSGE-VAR(1) 0.05 0.15 0.10 2 -360.601 exp[28:731]
DSGE-VAR(2) 0.08 0.20 0.12 1.5 -349.587 exp[17:717]
DSGE-VAR(3) 0.10 0.20 0.10 1 -350.672 exp[18:802]
DSGE-VAR(4) 0.12 0.35 0.23 1.917 -331.870 1

Two-steps ahead
DSGE-VAR(1) 0.05 0.20 0.15 3 -367.299 exp[32:858]
DSGE-VAR(2) 0.08 0.30 0.22 2.75 -352.267 exp[17:826]
DSGE-VAR(3) 0.10 0.30 0.20 2 -351.020 exp[16:579]
DSGE-VAR(4) 0.12 0.35 0.23 1.917 -334.441 1

Four-steps ahead
DSGE-VAR(1) 0.05 0.20 0.15 3 -375.727 exp[37:781]
DSGE-VAR(2) 0.08 0.20 0.12 1.5 -358.486 exp[20:540]
DSGE-VAR(3) 0.10 0.35 0.25 2.5 -354.832 exp[16:886]
DSGE-VAR(4) 0.12 0.35 0.23 1.917 -337.946 1

Eight-steps ahead
DSGE-VAR(1) 0.05 0.12 0.07 1.4 -387.408 exp[40:579]
DSGE-VAR(2) 0.08 0.20 0.12 1.5 -368.363 exp[21:534]
DSGE-VAR(3) 0.10 0.30 0.20 2 -368.226 exp[21:397]
DSGE-VAR(4) 0.12 0.40 0.28 2.333 -346.829 1

lags on the data). The same exercise is reproduced for the DSGE-FAVAR.5 In this case, the lag length for
factors is �xed to one based on the Schwartz criterion. The Bayes factor again selects a DSGE-FAVAR with
4 lags as depicted in Table 3.

Tables 4, 5 and 6 report the MSFE and MAFE for all models and variables. While the number of lags
indicated by the Schwartz Bayesian information criterion (SIC) for the benchmark VAR model was two i.e.,
a VAR(2) model, the Akaike (AIC) and the Hannan-Quinn criteria denoted a higher and varying number of
lags for all VAR investigated models. Thus, an exhaustive exercise was conducted with one to four lags in
each case. The results later on provide further validation of the decision to use more than one lag selection
(as opposed to the empirical literature so far), in that the best performance in each model class derives from
di¤erent speci�cation most of the times. Firstly, for the YER series the simple DGSE model provides the
lowest MSFE for the �rst two forecasting horizons (i.e., one- and two-steps ahead) while the TVP-VAR(4)
and TVP-VAR(1) outperform the other models for four- and eight-quarters-ahead. In terms of the MAFE,
the DGSE achieves a better score for the two- and four-period-ahead, while the DSGE-FAVAR(4) and TVP-
VAR(1) produce the lowest scores for one- and eight-periods-ahead, respectively. The lowest MSFEs after the
DSGE and TVP-VARs come from FAVAR and DSGE-FAVAR models. The VAR and BVAR models present
similar predictive performance and on average they generate the highest forecast errors, albeit BVARs slightly
better for all steps-ahead. Moreover, the DSGE-VAR provides with similar MSFE and MAFE as DGSE-
FAVAR for any lag structure over all quarter-ahead forecasts. Regarding the HICPSA variable, the TVP-VAR
models are the winners. In particular, for the one- and eight-quarter-ahead forecasts the TVP-VAR(4) clearly
outperforms all other models, while for the two- and four-quarter-ahead the TVP-VAR(3) gives the lowest
MSFE and MAFE. The other two TVP-VAR speci�cations also outrank with a few exceptions the other

5For the DSGE-FAVAR, the lambda grid is composed of {0, 0.08, 0.10, 0.12, 0.14, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50,
0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 1, 5, 10}.
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Table 3: Optimal lambda for the DSGE-FAVAR calculated with Markov Chain Monte Carlo and
Metropolis Hastings method

