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Abstract

We propose three nonparametric tests for the null of no event-
induced shifts in the distribution of stock returns. One test is the nat-
ural extension of the popular Corrado rank test to the case of cross-
sectionally dependent returns, while the other two are based on new
ideas. Unfortunately only for one of these tests a solid theory for ap-
proximating the distribution of the statistic can be derived, but some
simulation experiments confirm that normality is a good approxima-
tion also for the other two. The new tests are compared to a widely
used parametric test (Patell) through simulation experiments and are
shown to compare favourably in terms of power. Simulation results
are based on bootstrapping daily stock returns from the S&P100 and
NASDAQ indexes.
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1 Introduction

The use of rank-based nonparametric tests for event studies has a long his-
tory in the financial literature (McConnell and Muscarella, 1985; Corrado,
1989; Lummer and McConnell, 1989; Zivney and Thompson, 1989; Cor-
rado and Zivney, 1992). The need for nonparametric (distribution free)
tests is mainly due to the non-Gaussian nature of financial returns, which
tend to be highly leptokurtic and often skewed. Indeed, Gaussian paramet-
ric tests such as the Patell T-test (Patell, 1976; Dodd and Warner, 1983) and
the BMP T-test (Boehmer et al., 1991; Sanders and Robins, 1991) are often
found oversized for real-world stock returns (Corrado and Truong, 2008;
Bartholdy et al., 2007).

However, the existing nonparametric tests have been designed to work
under the assumption of cross-sectional independence of abnormal returns,
which does not hold when a panel of contemporaneous time series with
common event date is analysed.

In this paper we propose a novel nonparametric test under the null hy-
pothesis of no shift in the event-window returns and derive its asymptotic
distribution. This test is valid under cross sectional dependence, for any
length of the event window and any number of stocks in the analysis. Dif-
ferently from existing nonparametric tests, the asymptotic approximation
improves as the estimation window length increases regardless of the event
window size. This implies that, under the typical event study set-up, the
asymptotic approximation is extremely accurate.

The performance of this test is compared with the standard paramet-
ric Patell test, whose distribution is known only under the hypothesis of
joint normality of the asset returns. The test is also compared with other
two nonparametric tests, for which an exact asymptotic theory cannot be
derived for the non-existence of central limit theorems under general cross-
sectional dependence. One of these two nonparametric tests is the natural
generalisation of the test of Corrado (1989) to the case of cross-sectional
dependence.

A simulation study based on bootstrapping daily returns from the S&P100
and NASDAQ constituents shows that the first test we propose has very good
size properties under any of the considered set-ups, but tends to have lower
power than the other two nonparametric tests most of the times. The gen-
eralisation of the Corrado test has poor size properties when the number
of stocks in the analysis is small, while the third test we propose tends to
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have both good size and high power. Despite the lack of central limit the-
orems under general dependence, the three comparison test statistics seem
to converge in distribution to a normal random variable as the number of
stocks diverges.

The paper is organised as follows: Section 2 introduces the new test and
presents its asymptotic theory, Section 3 illustrates the three comparison
tests which lack a solid asymptotic theory, Section 4 contains the simulation
experiment and Section 5 concludes. The proof of the theorem in Section
2 can be found in the Appendix.

2 A nonparametric test and its approximate dis-
tribution

Denote the estimation window by Ω0 and the event window by Ω1 and the
relative cardinalities (i.e., the number of observations therein) by n0 and n1,
and set n = n0 + n1. Generally, in applications n0 ≈ 250 and n1 ≈ 5 daily
returns. Suppose that the returns on the i-th stock, yi t , for i ∈ {1, . . . , m}
and t ∈ Ω0, are well represented by the linear model

yi t = x
>
i tβ + εi t , (1)

where εt is an i.i.d. process and xi t is a vector of regressors, which usually
include a constant and one or more market indexes.

The null hypothesis to test in event studies is that the model (1) holds
for t ∈ Ω1 with the same distributional assumptions on the error term εi t .
Under the alternative hypothesis the regression errors undergo a positive
or negative shift in the location parameter (median or mean if it exists).

