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Abstract

We develop a macroeconomic behavioral model in order to analyze the interac-
tions between real and financial markets. The real subsystem is represented by
a simple Keynesian income-expenditure model, while the financial subsystem
is represented by an equilibrium stock market with heterogeneous speculators,
i.e., chartists and fundamentalists. The interactions between the two markets
are modeled in the following way: the aggregate demand depends, among other
variables, also on the stock market price, while the fundamental value used by
speculators in their decisional process depends on real economic conditions. In
our model we introduce a parameter that represents the degree of interaction.
With the aid of analytical and numerical tools we show that an increasing de-
gree of interaction between markets tends to locally stabilize the system. This
stabilization occurs via a sequence of period-halving bifurcations. Globally, we
find that the stabilization process implies multistability, i.e., the coexistence of
different kinds of attractors.

Keywords: Interacting markets; bifurcation; stabilization; complex dynamics; mul-
tistability.

JEL classification: D84, E12, E32, G02, G12

1 Introduction

Instabilities are known, both empirically and theoretically, to be features of all mar-
kets: the product markets, the labor market, and the financial markets.
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Over the last twenty years, many stock market models have been proposed in
order to study the dynamics of financial markets (see Hommes (2013)). According
to such models, even in absence of stochastic shocks, the interaction between hetero-
geneous speculators accounts for the dynamics of financial markets. Those models,
when endowed with stochastic shocks, are able to replicate some important phenom-
ena, such as bubbles and crashes, excess volatility and volatility clustering. However,
in this kind of models authors have restricted their attention to the representation
and the dynamics of financial markets only and the existing feedbacks between the
real and financial markets are completely neglected. An exception is represented,
for instance, by Charpe et al. (2011), Scheffknecht and Geiger (2011), Lengnick
and Wohltmann (2013), and Westerhoff (2012). Charpe et al. (2011) propose an
integrated macro model, using a Tobin-like portfolio approach, and consider the in-
teraction of heterogeneous agents in the financial market in order to obtain financial
market instability. They find that unorthodox fiscal and monetary policies are able to
stabilize unstable macroeconomies. Scheffknecht and Geiger (2011) present a finan-
cial market model with leverage-constrained, heterogeneous agents integrated with
a New Keynesian standard model; all agents are assumed to be boundedly rational.
They show that a systematic reaction by central bank on financial market develop-
ments dampens macroeconomic volatility. Lengnick and Wohltmann (2013) propose
an agent-based model with financial markets interconnected with a New Keynesian
model with bounded rationality and explore the consequences of transaction taxes.
The results are endogenous development of business cycles and stock price bubbles.
Finally, in Westerhoff (2012) the real economy is described via a Keynesian good
market approach, while the set-up for the stock market includes heterogeneous spec-
ulators. More precisely, in Westerhoff (2012) the real economy is represented by an
income-expenditure model in which expenditures depend also on the dynamics of the
stock market price. On the other hand, the financial side is represented by a market
where traders choose between two behavioral forecasting rules concerning the future
development of the stock price: fundamentalism and chartism. The stock market, in
turn, is linked to the good market since the stock market’s fundamental value depends
on national income. In Westerhoff (2012) the real market subsystem is described by
a stable linear relation, while the financial sector is represented by a nonlinear re-
lation, that is, by a cubic functional relation. In that way, the oscillating behavior
is generated by the financial subsystem only. In Westerhoff (2012), it is shown that
interactions between real economy and the stock market appear to be destabilizing,
giving rise to chaotic dynamics through bifurcations.
In our paper we present a model which is inspired to the one in Westerhoff (2012),
but which also displays some crucial differences with respect to it. The first differ-
ence is that the oscillating behavior is generated by the real subsystem. To be more
precise, the nonlinearity of the real subsystem is due to the nonlinearity of the ad-
justment mechanism of the good market with respect to the excess demand. Another
difference with respect to Westerhoff (2012) is the way we represent and analyze the
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interaction between the two markets. We assume in fact that economic agents base
their decisions on a weighted average between an exogenous value and an endoge-
nous value given by the current realization of economic variables, such as stock prices
and income. In this way, the parameter describing the weighted average represents
also the degree of interaction between the two markets. The extreme values of the
weighting parameter correspond to the two cases considered in Westerhoff (2012), i.e.,
the isolated markets case and the interacting markets scenario. The last main differ-
ence with respect to Westerhoff (2012) is given by our assumption that the financial
market speed of adjustment tends to infinity, generating a permanent stock market
equilibrium. Such assumption is motivated by the fact that the functioning of finan-
cial markets is such that the mechanism of adjustment of their prices is much faster
than the mechanism of adjustment of good market prices. As a consequence of that
equilibrium assumption, in our model national income and stock prices are jointly
determined by a one-dimensional nonlinear map. Analytical and numerical tools are
used in order to find the mechanisms and the channels through which instabilities are
transmitted between markets1.
The main contribution of this paper to the existing literature is to focus on the role
of real and financial feedback mechanisms, not only for the dynamics and stability of
a single market, but for those of the economy as a whole. More precisely, our main
finding, contrarily to Westerhoff (2012), is about the stabilizing role of an increasing
degree of interaction. We believe such difference is due to the fact that, as explained
above, in our model we assume that the speed of adjustment in the stock market ap-
proaches infinity, which implies that the stock market is always in equilibrium, while
in Westerhoff (2012) the stock market may not be in equilibrium and therein a full
market interaction decreases the stability parameter set.
The specific results that we obtain can be summarized as follows. We prove in Propo-
sition 3.3 the existence of an absorbing interval attracting all forward orbits, which
prevents the system from divergence. Moreover, we show the presence of chaotic
dynamics in the sense of Li and Yorke (see Li and Yorke (1975) and Proposition 4.2
below). Finally, with the aid of numerical tools, we show that an increasing degree
of interaction between markets tends to locally stabilize the system. This stabiliza-
tion occurs via a sequence of period-halving bifurcations. Globally, we find that the
stabilization process implies multistability, i.e., the coexistence of different kinds of
attractors.
The remainder of the paper is organized as follows. In Section 2 we introduce the
model. In Section 3 we present analytical and numerical local results for both isolated
and interacting markets. In Section 4 we analytically investigate the first flip bifur-
cation and the existence of Li-Yorke chaos and we numerically show the bifurcations
leading from odd-period cycles to a chaotic regime. In Section 5 we present some
global scenarios with multistability phenomena. Finally, in Section 6 we draw some