�MIN �̂ �̂� �MIN
�̂��MIN

�MIN
ln p(Y j�̂;M) Bayes Factor

One-step ahead
DSGE-FAVAR(1) 0.08 0.30 0.22 2.75 -374.647 exp[29:927]
DSGE-FAVAR(2) 0.10 0.30 0.20 2 -364.160 exp[19:440]
DSGE-FAVAR(3) 0.12 0.35 0.23 1.916 -356.673 exp[11:953]
DSGE-FAVAR(4) 0.14 0.50 0.36 2.57 -344.720 1

Two-steps ahead
DSGE-FAVAR(1) 0.08 0.14 0.06 0.75 -376.244 exp[33:042]
DSGE-FAVAR(2) 0.10 0.25 0.15 1.50 -365.762 exp[22:560]
DSGE-FAVAR(3) 0.12 0.40 0.28 2.33 -359.078 exp[15:876]
DSGE-FAVAR(4) 0.14 0.45 0.31 2.21 -343.202 1

Four-steps ahead
DSGE-FAVAR(1) 0.08 0.25 0.17 2.125 -383.852 exp[32:694]
DSGE-FAVAR(2) 0.10 0.50 0.40 4 -373.803 exp[22:645]
DSGE-FAVAR(3) 0.12 0.45 0.33 2.75 -366.619 exp[15:461]
DSGE-FAVAR(4) 0.14 0.45 0.31 2.214 -351.158 1

Eight-steps ahead
DSGE-FAVAR(1) 0.08 0.25 0.17 2.125 -392.959 exp[36:093]
DSGE-FAVAR(2) 0.10 0.25 0.15 1.5 -382.931 exp[26:065]
DSGE-FAVAR(3) 0.12 0.40 0.28 2.333 -377.985 exp[21:119]
DSGE-FAVAR(4) 0.14 0.45 0.31 2.214 -356.866 1

model classes. In general, the MSFE and MAFE scores are almost identical and after the TVP-VARs, the
DSGE-FAVAR and the simple DGSE show the best performance. FAVAR models seem slightly better than
BVARs, whilst DSGE-VARs and VARs provide with relatively good scores especially for four- and eight-
quarters-ahead. The results for the STN series vary when comparing MSFE and MAFE but also in terms of
the outperforming model class. The MAFE scores indicate three di¤erent model classes as the best performers
in each forecasting horizon, namely the DSGE-VAR(3) for one-step-ahead, the BVAR(1) for two steps, the
FAVAR(1) for four and FAVAR(4) for eight-quarter-ahead forecasts. This heterogeneity in forecastability is
waived when MSFE scores are examined, with the lowest observed for the simple DGSE and the FAVAR(4)
model. In particular, the simple DGSE outperforms all models in case of one- and four-steps-ahead, whereas
FAVAR(4) for two and eight. However, a more qualitative investigation reveals a pattern both for MSFE and
MAFE scores; for one-step-ahead forecasts the DGSE-VARs and BVARs provide with relatively low errors
compared to the other models, while for the two-, four- and eight-quarters-ahead FAVAR modelling shows on
average the best performance. Overall, the DSGE-VAR and the BVAR models produce similar scores with
the FAVAR, whereas DSGE-FAVARs, simple VARs and the state-space TVP-VARs underperform relatively
to the other models.
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Table 4: Mean Square Forecast Error (MSFE) and Mean Absolute Forecast Error (MAFE) scores for the
Euro area GDP (YER)

