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Abstract
In the theory of psychological games it is assumed that players�preferences on mater-

ial consequences depend on endogenous beliefs. Most of the applications of this theoretical
framework assume that the psychological utility functions representing such preferences are
common knowledge. But this is often unrealistic. In particular, it cannot be true in exper-
imental games where players are subjects drawn at random from a population. Therefore
an incomplete-information methodology is called for. We take a �rst step in this direction,
focusing on models of guilt aversion in the Trust Game. We consider two alternative model-
ing assumptions: (i) guilt aversion depends on the role played in the game, because only the
�trustee�can feel guilt for letting the co-player down, (ii) guilt aversion is independent of the
role played in the game. We show how the set of Bayesian equilibria changes as the upper
bound on guilt sensitivity varies, and we compare this with the complete-information case.
Our analysis illustrates the incomplete-information approach to psychological games and can
help organize experimental results in the Trust Game.
JEL classi�cation: C72, C91, D03.
Keywords: Psychological games, Trust Game, guilt, incomplete information.

1 Introduction

The Trust Game is a stylized social dilemma whereby player A takes a costly action that
generates a social return, and player B decides how to distribute the proceeds between himself
and A. Experimental work on the Trust Game has shown systematic and signi�cant departures
from the standard equilibrium prediction implied by the assumption of common knowledge of
sel�sh preferences (see Berg et al. 1995, Buskens & Raub 2008, Section III.A of the survey
by Cooper & Kagel 2013, and the references therein). Given the simplicity of this game, such
deviations are hard to explain as the result of bounded rationality. A recent paper by Charness
& Dufwenberg (2006) provides support for the hypothesis that the behavior of most subjects in
the second-mover role (B) is a¤ected by aversion to letting down the �rst mover (A) relative to
his expectations, as in Dufwenberg�s (2002) model of marital investment. This is an instance
of the �simple guilt�model of belief-dependent preferences of Battigalli & Dufwenberg (2007).
Recent experimental work con�rms this hypothesis (e.g., Reuben et. al. 2009, Chang et al.
2011, Bellemare et al. 2011, Attanasi et al. 2012).1 Of course, when subjects� preferences

�Giuseppe Attanasi gratefully acknowledges �nancial support from ERC starting grant DU 283953. Pierpaolo
Battigalli gratefully acknowledges �nancial support from ERC advanced grant 324219. Elena Manzoni gratefully
acknowledges �nancial support from PRIN 2010-2011 �New Approaches to political economy: positive politi-
cal theories, empirical evidence and experiments in laboratory�. Moreover, authors thank Martin Dufwenberg,
Nicodemo De Vito, Astrid Gamba, Marco Scarsini, Severine Toussaert and participants in the Sintelnet workshop
in Toulouse and in the MMRG seminar series at the Catholic University of Milan for helpful comments.

1See also Dufwenberg & Gneezy (2000) and Guerra & Zizzo (2004). Vanberg (2008) and Ellingsen et al. (2010)
question the guilt-aversion interpretation of pro-social behavior in the Trust Game.
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di¤er from the simple benchmark of sel�sh expected payo¤ maximization, the assumption that
such preferences are common knowledge is farfetched. Therefore, it should be assumed that the
game played in the lab is one with incomplete information, even though the rules of the game
(who plays when, information about previous moves and monetary payo¤s at terminal nodes)
are made common knowledge in experiments. This is consistent with the high heterogeneity of
behavior and beliefs found in most experiments on other-regarding preferences (see Cooper &
Kagel 2013). Our goal is to understand how such a game is played with incomplete information
about guilt sensitivity.

We analyze two incomplete-information models of guilt aversion in the Trust Minigame, a
binary-choice version of the Trust Game similar to the one analyzed by Charness & Dufwenberg
(2006).2 In the simpler model it is common knowledge that player A, the �truster�, is sel�sh
and only player B, the �trustee�, can feel guilt. In the more complex model guilt sensitivity is
not role-dependent. The �rst model is more tractable and it may be appropriate in situations
where the players come from di¤erent populations. The second model may be more appropriate
for situations where the subjects playing in roles A and B are drawn from the same population,
as in most experiments. However, even when players are drawn from the same population, it is
not implausible to assume that sensitivity to guilt is triggered only when playing in role B. This
assumption is consistent with insights from the evolutionary psychology of emotions (Haselton
& Ketelaar 2006).

In our analysis, as in the seminal paper by Harsanyi (1967-68), it is important to distinguish
between two components of a player�s type, the payo¤ type (here the sensitivity to guilt) and the
epistemic type, which only determines beliefs. Hence, we allow for multiple types with the same
guilt sensitivity and we obtain Bayesian equilibria with heterogeneous choices and heterogeneous
(higher-order) beliefs about choices. This accords well with the experimental evidence cited
above. Speci�cally, we adopt a simple and quite natural ordered parametrization of hierarchical
beliefs with the following features. There are two possible guilt types of B, low and high. The
epistemic type of A is parametrized by the subjective probability assigned by A to the high-guilt
type of B; furthermore, A believes that guilt component and the epistemic component of B�s
type are independent and all types of A agree about the epistemic type of B. In the second
model, where both A and B can feel guilt, similar assumptions hold for the beliefs of B about
the type of A. In the �rst model, where it is common knowledge that A is sel�sh, the epistemic
type of B parametrizes B�s belief about the probability assigned by A to the high-guilt type of
B, the higher B�s epistemic type, the higher (in a stochastic order sense) such belief. Thus, in
the parlance of incomplete information models, the epistemic type of A is parametrized by the
exogenous �rst-order beliefs of A,3 and the same holds for B in the model with role-independent
guilt aversion. On the other hand, the epistemic type of B is parametrized by his exogenous
second-order beliefs in the model where A is known to be sel�sh.

With this, in the model with role-dependent guilt, we show that in Bayesian equilibria where
a positive fraction of A-types trust player B, higher types choose more pro-social actions and
hold more optimistic hierarchical beliefs about actions. If the upper bound on guilt aversion is
su¢ ciently high, there is only one equilibrium of this kind: Since the trusting action of (sel�sh)
player A reveals A�s hope that B will share, the high-guilt types of B choose this prosocial action
independently of the epistemic component; thus the exogenous �rst-order belief of A about the
guilt type of B coincides with the endogenous �rst-order belief about the prosocial choice of B.
The maps from types to choices for both players are therefore determined by a kind a forward-
induction argument. When instead the upper bound on guilt aversion is low, the epistemic
component of B�s type matters and the propensity to share is higher for higher epistemic types.

2We coined the name �Trust Minigame�after the �Ultimatum Minigame�of Binmore et al. (1995), a binary
choice version of the Ultimatum Game.

3 In Bayesian equlibrium analysis, beliefs about parameters are exogenous, beliefs about choice are endogenous.
The same terminology applies to higher-order beliefs. See Section 3.

2



Furthermore, there may be multiple equilibria.
As explained above, the model with role-independent guilt is not a generalization of the

previous one. In this case A�s guilt sensitivity is not known and we assume that di¤erent types
of B hold di¤erent beliefs about it, with higher types of B believing that A is more likely
to be highly guilt averse. This yields a di¤erence with respect to the previous model: the
endogenous second-order belief that player B holds, if trusted, about A�s belief that B would
share is decreasing in B�s epistemic type, hence B�s choice is less pro-social for higher epistemic
types. This is not surprising because here the meaning of the order on B�s epistemic types is
di¤erent from the previous model. Intuitively, the more B believes that A is guilt averse, the
less he interprets A�s trusting choice as pursuing a high material payo¤, the less he is afraid that
the sel�sh choice would disappoint A.

Related literature Our model �nds its intellectual home in the theory of psychological games,
that is, the analysis of games with belief-dependent preferences (Geanakoplos et al. 1989, Bat-
tigalli & Dufwenberg 2009, see also the introductory surveys by Dufwenberg 2006 and Attanasi
& Nagel 2008). To our knowledge, this is one of the very few papers analyzing a psychological
game with incomplete information, and the only one with a Bayesian equilibrium analysis of guilt
aversion. Some papers analyze incomplete information models of games with belief-dependent
preferences di¤erent from guilt aversion. Tadelis (2011) puts forward and validates experimen-
tally a model of the Trust Minigame with incomplete information about player B�s sensitivity to
�shame�. Caplin & Leahy (2004) analyze a model where a caring doctor has to decide whether
to disclose health information to a patient with unknown propensity to anxiety. None of these
models features heterogenous beliefs. Battigalli et al. (2012) analyze the cheap talk game of
Gneezy�s (2005) experiment under the assumption that the sender is a¤ected by an unknown
sensitivity to guilt. They show that, under mild and reasonable assumptions about the hetero-
geneous second-order beliefs of subjects playing in the role of the sender, guilt aversion explains
the central tendencies of Gneezy�s data on deception. Interestingly, they are able to derive such
results without relying on Bayesian equilibrium analysis. Finally, our paper is related to At-
tanasi et al. (2012), who analyze experimentally the belief-dependent preferences, behavior and
beliefs of subjects in the Trust Minigame. They show that making the elicited belief-dependent
preferences common knowledge between the subjects of each matched pair signi�cantly a¤ects
behavior and beliefs. This can be interpreted as comparison between a psychological game with
incomplete information (control) and a psychological game with complete information (treat-
ment). The theoretical comparison between treatment and control draws on the analysis of our
paper, which therefore helps organizing the data of their experiment. More generally, we hope
that our paper may have a pedagogical value for applied theorists and experimental economists
who are interested in using psychological game theory to analyze social dilemmas.

The rest of the paper is structured as follows. Section 2 introduces the Trust Minigame with
guilt aversion. Section 3 provides the methodology to analyze psychological Bayesian games,
with a focus on the Trust Minigame with unknown guilt aversion. Section 4 puts forward and
analyzes the model with role-dependent guilt, where A is known to be sel�sh. Section 5 puts
forward and analyzes the model with role-independent guilt. Section 6 concludes. Formal proofs
are collected in the Appendix.

2 Guilt aversion in the Trust Minigame

We analyze models of the Trust Minigame where players have di¤erent sensitivities to guilt
feelings and incomplete information about the guilt sensitivity of the co-player. All the models
we consider are based on the game form with monetary payo¤s depicted in Figure 1.
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Figure 1. The Trust Minigame with material payo¤s

In the analysis of this game form, we denote players�strategies as follows:

Strategy Notation

In I

Out O

Share if In S

Keep if In K

In order to investigate the e¤ects that the guilt feelings experienced by the players may have
on their behavior, we need to consider their �rst and second-order beliefs about strategies. We
denote with �i player i�s �rst-order beliefs, and with �i the second-order beliefs.

4 Speci�cally,
we use the notation described in the following table:5

Belief Notation De�nition

Ann�s initial �rst-order belief �A PA[S]
Bob�s initial �rst-order belief �B PB[I]
A feature of Bob�s initial second-order belief �?B EB[�A]
A feature of Bob�s conditional second-order belief �IB EB[�AjI]

Note that we distinguish between the initial and conditional second-order beliefs of Bob, and we
refer to the features of such beliefs that are relevant in our analysis. Indeed, we assume below
that Bob�s choice depends on his expectation of Ann�s disappointment if he Keeps, which can be
written as a function of the expected value of Ann�s �rst-order belief. The second-order beliefs
of Ann will be introduced later as needed.

According to the model of simple guilt (Battigalli & Dufwenberg, 2007), player i su¤ers from
guilt to the extent that he believes that he is letting the co-player �i down. In particular, player i
has belief-dependent preferences over monetary payo¤ distributions represented by the following
psychological utility function

ui = mi � �imaxf0;E�i[m�i]�m�ig,

where �i � 0 is the guilt sensitivity of i and maxf0;E�i[m�i]�m�ig measures the extent of the
co-player�s disappointment given his subjective beliefs.

We �rst assume that guilt sensitivity is role-dependent: only the second mover can be
a¤ected by guilt (�A = 0, �B � 0), and this is common knowledge. Ignoring players�beliefs
about parameters, the strategic situation can be represented with the following parametrized
psychological game:

4Because � and � are the �rst and second letter of the Greek alphabet.
5We use bold symbols to denote random variables. Since B does not know �A , this number is a random

variable from B�s point of view, and its expectation is EB [�A]. Similarly, we write EA[mA] for the expected
monetary payo¤ of A.
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Figure 2. The Trust Minigame with psychological utilities

Indeed, Ann can only be disappointed after terminal history (I;K), in which case the extent of
her disappointment is

maxf0;EA[mA]�mA(I;K)g = 2 � �A + 0 � (1� �A) = 2�A,

wheremi(z) denotes the material payo¤ of i at terminal history z. Thus, the psychological utility
of z = (I;K) for Bob (expressed as a function of Ann�s �rst-order belief �A) is

uB(I;K; �A) = mB(I;K)� �Bmaxf0;EA[mA]�mA(I;K)g = 4� 2�B�A.