Now, define Ω= Ω0 ∪Ω1 the complete sample and let β̂ be a consistent
estimator of the coefficients β computed only on the estimation window
Ω0. The regression residuals are, then, given by

ε̂i t = yi t −x>i tβ̂, for t ∈ Ω, (2)

and, since the scale parameter (standard deviation if it exists) of each ε̂i t
may vary over i, let us define the standardized residuals as

ei t =
ε̂i t

σ̂i
, (3)
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where σ̂i is a consistent estimator for the scale parameter σi of the regres-
sion error εi t .

1

Take the cross-sectional sums of the standardized residuals, et =
∑m

i=1 ei t ,
and their ranks for the complete sample Ω,

Rnt =
∑

k∈Ω

1(−∞,et](ek),

with 1A(·) indicator function for the set A. The first test statistic we propose
is

Zn =
1
p

n1

∑

t∈Ω1

Φ−1
� Rnt

n+ 1

�

, (4)

where Φ−1(·) is the standard normal quantile function. Under the null hy-
pothesis supplemented with mild regularity conditions (see below) Zn is
approximately distributed as a standard normal, whatever the distribution
of εi t and xi t .

Theorem 1. Assume that (1) holds with i.i.d. vector of error terms εt =
(ε1t , . . . ,εmt)> and

1. the distribution functions of εt =
∑m

i=1 εi t/σi, F(·), is absolutely contin-
uous with absolutely continuous density f (·) and support Θ;

2. I0( f ) =
∫

Θ

�

f ′(x)/ f (x)
�2

f (x)dx < ∞ (finite information for loca-
tion);

3. σ̂i = σi +Op(n−1/2), for i = 1, . . . , m;

4. max1≤t≤n0
x2

ji t/
�

∑

t∈Ω0
x2

ji t

�

→ 0 as n0 diverges, for j = 1, . . . , k, i=1,. . . ,m;

5.
q
∑

t∈Ω0
x2

ji t

�

β̂ ji − β ji

�

= Op(1) as n0 diverges, for j = 1, . . . , k, i=1,. . . ,m;

1If we call X0 and X1 the design matrices for the sub-samples Ω0 and Ω1, the variance
of the i-th regression residual has form σ2(1+ ci), where, for i ∈ Ω0, ci is the i-th element
of the diagonal of −X0(X>0 X0)−1X>0 , while for i ∈ Ω1, ci is given by the corresponding
element on the diagonal of X1(X>0 X0)−1X>1 . Under the usual conditions (and the condi-
tions of Theorem 1) using σ̂2 or σ̂2(1+ ci) for standardising the residuals is asymptotically
equivalent, and from our simulations on finite samples, for the sample dimensions used in
event studies, there is no practical difference between the two choices.
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where x ji t , β ji and β̂ ji are the j-th elements of the respective vectors xi t , βi

and β̂i.
Then, for the statistic defined in equation (4) it holds

Zn
d
−→ N(0,1), as n0→∞.

The conditions in the theorem are rather mild. Condition 1 requires
that the marginal distribution of the sum of the regression residuals has a
continuous density which is constant over time; the joint stationarity of the
returns and the continuity of their densities are sufficient for this condition.
Condition 2 requires the existence of the Fisher Information for location (as
in maximum likelihood). Condition 3 asks for a (root-n or faster) consistent
estimator for the scale parameter of the regression error2. For Condition
4 no single observation of the regressors should (asymptotically) dominate
the sum (of squares). Condition 5 allows for any estimator of the regression
coefficients that has the same rate of convergence as the OLS estimator3

(e.g., LAD, rank, Theil-Sen and other robust estimators can be used instead
of OLS).