MSFE MAFE
YER Quarters ahead Quarters ahead

1 2 4 8 1 2 4 8
VAR(1) 1.689 1.770 1.774 1.707 0.810 0.878 0.902 0.903
VAR(2) 1.688 1.762 1.782 1.725 0.817 0.880 0.902 0.913
VAR(3) 1.650 1.719 1.732 1.689 0.805 0.855 0.883 0.896
VAR(4) 1.603 1.662 1.692 1.612 0.786 0.817 0.877 0.875
BVAR(1) 1.701 1.696 1.739 1.673 0.809 0.847 0.883 0.885
BVAR(2) 1.685 1.691 1.726 1.673 0.805 0.858 0.882 0.881
BVAR(3) 1.662 1.669 1.707 1.649 0.799 0.848 0.875 0.868
BVAR(4) 1.650 1.667 1.699 1.606 0.795 0.845 0.872 0.847
FAVAR(1) 1.499 1.552 1.559 1.636 0.739 0.797 0.807 0.862
FAVAR(2) 1.507 1.563 1.557 1.571 0.741 0.793 0.806 0.840
FAVAR(3) 1.518 1.563 1.582 1.585 0.746 0.808 0.835 0.847
FAVAR(4) 1.582 1.616 1.590 1.643 0.790 0.848 0.836 0.859
DSGE 1.358 1.343 1.353 1.429 0.760 0.735 0.715 0.761
DSGE-VAR(1) 1.538 1.685 1.689 1.663 0.748 0.840 0.864 0.882
DSGE-VAR(2) 1.619 1.675 1.706 1.657 0.788 0.843 0.865 0.882
DSGE-VAR(3) 1.528 1.654 1.635 1.629 0.756 0.822 0.833 0.870
DSGE-VAR(4) 1.528 1.577 1.605 1.581 0.753 0.785 0.832 0.852
DSGE-FAVAR(1) 1.524 1.585 1.597 1.657 0.747 0.807 0.825 0.878
DSGE-FAVAR(2) 1.499 1.571 1.605 1.652 0.739 0.793 0.825 0.879
DSGE-FAVAR(3) 1.516 1.552 1.597 1.636 0.749 0.786 0.829 0.867
DSGE-FAVAR(4) 1.435 1.498 1.571 1.565 0.713 0.774 0.819 0.835
TVP-VAR(1) 1.484 1.415 1.368 1.375 0.793 0.778 0.748 0.740
TVP-VAR(2) 1.644 1.608 1.412 1.438 0.943 0.868 0.773 0.777
TVP-VAR(3) 1.851 1.618 1.461 1.549 1.159 0.846 0.825 0.818
TVP-VAR(4) 1.979 1.598 1.310 1.437 1.212 0.850 0.763 0.788

Notes: The out-of-sample (rolling) period is 2006:1-2010:4.

Next, the Diebold-Mariano (DM) pairwise test is employed in order to evaluate the comparative forecast
accuracy. The results are reported in Tables 7, 8 and 9 in p-values. The Diebold-Mariano test is based on
the squared prediction errors. The test has been conducted on the best performer of each model category,
for each investigated macro-variable and forecast horizon. For example, in case of STN for the two-quarter-
ahead forecasts, the DM test has been implemented pairwise on VAR(4), BVAR(1), FAVAR(4), DSGE,
DSGE-VAR(2), DSGE-FAVAR(1) and TVP-VAR(4) model speci�cations, whilst for HICPSA for one-quarter-
ahead forecasts the DM was applied on the VAR(1), BVAR(1), FAVAR(3), DSGE, DSGE-VAR(2), DSGE-
FAVAR(3) and TVP-VAR(4). The same logic applies for all variables and step-ahead forecast horizons. In
accordance with previous empirical studies, the results are pairwise signi�cantly di¤erent in many cases over
four-quarters-ahead where deviations from linearities, large forecast errors and inherent uncertainties drive
model predictions. The DM test statistics for YER indicate that none of the models consistently outperforms
any of the other for one- and two-quarter-ahead forecasts, namely their pairwise forecast comparison shows no
statistically signi�cant di¤erence. On the contrary, for four- and eight-steps ahead, di¤erential predictability
is signi�cant at the 5% level for almost all forecasts of the VAR against the other models as well as for the
DSGE pairs vs DSGE-VAR, DSGE-FAVAR and TVP-VAR. In particular, statistically signi�cant scores are
observed at 10% for BVAR vs DSGE-VAR, BVAR vs TVP-VAR, FAVAR vs DSGE, DSGE-VAR vs TVP-VAR
and DSGE-FAVAR vs TVP-VAR and at the 1% for DGSE-VAR vs DSGE-FAVAR. These compared with the
results from the MSFE and MAFE analysis show that the simple DSGE and TVP-VAR models outperform
the other models, albeit this becomes more evident especially over the four-quarter-ahead forecasts. For the
HICPSA series, the TVP-VAR in any pair shows a distinctively signi�cant predictability at 1% in almost all
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Table 5: Mean Square Forecast Error (MSFE) and Mean Absolute Forecast Error (MAFE) scores for the
Euro area CPI (HICPSA)