1A Keynesian IS-LM model has recently been analyzed through modern dynamical system meth-
ods, such as averaging theory, in Guirao et al. (2012).
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conclusions and discuss our results.

2 The model

2.1 The real market

Similarly to Westerhoff (2012), we consider a model with a Keynesian good market,
interacting with a stock market, in a closed economy without public intervention. It
is assumed that private and government expenditures depend on national income and
on the performance in the stock market. The dynamic behavior in the real economy is
described by an adjustment mechanism depending on the excess demand. If aggregate
excess demand is positive (negative), production increases (decreases), that is, income
Yt+1 in period t + 1 is defined in the following way

Yt+1 = Yt + γg(Zt − Yt), (2.1)

where g is an increasing function with g(0) = 0, Zt is the aggregate demand in a
closed economy, defined as

Zt = Ct + It + Gt,

where C, I and G stand for consumption, investment and government expenditure,
respectively, and γ > 0 is the real market speed of adjustment between demand and
supply.
In order to conduct our analysis, denoting by Et = Zt − Yt the excess demand, we
specify g as the following sigmoid function

g(Et) = a2

(
a1 + a2

a1e−Et + a2

− 1

)
,

with a1, a2 positive parameters. With such a choice, g is increasing and g(0) = 0.
Moreover, it is bounded from below by −a2 and from above by a1. This prevents
the real market from diverging and thus creates a real oscillator. In fact, the pres-
ence of the two asymptotes does not allow too large variations in income. We stress
that this particular analytical specification does not compromise the generality of the
achievements. In fact, we found analogous results for other sigmoid functions passing
through the origin.
As commonly assumed, we suppose that private and government expenditures in-
crease with national income. Moreover, we assume that households, firms and gov-
ernment financial situation depends on the belief about the stock price performance
P̂t, defined as

P̂t = (1 − ω)P̃ + ωPt,
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with ω ∈ [0, 1], P̃ the long-period fundamental value and Pt the current stock price. P̂t

may be interpreted as a weighted average between the long-period fundamental value
and the current stock price. In particular, when ω = 0 the belief about the stock price
performance is completely exogenous and coincides with the long-period fundamental
value; this is the case of isolated markets considered in Westerhoff (2012). When
instead ω = 1 the belief about the stock price performance is completely endogenous
and coincides with the current stock price; this is the case of interacting markets in
Westerhoff (2012). On the basis of these considerations, we can write the relation
between private and government expenditures and national income and stock price
as