Of course, when Bob evaluates his alternatives and chooses his optimal strategy, he compares the
utility from choosing S with the expected psychological utility from choosing K, which depends
on his second-order beliefs. As long as Bob initially assigns a strictly positive probability to I
(�B = PB[I] > 0) the comparison between strategy S and K can equivalently be made either ex
ante, or conditional on I, because the di¤erence between the ex ante expected utilities of S and
K is proportional to the di¤erence between the conditional expected utilities of S and K:

ESB[uB]� EKB [uB] = EB[uB(I; S;�A)� uB(I;K;�A)jI] � PB[I] = [2� (4� 2�B�IB)] � �B.

By de�nition, 0 � �IB � 1, thus Bob Shares if �B > 1 and �IB > 1
�B
.

The assumption that guilt sensitivity depends on one�s role in a game is consistent with
insights from the evolutionary psychology of emotions, which suggests that when a single emotion
operates in a variety of di¤erent domains its e¤ects are moderated by contextual cues (Haselton
& Ketelaar 2006). Since this assumption simpli�es the analysis, we maintain it in the �rst part
of the paper. In Section 5 we analyze a model where guilt sensitivity is role-independent.

In all the models considered below, for all parameter values, there is an equilibrium where
Ann goes Out with probability one: If Ann is certain that Bob would Keep (�A = 0), she stays
Out; if Bob beliefs are correct, �B = 0 and �

?
B = 0; then �

I
B is not pinned down by Bayes rule,

but as long as �IB <
1
�B
Bob�s optimal strategy is indeed to Keep, exactly what Ann expects.6

Yet, casual evidence and the experimental evidence cited in the Introduction show that
positive fractions of agents systematically trust co-players and share with co-players. Therefore,
when O is not the unique equilibrium outcome of the model, we focus on the more interesting
equilibria where trust and sharing occur with positive probability. We call such equilibria �non-
trivial�because they are the equilibria where guilt aversion plays a role.

3 Methodology: Bayesian psychological games

We are going to model incomplete information about � using the methodology �rst proposed by
Harsanyi (1967-68), suitably extended to psychological games (see also Battigalli & Dufwenberg

6This is an instance of the following observation (cf. Battigalli & Dufwenberg 2007, Observation 2). Fix a game
form with material payo¤s and no chance moves. Let G denote the corresponding complete information game
obtained when the game form and the fact that players are sel�sh are common knowledge. Let �(G) denote any
psychological game obtained from G by adding to each player�s material payo¤ a guilt-aversion term and possibly
allowing incomplete information about guilt parameters. Then every pure strategy (sequential) equilibrium of the
material-payo¤s game G is also a (Bayesian perfect) equilibrium of the psychological game �(G).
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2009, Section 6.2). We de�ne type structures that implicitly determine the possible hierarchies
of subjective beliefs of the players.

Although our methodology is fully standard from the abstract theory perspective, it is not
widely used in applied theory. Therefore, it is useful to describe carefully the building blocks of
our approach.

A note on terminology We call �exogenous� a belief about an exogenous variable or
a parameter: a belief about � is an exogenous �rst-order belief, a joint belief about � and
exogenous �rst-order beliefs of the co-player is an exogenous second-order belief, and so on. We
call �endogenous�a belief about a variable that we try to explain, or predict, with the strategic
analysis of the game. In particular, a belief about strategies is an endogenous �rst-order belief,
a joint belief about strategies and endogenous �rst-order beliefs is an endogenous second-order
belief, and so on. We also call �endogenous� a joint belief about exogenous and endogenous
variables.7 Also, we distinguish between �player�, which corresponds to the role (A or B) in the
game, and the individual playing in role A or B, whom we call �agent�. An agent is equivalently
called �subject�when we refer to implementations of the game in laboratory experiments.

3.1 Type structures and hierarchies of beliefs

We consider situations where the psychological utility functions of players A and B are deter-
mined by parameters �A 2 �A, �B 2 �B known to A and B respectively, called the utility types
of A and B. Formally, psychological utility is a parametrized function8

ui : �i � Z �Hi �H�i ! R

where Z is the set of terminal histories of the game and Hi (H�i) is a space of endogenous
hierarchical beliefs of player i (�i).9 Since in our applications �i is the guilt sensitivity parameter
of player i, we call �i a guilt type. When the parameter set of player i, �i, is a singleton, the
guilt type of i is common knowledge. In models with role-dependent guilt sensitivity we have
�A 6= �B; in particular, we assume that �A is a singleton, because player A is commonly
known to be a sel�sh expected material payo¤maximizer. In models with role-independent guilt
sensitivity �A = �B = �. In all our models we assume that �B = f�L; �Hg with 0 = �L < �H .
This simpli�es the parametrization of beliefs.10 Our analysis can be extended to the case where
�i is an interval.

The subjective exogenous beliefs of A and B about each other private information and beliefs
are implicitly represented by a type structure, that is, a tuple

T = hI = fA;Bg; (�i; Ti;#i : Ti ! �i; � i : Ti ! �(T�i))i2Ii .

Elements of Ti are called Harsanyi types, or simply types. An Harsanyi type speci�es both the
guilt type (more generally the utility type) and the exogenous beliefs of player i. The following are
technical assumptions: for each player i, Ti is a compact metric space, the set of Borel probability
measures �(T�i) is endowed with the topology of weak convergence (hence it is compact and
metrizable), and the functions #i(�), � i(�) are continuous. Also note that we use bold letters to

7This terminology is appropriate because we are not trying to analyze stationary states of learning dynamics. If
this instead were the case, we would use an appropriate version of the self-con�rming (or conjectural) equilibrium
concept, and beliefs about � would be part of what is to be explained,. i.e. they would be �endogenous�as well
(see Esponda, 2012).

8Since �i is just a preference parameter, it is appropriate to assume private values : the utility of i does not
depend on ��i.

9See Geanakoplos et al. (1989) and Battigalli & Dufwenberg (2009). In the latter, Hi is a space of hierarchical
conditional beliefs. It can be shown that utility function ui can be replaced by a utility function �ui : �i�Z�Hi ! R
inducing the same best reply correspondence, that depends only on the endogenous beliefs of i. This observation
is used in the representation of the Trust mini-Game with guilt aversion in Section 5, Figure 3.
10The analysis of the model with role-dependent guilt gives the same results whenever 0 � �L < 1.
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denote functions interpreted as random variables, that is, functions that depend on the state
of the world (tA; tB). Function #i(�) speci�es the psychological utility (guilt sensitivity) of type
ti, and function � i(�) determines the beliefs of ti about the utility and beliefs of the co-player
�i. In particular, the type structure yields, for each type of each player, an implicit description
of hierarchical exogenous beliefs, as explained below. Given a random variable xi : Ti ! Xi,
we denote events about xi either directly as subsets of Ti, or according to the convention which
is common in statistics. For example, both #�1i (�

H) and #i = �H denote the event that the
guilt type of i is �H . We use whatever notation is more convenient and transparent in the given
context.

Once we append a type structure to the pro�le of parametrized utility functions, we obtain
a Bayesian psychological game:

� = hI = fA;Bg; (�i; ui : �i � Z �Hi �H�i ! R; Ti;#i : Ti ! �i; � i : Ti ! �(T�i))i2Ii

3.1.1 Epistemic types

We will consider type structures where the set of types Ti can be factorized as Ti = �i�T ei where
T ei is a set T

e
i of epistemic types. The latter parametrize exogenous beliefs and we assume

that the parameter space is T ei = [0; 1]. Therefore Harsanyi types are pairs given by a guilt type
and an epistemic type: ti = (�i; ei) 2 �i � [0; 1] = Ti. Then function #i : �i � T ei ! �i is just
the projection of Ti = �i � [0; 1] onto �i (that is, #i(�i; ei) = �i for each (�i; ei)). Furthermore,
we assume that � i(�i; ei) depends only on ei and is monotone: roughly, higher epistemic types
of player i assign higher probability to high guilt and/or epistemic types of the co-player �i.11

3.1.2 Exogenous n-th order beliefs

The exogenous �rst-order belief of a type ti is determined by the equation

p1i (ti)[E
0
�i] = � i(ti)[(#�i)

�1(E0�i)] (E
0
�i � ��i Borel measurable).

This way we obtain a map (#i;p1i ) : Ti ! �i��(��i) for each i 2 fA;Bg. Then the exogenous
second-order belief of a type ti is determined by the equation

p2i (ti)[E
1
�i] = � i(ti)[(#�i;p

1
�i)

�1(E1�i)] (E
1
�i � ��i ��(�i) Borel measurable).

Proceeding this way, we can associate a hierarchy of exogenous beliefs with each type.
However, beliefs beyond the second-order will not be used in the analysis below.

3.2 Equilibrium

A Bayesian equilibrium of the psychological Trust Minigame with incomplete information
is given by a pair of measurable decision functions (�A : TA ! fI;Og;�B : TB ! fS;Kg)
such that for each player i 2 fA;Bg and type ti 2 Ti, choice �i(ti) maximizes i�s expected
psychological utility, given the endogenous beliefs of type ti about the co-player�s choice and
beliefs.12 In a perfect Bayesian equilibrium, player B maximizes his conditional expected utility
upon observing I, with conditional beliefs computed by Bayes rule, if possible. However, in the
non-trivial equilibria we are going to focus on, action I is chosen by a positive fraction of types,

11 If instead � i also depends monotonically on �i, we have a form of perception of false consensus, that is, player
�i believes that higher guilt types of i are associated with higher beliefs about the guilt type of �i. See Section
6 for a discussion of false consensus.
12Such decision functions are often called �strategies�. We avoid this terminology for two reasons. First, we are

not studying a situation where player i decides how to play the game before being informed about his type; rather
we study decisions of di¤erent agents playing in role i, where each agent is characterized by some type ti. Second,
we want to avoid confusion with the strategies of the Trust Minigame, such as �Share if In�.
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hence it has positive probability. As we noticed in Section 2, in this case ex ante maximization
of psychological utility is equivalent to conditional maximization; therefore non-trivial Bayesian
equilibria are also perfect.

3.2.1 Endogenous n-th order beliefs and other random variables

It is important to understand how the type structure and decision functions �i generate the
endogenous beliefs of the players. We analyze psychological games where the utility of i (de-
termined by his guilt type �i) depends on the strategy of �i (identi�ed with �i�s plan) and on
the �rst-order endogenous beliefs of �i. For example, the utility of guilt type �B depends on
B�s material payo¤ determined by the sequence of actions and on the disappointment of A; the
latter is positive if A plans to choose I, carries out such plan and then B replies with K, in this
case A�s disappointment is determined by the �rst-order belief of A about the choice of B, that
is, the probability �A assigned by A to strategy S.

The latter probability is an endogenous �rst-order belief determined by the type of A and
the equilibrium decision function of B:

�A(tA) = �A(tA)[�
�1
B (S)] = �A(tA)[�B = S]: (1)

For player B (and the analyst), �A : Ti ! [0; 1] is a random variable. Player B can compute
his initial expectation of �A as follows:13

�?B(tB) = EtB [�A] =
Z
�A(tA)�B(tB)[dtA]. (2)

Since B takes an action only if he observes I, his choice depends on his second-order belief
conditional on I:14

�IB(tB) = EtB [�Aj�A = I] =
R
(�A)�1(I)

�A(tA)�B(tB)[dtA]

�B(tB)[�A = I]
, if �B(tB)[�A = I] > 0. (3)

As the above equations illustrate, all the endogenous beliefs are implicitly determined by the
equilibrium decision functions � = (�A;�B) (given the type structure). However, for the sake
of clarity, in our analysis we will make the key endogenous beliefs explicit.

Beside �rst and second-order endogenous beliefs, the type structure and decision functions
determine other random variables that will be used in our analysis (all written in bold). For
example, the random variable �monetary payo¤ of player i�is15

mi(tA; tB) =

8<:
mi(O), if �A(tA) = O,
mi(I;K), if �A(tA) = I, �B(tB) = K,
mi(I; S), if �A(tA) = I, �B(tB) = S,

and the random variable �psychological utility of player i�is

ui(tA; tB) =mi(tA; tB)� #i(ti)maxf0;Et�i [m�i]�m�i(tA; tB)g,

where, of course, in the computation of Et�i [m�i] type t�i assigns probability one to the choice
��i(t�i).