MSFE MAFE
HICPSA Quarters ahead Quarters ahead

1 2 4 8 1 2 4 8
VAR(1) 0.506 0.511 0.484 0.588 0.634 0.583 0.553 0.650
VAR(2) 0.607 0.524 0.587 0.567 0.691 0.591 0.643 0.626
VAR(3) 0.826 0.562 0.685 0.606 0.792 0.630 0.709 0.650
VAR(4) 0.685 0.573 0.601 0.420 0.700 0.637 0.641 0.533
BVAR(1) 0.496 0.670 0.502 0.688 0.577 0.692 0.578 0.683
BVAR(2) 0.534 0.848 0.531 0.750 0.619 0.781 0.582 0.734
BVAR(3) 0.549 0.954 0.575 0.785 0.637 0.812 0.630 0.740
BVAR(4) 0.612 0.924 0.585 0.776 0.692 0.806 0.641 0.753
FAVAR(1) 0.561 0.558 0.553 0.627 0.642 0.623 0.589 0.663
FAVAR(2) 0.636 0.510 0.583 0.554 0.712 0.599 0.633 0.624
FAVAR(3) 0.558 0.555 0.580 0.566 0.655 0.631 0.638 0.622
FAVAR(4) 0.579 0.503 0.414 0.400 0.659 0.595 0.505 0.505
DSGE 0.472 0.619 0.506 0.519 0.590 0.605 0.558 0.620
DSGE-VAR(1) 0.713 0.511 0.480 0.574 0.726 0.581 0.550 0.645
DSGE-VAR(2) 0.564 0.497 0.537 0.541 0.671 0.578 0.607 0.613
DSGE-VAR(3) 0.738 0.524 0.589 0.583 0.762 0.597 0.642 0.632
DSGE-VAR(4) 0.736 0.521 0.556 0.447 0.735 0.612 0.617 0.560
DSGE-FAVAR(1) 0.551 0.558 0.547 0.633 0.637 0.617 0.586 0.668
DSGE-FAVAR(2) 0.580 0.498 0.530 0.550 0.683 0.596 0.603 0.616
DSGE-FAVAR(3) 0.541 0.535 0.565 0.589 0.653 0.623 0.629 0.634
DSGE-FAVAR(4) 0.568 0.488 0.404 0.455 0.665 0.594 0.511 0.557
TVP-VAR(1) 0.561 0.499 0.518 0.529 0.590 0.598 0.603 0.612
TVP-VAR(2) 0.666 0.488 0.509 0.525 0.637 0.606 0.596 0.606
TVP-VAR(3) 1.034 0.224 0.231 0.301 0.735 0.384 0.400 0.420
TVP-VAR(4) 0.458 0.308 0.285 0.255 0.515 0.468 0.448 0.408

Notes: As in Table 4

step-ahead forecasts. All statistics for all variables up to four-quarters-ahead appear to be insigni�cant even at
the 10% level, with the exception of BVAR vs FAVAR and FAVAR vs DSGE-FAVAR. In accordance with the
MSFE and MAFE results, it is evident that in case of HICPSA the TVP-VAR set-up outperforms the other
models. Finally, in case of STN the DM results lead to a more diverse and variant assessment of di¤erential
predictability. While it appears that no particular model consistently and comparatively outperforms any
of the other, yet the DSGE and the TVP-VAR present signi�cant p-values in many pairwise comparisons.
Speci�cally, the DSGE is superior when examined with the VARs, DSGE-VARs and DSGE-FAVARs and the
TVP-VAR when compared to BVARs, FAVARs, DSGE-VARs and DSGE-FAVARs. Statistical signi�cance
varies in the previous examples from 5% to 1% in some cases, however it is not observed in two-quarter-
ahead forecasts. Overall, many test statistics are not signi�cant and the combined investigation of the MSFE,
MAFE and DM results is not indicative of a clear outranking classi�cation among the investigated models
for all forecasting horizons, as was the case for the two other variables in the Euro area.
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Table 6: Mean Square Forecast Error (MSFE) and Mean Absolute Forecast Error (MAFE) scores for the
Euro area Short-term Interest rate (STN)