Zt = Ct + It + Gt = a + bYt + cP̂t = a + bYt + c[(1 − ω)P̃ + ωPt], (2.2)

where a > 0 defines autonomous expenditure, b ∈ [0, 1] is the marginal propensity to
consume and invest from current income and c ∈ [0, 1] is the marginal propensity to
consume and invest from current stock market wealth belief.
Inserting Zt from (2.2) into (2.1), we obtain the dynamic equation of the real market

Yt+1 = Yt + γa2

(
a1 + a2

a1e−(a+bYt+c[(1−ω)P̃+ωPt]−Yt) + a2

− 1

)
. (2.3)

Notice that, with this formulation, the parameter ω may be interpreted as the
degree of interaction between the real and financial variables.

2.2 The stock market

With respect to the stock market, we consider the trading behavior of two types
of speculators: chartists and fundamentalists. The market maker determines excess
demand and adjusts the stock price for the next period. Chartists may be either
optimistic or pessimistic, depending on stock price performance: in a bull market
chartists buy stocks, while in a bear market they sell stocks. Fundamentalists have
an opposite behavior: believing that stock prices will return to their fundamental
value, they buy stocks in undervalued markets and sell stocks in overvalued markets.
The market maker behavior is described by a linear price adjustment mechanism:

Pt+1 = Pt + σ(DC
t + DF

t ), (2.4)

where σ > 0 is the market maker price adjustment parameter, and DC
t and DF

t are
the speculative demands of chartists and fundamentalists, respectively. According
to (2.4), the market maker increases (decreases) the stock price if excess demand
DC

t + DF
t is positive (negative).

Chartists’ demand is given by

DC
t = e(Pt − FC

t ), (2.5)
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where e > 0 is the chartists’ reactivity parameter and FC
t is the fundamental value

perceived by chartists. Similarly, the fundamentalists’ demand behavior is formalized
by

DF
t = f(F F

t − Pt), (2.6)

where f > 0 is the fundamentalists’ reactivity parameter and F F
t is the perceived

fundamental value by fundamentalists.
For simplicity, according to Westerhoff (2012), we assume a direct relationship be-
tween the national income and the perceived fundamental stock market values, both
for chartists and fundamentalists. In particular, we suppose that speculators perceive
the following relation between the fundamental value and a proxy of the national
income Ŷt

F i
t = diŶt, i ∈ {C,F}, (2.7)

where di > 0, i ∈ {C,F}, are the parameters capturing the above described direct
relationship. For simplicity, we assume that the relationship between the fundamental
value and the national income perceived by fundamentalists and chartists is the same,
that is, dC = dF = d, for some d > 0.

We also assume that speculators use as a proxy for the expected future levels of
national income the weighted average of an exogenous national income value Ỹ and
the current national income Yt, that is,

Ŷt = (1 − ω)Ỹ + ωYt, (2.8)

with ω ∈ [0, 1]. In particular, when ω = 0 the belief about the national income is
completely exogenous and coincides with an exogenous national income value; this is
the case of isolated markets considered in Westerhoff (2012). When instead ω = 1
the belief about the national income is completely endogenous and coincides with the
current national income; this is the case of interacting markets in Westerhoff (2012).

Inserting Ŷt from (2.8) into (2.7), we obtain an expression for the perceived funda-
mental value, which can then be inserted in the demand functions in (2.5) and (2.6).
Inserting in turn such demands into (2.4), we finally get the dynamic equation of the
stock market

Pt+1 = Pt + σ
[
e
(
Pt − d[(1 − ω)Ỹ + ωYt]

)
+ f
(
d[(1 − ω)Ỹ + ωYt] − Pt

)]
. (2.9)

Since the functioning of financial markets is such that the mechanism of adjust-
ment of their prices is much faster than the mechanism of adjustment of good market
prices, we assume that the speed of adjustment in the stock market limits to infinity.
In such way, we obtain the equilibrium condition in that market, i.e., rewriting (2.9)
as
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Pt+1 − Pt

σ
= e
(
Pt − d[(1 − ω)Ỹ + ωYt]