Furthermore, the epistemic type of player i is a random variable from the point of view of
the co-player �i. Formally, this random variable is just the projection from TA � TB onto T ei :
ei(tA; tB) = ei if and only if ti = (�i; ei) for some �i 2 �i. Thus, for example, [ei > x] denotes
the event that the epistemic type of i is higher than x.
13Given a real-valued random variable x�i : T�i ! R and a measure � 2 �(T�i), E�[x�i] denotes the expecta-

tion of x�i according to �. To ease notation for the expectation of x�i according to the belief of type ti, we write
Eti [x�i] instead of E� i(ti)[x�i].
14Recall that �B(tB)[�A = I] > 0 for every non-trivial equilibrium.
15Recall that mi(z) is the monetary payo¤ of player i at terminal history z.
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3.2.2 Actual distributions

In this paper we focus on the equilibrium derivation of the decision functions and of other
endogenous random variables speci�ed above. Therefore, it is not necessary in our analysis to
postulate an objective statistical distribution on the type space.16 Of course, such a distribution
is necessary to obtain statistical predictions from equilibrium analysis. We extensively comment
on this in Section 6.

4 Role-dependent guilt

We start our analysis with a simple model where player A is commonly known to be sel�sh,
i.e. a monetary payo¤ maximizer. For example, there may be an heterogeneous population
of individuals from which players are drawn at random and assigned to roles A and B. The
�potential�guilt sensitivity � in this population can be either high, �H > 0, or low, �L = 0. But
the actual guilt sensitivity is triggered by the role in the game: only player B can feel guilt.

Alternatively, we can imagine that it is commonly known that the individual playing in role
A is drawn from a population of sel�sh agents, whereas the individual playing in role B is
drawn from an heterogeneous population where some agents are guilt averse. Of course, this
second interpretation does not �t well with standard experimental implementations of the Trust
Minigame.

4.1 Complete Information model

Before we move on to the details of the incomplete information model, it is useful to report the
results about the complete information benchmark (cf. Dufwenberg 2002). The psychological
game is described in Figure 2 of Section 2, assuming that �B > 0 is commonly known.17

As explained in Section 2, player B Shares (respectively Keeps) if his conditional second-
order belief satis�es �IB >

1
�B
(respectively �IB <

1
�B
). In a complete information equilibrium

�rst and second-order beliefs are correct, and players maximize given their belief. Therefore, for
each �B > 0, the pro�le (O;K;�A; �

?
B; �

I
B) is an equilibrium if �A = �?B = 0 and �IB < 1

�B
.

Intuitively, when player A thinks that B will Keep, A�s optimal choice is to go Out. If B initially
expects this (�B = 0), the conditional second-order belief �IB is not pinned down by Bayes rule.
For any out of equilibrium belief �IB <

1
�B
, B�s optimal choice is to Keep. This is an instance

of the general observation made at the end of Section 2: the equilibrium (O;K) of the material
payo¤ game with sel�sh preferences is also an equilibrium of the psychological games with guilt
aversion analyzed in this paper. Recall that �IB = EB[�AjI] 2 [0; 1]. Therefore, if �B 2 (0; 1),
then �IB <

1
�B
and this is the unique equilibrium of the complete information game with guilt

aversion.
For higher values of B�s type, �B 2 [1;+1), there is another pure strategy equilibrium,

(I; S; �A = �?B = �IB = 1). To see this, notice that if A expects B to Share with probability
�A � 1

2 (and in particular with probability �A = 1) it is optimal for A to go In. Moreover, if
�IB � 1

�B
(in particular if �IB = �

?
B = �A = 1) it is optimal for B to Share when A goes In. This

is also the unique forward induction equilibrium for �B 2 (2;+1). Indeed, A �nds it optimal
to go In if and only if �A � 1

2 . Therefore, if B rationalizes A�s observed choice of going In, his
conditional second-order belief satis�es �IB � 1

2 , which implies that it is (uniquely) optimal to
Share, as �IB � 1

2 >
1
�B
. In Appendix A.1 we provide a complete description of the equilibrium

correspondence, including mixed equilibria.

16As the reader may have noticed, we have not assumed that the functions associating each type with an
exogenous belief are derived from an �objective�common prior on the state space.
17When it is common knowledge that �B = 0 the analysis is trivial, as we obtain the usual backward induction

equilbrium with sel�sh preferences.
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4.2 A model with incomplete information and heterogeneous beliefs

4.2.1 Type structure

We have a continuum of types on both sides. The beliefs of player i about the type of the co-player
�i are determined by an epistemic parameter ei 2 [0; 1]. We assume for simplicity that each type
of player A believes that the guilt and epistemic type of B are statistically independent. Since
the guilt type of A is commonly known to be zero, for player A Harsanyi types and epistemic
types coincide: TA = T eA = [0; 1] (in our more general formalism, TA = f0g � T eA, which is
isomorphic to T eA). We let eA = tA 2 TA parametrize the subjective probability of the high-guilt
type of B: tA = PtA [#B = �

H ]. All types of A have common marginal beliefs about the epistemic
type of B given by a continuous cdf F : R! [0; 1] with support [0; 1] (that is, strictly increasing
on [0; 1] with F (0) = 1 � F (1) = 0). Each epistemic type eB of B has a belief about A�s type
given by a continuous cdf FeB : R! [0; 1] with support [0; 1].

Speci�cally, we let TA = [0; 1], TB = f�L; �Hg � [0; 1], � i : Ti ! �(T�i) (i 2 fA;B]) with

�A(tA)[#B = �
H \ eB � y] = tAF (y); (4)

and

�B(�B; eB)[tA � x] = FeB (x), (5)

for all tA; eB; x; y 2 [0; 1], �B 2 f�L; �Hg.
According to our general assumptions about type structures, the map eB 7�! FeB (�) is

continuous.18 Furthermore, we assume that the following stochastic order property holds: the
conditional expectations EeB [tAjtA > x] are strictly increasing in eB, that is,

eB < �eB )
1

1� FeB (x)

Z 1

x
tAdFeB (tA) <

1

1� F�eB (x)

Z 1

x
tAdF�eB (tA) (6)

for all x 2 [0; 1) and eB; �eB 2 [0; 1]. Intuitively, this means that higher epistemic types of B have
higher beliefs about the (epistemic) type of A,19 as anticipated in Section 3.1. All of the above is
common knowledge. Since the beliefs of type (�B; eB) depend only on the epistemic component
eB, to ease notation we write �B(eB), �

?
B(eB), �

I
B(eB) instead of, respectively, �B(�B; eB),

�?B(�B; eB), �
I
B(�B; eB).

4.2.2 Equilibrium analysis

As explained in Section 2, there is always an equilibrium outcome where all A-types stay Out.
In this paper, we focus on the more interesting non-trivial equilibria where a positive fraction of
A-types choose In. It turns out that all non-trivial equilibria exhibit threshold decision functions.
Since beliefs are described by atomless distributions, the choice of the threshold type (who is
indi¤erent) is immaterial for equilibrium analysis. We assume wlog that such type chooses the
�low�action, that is, O for player A and K for player B. In what follows, we say that a decision
function �A is (weakly) increasing if there is a threshold êA 2 (0; 1) (êA 2 [0; 1]) such that
18We assumed that �B : TB ! �(TA) is continuous. In the present model this means that eB ! �eB implies

that FeB (tA) ! F�eB (tA) for every continuity point of F�eB . Since F�eB is assumed to be continuous, FeB (�) must
converge to F�eB (�) pointwise.
19This assumption holds if the epistemic types of B are ordered by hazard rate. When every cdf FeB is di¤eren-

tiable, with feB = F
0
eB , this can be expressed as follows:

eB < �eB )
f�eB (tA)

1� F�eB (tA)
<

feB (tA)

1� FeB (tA)

for all eB ; �eB 2 [0; 1] and tA 2 [0; 1). See Shaked and Shantikumar (2007, pp 16-17).
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�A(tA) = O i¤ (if and only if) tA � êA. A similar terminology is used for the high-guilt type of B:
�B(�

H ; �) is (weakly) increasing if there is êHB 2 (0; 1) (êHB 2 [0; 1]) such that �B(�H ; eB) = K
i¤ eB � êHB . In particular, a weakly increasing decision function is either increasing or essentially
constant.20

A non-trivial equilibrium is given by decision functions �A and �B, which in turn determine
the endogenous belief functions �A, �

?
B and �

I
B as in eq. (1)-(2)-(3), so that �

�1
A (I) (a mea-

surable subset of [0; 1]) has positive measure, �A(tA) is a best reply to �A(tA) for all tA, and
�B(�B; eB) is a best reply to �IB(eB) for all tA, �B and eB.

Proposition 1 In the model given by (4)-(5)-(6) there is a non-trivial equilibrium only if �H >
1. Every non-trivial equilibrium (�A;�B) has the following structure: �B

�
�L; eB

�
= K for every

eB, �A is increasing, �B
�
�H ; �

�
is weakly increasing and they are respectively characterized by

thresholds êA 2 (0; 1) and êHB 2 [0; 1) such that

(a) for every type tA,
�A (tA) = tA

�
1� F

�
êHB
��
;

hence �A (�) is strictly increasing and the incentive condition for A yields

êA =
1

2
�
1� F

�
êHB
�� ;

(b) for every epistemic type eB,

�?B(eB) =
�
1� F

�
êHB
�� Z 1

0
tAdFeB (tA),

1

2
< �IB (eB) =

1� F (êHB )
1� FeB (êA)

Z 1

êA

tAdFeB (tA) < 1,

hence, by assumption (6), �?B(�) and �
I
B(�) are strictly increasing and the incentive condi-

tion for B yields

êHB = 0) �IB (eB) �
1

�H
,

êHB > 0) �IB (eB) =
1

�H
.

Sketch of proof First note that a low-guilt type of B always Keeps: �B(�B; eB) = K if
�B < 1. This gives the necessary condition for existence of non-trivial equilibria. Furthermore, in
a non-trivial equilibrium A�s �rst-order endogenous belief �A(tA) = PtA [�B = S] is increasing in
tA: B plays S only if his guilt type is high, therefore �A(tA) is the product of two probabilities,
the probability that B�s guilt type is high, PtA [#B = �H ] = tA, and the probability PF [�B =
Sj#B = �H ] that B chooses S given that his guilt type is high. By eq. (4), the latter is determined
by cdf F independently of tA:

�A(tA) = tAPF [�B = Sj#B = �H ].
20On the other hand, when we speak of a real valued function ' : X ! R with X � R (such as a cdf or a belief

function), we say that ' is strictly increasing if x0 > x00 ) '(x0) > '(x00), and we just say that ' is increasing
if x0 � x00 ) '(x0) � '(x00).

11



Since �A (tA) = I i¤ �A(tA) > 1
2 , it follows that �A (tA) = I i¤ tA > êA, where �A(êA) = 1

2 ,
that is

êA =
1

2PF [�B = Sj#B = �H ]
.

We now need to analyze B�s equilibrium decision function when the guilt type of B is high,
that is, �B(�H ; eB). Since FeB has full support and a positive fraction of A-types chooses
I, every epistemic type eB assigns a strictly positive probability to the event �A chooses I�:
PeB [tA > êA] = 1 � FeB (êA) > 0. Hence, B�s second-order endogenous belief is determined by
the equation �IB(eB) = EeB [�AjtA > êA]. By assumption (6), EeB [tAjtA > êA] is increasing
in eB, higher epistemic types of B hold higher conditional beliefs about the (epistemic) type
of A; this also implies that they hold higher second-order endogenous beliefs, because �A is
an increasing linear function of tA. Therefore B�s second-order endogenous belief, �IB(eB), is
increasing in eB and the decision function satis�es �B

�
�H ; eB

�
= S i¤ eB > êHB , for some ê

H
B .

Thus PF [�B = Sj#B = �H ] = 1� F (êHB ) and

�A(tA) = tA(1� F (êHB )),

which gives the formulas for �?B(eB) = EeB [�A] and �
I
B(eB) = EeB [�AjtA > êA]. The indi¤er-

ence condition for a positive threshold êHB is �
I
B(ê

H
B ) =

1
�H
. A more formal proof is contained in

Appendix A.2.

4.2.3 High upper bound on guilt
�
�H > 2

�
.

In the general case analyzed above, it is possible to have multiple non-trivial equilibria; it is also
possible that non-trivial equilibria do not exist even if �H > 1. We will show this in a parametric
example (see Section 4.2.4). When instead B�s upper bound on guilt sensitivity is su¢ ciently
high (�H > 2), we can show that a non-trivial equilibrium exists, it is unique and has a simple
form. Intuitively, this is due to the fact that with a high �H we can apply a forward-induction
argument: A chooses I i¤ �A > 1

2 , thus I reveals �A >
1
2 to player B, which implies that his

conditional second-order belief is also higher than 1
2 : �

I
B = E[�Aj�A > 1

2 ] >
1
2 . When �

H > 2,
this implies that B chooses S if (and only if) his guilt type is high (#B = �H). It follows that,
for player A, the probability of S coincides with the probability of the high-guilt type, and A
chooses I i¤ this exogenous probability is higher than 1

2 . This completely determines the non-
trivial equilibrium. This argument holds without assuming the stochastic order condition (6). If
this condition holds, then second-order endogenous beliefs are strictly increasing. With this, the
formal proof of the following proposition is straightforward and hence we leave it to the reader.