MSFE MAFE
STN Quarters ahead Quarters ahead

1 2 4 8 1 2 4 8
VAR(1) 1.461 2.100 2.817 7.041 1.117 1.356 1.540 2.220
VAR(2) 0.891 1.836 4.814 10.899 0.555 0.951 1.552 2.683
VAR(3) 0.907 1.753 4.284 9.580 0.701 1.054 1.532 2.539
VAR(4) 1.261 1.706 3.801 7.386 0.999 1.093 1.517 2.273
BVAR(1) 1.723 1.618 3.050 11.586 1.179 0.704 1.292 2.747
BVAR(2) 0.794 3.469 4.421 13.843 0.654 1.264 1.328 3.046
BVAR(3) 0.791 3.676 4.908 13.990 0.631 1.312 1.364 3.058
BVAR(4) 0.794 3.193 4.796 12.527 0.620 1.153 1.346 2.865
FAVAR(1) 1.029 1.486 3.030 6.655 0.803 0.882 1.211 2.134
FAVAR(2) 1.402 2.299 4.945 9.505 0.887 1.034 1.472 2.504
FAVAR(3) 1.225 1.771 3.541 7.903 0.817 0.904 1.252 2.299
FAVAR(4) 1.081 1.403 2.922 5.822 0.846 0.917 1.250 2.017
DSGE 0.661 1.926 2.547 6.111 0.611 1.283 1.457 2.091
DSGE-VAR(1) 0.852 1.950 2.780 7.009 0.765 1.300 1.518 2.205
DSGE-VAR(2) 0.757 1.604 4.183 10.147 0.570 0.956 1.497 2.591
DSGE-VAR(3) 0.816 1.645 3.990 9.364 0.525 1.024 1.489 2.504
DSGE-VAR(4) 0.789 1.617 3.816 8.008 0.611 1.039 1.492 2.342
DSGE-FAVAR(1) 1.135 1.708 3.485 7.553 0.779 0.896 1.266 2.255
DSGE-FAVAR(2) 1.622 2.410 4.761 10.022 0.982 1.078 1.422 2.574
DSGE-FAVAR(3) 1.561 2.429 4.962 9.551 0.950 1.076 1.439 2.525
DSGE-FAVAR(4) 1.162 1.780 3.911 8.519 0.783 0.903 1.286 2.402
TVP-VAR(1) 1.835 2.341 5.126 10.451 1.224 1.321 1.883 3.023
TVP-VAR(2) 1.830 2.107 4.612 9.756 1.242 1.266 1.789 2.939
TVP-VAR(3) 1.956 2.366 4.942 9.011 1.255 1.300 1.822 2.822
TVP-VAR(4) 1.825 2.018 4.626 8.785 1.233 1.203 1.758 2.801

Notes: As in Table 4

6 Conclusions

In recent years there has been a growing interest in the academia and central banks in micro-founded DSGE
modelling. Policymakers are particularly interested in DSGE models as tools for estimation and evaluation.
Moreover, increasing e¤orts have been undertaken to use these models for forecasting, although this proved to
be problematic due to estimation and identi�cation issues. Calibrated DSGE models are typically too stylized
to be taken directly to the data, often yield weak prediction results and many times fail to capture the time-
series properties of the data. Very recently, hybrid or mixture models have become popular for dealing with
some of the DSGE model misspeci�cations. Major advances in estimation methodology allowed these hybrid
variants to compete in terms of data coherence, with more well-known time-series models, such as VARs.
Even though VAR models and their various speci�cations such as Bayesian VARs and Factor Augmented
VARs, have proven to be reliable forecasting tools, they are still linear and fail to take into account the
inherent nonlinearities of the economy. Time-varying parameters seem to be attractive alternatives. In this
paper, a time-varying multivariate state-space estimation method for VAR models has been presented. For
the TVP-VAR model, the parameters are estimated using a multivariate speci�cation of the standard Kalman
�lter (Harvey, 1990) combined with a suitable extension of the univariate methodology framework of Kim
and Nelson (1999).
This study included a comparative evaluation of the out-of-sample predictive performance of many di¤er-

ent speci�cations of estimated DSGE models and various classes of VAR models, using datasets for the real
GDP, the harmonized Consumer Price Index and the nominal short-term Interest Rate series of the Euro area.
Simple and hybrid DSGE models were implemented, such as DSGE-VARs and Factor Augmented DGSEs
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Table 7: Pairwise forecast comparison for the GDP (YER) with the Diebold-Mariano test