)
+ f
(
d[(1 − ω)Ỹ + ωYt] − Pt

)
,

when σ → ∞, we obtain

e
(
Pt − d[(1 − ω)Ỹ + ωYt]

)
+ f
(
d[(1 − ω)Ỹ + ωYt] − Pt

)
= 0. (2.10)

This implies that at time t, given Yt, Pt assumes a value such that the chartists’ and
fundamentalists’ demand functions determine an excess demand equal to zero.
Indeed, from (2.10) we get the following explicit formulation for Pt

Pt = d[(1 − ω)Ỹ + ωYt], (2.11)

in which the current stock price is proportional to weighted average between the belief
about long-period national income and its current value. Inserting Pt from (2.11) into
(2.3), we get

Yt+1 = Yt + γa2

(
a1 + a2

a1e
−

(
a+bYt+c

[
(1−ω)P̃+ω

(
d[(1−ω)Ỹ +ωYt]

)]
−Yt

)
+ a2

− 1

)
, (2.12)

which is the integrated equation we are going to study in the next sections.
We stress that the case with isolated markets (that is, when ω = 0) has been consid-
ered, for a slightly different model, in full details in the companion paper Naimzada
and Pireddu (2013). In what follows, we will recall just some of the main results in
Naimzada and Pireddu (2013), addressing the interested reader to that paper for a
more complete analysis of the isolated market scenario.

3 Local analysis

In this section we discuss the existence of the steady state and we analyze its local
stability.
In view of the subsequent analysis, it is expedient to introduce the map F : R+ → R

defined as

F (Y ) = Y + γa2

(
a1 + a2

a1e
−

(
a+bY +c

[
(1−ω)P̃+ω

(
d[(1−ω)Ỹ +ωY ]

)]
−Y

)
+ a2

− 1

)
, (3.1)

associated to the dynamic equation in (2.12).
In the following result we show the existence of a unique steady state.
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Proposition 3.1 The dynamical system generated by the map F in (3.1) has the

unique steady state

Y ∗(ω) =
a + c[(1 − ω)P̃ + dω(1 − ω)Ỹ ]

1 − b − cdω2
. (3.2)

The corresponding steady state stock price is given by

P ∗(ω) = d[(1 − ω)Ỹ + ωY ∗] = d
[
(1 − ω)Ỹ + ω

a + c[(1 − ω)P̃ + dω(1 − ω)Ỹ ]

1 − b − cdω2

]
.

Both Y ∗(ω) and P ∗(ω) are positive if 2 ω <
√

1−b
cd

.

Proof. The expression for Y ∗(ω) can be immediately found by solving the fixed point
equation F (Y ) = Y. The formulation of P ∗(ω) follows then by inserting Y ∗(ω) into
(2.11). �

As suggested by the notation introduced in the proposition above, the steady state
vector (Y ∗(ω), P ∗(ω)) depends, among others, on the parameter ω. We stress that
when ω = 0 it coincides with the isolated market steady state vector in Westerhoff
(2012), while for ω = 1 we find the same interacting market steady state vector in

Westerhoff (2012). Moreover, notice that, when ω = 0, we find Y ∗(0) = a+cP̃
1−b

, where

we recognize in 1
1−b

the Keynesian multiplier and in a+cP̃ the autonomous aggregate
expenditures (see Ferguson and Lim (2003)).
As stated in the next result, the precise relationship between the steady state value
for Y ∗ in the two extreme cases ω = 0 and ω = 1 crucially depends on the value of
the autonomous component of expenditures P̃ . Indeed we have the following:

Corollary 3.1 It holds that Y ∗(0) > Y ∗(1) if and only if P̃ > ad
1−b−cd

.

A final remark about Proposition 3.1 concerns the positivity of Y ∗(ω). In fact,
since in our subsequent analysis on the role of the degree of interaction between the
markets we consider ω varying in [0, 1], we need the threshold on ω for the positivity

of Y ∗(ω) to be above 1, i.e.,
√

1−b
cd

> 1,3 condition which is fulfilled when c and d are

relatively small.

Proposition 3.2 Setting γ = 2(a1+a2)
(1−b)a1a2

and γ = 2(a1+a2)
(1−b−cd)a1a2

, the steady state Y ∗ in

(3.2) is stable in the following cases:

• for every ω ∈ [0, 1], if γ < γ ;

• for ω ∈ [R, 1], where R =

√
1
cd

(
1 − b − 2(a1+a2)

γa1a2

)
, if γ < γ < γ .
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Figure 1: We represent in yellow the stability region in the (γ, ω)-plane, together with
the two threshold values γ and γ on the γ-axis.