Proposition 2 In the model given by (4)-(5), if �H > 2 there is a unique non-trivial Bayesian
equilibrium (�A;�B), and it has the following properties:

(a) for every type tA, �A (tA) = O i¤ tA � 1
2 and �A (tA) = tA;

(b) for every epistemic type eB, �B
�
�L; eB

�
= K, �B

�
�H ; eB

�
= S and

�?B(eB) =

Z 1

0
tAdFeB (tA) ,

�IB (eB) =

�
1� FeB

�
1

2

���1 Z 1

1
2

tAdFeB (tA) >
1

2
;

(c) if (6) holds �?B(�) and �
I
B(�) are strictly increasing.
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4.2.4 A parametric example

We analyze a parametric representation of the exogenous beliefs of the players to illustrate our
modeling approach with a speci�c example. The type structure is speci�ed as follows: all types
of A have a uniform distribution on the epistemic types of B, and each epistemic type eB 2 (0; 1)
has a mixture of two distributions on the types of A, the uniform on [0; 1] with weight " and the
uniform on [eB; 1] with weight (1� "):21

�A(tA)[#B = �
H \ eB � y] = tAy, (7)

�B(�B; eB)[tA � x] =

8<:
1, if x = eB = 1,
(1� ") x�eB1�eB + "x, if eB � x � 1, eB < 1,
"x, if 0 � x < eB.

(8)

This type structure does not fully satisfy the requirements of Section 4.2.1; in particular,
EeB [tAjtA > x] is weakly (instead of strictly) increasing in eB. This implies that we have more
equilibria than the ones described in Section 4.2.1; however, we can show that in every non-trivial
equilibrium (�A;�B) the decision function �A is increasing and �B(�H ; �) : [0; 1] ! fS;Kg is
equivalent to a weakly increasing function, where we say that two decision functions �B(�H ; �)
and ��B(�H ; �) are equivalent if they induce the same endogenous �rst-order belief for each type
tA, and hence the same endogenous second-order belief for each epistemic type eB.22

Proposition 3 In the model given by (7)-(8) a non-trivial equilibrium exists i¤ �H � 4
3 . In

every non-trivial Bayesian equilibrium (�A;�B) of the model with �H � 4
3 , �B

�
�L; eB

�
= K for

every eB, �A is increasing and �B
�
�H ; �

�
is either weakly increasing or equivalent to a weakly

increasing function, where the thresholds êA and êHB respectively characterizing �A and �B
�
�H ; �

�
are as follows:

1. for �H 2
�
4
3 ; 2
�
:
�
êA; ê

H
B

�
=
�
1
2 ; 0
�
, or

�
êA; ê

H
B

�
=
�

�H

4��H ;
3
2 �

2
�H

�
;

2. for �H > 2:
�
êA; ê

H
B

�
=
�
1
2 ; 0
�
.

Furthermore,

(a) for every type tA, �A (tA) = tA
�
1� êHB

�
;

(b) for every epistemic type eB,

�?B (eB) =
�
1� êHB

� 1 + (1� ") eB
2

,

�IB(eB) =

( �
1� êHB

� (1+êA)
2 , if eB � êA � 1,�

1� êHB
� 1+(1�")eB�"ê2A

2(1�"êA) , if 0 � êA < eB.

21We also assume that eB = 0 has a uniform measure on [0; 1] and eB = 1 has a mixture of the uniform measure
on [0; 1] and the Dirac measure concentrated on 1 with weights " and (1 � "): But since each type of A has an
atomless marginal belief on T eB = [0; 1], the beliefs of these extreme types of B are immaterial.
22Given (7) and given that in every equilibrium �B(�

L; eB) = K for each eB , the decision functions �B(�H ; �)
and ��B(�H ; �) induce the same �rst-order belief �A(tA) for every type tA if

�[feB : �B(�H ; eB) = Sg] = �[feB : ��B(�H ; eB) = Sg]

where � is the Lebesgue measure on T eB = [0; 1].
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Comments and sketch of proof First of all, we observe that �IB is only weakly increas-
ing in eB; in particular, all the epistemic types of B that are smaller than êA hold the same
second-order endogenous belief. This is what gives rise to the multiplicity of equilibria that are
equivalent to the threshold equilibria described in the proposition: Type (�H ; eB) is indi¤erent
i¤ �H�IB(eB) = 1. If (�H ; eB) is indi¤erent and eB � êA, then every other type (�H ; e0B) with
e0B � êA is also indi¤erent because �IB(eB) = �IB(e0B). The shape of �B

�
�H ; �

�
a¤ects equilib-

rium beliefs only through the measure of the set of indi¤erent types that choose S. Any change
in �B

�
�H ; �

�
that does not change this measure is immaterial.

Moreover, note that in this parametric speci�cation there are two (equivalence classes of)
equilibria for �H 2

�
4
3 ; 2
�
. For �H > 2 the threshold equilibrium characterized by

�
êA; ê

H
B

�
=�

1
2 ; 0
�
is the unique non-trivial equilibrium, as stated in Proposition 2. Finally, non-trivial

equilibria do not arise in this setting when �H < 4
3 . The parameter thresholds that de�ne the

multiple-equilibrium region have a quite intuitive interpretation. Recall that, in every non-trivial
equilibrium, type tA chooses I i¤�A(tA) > 1

2 ; which implies �
I
B(eB) >

1
2 . As discussed in Section

4.2.3, if �H = 2 the high-guilt types prefer to cooperate when �IB(eB) >
1
2 . Threshold �

H = 4
3 ,

instead, is related to the assumption that the conditional beliefs on tA (given tA � êA) held by
any epistemic type eB � êA are described by the uniform distribution on [êA; 1]. The easiest
way to understand this is to focus on the (êA; êHB ) =

�
1
2 ; 0
�
equilibrium. In such equilibrium

A-types coincide with the �rst-order endogenous beliefs (�A(tA) = tA), and A chooses I only for
types larger than 1

2 ; this implies, for every eB � êA, �
I
B (eB) =

3
4 , which is the expected value

of the uniform distribution on
�
1
2 ; 1
�
. Therefore the lowest guilt sensitivity that makes B willing

to Share when his epistemic type is eB � êA is �B = 4
3 . If �

H < 4
3 , type (�B; eB) = (�H ; êA)

prefers to Keep, and the same must hold for every lower epistemic type. This, together with the
observation that there are no equilibria in which the type who is indi¤erent between S and K
is higher than êA, allows us to conclude that all the equilibria are trivial when �H < 4

3 . A more
formal proof is contained in Appendix A.3.

5 Role-independent guilt

In Section 4 we analyzed a model in which player A is commonly known to be sel�sh, and only
player B can feel guilt. We interpreted this model as the description of a population where the
potential guilt sensitivity can be either high or low, whereas the actual guilt sensitivity is triggered
by the role in the game. Now we assume instead that potential and actual guilt sensitivity
coincide, because actual guilt sensitivity is role-independent. Each individual is a¤ected by
simple guilt aversion with guilt sensitivity � 2 �. If an individual with guilt type � is assigned to
role i 2 fA;Bg then �i = �. Therefore in this model also player A may experience guilt feelings
that are triggered by the expectation of B�s disappointment. Player B can only be disappointed
after the terminal history O, in which case the extent of his disappointment also depends on his
strategy. More precisely, B�s disappointment depends on his �rst-order belief on his own choice,
i.e. on what B initially plans to do. Here we assume that B�s plan coincides with his actual
strategy.

To derive B�s disappointment, �rst note that his expected material payo¤ is

EB[mB] =

�
1 � (1� �B) + 2 � �B, if sB = S,
1 � (1� �B) + 4 � �B, if sB = K:

Since mB(O) = 1 is the lowest material payo¤ for B, EB[mB] � mB(O) and B�s disappointment
after O is

max f0;EB[mB]�mB(O)g = EB[mB]� 1 =
�
�B, if sB = S,
3�B, if sB = K:
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We can represent this strategic situation with a psychological game parametrized by the
guilt sensitivity parameters �i (i = A;B). To analyze such (more general) version of the Trust
Minigame with guilt aversion we need to expand our notation about beliefs by introducing a
feature of Ann�s second-order beliefs that describes her expectation of Bob�s disappointment if
she goes Out:

��A = EA [EB[mB]�mB(O)] :

The psychological game with role-independent guilt-aversion is more easily represented in a
sort of reduced form where each player�s psychological utility depends on his own endogenous
second-order belief rather than the co-player�s endogenous �rst-order belief, as shown in the
Figure 3.

Figure 3. The Trust Minigame with psychological utilities of A and B

5.1 Complete information model

We begin our analysis of the role-independent guilt model by considering its complete information
benchmark, as we did for the role-dependent guilt case. We assume therefore that �A > 0 and
�B > 0 are commonly known. As we stressed in Section 4.1, in a complete information equilibrium
�rst and second-order beliefs are correct, and players maximize given their belief.

First of all, (O;K;�; �) is an equilibrium if �A = �
?
B = 0, �B = 0,

��A = 0, and �
I
B <

1
�B
. If

�A 2
�
0; 13
�
and �B 2 (0; 1) this is the unique equilibrium.

If �B 2 [1;+1), as in the role-dependent guilt case, there is another pure strategy equilibrium
(I; S; �; �) where �A = �

?
B = �

I
B = 1, �B = 1 and ��A = 1.

Finally, we have one additional pure strategy equilibrium if �A 2
�
1
3 ;+1

�
, given by (I;K; �; �)

where �A = �
?
B = 0, �B = 1,

��A = 3, and �
I
B <

1
�B
.

In Appendix B.1 we provide a complete characterization of the equilibrium correspondence,
including mixed equilibria.

5.2 Incomplete information model

5.2.1 Type structure

In the analysis of the game with role-independent guilt we maintain several assumptions that we
made in Section 4.2.1. In particular, we still have a continuum of types on both sides, and each
player i is characterized by a guilt type �i 2 f�L; �Hg, with �L = 0 < �H , and an epistemic type
ei, where the epistemic type determines the beliefs of player i about the type of the co-player.
We assume for simplicity that each type of each player i believes that the guilt and epistemic
types of the co-player �i are independent.23 Speci�cally, we let ei parametrize the subjective
probability of the high-guilt type of the co-player: ei = P(�i;ei)

�
#�i = �

H
�
. This implies that for

each i, ti = (�i; ei) 2 f�L; �Hg � [0; 1] = Ti and we can write � i : [0; 1] ! �
�
f�L; �Hg � [0; 1]

�
.

23Thus, we extend to both players the assumption that we made on A�s beliefs in the model with role-dependent
guilt.
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As a consequence, the second-order endogenous beliefs of players A and B are independent of
their guilt sensitivity. We also assume that each type of each player has the same marginal beliefs
about the epistemic type of the co-player given by a continuous cdf F with full support. Thus,

8ei 2 [0; 1];8x, � i(ei)[#�i = �H \ e�i � x] = eiF (x): (9)

As in the previous Section, higher epistemic types have higher beliefs about the type of the co-
player. But unlike the previous Section, all the types of player B have the same marginal beliefs
about the epistemic type of player A. Here the epistemic type of B parametrizes a di¤erent
feature of B�s beliefs, i.e. the subjective probability that the guilt type of A is high.

By eq. (9), i�s expectation of e�i is independent of ei, hence we write Eei [e�i] = E[e�i]. To
simplify the exposition and avoid tedious discussions of subcases in the equilibrium analysis, we
assume that this expectation is not too low:

E[e�i] >
1

3
. (10)

5.2.2 Equilibrium analysis

Once again, as explained in Section 2, there is always a pooling equilibrium with no trust and
no cooperation: all A-types go Out and all B-types Keep. Indeed, if player A is certain that B
expects O and that, if surprised by I, he would Keep, O is the material-payo¤maximizing choice
and A feels no guilt in going Out because of the belief that B is not disappointed. In turn, B is
certain that A expects him to Keep (and he may feel certain of this also after observing I with
no violation of Bayes rule), hence he feels no guilt for keeping the money because he thinks he
is not disappointing A.

Next we study the non-trivial equilibria. Recall that a non-trivial equilibrium is given by
a pair of decision functions (�A;�B), such that �

�1
A (I) has positive measure; this in turn

determines all the endogenous belief functions. In particular we focus on �A, �B, ��A, �
?
B,

�IB; in equilibrium �A (�A; eA) is a best reply to �A (eA) and ��A (eA) for all �A and eA, and
�B (�B; eB) is a best reply to �IB(eB) for all �B and eB.