In order to improve the approximation to the finite-sample distribution
of the test statistic we can apply two small corrections to Zn. Notice that

T =
∑

t∈Ω1

Φ−1
� Rnt

n+ 1

�

=
n
∑

t=1

ct aRni

is a linear rank statistic4 with

ct =

¨

0 for t ∈ Ω0

1 for t ∈ Ω1
, aRnt

= Φ−1
� Rnt

n+ 1

�

,

2Actually consistency is not needed, but just convergence in probability to some con-
stant.

3Again, the estimator does not have to be consistent, but it is sufficient that it converges
in probability to some constant.

4The reader may wonder why we do not apply standard linear rank statistic asymptotics
to Zn. Indeed, this is not possible for two reasons: i) we apply the ranks to estimated
regression residuals and not to raw observations, ii) our asymptotic results should work
for n0→∞ and n1 fixed, while for linear rank statistics both sample sizes have to diverge
at the same rate.
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and, under the null hypothesis, has mean and variance (cf. van der Vaart,
1998, Lemma 13.1)

E T = nc̄ā = 0, Var T =
1

n− 1

n
∑

t=1

�

ct − c̄
�2

n
∑

t=1

�

at − ā
�2
=

n0n1

n
Vn

with

Vn =
1

n− 1

n
∑

t=1

�

Φ−1
� t

n+ 1

��2

.

Of course, as n→∞ the variance Vn converges to
∫ 1

0

Φ−1(u)2 du=

∫ ∞

−∞
x2φ(x)dx = 1,

where φ(.) denotes the standard normal density function, but, for finite n,
Vn tends to be smaller than 1.

If instead of the normalized ranks Rnt/(n+1), we use the asymptotically
equivalent quantities (Rnt − 0.5)/n, then the variance Vn is very close to 1
also for moderate samples (see Figure 1).

25 50 75 100 125 150 175 200 225 250 275 300

0.7

0.8

0.9

1.0

V
n

n

Original Modified 

Figure 1: Variance Vn as a function of the sample size for the original and
modified normalised ranks.

This reasoning suggests the modification of the test statistic (4) with the
asymptotically equivalent (as n0→∞)

Z̃n =

√

√ n

n0n1

∑

t∈Ω1

Φ−1
�Rnt − 0.5

n

�

, (5)
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obtained by dividing T by its (approximate) standard deviation
p

n0n1/n.
Simulations (not reported) confirm that the test based on Z̃n has a more

accurate size in small samples then Zn.

3 Alternative tests lacking a solid approxima-
tion theory

It would be interesting to compare the proposed test with alternative tests
but, without the assumption of joint normality of the errors εt or strong
and non realistic restrictions on the dependence among the elements of εt ,
it is not easy to build alternative event study tests under cross-sectional
dependence.

Thus, in the simulation experiment (see Section 4) we compare size and
power of the proposed test with the following three tests, for which a sound
asymptotic theory cannot be derived.

Extended Patell (EP) The classical Patell test statistic can be extended to
the case of cross-sectional dependence as

EP =
1
p

n1

∑

t∈Ω1

et

σ̂e
, (6)

where et has been defied in equation (3) and in the following lines and

σ̂e =

 

m
∑

i=1

m
∑

j=1

σ̂2
i j

!1/2

,

with σ̂2
i j =

∑

t∈Ω0
ei t e j t/(n0 − k), being k the number of regressors in the

vector xi t .
Under the hypothesis of joint normality of εt for all t, as n0 diverges,

the sample covariances converge almost surely to the corresponding pop-
ulation moments and EP converges in distribution to a standard normal.
Without the joint normality assumption, an asymptotic distribution theory
is not available.
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Extended Corrado (EC) The popular rank test proposed by Corrado (1989)
can be extended to the cross-sectionally dependent case as

EC =

√

√12

n1

∑

t∈Ω1

m
∑

i=1

Ui t − 1/2

%̂1/2
, (7)

where Ui t = Rnit/(n+ 1), being Rnit the rank of ei t among {ei1, . . . , ein} and

%̂ =
m
∑

i=1

m
∑

j=1

%̂i j,

with %̂i j Spearman’s rank correlation between ei t and e j t based on the sam-
ple Ω0.