Proof. The result follows by solving the chain of inequalities −1 < F ′(Y ∗) < 1 with

respect to γ. In fact, it is immediate to find that F ′(Y ∗) = 1− γa1a2(1−b−cdω2)
a1+a2

and thus,
in order to get the stability of the steady state, we only need to impose F ′(Y ∗) > −1,
taking into account that ω ∈ [0, 1]. �

The stability region in the (γ, ω)-plane is represented in Figure 1. Notice in particular
that Y ∗ is never stable if γ > γ and that, when ω = 0, Y ∗ is stable for γ < γ. We also
stress that the only parameters that do not influence the stability of Y ∗, but just its
position, are Ỹ , P̃ and a, i.e., autonomous expenditure.
Proposition 3.2 represents our main achievement as it states that, under the condition
that γ is not too large, an increasing degree of interaction between real and financial
markets has a stabilizing effect, as in the case of Figure 2. This is probably due to
the fact that, in our formalization, we assume that the stock market is an equilibrium
market. A future research shall concern the case in which both real and financial
markets may not be always in equilibrium.

We now describe some further dynamical features for the map F in the next
result. More precisely, we show the existence of an absorbing interval and thus,
differently from the linear case, in which local instability implies diverging trajectories
(see Ferguson and Lim (2003)), in our framework local instability may imply periodic

2In the following analysis we will implicitly assume ω <

√
1−b

cd
, so that the objects we consider

make economic sense.
3Notice that the same condition implies that, in Proposition 3.2, γ > γ > 0, as desired.
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Figure 2: The bifurcation diagram w.r.t. ω for the map F with a = 5, b = 0.2,
c = 1, d = 0.6, a1 = 3, a2 = 2, γ = 6, Ỹ = P̃ = 1. Since γ is not too large, an
increasing degree of interaction between real and financial markets has a stabilizing
effect.

and chaotic orbits.

Proposition 3.3 If the map F in (3.1) is increasing, then the generated dynamical

system is globally stable. Else4, call m and M the unique positive local minimum

point and local maximum point of the map F, respectively, and set m′ := F (m) and

M ′ := F (M). Then the compact interval I = [m′,M ′] is “globally absorbing”, i.e., for

all x̄ ∈ R+ there exists n̄ ∈ N such that F n̄(x̄) ∈ I and for any x ∈ I, F n(x) ∈ I, for

all n ∈ N.

Proof. Let us assume at first that F is increasing and show that, given a generic
starting point x̄ in R+, its forward trajectory will tend to Y ∗. Since F (0) > 0 and Y ∗

is the unique fixed point of F, then by continuity, F (x) > x, for every x < Y ∗, and
F (x) < x, for every x > Y ∗. Hence, if 0 ≤ x̄ < Y ∗, then F n(x̄) will tend increasingly

4It is possible to show that no other scenarios may arise for the map F. In fact

F (0) = γa2

(
a1 + a2

a1e−(a+c[(1−ω)P̃+ωd(1−ω)Ỹ ]) + a2

− 1

)
> γa2

(
a1 + a2

a1 + a2
− 1

)
= 0

and

F ′(0) = 1 −
γa1a2(a1 + a2)e

−(a+c[(1−ω)P̃+ωd(1−ω)Ỹ ])(1 − b − cω2d)

(a1e−(a+c[(1−ω)P̃+ωd(1−ω)Ỹ ]) + a2)2
,

which is positive for any a+ c[(1−ω)P̃ +ωd(1−ω)Ỹ ] large enough. In particular, in all the pictures

in the present paper, we have a + c[(1− ω)P̃ + ωd(1− ω)Ỹ ] > a = 5. Thus, in the cases considered,
F is positive and locally increasing in a right neighborhood of 0. If it is not globally increasing, F

has a local maximum point, followed by the steady state and then by a local minimum point, and
after that F grows monotonically to infinity.
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towards Y ∗ as n → ∞, while if x̄ > Y ∗, then F n(x̄) will tend decreasingly towards
Y ∗ as n → ∞.