We show that in this model all non-trivial equilibria are monotone, with �A(�; �) increasing in
both arguments, �B(�L; �) = K and �B(�H ; �) decreasing, because �IB is decreasing. The reason
for the latter is that in this model (unlike the role-dependent guilt model) eB parametrizes the
subjective probability that the guilt type of A is high. A high-guilt type of A is more willing to
move In compared to a low-guilt type because this move does not disappoint B. Hence high-guilt
types with intermediate �rst-order beliefs move In, while low-guilt types with the same beliefs
stay Out. This implies that the surer B is that A�s guilt type is high, the more he thinks that
A moves In to avoid guilt rather than to obtain a high material payo¤.

The fact that non-optimistic high-guilt types move In to avoid guilt also implies that a
non-trivial equilibrium exists for a wide range of parameter values.

Proposition 4 In the model given by (9)-(10) there is a non-trivial equilibrium i¤ �H > 1
3E[eB ] .

24

If �H 2
�

1
3E[eB ] ; 1

i
there exists a unique non-trivial equilibrium in which �A

�
�L; eA

�
= O,

�A
�
�H ; eA

�
= I, and �B

�
�L; eB

�
= �B

�
�H ; eB

�
= K for every eA and eB, which yields the

following endogenous beliefs: �A (eA) = 0, ��A (eA) = 3E[eB], �B (eB) = eB and �?B(eB) =
�IB (eB) = 0 for every eA and eB. If �

H > 1 there may be other non-trivial equilibria (�A;�B);
they all have the following structure: �B

�
�L; eB

�
= K for every eB, the decision functions

�A(�
k; �) (k 2 fL;Hg) are weakly increasing, �B

�
�H ; �

�
is weakly decreasing, and they are

respectively characterized by thresholds êLA, ê
H
A and êHB ; with 0 � êHA < êLA � 1and 0 � êHB < 1,

such that
24All expectations not indexed by the epistemic type ei are determined by the common marginal cdf F on

T e�i = [0; 1].
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(a) for every epistemic type eA,
�A (eA) = eAF

�
êHB
�
;

��A(eA) =
�
1� F

�
êLA
�� �

3� 2F
�
êHB
�
eA
�
+
�
F
�
êLA
�
� F

�
êHA
��
3E [eB]

�2
�
F
�
êLA
�
� F

�
êHA
��
eAF

�
êHB
�
E
�
eBj�B = S \ #B = �H

�
,

hence �A (�) is increasing, ��A(�) is decreasing and the incentive conditions for A yield

êLA = min

(
1;

1

2F
�
êHB
�) ,

êHA > 0) 1� �H��A(êHA ) = 2�A
�
êHA
�
;

(b) for every epistemic type eB,

�B(eB) =
�
1� F

�
êLA
��
+
�
F
�
êLA
�
� F

�
êHA
��
eB,

�?B(eB) = F (ê
H
B )E[eA],

�IB(eB) = F (ê
H
B )
�
E
�
eAj�A = I \ #A = �H

�
eB + E

�
eAj�A = I \ #A = �L

�
(1� eB)

�
,

hence �B(�) is increasing, �?B(�) is constant, �
I
B(�) is decreasing, and the incentive condi-

tion for B yields

0 < êHB < 1) �IB(ê
H
B ) =

1

�H
.

Sketch of proof First note that a low-guilt type of B always Keeps: �B
�
�L; eB

�
= K

for every eB. This implies that in a non-trivial equilibrium the �rst-order endogenous belief of
A, �A (eA), is increasing, as it was in the role-dependent guilt model. Eq. (9) implies that, for
every player i, choice c and guilt type �, the probability of �i = c given #i = � is determined by
the marginal cdf F ; hence we write PF [�i = cj#i = �]. By eq. (9), the �rst-order belief of eA is

�A(eA) = PF
�
�B = Sj#B = �H

�
eA.

With this, the decision function of the low-guilt type of A is increasing: �A(�L; eA) = I if and
only if �A(eA) > 1

2 , that is

eA >
1

2PF
�
�B = Sj#B = �H

� :
Moreover, the comparison between A�s incentive condition when her guilt type is low, and A�s
incentive condition when her guilt type is high implies that if I is optimal for type (�L; eA) then
it is also optimal for type (�H ; eA). Therefore

PF
�
�A = Ij#A = �H

�
> PF

�
�A = Ij#A = �L

�
.

This implies that �B is increasing: the higher is the probability that B assigns to #A = �H , the
higher is B�s belief that A chooses I, because A chooses I for a set of epistemic types that has a
larger measure when the guilt type is high. Furthermore, �IB and �B(�

H ; �) must be decreasing:
as explained above the higher is eB, the more B explains choice I with A�s desire to avoid guilt
rather than obtaining a high material payo¤ from B�s Sharing. Therefore higher values of eB
are associated to lower conditional beliefs on �A, that is to lower �IB.

With this, we can show that ��A is decreasing and �A(�
H ; �) is weakly increasing. In par-

ticular, we know that �A(�L; �) is weakly increasing, and that feA : �A(�L; eA) = Ig � feA :
�A(�

H ; eA) = Ig. We then conclude that either �A(�H ; �) is increasing or �A(�H ; eA) = I for
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every eA. ��A is decreasing because the more A believes that B�s guilt type is high (the higher
eA), the more he believes that B plans to Share, and �other things being equal �the types that
plan to Share have a lower expected material payo¤ than the types who plan to Keep, therefore
they are also less disappointed if A goes Out.

Finally we show that all equilibria are trivial if �H � 1
3E[eB ] . By eq. (10)

1
3E[eB ] < 1. We

already know that if �H < 1 all B-types Keep. Therefore, for this range of parameters, �A = 0
and A would go In only to avoid guilt, i.e., only a high-guilt type of A may choose I. Formally
êHB = 0 and ê

L
A = 1 (recall that �B(�

H ; �) is weakly decreasing and �A(�L; �) is weakly increasing).
The fraction of high-guilt types of A going In is positive if 1 � �H��A(êHA ) < 0, where ��A(ê

H
A )

is the disappointment of B expected by threshold type (�H ; êHA ) if he chooses Out. When all
B-types Keep, the disappointment of B if A goes Out is

(1 � (1��B) + 4 ��B)� 1 = 3�B,

and the expression for ��A(ê
H
A ) can be simpli�ed to

��A(ê
H
A ) = EêHA [3�B] = 3PF

�
�A = Ij#A = �H

�
E[eB] � 3E[eB].

Therefore condition 1� �H��A(êHA ) < 0 can be satis�ed only if �H > 1
3E[eB ] .

A more formal proof is contained in Appendix B.2.

6 Discussion

In this paper we analyzed Bayesian equilibrium models of the Trust Minigame with guilt aversion,
assuming that each player is uncertain about the guilt sensitivity of the co-player (�rst-order
uncertainty) and/or about the co-player�s beliefs about his own guilt sensitivity (second-order
uncertainty). The beliefs ascribed to players are determined by their Harsanyi types and are
subjective. We analyzed two models: In the �rst one guilt is role-dependent, because only player
B, the second mover (or trustee), can feel guilt. In this model A�s type is purely epistemic and
parametrizes his subjective probability that the guilt type of B is high. On the other hand, B�s
type has both a guilt and an epistemic component, where the latter parametrizes his second-order
exogenous belief, i.e. his belief about A�s belief about B�s guilt type. In the second model guilt
is role-independent, i.e. also the �rst mover A can feel guilt if he thinks that he is disappointing
B by not trusting him. For the sake of simplicity and to keep symmetry between A and B
also in modeling exogenous beliefs, in this second model we let the epistemic component of both
players�types parametrize their �rst-order exogenous belief, i.e. their subjective probability that
the co-player�s guilt type is high. Therefore, the second model is not a generalization of the �rst
one.

In the rest of this Section we �rst discuss the empirical implications of our models and then we
o¤er our methodological perspective on the use of the subjective Bayesian equilibrium concept.

6.1 Empirical predictions

An equilibrium speci�es actions, beliefs about actions (endogenous �rst-order beliefs) and be-
liefs about beliefs about actions (endogenous second-order beliefs) for each type of each player.
We focused on non-trivial equilibria of the Trust Minigame where a positive fraction of A-types
trust the second mover, B. Qualitative predictions about behavior and hierarchical beliefs about
behavior can be obtained assuming that the actual distribution of types satis�es some mild as-
sumptions. Such predictions can be used to organize experimental data. If the distribution of
types has a rich support and the upper bound on guilt aversion is su¢ ciently high, we should ex-
pect not only heterogeneous behavior, but also heterogeneous hierarchical beliefs about behavior,
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with a lot of subjects who exhibit intermediate beliefs. Furthermore, if the epistemic component
of players� types is statistically independent of the guilt component, then we should observe
positive correlation between pro-social actions and endogenous second-order beliefs (cf. Char-
ness & Dufwenberg 2006). Indeed, the willingness to choose the pro-social action, in particular
the willingness to Share of B, is an increasing function of the guilt type and of the endogenous
(conditional) second-order belief. In our model, the latter depends only on the epistemic type.
If epistemic and guilt types are statistically independent, then the pro-social action must be
positively correlated with the endogenous second-order belief.25

Statistical independence between the guilt and epistemic component of types is a natural
benchmark. But it is also plausible to assume that, by a kind of false consensus e¤ect (see Ross
et al. 1977), types with higher guilt aversion tend to have higher beliefs about the aversion to
guilt of the co-player. With such positive correlation, our model with role-independent guilt
shows that the endogenous conditional second-order beliefs of B-subjects may be negatively
correlated with their guilt type: high-guilt types of B tend to believe that the guilt type of
A is high and to explain A�s trust as a desire to not disappoint B rather than to obtain a
higher material payo¤. This tends to decrease the correlation between the pro-social action and
(conditional) second-order beliefs. On the other hand, in the model with role-dependent guilt
lack of independence may be due to a di¤erent kind of false consensus: the higher the guilt type
of B, the higher (in the stochastic sense) his belief about A�s belief that B�s guilt type is high.
In this case positive correlation between the guilt and epistemic component tends to strengthen
the positive correlation between the pro-social action and endogenous conditional second-order
belief.

The actual existence of a false consensus e¤ect does not imply that players�subjective beliefs
must display a perception of false consensus for the co-player. Such perceptions are modeled by
the type structure. In our models there is no perception of false consensus because of the twin
assumptions that the belief maps do not depend on the guilt component of players�type, and
that each player deems the epistemic component of the co-player type to be independent of the
guilt component. Taking into account what we just said about the actual false consensus e¤ect,
we can speculate about the e¤ect of introducing the perception of false consensus in our models.
If in the model with role-dependent guilt we let A perceive a positive correlation between the
guilt and epistemic components of B�s type, the qualitative results do not change: now A expects
high-guilt types of B to be even more cooperative because he expects them to hold on average
higher endogenous second-order beliefs. On the other hand, the e¤ects of introducing a strong
perception of false consensus in the model with role-independent guilt are not clear: here higher
guilt types of B should be expected to hold on average lower endogenous second-order beliefs.

6.2 Adequacy of subjective Bayesian equilibrium

Our use of Bayesian equilibrium analysis to model behavior and endogenous beliefs deserves
discussion. It is sometimes argued that agents learn equilibrium behavior by playing a game
many times against randomly matched co-players. However, our analysis cannot rely on such
arguments for several reasons. First, in so far as we aim at organizing experimental data,
we must take into account that in most experiments on the Trust Game subjects play the
game one shot, hence they cannot learn. Second, as noted by Battigalli & Dufwenberg (2009),
once behavior has stabilized in a recurrent game, strategy distributions should look like a self-
con�rming equilibrium, which is likely to be di¤erent from a Nash or Bayesian equilibrium if
agents have belief-dependent preferences. A third, related issue is that we assume that players
do not know the objective distribution of types. Then, even with standard preferences, subjective
Bayesian equilibrium is not the right tool to capture selfcon�rming patterns of behavior. The

25Formally, P[�B = S] = f(�; �), where f is increasing in both arguments. If � = �(e) and the random variables
e and # are independent, then �B must be positively correlated with �.
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reason is that Bayesian equilibrium postulates that players have correct conjectures about the
true (type-dependent) decision functions of co-players. This assumption is justi�ed by learning
in those (rare) circumstances when agents obtain su¢ cient information feedback to identify such
decision functions.. However, such �ne information feedback should also allow to identify the
distribution of types (cf. Dekel et al. 2004).

We use Bayesian equilibrium analysis to provide an orderly and consistent description of
strategic reasoning in an incomplete information environment. It has been shown that, if one
drops the assumption that exogenous beliefs are derived from an objective distribution �as we
do �then the Bayesian equilibrium assumption that players hold correct conjectures about the
co-players�decision functions just ensures that behavior and endogenous beliefs are consistent
with common certainty of rationality, which is characterized by incomplete-information rational-
izability (Brandenburger & Dekel 1987, Battigalli & Siniscalchi 2003). Of course, our speci�c
assumptions about exogenous beliefs yield equilibrium implications that go beyond mere ratio-
nalizability. Therefore we o¤er an analysis in between objective Bayesian-Nash equilibrium and
the most general notion of incomplete-information rationalizability. It would be interesting to
explore a rationalizability approach to the Trust Minigame with guilt aversion whereby some
restrictions on beliefs are taken as given and commonly understood, as suggested by Battigalli &
Siniscalchi (2003) for games with standard preferences. Battigalli et al. (2012) essentially is an
example of this approach to the analysis of a cheap-talk sender-receiver game where the sender
is a¤ected by guilt aversion.