Now, if there is only one stock (m = 1) and n1 is moderately large the
standard normal turns out to be a good approximation to the actual distri-
bution. Unfortunately, if m > 1 under general cross sectional dependence
we cannot relay on any central limit theorem (CLT) to justify the normal
approximation. Indeed, CLTs for dependent variables were developed for
stochastic processes, thus, with an ordered indexing of the random vari-
ables. Some form of mixing and the existence of higher order moments
are the usual assumptions under which the CLT holds. While Ui t possesses
moments of any order (i.e., it is a bounded random variable), it is not pos-
sible to apply the concept of mixing in a meaningful way. To the best of
our knowledge the only conditions that could be adapted to the Extended
Corrado statistic are those of McLeish (1974, Theorem 2.1), but they are
not easy to verify.

Van der Waerden scores (WS) In order to accelerate the (eventual) con-
vergence of the Corrado statistic to the standard normal distribution, we
can apply van der Waerden type scores (van der Waerden, 1952) to the
ranks. The test statistic is

WS =
1
p

n1

∑

t∈Ω1

m
∑

i=1

Φ−1(Ui t)

ρ̂1/2
, (8)

where

ρ̂ =
m
∑

i=1

m
∑

j=1

ρ̂i j,
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with ρ̂i j sample correlation between Φ−1(Ui t) and Φ−1(U j t) computed using
the sub-sample Ω0.

For m = 1 the test statistic WS is identical to Z of Equation (4) and
converges in distribution to the standard normal as n0 diverges, regardless
of the size of n1. For m > 1 the same CLT-related considerations as for the
EC statistic hold, but for the distribution of WS the normal approximation
should be more accurate for small m since we are summing (dependent)
approximately normal random variables instead of (dependent) uniform
random variables.

Notice that all the considered tests (Z , EP, EC , WS) can be easily modi-
fied to include the adjustment proposed by Boehmer et al. (1991) (see also
Kolari and Pynnönen, 2010) that makes the tests robust to event-induced
volatility and that of Kolari and Pynnönen (2011), which increases the
power of the tests when only a small portion of the returns in the event
window has a shifted distribution.

4 Simulation experiment

The finite sample behaviour of the four tests is investigated by bootstrapping
the daily returns of stocks selected from the S&P100 and NASDAQ indexes.
The daily returns were recorded over the period February 2003–February
2013 (S&P100) and April 2003–April 2013 (NASDAQ).

The estimation window is fixed at n0 = 250 observations and two event
windows of n1 = 1 and n1 = 5 days are considered. We apply the tests to
different numbers of stocks: m = {5, 10,20, 40,80}. The stocks are chosen
according to a maximum correlation criterion and, therefore, the average
correlation in each set of stocks decreases with m.

The tests are applied both to the raw returns (after subtracting the mean
for the EP test) and to the residuals of the (OLS) regression of the stock
returns on their respective indexes (market model).

Tables 1 and 2 report the actual sizes of the tests for a nominal size
of 5%. The test Z has the most accurate size (range 4.7%–5.2%) and its
size properties are very similar regardless of the set-up. As expected, the
EC test has serious size problems (especially for NASDAQ stocks) when the
number of securities m is small and the average correlation is high (range
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Table 1: Nominal sizes of the four tests for an actual 5% size: S&P100
stocks.

Raw returns Market model residuals
N. stocks 5 10 20 40 80 5 10 20 40 80
Mean corr. .64 .60 .57 .53 .47 .27 .18 .14 .04 .00

n1 = 1
Z 4.8 4.8 4.8 4.7 4.9 4.9 4.9 5.2 4.9 5.2
WS 5.7 5.9 5.8 6.2 6.5 5.7 5.0 5.8 5.3 5.1
EC 2.6 4.5 4.9 5.5 6.0 3.4 4.4 4.4 5.1 4.9
EP 5.0 5.0 5.0 5.3 5.7 6.2 5.6 6.2 5.7 5.5

n1 = 5
Z 4.9 5.1 5.0 5.0 4.9 5.1 5.2 5.2 5.1 5.2
WS 4.8 4.9 5.0 5.1 5.1 4.9 5.0 5.0 5.0 5.3
EC 4.5 4.5 4.6 4.7 4.7 4.7 4.7 4.9 4.7 5.0
EP 5.9 6.7 6.3 6.4 6.3 5.9 6.3 6.2 6.0 6.4

0.2%–6.0%). The parametric test EP and the nonparametric WS tend to
have good size properties.