YER Quarters ahead
1 2 4 8

VAR vs BVAR 0.168 0.226 0.721 0.213
VAR vs FAVAR 0.120 0.208 0.011 0.002
VAR vs DSGE 0.292 0.200 0.032 0.003
VAR vs DSGE-VAR 0.101 0.129 0.013 0.002
VAR vs DSGE-FAVAR 0.160 0.182 0.012 0.007
VAR vs TVP-VAR 0.422 0.287 0.060 0.001
BVAR vs FAVAR 0.130 0.159 0.038 0.006
BVAR vs DSGE 0.273 0.182 0.047 0.009
BVAR vs DSGE-VAR 0.123 0.072 0.069 0.003
BVAR vs DSGE-FAVAR 0.160 0.149 0.045 0.003
BVAR vs TVP-VAR 0.355 0.263 0.080 0.001
FAVAR vs DSGE 0.402 0.194 0.054 0.001
FAVAR vs DSGE-VAR 0.291 0.421 0.015 0.148
FAVAR vs DSGE-FAVAR 0.256 0.116 0.163 0.436
FAVAR vs TVP-VAR 0.853 0.359 0.105 0.000
DSGE vs DSGE-VAR 0.364 0.225 0.041 0.002
DSGE vs DSGE-FAVAR 0.497 0.218 0.049 0.006
DSGE vs TVP-VAR 0.303 0.351 0.041 0.000
DSGE-VAR vs DSGE-FAVAR 0.209 0.239 0.009 0.060
DSGE-VAR vs TVP-VAR 0.692 0.368 0.077 0.001
DSGE-FAVAR vs TVP-VAR 0.495 0.488 0.094 0.001

Notes: The results are reported in p-values. The Diebold-Mariano (1995) test based on squared prediction errors.
The test has been conducted on the best performers of each category based on the MSE results.

Table 8: Pairwise forecast comparison for the CPI (HICPSA) with the Diebold-Mariano test

HICPSA Quarters ahead
1 2 4 8

VAR vs BVAR 0.728 0.302 0.742 0.003
VAR vs FAVAR 0.579 0.888 0.335 0.002
VAR vs DSGE 0.700 0.451 0.872 0.269
VAR vs DSGE-VAR 0.409 0.738 0.843 0.002
VAR vs DSGE-FAVAR 0.584 0.635 0.557 0.008
VAR vs TVP-VAR 0.688 0.001 0.001 0.004
BVAR vs FAVAR 0.627 0.162 0.001 0.001
BVAR vs DSGE 0.651 0.861 0.987 0.058
BVAR vs DSGE-VAR 0.514 0.194 0.769 0.001
BVAR vs DSGE-FAVAR 0.646 0.115 0.224 0.007
BVAR vs TVP-VAR 0.807 0.000 0.001 0.004
FAVAR vs DSGE 0.627 0.549 0.657 0.141
FAVAR vs DSGE-VAR 0.845 0.825 0.477 0.001
FAVAR vs DSGE-FAVAR 0.573 0.011 0.002 0.002
FAVAR vs TVP-VAR 0.072 0.001 0.005 0.000
DSGE vs DSGE-VAR 0.560 0.485 0.821 0.399
DSGE vs DSGE-FAVAR 0.627 0.494 0.908 0.459
DSGE vs TVP-VAR 0.947 0.004 0.087 0.002
DSGE-VAR vs DSGE-FAVAR 0.131 0.610 0.613 0.001
DSGE-VAR vs TVP-VAR 0.084 0.003 0.004 0.000
DSGE-FAVAR vs TVP-VAR 0.211 0.002 0.001 0.001