If the map F is not increasing, let us consider a generic starting point x̄ in R+ and
show that its trajectory will eventually remain in I. If x̄ ∈ I, then by construction
its forward orbit will be trapped inside I, as well. Let us now proceed with the two
remaining cases, i.e., x̄ < m′ and x̄ > M ′. Since Y ∗ ∈ I and by continuity F (x) > x,

for every x < Y ∗, and F (x) < x, for every x > Y ∗, if x̄ < m′, then its iterates
will approach I in a strictly increasing way, while if x̄ > M ′, then its iterates will
approach I in a strictly decreasing way. Once that a forward iterate of x̄ lies in I,

then by construction all its subsequent iterates will be trapped inside I, as well. This
concludes the proof. �

Figure 3: The interval highlighted on the x-axis is the absorbing interval I from
Proposition 3.3. Notice that, in the case depicted, F ′(Y ∗) < −1 and thus the steady
state is locally unstable.

As we shall see in what follows, in the absorbing interval many different dynamic
behaviors may arise. We depicted in Figure 3 the absorbing interval in the case the
map F is not increasing, and in fact in that graph it holds F ′(Y ∗) < −1. Notice that,
in Proposition 3.3, the first scenario (i.e., F strictly increasing) may be seen as a
limit case of the second framework, in which the absorbing set collapses into a unique
point, that is, the steady state.

4 Bifurcations and chaotic dynamics

In the present section we will show that the stabilization of the system with an increas-
ing degree of interaction is achieved through reversed period-doubling bifurcations,
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i.e., period-halving bifurcations, and that the emergence of complex dynamics when
the degree of interaction is sufficiently small.

We start by proving that the map F undergoes a flip-bifurcation at the unique
steady state Y ∗.

Proposition 4.1 For the map F in (3.1), a flip bifurcation occurs around Y = Y ∗

when
γa1a2(1−b−cdω2)

a1+a2

= 2, that is, for ω = R =

√
1
cd

(
1 − b − 2(a1+a2)

γa1a2

)
.

Proof. According to the proof of Proposition 3.2, the steady state Y = Y ∗ is stable
when F ′(Y ∗) > −1. Then, the map F satisfies the canonical conditions required for
a flip bifurcation (see Hale and Koçak (1991)) and the desired conclusion follows.
Indeed, when F ′(Y ∗) = −1, i.e., for ω = R, then Y ∗ is a non-hyperbolic fixed point;
when ω > R it is attracting and finally, when ω < R, it is repelling. �

In Proposition 4.2 we now show the existence of chaos in the sense of Li-Yorke, as
described in conditions (T1) and (T2) in Theorem 1 in Li and Yorke (1975) (from now
on, Th1 LY). In fact, in the proof of Proposition 4.2 we will use that well known result.
We recall that if the map F in Th1 LY has a period-three orbit, then the hypotheses
are satisfied and that result applies. Moreover, as observed in Li and Yorke (1975),
Th1 LY can be generalized to the case in which F : J → R is a continuous function
that does not map the interval J onto itself.

Proposition 4.2 Let F be the map in (3.1). Fix a = 5, b = 0.2, c = 1, d = 0.55, a1 =

3, a2 = 1.2, γ = 8, Ỹ = P̃ = 1, ω = 0.3, and set J = [17.898, 23.230]. Then for any

point x ∈ J it holds that y = F (x), z = F 2(x) and w = F 3(x) satisfy w ≥ x > y > z

and thus Conditions (T1) and (T2) in Th1 LY do hold true. In particular 5, for any

x ∈ int(J) it holds that F 3(x) > x, while for x ∈ ∂(J) it holds that F 3(x) = x, that

is, the extreme points of J have period three.

Proof of Proposition 4.2 : We show that the chain of inequalities w ≥ x > y > z

is satisfied on J by plotting in Figure 4 the graphs of the identity map in blue, of F

in red, of F 2 in green and of F 3 in cyan. A direct inspection of that picture shows
that it is possible to apply Th1 LY on J and thus we immediately get the desired
conclusions. �

Notice that in the statement of Proposition 4.2 we have fixed some particular
parameter values. However, we stress that the result is robust, as the same conclusions
hold for several different sets of parameter values, as well. Moreover, once that a
result analogous to Proposition 4.2 is proven for a certain parameter configuration,
by continuity, the same conclusions still hold, suitably modifying the interval J, also
for small variations in those parameters. Hence, Proposition 4.2 actually allows to
infer the existence of Li-Yorke chaos for the map F when ω lies in a neighborhood of
0.3 and for some suitable values of the other parameters.