Figures 2–5 depict the powers of the four tests under the considered set-
ups. The drift in the mean in the event window is expressed in number of
standard deviations, as all the stock returns received a drift proportional to
their respective standard deviations.

From Figure 2, it appears that under highly correlated returns, when the
number of stocks is small and the event window coincides with the event
date (n1 = 1) the size problems of the EC test are reflected in its power, but
as soon as the number of stocks increases to 20 or more, the EC becomes
one of the most powerful tests in the analysis. In all the other set-ups the
EC performs extremely well.

The WS test tends to have a competitive power under all conditions: it
behaves similarly to the EC when this test performs well, without suffering
from its problems when the correlation is high and n1 = 1.

The Z test and the parametric EP test tend to have less power than the
two competitors and none of the two is uniformly better than the other.
However, the EP is always slightly oversized (i.e., it rejects too often) and
this increases its power artificially. It is also likely that under conditions of
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Table 2: Nominal sizes of the four tests for an actual 5% size: NASDAQ
stocks.

Raw returns Market model residuals
N. of stocks 5 10 20 40 80 5 10 20 40 80
Mean corr. .71 .61 .53 .49 .39 .41 .24 .12 .06 .03

n1 = 1
Z 4.8 4.7 4.9 4.8 4.8 4.9 5.1 5.1 5.0 5.2
WS 5.1 5.2 5.9 6.1 6.1 5.5 5.4 5.8 5.7 5.0
EC 0.2 1.9 4.0 4.7 5.0 3.6 4.3 5.3 5.7 5.0
EP 5.9 5.6 6.0 5.8 5.6 6.2 6.0 6.1 6.0 5.2

n1 = 5
Z 4.8 5.1 5.0 5.1 5.0 5.1 5.1 5.3 5.4 5.1
WS 4.6 4.9 4.8 5.0 4.8 5.0 4.9 5.2 5.4 5.2
EC 4.4 4.7 4.7 4.8 4.6 4.7 4.7 5.0 5.2 5.0
EP 5.5 5.7 5.7 5.9 5.7 6.0 5.9 6.0 6.2 5.9

extreme market movements the size of the EP test will farther inflate, while
those of the other three statistics will remain unaffected, being distribution-
free tests.

Thus, the WS test seems to be a good alternative to the EC that does not
suffer from size problem but preserves the same good power features. The
Z test has power properties that are comparable to standard EC test, but
being endowed with a solid distribution theory also under non-normality, it
is more likely to provide sensible results in any possible set-up.

5 Conclusion

In this paper we proposed three new nonparametric tests for the null of
no event-induced shift in the distribution of stock returns and compared
them with the well known Patell test (EP). One of these test statistic (Z) is
distribution free and comes with a sound asymptotic theory that permits the
accurate approximation of its distribution under typical set-ups. The other
two tests (EC and WS) are not supported by an approximate distribution
theory and their properties are assessed only by simulation experiments.

The Z test keeps its promise in terms of size, but its power is compara-
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Figure 2: Power of the tests computed on raw returns taken from the SP100
and NASDAQ most correlated constituents for an event windows of n1 = 1
days.
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Figure 3: Power of the tests computed on raw returns taken from the SP100
and NASDAQ most correlated constituents for an event windows of n1 = 5
days.
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Figure 4: Power of the tests computed on market model residuals taken
from the SP100 and NASDAQ most correlated constituents for an event
windows of n1 = 1 days.
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Figure 5: Power of the tests computed on market model residuals taken
from the SP100 and NASDAQ most correlated constituents for an event
windows of n1 = 5 days.