Notes: As in Table 7
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Table 9: Pairwise forecast comparison for the Short-term Interest rate (STN) with the Diebold-Mariano test

STN Quarters ahead
1 2 4 8

VAR vs BVAR 0.712 0.890 0.839 0.001
VAR vs FAVAR 0.826 0.434 0.870 0.010
VAR vs DSGE 0.641 0.789 0.001 0.008
VAR vs DSGE-VAR 0.482 0.612 0.552 0.001
VAR vs DSGE-FAVAR 0.654 0.998 0.691 0.001
VAR vs TVP-VAR 0.212 0.131 0.274 0.002
BVAR vs FAVAR 0.627 0.761 0.047 0.002
BVAR vs DSGE 0.571 0.830 0.680 0.002
BVAR vs DSGE-VAR 0.676 0.974 0.804 0.001
BVAR vs DSGE-FAVAR 0.469 0.823 0.415 0.002
BVAR vs TVP-VAR 0.042 0.582 0.006 0.150
FAVAR vs DSGE 0.428 0.592 0.758 0.010
FAVAR vs DSGE-VAR 0.589 0.626 0.896 0.008
FAVAR vs DSGE-FAVAR 0.511 0.428 0.298 0.003
FAVAR vs TVP-VAR 0.292 0.187 0.002 0.001
DSGE vs DSGE-VAR 0.756 0.751 0.008 0.006
DSGE vs DSGE-FAVAR 0.366 0.867 0.593 0.001
DSGE vs TVP-VAR 0.004 0.915 0.229 0.000
DSGE-VAR vs DSGE-FAVAR 0.415 0.791 0.663 0.001
DSGE-VAR vs TVP-VAR 0.067 0.196 0.246 0.000
DSGE-FAVAR vs TVP-VAR 0.400 0.608 0.001 0.029

Notes: As in Table 7

(DSGE-FAVAR), and tested against standard VARs, Bayesian VARs, Factor Augmented VARs (FAVAR) and
a time-varying parameter VAR model (TVP-VAR). The investigated period spanned from 1970:1 to 2010:4
with an out-of-sample testing period of 2006:1-2010:4, including the �nancial crisis of 2007-2009 and the EU
debt crisis starting in early 2010, associated with the widening of bond yield spreads and the rise of credit
default swaps for Eurozone countries. The results were evaluated with the use of mean squared and absolute
forecast errors and varied across the three examined time series. The Diebold-Mariano (1995) pairwise test
was also employed to measure comparatively the di¤erential forecastability. The best forecasting performance
for the harmonized Consumer Price Index was consistently produced by the TVP-VAR model, while for the
GDP the simple DSGE outranked on average the other models. For the Interest Rate series, di¤erent models
provided with the most accurate forecasts depending on the forecast horizon and the statistical measure of
predictability used. In particular, FAVAR and the simple DSGE model were the best performers, whilst
some BVAR and DSGE-VAR speci�cations provided with equally good forecasting results. The extensive
empirical investigation and comparative model validation conducted in this study can be useful to monetary
policy analysis and macro-forecasting in the Euro area.
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7 Appendix

The AWM database includes publicly available data produced by Eurostat and reported in the ECB Monthly
Bulletin with a supplement for aggregated country data. The dataset consists of a panel of quarterly macro-
economic time series for the Euro Area (Fagan et al., 2001) spanning the period from 1970:1 to 2010:4. Data
prior to 1996 are drawn from the last version of the AWM database, while the current version extends the
series to 2010:4 with a �xed composition of the Euro area with 17 members. In the following Table, the �rst
column has the series number, the second the series acronym, the third the series description, the fourth the
transformation codes and the �fth column denotes a slow-moving variable with 1 and a fast-moving one with
0. The transformed series are tested using the Box-Jenkins procedure and the Dickey-Fuller test. Following
Bernanke et al. (2005), the transformation codes are as follows: 1 - no transformation; 2 - �rst di¤erence; 4
- logarithm; 5 - �rst di¤erence of logarithm; 6 - second di¤erence; 7 - second di¤erence of logarithm.
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