Appendix

Appendix A. Analysis of role-dependent guilt

A.1: Equilibrium with complete information

We describe the mixed equilibrium correspondence of the Trust Minigame with guilt aversion
when (�A; �B) is common knowledge, �A = 0 and �B > 0. We rely on Nash�s mass-action
interpretation (cf. Weibull 1996) and think of a mixed strategy �i 2 �(Si) as coming from a
statistical distribution of pure strategies in a population of individuals playing in role i, under
the assumption that individuals are drawn at random and matched to play the game. Thus
�i(si) is the fraction of individuals in population i playing si, and also the objective probability
that si is played; but no individual actually randomizes. Thus, for example, if player A carries
out his plan and O occurs, A cannot be disappointed because this means that the individual
playing in role A planned to choose O with probability one. This interpretation is consistent
with the incomplete information analysis to follow. The main di¤erence between the equilibria
analyzed here and those of the incomplete information models is that here all the individuals
playing in role i have the same beliefs about the co-player.

Given the special form of our psychological utility functions, we would obtain the same
equilibria under the assumption that �i(si) is the probability with which i plans to choose si.
Such equivalence holds trivially for standard games, but it does not hold for all psychological
games.
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An equilibrium is a pro�le (�A; �B; �A; �B; �
?
B; �

I
B) that satis�es the incentive conditions

�A(I) > 0) �A �
1

2
,

�A(I) < 1) �A �
1

2
,

�B(S) > 0) �IB �
1

�B
,

�B(S) < 1) �IB �
1

�B
,

and the belief conditions

�A = �B(S),

�B = �A(I),

�?B = �A,

�B > 0) �IB = �
?
B.

Under the mass-action interpretation, the incentive conditions say that an action can be
chosen by a positive fraction of individuals in population i only if it is a best reply to the
common belief about �i. The belief conditions state that beliefs of the �rst and second-order
are correct. In particular, the overall initial second-order belief of B is a joint probability measure
on the strategies and �rst-order beliefs of A, say �2B 2 �(fI;Og � [0; 1]), where [0; 1] is the set
of possible values of �A and hence represents the set of �rst-order beliefs of A. In a complete-
information equilibrium with �rst-order beliefs (�A; �B), �2B assigns marginal probability �B to
I and marginal probability 1 to the true �rst-order belief �A, that is

�2B(I � [x; y]) =
�
�B, if �A 2 [x; y],
0, if �A =2 [x; y],

for each interval [x; y] � [0; 1]. This implies �?B = �A and �
I
B = �A = �

?
B if �A = �

2
B(I� [0; 1]) >

0. The latter condition holds because if �2B(I � [0; 1]) > 0 then �2B(�jI) must be a Dirac measure
supported by �A:

�2B([x; y]jI) =
�2B(I � [x; y])
�2B(I � [0; 1])

=

�
1, if �A 2 [x; y],
0, if �A =2 [x; y].

With this, the mixed equilibrium correspondence is as follows:

� If �B < 1, then �B = �A(I) = 0, �?B = �A = �B(S) = 0, and �
I
B is arbitrary.

� If 1 � �B < 2, then

� either �B = �A(I) = 0, �?B = �A = �B(S) �
1
2 , �

I
B � 1

�B
, and �B(S) > 0) �IB =

1
�B
;

� or �B = �A(I) = 1, �IB = �
?
B = �A = �B(S) =

1
�B
;

� or �B = �A(I) = 1, �IB = �
?
B = �A = �B(S) = 1.

� If �B = 2, then

� either �B = �A(I) = 0, �?B = �A = �B(S) �
1
2 , �

I
B � 1

2 , and �B(S) > 0) �IB =
1
2 ;

� or 0 < �B = �A(I) < 1, �IB = �
?
B = �A = �B(S) =

1
2 ;

� or �B = �A(I) = 1, �IB = �
?
B = �A = �B(S) = 1.
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� If �B > 2, then

� either �A(I) = �B = 0, �?B = �A = �B(S) �
1
2 , �

I
B � 1

�B
, and �B(S) > 0) �IB =

1
�B
,

� or �B = �A(I) = 1, �IB = �
?
B = �A = �B(S) = 1.

A.2: Proof of Proposition 1

We start from the conjecture that set ftA 2 [0; 1] : �A(tA) = Ig has a strictly positive measure
and provide a characterization of the equilibria that verify this property. We go through a
sequence of claims.

Claim 5 For every eB, �B(�L; eB) = K, and �B(�H ; eB) = K whenever �H � 1.

Proof Fix eB arbitrarily. Recall that the optimal choice of type (�B; eB) is K if �B�IB(eB) <
1. Therefore �B(�L; eB) = K, because �L < 1 and �IB(eB) 2 [0; 1]. Next we prove that
�IB(eB) < 1, which implies that �B(�H ; eB) = K whenever �H � 1.26 By assumption, event
[�A = I] = ftA 2 [0; 1] : �A(tA) = Ig has strictly positive measure. Therefore �B(eB) =
�B(eB)[�A = I] > 0, because cdf FeB is strictly increasing on [0; 1], hence the corresponding
measure �B(eB) 2 �([0; 1]) has full support. This implies that �IB(eB) is determined by Bayes
rule:

�IB(eB) = EeB [�Aj�A = I] =
Z
ftA2[0;1]:�A(tA)=Ig

�A(tA)�B(eB)[dtAj�A = I],

where �B(eB)[�j�A = I] is the conditional measure given by

�B(eB)[Ej�A = I] =
�B(eB)[E \ (�A = I)]
�B(eB)[�A = I]

,

for every measurable set E � [0; 1].
Since �B(�L; e0B) = K for every e0B 2 [0; 1], every type tA assigns at least probability 1� tA

to K:
1��A(tA) = �A(tA)[�B = K] � �A(tA)[#B = �L] = 1� tA.

This implies
ftA 2 [0; 1] : �A(tA) = 1g � f1g.

Since cdf FeB is continuous, �B(eB) is an atomless probability measure, hence

�B(eB)[�A = 1] � �B(eB)[f1g] = 0.
Therefore

�B(eB)[�A < 1 \ �A = I] = �B(eB)[�A = I],
which implies

�IB(eB) =

Z
ftA2[0;1]:�A(tA)=I;�A(tA)<1g

�A(tA)�B(eB)[dtAj�A = I] < 1.

�
We now focus on the case in which �H > 1 and we analyze the equilibrium functions �A(�) :

[0; 1]! fI;Og, �B(�L; �) : [0; 1]! fS;Kg, and �B(�H ; �) : [0; 1]! fS;Kg to show that they are
(weakly) increasing.27 We also provide a characterization of some properties of the endogenous
beliefs of A and B. The following claim shows that �A and �A are increasing. We let �A
denote the probability measure on T eB = [0; 1] induced by cdf F .28 Since the random variable
26We could use our tie-breaking rule (the low action is chosen when indi¤erent) to conclude that �B(�H ; eB) = K

even if �H�B(eB) = 1, which yields the desired result. But we prefer the longer proof in the text to show that
tie-breaking rules simplify the exposition, but are immaterial for our results.
27Recall that we let I and S be the �high�actions of player A and B respectively.
28That is, �A((x; y]) = F (y)� F (x) for every x; y 2 T eB = [0; 1] with x < y.
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�IB depends only on eB, to ease notation we write

�A

�
�IB >

1

�H

�
:= �A

�
�B �

�
eB : �

I
B(eB) >

1

�H

��
.

Claim 6 The beliefs and decision function of A satisfy the following conditions:

�A

�
�IB >

1

�H

�
>
1

2

and

�A(tA) = tA�A

�
�IB >

1

�H

�
,

�A(tA) = I () tA >
1

2�A

h
�IB >

1
�H

i ,
for every tA.

Proof Claim 5 and the incentive condition for B imply

[�B = S] = f(�B; eB) : �B = �H ^ �H�IB(eB) > 1g.

By assumption, �A(tA)[#B = �H \ eB � y] = tAF (y) for each y. Therefore

�A(tA) = �A(tA)[�B = S] = �A(tA)

�
#B = �

H \ �IB >
1

�H

�
= tA�A

�
�IB >

1

�H

�
.

The incentive condition forA (�A(tA) = I i¤�(tA) > 1
2) yields the equivalence. If �A

h
�IB >

1
�H

i
�

1
2 , then �A(tA) = O for every tA, contradicting the assumption that a positive fraction of A-types
choose I. Therefore �A[�

I
B >

1
�H
] > 1

2 . �

Claim 7 Let

êA =
1

2�A

h
�IB >

1
�H

i ,
êHB = sup

�
eB : �

I
B(eB) �

1

�H

�
.

Then, for every eB

�?B(eB) =
�
1� F

�
êHB
�� Z 1

0
tAdFeB (tA),

�IB (eB) =
1� F (êHB )
1� FeB (êA)

Z 1

êA

tAdFeB (tA) >
1

2
,

hence �?B(�) and �
I
B(�) are strictly increasing.

Proof By Claim 6

�?B (eB) = �A

�
�IB >

1

�H

� Z 1

0
tAdFeB (tA) = E[�A],

�IB (eB) =
�A

h
�IB >

1
�H

i
1� FeB (êA)

Z 1

êA

tAdFeB (tA) = E
�
�Aj�A >

1

2

�
>
1

2
,
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where the inequality is strict because êA < 1, �A(êA) = 1
2 and FeB is strictly increasing. By

assumption (6), �?B(�) and �
I
B(�) are strictly increasing. By the de�nition of êHB , �A

h
�IB >

1
�H

i
=

1� F (êHB ), which yields the formulas for �
?
B(eB) and �

I
B(eB). �

The rest of the proposition follows from the monotonicity of �IB and the observation that
�B(�

H ; eB) = S i¤ �IB(eB) >
1
�H
. �

A.3: Proof of Proposition 3

Proof. Remember that EeB [tAjtA > x] is only weakly increasing in eB; therefore, we cannot
use the results of Proposition 1 that depend on (6). Of course, �B

�
�L; eB

�
= K for every eB.

Moreover, a statement analogous to Claim 6 holds. The only di¤erence is that here the set of
epistemic types of B choosing S when #B = �H may be di¤erent from the set of eB such that
�IB (eB) >

1
�H
. To ease notation, we let

EHSB =
�
eB : �B(�

H ; eB) = S
	

denote the set of B�s epistemic types such that Harsanyi type (�H ; eB) Shares. From the marginal
cdf F we recover the measure of this set according to A�s belief, �A[E

HS
B ].

Claim 8 Let
êA =

1

2�A[E
HS
B ]

.

Then, for every eB

�?B (eB) = �A[E
HS
B ]

Z 1

0
tdFeB (t)

= �A[E
HS
B ]

1 + (1� ") eB
2

,

which is strictly increasing in eB, and

�IB (eB) =
�A[E

HS
B ]

1� FeB (êA)

Z 1

êA

tdFeB (t)

=

(
�A[E

HS
B ] (1+êA)2 , if eB � êA � 1,

�A[E
HS
B ]

1+(1�")eB�"ê2A
2(1�"êA) , if 0 � êA < eB,

which is constant for eB � êA and strictly increasing for eB > êA.