5Given an interval I, we denote its interior by int(I) and its boundary by ∂(I).
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Figure 4: The graph of the identity map (in blue) and of the first three iterates of the
map F (in red, green and cyan, respectively) for a = 5, b = 0.2, c = 1, d = 0.55, a1 =

3, a2 = 1.2, γ = 8, Ỹ = P̃ = 1 and ω = 0.3. The interval highlighted on the x−axis
is J from Proposition 4.2.

We draw in Figure 5 the bifurcation diagram with respect to ω for the map F

for the same parameter values in the statement of Proposition 4.2 (except for ω now
varying on [0, 1]), in order to show that when ω = 0.3 the computer simulations con-
firm the presence of chaos, theoretically proven in Proposition 4.2.
Notice also that, differently from the more common period-doubling scenario, in Fig-
ure 5 the route to chaos occurs via a destabilization of an odd-period orbit, in partic-
ular of an orbit of period 7. In Figure 6 we show a similar framework, where however
the destabilization occurs for a period-three orbit.
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Figure 5: The bifurcation diagram w.r.t. ω for the map F with a = 5, b = 0.2,
c = 1, d = 0.55, a1 = 3, a2 = 1.2, γ = 8, Ỹ = P̃ = 1.

Figure 6: The bifurcation diagram w.r.t. ω for the map F with a = 5, b = 0.2,
c = 1, d = 0.55, a1 = 4, a2 = 2, γ = 4, Ỹ = P̃ = 1.

5 Global analysis

In the previous sections, we presented some theoretical results about the dynamics of
the real and financial interacting markets. We saw that different types of dynamics
can occur, such as the existence of absorbing intervals, stable steady states, periodic
cycles and chaotic behavior. In this section we investigate, using bifurcation diagrams,
the global behavior of the system as the parameter ω increases.
In particular, in Figure 7 we illustrate a numerical example in which, from a chaotic
attractor to a stable steady state, a multistability scenario occurs. Indeed we show
that there exists a sufficiently large ω for which we have the coexistence of a stable
eight-orbit with different kind of attractors, i.e., chaotic or periodic attractors.

In Figure 8 we present a magnification of Figure 7, in which we better show that
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coexistence phenomenon.
We stress that such coexisting phenomena are not present with isolated markets.

Figure 7: The bifurcation diagram w.r.t. ω for the map F with a = 5, b = 0.2,
c = 1, d = 0.55, a1 = 3, a2 = 2, γ = 6, Ỹ = P̃ = 1, which highlights a multistability
phenomenon characterized by the coexistence of chaotic and periodic attractors with
a period-eight orbit.

Figure 8: A magnification of Figure 7 for ω ∈ [0.4, 0.5], in order to better show the
coexistence of chaotic and periodic attractors with a period-eight orbit.
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6 Conclusions

In our paper we presented a model with real and financial interacting markets, where
the oscillating behavior is generated by the real subsystem. The nonlinearity of the
real market comes from the nonlinearity of the adjustment mechanism with respect to
excess demand. The interaction between the two markets is described by a parameter
representing the degree of interaction.
In this framework we proved, according to the parameter values, the presence of global
stability or the existence of an absorbing interval attracting all forward orbits. In such
way, all diverging to infinity behaviors are ruled out. The main result of the paper,
differently from Westerhoff (2012), concerns the stabilizing role of an increasing degree
of interaction between the two markets. Moreover, we numerically (and analytically
just for the last step, that is, from a period-two cycle to the fixed point) showed that
the passage from complicated dynamics to a stable steady state is due to a sequence
of period-halving bifurcations. The existence of chaos in the sense of Li-Yorke has
been proved as well. Finally we numerically showed the coexistence of an eight-cycle
and different kinds of attractors.
We stress that some preliminary simulations of a model with interacting real and
financial oscillators seem to suggest very different dynamic behaviors with respect to
the ones observed in the present paper.

Here we proposed a simple model, in order to improve our knowledge about the
role of interactions between real and financial markets. Of course, it may be extended
in various directions, for instance, relaxing the equilibrium condition in the stock
market, dealing with nonlinearities in both markets, or introducing heterogeneity in
the fundamental values, in order to analyze its stabilizing/destabilizing effect.
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