15



ble to that of the (extended) Patell test (EP), which, however, is somewhat
oversized. The rank test based on van der Vaart scores (WS) and the ex-
tended Corrado statistic perform better in terms of power, but the latter
has serious size problems when the number of stocks is small and the event
window short.

Thus, the simulation results suggest the use of the WS test, even though
a solid approximate distribution theory is missing. However, in practical
implementations the lack of theory can represent e serious problem unless
results are supported by simulations like the ones in this paper that confirm
the size under the null for the dataset under analysis. On the contrary, the
Z statistic is always safe as the approximate distribution is known under
extremely mild regularity conditions and the size is excellent under any
distribution of the asset returns that possesses a continuous density. We
think that our Z statistic should replace the widely used Patell T-test in any
event study (univaritate or multivariate) as, for the typical distribution of
financial asset returns, it gains in robustness without loosing any power.

A comparison of the same tests modified as suggested by Boehmer et al.
(1991), Kolari and Pynnönen (2010) and Kolari and Pynnönen (2011) will
be the natural follow-up of this paper.
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Appendix

Proof of Theorem 1. Let Fn(x) = n−1
∑

t∈Ω 1(−∞,x](εt) be the empirical dis-
tribution function of εt . By standard empirical process theory, Fn(x) =
F(x) +Op(n−1/2) uniformly in x .

By Taylor expansion of σ̂−1
i in a neighbourhood of σi,

ε̂i t

σ̂i
=
εi t

σ̂i
−
x>i t(β̂i − β)

σ̂i

=
εi t

σi
+
εi t

σ2
i

(σ̂i −σi)−
x>i t(β̂i − β)

σ̂i
+ op(n

−1/2)

=
εi t

σi
+δni,

where δni is equal to the last three addends of the second line of the above
equations and, by assumptions 3., 4., 5., δni = Op(n−1/2).

Then,

et =
m
∑

i=i

ε̂i t

σ̂i
=

m
∑

i=i

�εi t

σ
+δni

�

= εt +δn,

where δn =
∑m

i=1δni = Op(n−1/2). By Taylor’s theorem, for some hε,δ ∈
[0,1]

F(et)− F(εt)− f (εt)δn = f (εt + hε,δδn)− f (εt).
For any ε and δ, by applying the Cauchy-Schwarz inequality we can write

�

� f (ε + hδ)− f (ε)
�

�=

�

�

�

�

�

∫ hδ

0

f ′(ε + u)du

�

�

�

�

�

≤
∫ δ

0

�

� f ′(ε + u)
�

�du

=

∫ δ

0

| f ′(ε + u)|
p

f (ε + u)

Æ

f (ε + u)du

≤

�

∫ δ

0

�

f ′(ε + u)
f (ε + u)

�2

f (ε + u)du ·
∫ δ

0

f (ε + u)du

�

1
2

≤

�

∫ δ

0

�

f ′(ε + u)
f (ε + u)

�2

f (ε + u)du · [F(ε +δ)− F(ε)]

�

1
2

≤
Æ

I0( f ) ·
Æ

F(ε +δ)− F(ε),
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which by assumptions 1. and 2. is bounded. Thus, we have

F(et) = F(εt) +Op(n
−1/2).

Putting the pieces together we have

Unt =
Rnt

n+ 1
=

n+ 1

n
Fn(et) = F(et) +Op(n

−1/2) = F(εt) +Op(n
−1/2),

which converges in probability to a uniform random variable, say Ut . Thus,
by the probability integral transform, as n0→∞

Φ−1(Unt)
p
−→ Φ−1(Ut)∼ N(0,1).

Moreover, as n0 diverges ranks become independent and, thus, for fixed n1

∑

t∈Ω1

Φ−1(Unt)
p
−→

∑

t∈Ω1

Φ−1(Ut) as n0→∞

which is the sum of n1 independent standard normal random variables.
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