Proof. By (the analog of) Claim 6

�?B (eB) = �A[E
HS
B ]

Z 1

0
tdFeB (t)

= �A[E
HS
B ]

Z 1

0
tdFeB (t)

= �A[E
HS
B ]

�Z eB

0
"tdt+

Z 1

eB

�
1� "
1� eB

+ "

�
tdt

�
= �A[E

HS
B ]

�
1

2

�
"e2B +

�
1� "
1� eB

+ "

��
1� e2B

���
= �A[E

HS
B ]

1 + (1� ") eB
2

,
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which is strictly increasing in eB, and

�IB (eB) =
�A[E

HS
B ]

1� FeB (êA)

Z 1

êA

tdFeB (t)

=

8><>:
�A[E

HS
B ]�

(1�")
(1�eB)

+"

�
(1�êA)

R 1
êA
t
�
(1�")
(1�eB) + "

�
dt, if eB � êA � 1,

�A[E
HS
B ]

(1�")+"(1�êA)

�R eB
êA
t"dt+

R 1
eB
t
�
1�"
1�eB + "

�
dt
�
, if 0 � êA < eB

=

8>>>><>>>>:
�A[E

HS
B ]

�
(1�")
(1�eB)

+"

�
[t2]1êA
2�

(1�")
(1�eB)

+"

�
(1�êA)

, if eB � êA � 1,

�A[E
HS
B ]

(1�"êA)

�
"
[t2]

eB
êA
2 +

�
1�"
1�eB + "

�
[t2]1eB
2

�
, if 0 � êA < eB

=

8>>>>><>>>>>:
�A[E

HS
B ]�

(1�")
(1�eB)

+"

�
(1�êA)

�
(1�")
(1�eB)

+"

�
(1�ê2A)

2 , if eB � êA � 1,

�A[E
HS
B ]

(1�"êA)

 
"(e2B�ê2A)+

�
1�"
1�eB

+"
�
(1�e2B)

2

!
, if 0 � êA < eB

=

(
�A[E

HS
B ] (1+êA)2 , if eB � êA � 1,

�A[E
HS
B ]

1+(1�")eB�"ê2A
2(1�"êA) , if 0 � êA < eB.

which is constant for eB � êA and strictly increasing for eB > êA. �
Now we show that in every non-trivial equilibrium, that is an equilibrium with êA < 1, every

epistemic type of B who is indi¤erent between S and K (when #B = �H) is smaller than êA.

Claim 9 If êA < 1, for every �eB 2 [0; 1]

�H�IB (�eB) = 1 =) �eB � êA:

Proof. Suppose that there exists �eB > êA such that �H�IB (�eB) = 1. By Claim 8, �IB is
strictly increasing on (êA; 1]. Therefore, �H�IB (eB) < 1 for every eB < �eB, and �

H�IB (eB) > 1
for every eB > �eB. Hence in this case �B

�
�H ; �

�
is increasing and characterized by the threshold

�eB. As a consequence we can rewrite A�s incentive condition as

êA =
1

2 (1� �eB)
,

which does not have a solution in [0; 1] if �eB > êA � 1
2 . �

Let us now check the equilibria that may arise when all the epistemic types of B �nd optimal
to Share when B�s guilt type is high (that is when there is no indi¤erent type).

Claim 10 There is at most one non-trivial equilibrium in which �H�IB (0) > 1, and therefore
�B
�
�H ; eB

�
= S for each eB. This is the threshold equilibrium characterized by

�
êA; ê

H
B

�
=�

1
2 ; 0
�
, and it exists only for �H > 4

3 .

Proof. Given that all epistemic types of B choose S when #B = �H , the incentive condition
for the threshold type tA = êA implies êA = 1

2 . Since �A is increasing and characterized by
the threshold êA = 1

2 , a high-guilt type of B always chooses S, given that his second-order
endogenous belief is

�IB (eB) =

(
3
4 >

1
�H
, if eB � 1

2 ,
1+(1�")eB� "

4
2�" > 1

�H
, if eB > 1

2 ,

for �H > 4
3 . �
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Claim 11 Every non-trivial equilibrium in which �H�IB (eB) = 1 for every eB � êA is equivalent
to a threshold equilibrium with

�
êA; ê

H
B

�
=
�

�H

4��H ;
3
2 �

2
�H

�
. Such equilibria exist if and only if

�H 2
�
4
3 ; 2
�
.

Proof. Fix any equilibrium (�A;�B) as in the claim. First recall that by the analog of
Claim 6 �A is increasing with threshold êA � 1

2 . Next, note that all epistemic types eB � êA
are indi¤erent between S and K. Since �IB is weakly increasing (Claim 8), there is an equivalent
threshold equilibrium (�A; ��B) where the threshold êHB characterizing ��B satis�es (1 � êHB ) =
�A[E

HS
B ]. The equilibrium conditions for (�A; ��B) are:(

(1� êHB )
(1+êA)
2 = 1

�H

2êA(1� êHB ) = 1.

Solving the indi¤erence conditions above we obtain

�
êA; ê

H
B

�
=

�
�H

4� �H
;
3

2
� 2

�H

�
.

Checking for the values of �H that satisfy the inequalities 0 � êHB < êA < 1, we get �H 2
�
4
3 ; 2
�
.

�

Claim 12 Every equilibrium is trivial if �H < 4
3 .

Proof. By Claim 9 there cannot exist non-trivial equilibria where the indi¤erent epistemic
type is larger than êA. By Claims 10 and 11, non-trivial equilibria where all the types eB � êA
are indi¤erent, or where no epistemic type is indi¤erent, exist only if �H � 4

3 . Hence, all the
equilibria with �H < 4

3 are trivial. �
�

Appendix B. Analysis of role-independent guilt

B.1: Equilibria in the complete-information game

We describe the mixed equilibrium correspondence of the Trust Minigame with guilt aversion
when (�A; �B) is common knowledge, �A > 0 and �B > 0. (We say that guilt aversion is not role-
dependent because both A and B can feel guilt and we are not assuming that the guilt parameter
is higher for the agent playing in a particular role.) An equilibrium is a pro�le (�A; �B) that
induces the endogenous beliefs

�
�A; �B; �

?
B; �

I
B;
��A
�
and that satis�es the incentive conditions

�A(I) > 0) �A �
1

2
� �A

��A
2

,

�A(I) < 1) �A �
1

2
� �A

��A
2

,

�B(S) > 0) �IB �
1

�B
,

�B(S) < 1) �IB �
1

�B
,
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and the belief conditions

�A = �B(S),

�B = �A(I),

�?B = �A,

�B > 0) �IB = �
?
B,

��A = �B(S)�B + 3 (1� �B(S))�B.

In order to have a full analysis of the equilibria, we proceed by considering seven regions in
the parameter space.

� If �B < 1 and �A < 1
3 , then �B = �A(I) = 0, �A = �B(S) = �?B = 0, ��A = 0, and

�IB <
1
�B
.

� If �B < 1 and �A � 1
3 , then

- either �A = �B(S) = �
?
B = 0, �B = �A(I) = 0,

��A = 0, and �
I
B <

1
�B
;

- or �A = �B(S) = �
?
B = �

I
B = 0, �B = �A(I) =

1
3�A
, ��A =

1
�A
;

- or �A = �B(S) = �
?
B = �

I
B = 0, �B = �A(I) = 1, ��A = 3.

� If 1 � �B < 2 and �A < 1
3 , then

- either �A = �B(S) = �
?
B = 0, �B = �A(I) = 0,

��A = 0, and �
I
B <

1
�B
;

- or �A = �B(S) = �
?
B = �

I
B =

1
�B
, �B = �A(I) = 1, ��A =

3�B�2
�B

;

- or �A = �B(S) = �
?
B = �

I
B = 1, �B = �A(I) = 1, ��A = 1.

� If 1 � �B < 2 and �A � 1
3 , then

- either �A = �B(S) = �
?
B = 0, �B = �A(I) = 0,

��A = 0, and �
I
B <

1
�B
;

- or �A = �B(S) = �
?
B = �

I
B = 0, �B = �A(I) =

1
3�A
, ��A =

1
�A
;

- or �A = �B(S) = �
?
B = �

I
B = 0, �B = �A(I) = 1, ��A = 3;

- or �A = �B(S) = �
?
B = �

I
B =

1
�B
, �B = �A(I) = 1, ��A =

3�B�2
�B

;

- or �A = �B(S) = �
?
B = �

I
B = 1, �B = �A(I) = 1, ��A = 1.

� If �B � 2 and �A < �B�2
3�B�2 , then

- either �A = �B(S) = �
?
B = 0, �B = �A(I) = 0,

��A = 0, and �
I
B <

1
�B
;

- or �A = �B(S) = �
?
B = �

I
B =

1
�B
, �B = �A(I) = 0, ��A = 0;

- or �A = �B(S) = �
?
B = �

I
B = 1, �B = �A(I) = 1, ��A = 1.

� �B � 2 and �B�2
3�B�2 � �A <

1
3 then

- either �A = �B(S) = �
?
B = 0, �B = �A(I) = 0,

��A = 0, and �
I
B <

1
�B
;

- or �A = �B(S) = �
?
B = �

I
B =

1
�B
, �B = �A(I) = 0, ��A = 0;
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- or �A = �B(S) = �
?
B = �

I
B =

1
�B
, �B = �A(I) =

�B�2
�A(3�B�2) ,

��A =
�B�2
�A�B

;

- or �A = �B(S) = �
?
B = �

I
B =

1
�B
, �B = �A(I) = 1, ��A =

3�B�2
�B

;

- or �A = �B(S) = �
?
B = �

I
B = 1, �B = �A(I) = 1, ��A = 1.

� �B � 2 and �A � 1
3 , then

- either �A = �B(S) = �
?
B = 0, �B = �A(I) = 0,

��A = 0, and �
I
B <

1
�B
;

- or �A = �B(S) = �
?
B = �

I
B = 0, �B = �A(I) =

1
3�A
, ��A =

1
�A
;

- or �A = �B(S) = �
?
B = �

I
B = 0, �B = �A(I) = 1, ��A = 3;

- or �A = �B(S) = �
?
B = �

I
B =

1
�B
, �B = �A(I) = 0, ��A = 0;

- or �A = �B(S) = �
?
B = �

I
B =

1
�B
, �B = �A(I) =

�B�2
�A(3�B�2) ,

��A =
�B�2
�A�B

;

- or �A = �B(S) = �
?
B = �

I
B =

1
�B
, �B = �A(I) = 1, ��A =

3�B�2
�B

;

- or �A = �B(S) = �
?
B = �

I
B = 1, �B = �A(I) = 1, ��A = 1.

B.2: Proof of Proposition 4

We start from the conjecture that a strictly positive fraction of A-types choose I and provide a
characterization of the equilibria that verify this property. We analyze the equilibrium functions
�A(�

k; �) : [0; 1] ! fI;Og, �B(�k; �) : [0; 1] ! fS;Kg, with k = H;L, and we show that they
are monotone, with �A(�k; �) weakly increasing and �B(�k; �) weakly decreasing (letting I and
S be the �high�actions of A and B respectively). We also provide a characterization of some
properties of the endogenous beliefs. We do so by proceeding through a series of claims.

First note that the analog of Claim 5 holds. In particular, B Shares i¤ #B = �H and
�IB�

H > 1. Recall that �A is the common marginal belief of each type of A about the epistemic
type of B, and EHSB =

�
eB : �B(�

H ; eB) = S
	
.

Claim 13 For every eA,

�A (eA) = eA�A[E
HS
B ],

�A(�
L; eA) =

�
I, if eA > êLA,
O, otherwise,

where êLA = min
n
1; 1
2�A[E

HS
B ]

o
2
�
1
2 ; 1
�
.

Proof The analog of Claim 5 and B�s incentive condition imply

[�B = S] = f(�B; eB) : �B = �H ; �H�IB(eB) > 1g.

By assumption, �A(eA)[#B = �H \ eB � y] = eAF (y) for each y. Therefore

�A(eA) = �A(eA)[�B = S] = �A(eA)

�
#B = �

H \ �IB >
1

�H

�
= eA�A[E

HS
B ],

which is increasing in eA. The incentive condition forA when the guilt type is low (�A(�L; eA) = I

i¤ �A(eA) > 1
2) implies that ê

L
A = min

n
1; 1
2�A[E

HS
B ]

o
; notice that êLA 2

�
1
2 ; 1
�
.

Next note that in a non-trivial equilibrium A necessarily expects to disappoint B by going
Out. Formally:
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Claim 14 For each eA, ��A(eA) > 0.

Proof In a non-trivial equilibrium a positive fraction of A-types go In, i.e., the set�
eA : �A(�

L; eA) = I
	
[
�
eA : �A(�

H ; eA) = I
	

has positive Lebesgue measure. Let �B denote the probability measure on T
e
A = [0; 1] induced

by cdf F , an exogenous marginal belief of player B. To ease notation, let

EHIA =
�
eA : �A(�

H ; eA) = I
	
,

ELIA =
�
eA : �A(�

L; eA) = I
	
.

A positive fraction of A-types go In and �B has full support, therefore �B[E
LI
A ] + �B[E

HI
A ] > 0.

Hence each epistemic type eB 2 (0; 1) expects A to go In with positive probability:

�B(eB) = �B(eB)(�A = Ij#A = �L)�B(eB)(#A = �L) + �B(eB)(�A = Ij#A = �H)�B(eB)(#A = �H)
= �B[E

LI
A ](1� eB) + �B[EHIA ]eB > 0:

Therefore, for each type (�B; eB) 2 �� (0; 1)

E(�B ;eB)[mB] = 1 � (1��B(eB)) + 2 ��B(eB) > 1.

Since �A[(0; 1)] = 1, for each eA

��A(eA) = EeA
�
maxf0;E(#B ;eB)[mB]� 1g

�
> 0.

�

Claim 15 According to B�s beliefs, a high-guilt A is strictly more likely to go In than a low-guilt
A: �B[E

HI
A ] > �B[E

LI
A ]. Furthermore, whenever the conditional expectations EeB

�
eAj�A = I \ #A = �H

�
and EeB

�
eAj�A = I \ #A = �L

�
are well de�ned, they are independent of eB and satisfy

E
�
eAj�A = I \ #A = �H

�
=

1

�B[E
HI
A ]

Z
EHIA

eAd�B(eA) <

<
1

�B[E
LI
A ]

Z
ELIA

eAd�B(eA) = E
�
eAj�A = I \ #A = �L

�
.

Proof �A(�L; eA) = I i¤ 2�A[E
HS
B ]eA > 1, and �A(�H ; eA) = I i¤ 2�A[E

HS
B ]eA > 1 �

�H��A(eA). Note that �
H��A(eA) > 0 because �

H > 0 by assumption and ��A(eA) > 0 by Claim
14. Since �B has full support,

�B[E
HI
A ]� �B[ELIA ] = �B[feA : 1� �H��A(eA) < 2�A[EHSB ]eA � 1g] > 0.

Recall that, according to B�s beliefs, #A and eA are independent. Therefore, for every
x 2 [0; 1],

PeB [eA < xj�A = I \ #A = �L] = PeB [eA < xjeA 2 ELIA \ #A = �L] = P[eA < xjeA 2 ELIA ]

whenever the conditional probability is well de�ned (that is, for �B[E
LI
A ] > 0 and eB < 1). The

conditional probability P[eA < xjeA 2 ELIA ] is independent of eB because it is determined by the
common marginal belief �B on T

e
A = [0; 1] generated by cdf F :

P[eA < xjeA 2 ELIA ] =
�B[feA 2 ELIA : eA < xg]

�B[E
LI
A ]

.
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Similarly,

PeB [eA < xj�A = I \ #A = �H ] = P[eA < xjeA 2 EHIA ] =
�B[feA 2 EHIA : eA < xg]

�B[E
HI
A ]

whenever the conditional probability is well de�ned (that is, for eB > 0, since we know that
�B[E

HI
A ] > 0). Notice that ELIA = (êLA; 1] � EHIA � [0; 1]. Therefore, for each eB 2 (0; 1),

E
�
eAj�A = I \ #A = �H

�
=

1

�B[E
HI
A ]

Z
EHIA

eAd�B(eA) <
1

�B[E
LI
A ]

Z
ELIA

eAd�B(eA)

= E
�
eAj�A = I \ #A = �L

�
where the second conditional expectation is well de�ned if �B[E

LI
A ] > 0, i.e. if ê

L
A < 1. �

Claim 16 The �rst-order endogenous belief of B is

�B(eB) = �B[E
LI
A ] + eB

�
�B[E

HI
A ]� �B[ELIA ]

�
,

which is strictly increasing in eB.

Proof The �rst-order endogenous belief of B is

�B(eB) = P[�A = I] = �B[ELIA ](1� eB) + �B[EHIA ]eB

= �B[E
LI
A ] + eB

�
�B[E

HI
A ]� �B[ELIA ]

�
:

Notice that �B is strictly increasing in eB given that �B[E
HI
A ] > �B[E

LI
A ], as shown in Claim

15. �

Claim 17 The second-order endogenous belief of B is such that

�?B(eB) = �A[E
HS
B ]E(eA),

which is constant, and

�IB(eB) = �A[E
HS
B ]

�
E
�
eAj�A = I \ #A = �L

�
(1� eB) + E

�
eAj�A = I \ #A = �H

�
eB
�
,

which is decreasing (strictly, if �A[E
HS
B ] > 0). Moreover

�B
�
�H ; eB

�
=

�
S, if eB < êHB ,
K, otherwise,

where êHB satis�es the incentive conditions

êHB = 0 =) �IB(ê
H
B ) �

1

�H
,

êHB 2 (0; 1) =) �IB(ê
H
B ) =

1

�H
,

êHB = 1 =) �IB(ê
H
B ) �

1

�H
.
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Proof The second-order belief of B on �A is independent of eB because, by assumption, �A
depends only on eA and each type of B has the same marginal belief �B (the measure generated
by cdf F ) on T eB = [0; 1]. Speci�cally,

�?B(eB) = EeB [�A] = EeB (�A[E
HS
B ]eA) = �A[E

HS
B ]E(eA):

Given that �IB(eB) = EeB [�Aj�A = I] and using Claims 13 and 15, we obtain

�IB(eB) = �A[E
HS
B ]EeB [eAj�A = I]

= �A[E
HS
B ]

�
E
�
eAj�A = I \ #A = �L

�
(1� eB) + E

�
eAj�A = I \ #A = �H

�
eB
�

if the denominator is positive. Therefore �IB(�) is decreasing in eB, given that

@�IB(eB)

@eB
= �A[E

HS
B ]

�
E
�
eAj�A = I \ #A = �H

�
� E

�
eAj�A = I \ #A = �L

��
� 0

by Claim 15 (note that �A[E
HS
B ] may be zero). The incentive condition for the high-guilt type

of B implies that he chooses S i¤ �IB(eB) >
1
�H
. Therefore B�s decision function is weakly

decreasing in eB:

�B
�
�H ; eB

�
=

�
S, if eB < êHB ,
K, otherwise,

where êHB satis�es the following conditions

êHB = 0) �IB(0) �
1

�H
,

êHB 2 (0; 1)) �IB(ê
H
B ) =

1

�H
,

êHB = 1) �IB(1) �
1

�H
.

�

Claim 18 The second-order endogenous belief of A is such that

��A(eA) = �B[E
LI
A ]
�
3� 2�A[EHSB ]eA

�
+ 3

�
�B[E

HI
A ]� �B[ELIA ]

�
E [eB]

�2
�
�B[E

HI
A ]� �B[ELIA ]

�
eA�A[E

HS
B ]E

�
eBj�B = S \ #B = �H

�
;

moreover

�A
�
�H ; eA

�
=

�
I, if eA � êHA ,
O, otherwise,

where êHA 2 [0; 1) satis�es the following incentive conditions

êHA = 0) 1� �H��A(êHA ) � 2�A (eA) ,
êHA > 0) 1� �H��A(êHA ) = 2�A (eA) .

Proof Remember that B�s disappointment depends on whether B plans to choose S or K
after I. Therefore also ��A(eA) depends on whether A expects B to choose S or K, as follows:
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��A(eA) = EeA [3�Bj�B = K]PeA [�B = K] + EeA [�Bj�B = S]PeA [�B = S]
= E

�
3�Bj�B = K \ #B = �L

�
P
�
�B = Kj#B = �L

�
PeA

�
#B = �

L
�

+E
�
3�Bj�B = K \ #B = �H

�
P
�
�B = Kj#B = �H

�
PeA

�
#B = �

H
�

+E
�
�Bj�B = S \ #B = �H

�
P
�
�B = Sj#B = �H

�
PeA

�
#B = �

H
�

= E
�
3�Bj#B = �L

�
(1� eA) + E

�
3�Bj�B = K \ #B = �H

�
eA
�
1� �A[EHSB ]

�
+E

�
�Bj�B = S \ #B = �H

�
eA�A[E

HS
B ]

= 3
�
�B[E

LI
A ] +

�
�B[E

HI
A ]� �B[ELIA ]

�
E [eB]

�
(1� eA)

+3eA
�
1� �A[EHSB ]

� �
�B[E

LI
A ] +

�
�B[E

HI
A ]� �B[ELIA ]

�
E
�
eBj�B = K \ #B = �H

��
+eA�A[E

HS
B ]

�
�B[E

LI
A ] +

�
�B[E

HI
A ]� �B[ELIA ]

�
E
�
eBj�B = S \ #B = �H

��
= �B[E

LI
A ]
�
3 (1� eA) + 3

�
1� �A[EHSB ]

�
eA + eA�A[E

HS
B ]

�
+
�
�B[E

HI
A ]� �B[ELIA ]

�
3E [eB] (1� eA)

+
�
�B[E

HI
A ]� �B[ELIA ]

�
eA3

�
1� �A[EHSB ]

�
E
�
eBj�B = K \ #B = �H

�
+
�
�B[E

HI
A ]� �B[ELIA ]

�
eA�A[E

HS
B ]E

�
eBj�B = S \ #B = �H

�
= �B[E

LI
A ]
�
3� 2�A[EHSB ]eA

�
+ 3

�
�B[E

HI
A ]� �B[ELIA ]

�
E [eB]

�2
�
�B[E

HI
A ]� �B[ELIA ]

�
eA�A[E

HS
B ]E

�
eBj�B = S \ #B = �H

�
,

where the second equality is a decomposition of the expected value that takes into account
that P

�
�B = Sj#B = �L

�
= 0; in the third equality we replace probabilities with their speci�c

expressions; the fourth equality is obtained replacing

�B(eB) = �B[E
LI
A ] + eB

�
�B[E

HI
A ]� �B[ELIA ]

�
;

�nally, the last equality makes use of the following equivalence relation between the expected
values (conditional and unconditional) of eB, based on the independence of eB and #B

EeA [eB] = EeA
�
eBj#B = �H

�
=

�
1� �A[EHSB ]

�
E
�
eBj�B = K \ #B = �H

�
+ �A[E

HS
B ]E

�
eBj�B = S \ #B = �H

�
:

We can therefore conclude that ��A(�) is decreasing in eA given that

@��A
@eA

= �2�A[EHSB ]
�
�B[E

LI
A ] +

�
�B[E

HI
A ]� �B[ELIA ]

�
E
�
eBj�B = S \ #B = �H

��
� 0.

From A�s incentive condition we can see that type (�H ; eA) of A chooses I when

2�A[E
HS
B ]eA + �

H��A(eA) > 1:

Next we show that either (i) the left hand side (LHS) is increasing in eA, hence �A(�H ; �)
is increasing or constant, or (ii) the LHS is larger than 1, hence �A(�H ; �) is constant at I.
Di¤erentiating the LHS and using the expression for @

��A
@eA

we obtain:

2�A[E
HS
B ]+�H

@��A
@eA

= 2�A[E
HS
B ]

�
1� �H

�
�B[E

LI
A ] +

�
�B[E

HI
A ]� �B[ELIA ]

�
)E
�
eBj�B = S \ #B = �H

���
:

Therefore the LHS is increasing i¤

�H
�
�B[E

LI
A ] +

�
�B[E

HI
A ]� �B[ELIA ]

�
E
�
eBj�B = S \ #B = �H

��
� 1:
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Suppose the LHS is strictly decreasing, that is

�H
�
�B[E

LI
A ] +

�
�B[E

HI
A ]� �B[ELIA ]

�
E
�
eBj�B = S \ #B = �H

��
> 1: (11)

Note that by Claim 17 E [eB] � E[eBjeB < êHB ] = E
�
eBj�B = S \ #B = �H

�
; therefore the

following inequalities, which imply that the LHS is larger than 1 (and hence �A(�H ; �) is constant
at I), hold:

�H��A(eA) � �H
�
�B[E

LI
A ] +

�
�B[E

HI
A ]� �B[ELIA ]

�
E
�
eBj�B = S \ #B = �H

�� �
3� 2�A[EHSB ]eA

�
> 1:

In particular the �rst inequality holds because the expression for ��A(eA) and the fact that
E [eB] � E

�
eBj�B = S \ #B = �H

�
imply

�H��A(eA) � �B[E
LI
A ]
�
3� 2�A[EHSB ]eA

�
+
�
�B[E

HI
A ]� �B[ELIA ]

�
3E
�
eBj�B = S \ #B = �H

�
�2
�
�B[E

HI
A ]� �B[ELIA ]

�
eA�

H
AE
�
eBj�B = S \ #B = �H

�
=

�
�B[E

LI
A ] +

�
�B[E

HI
A ]� �B[ELIA ]

�
E
�
eBj�B = S \ #B = �H

�� �
3� 2�A[EHSB ]eA

�
.

The second inequality holds by eq. (11) and because
�
3� 2�A[EHSB ]eA

�
> 1.

Therefore

�A
�
�H ; eA

�
=

�
I, if eA � êHA ,
O, otherwise,

where êHA 2 [0; 1) satis�es the incentive condition

êHA = 0) 1� �H��A(êHA ) � 2�A (eA) ,
êHA > 0) 1� �H��A(êHA ) = 2�A (eA) .

�

Claim 19 If �H � 1
3E[eB ] all the equilibria are trivial.

Proof By eq. (10), 1
3E[eB ] < 1. Recall that, by the analog of Claim 5, �B

�
�L; eA

�
=

�B
�
�H ; eA

�
= K is B�s only optimal strategy when �H � 1; therefore in this region there are

no equilibria in which B chooses S for a set of types with positive measure.
In order to show that all equilibria are trivial if �H � 1

3E[eB ] , we proceed by contraposition

and show that if �H � 1 and (despite the fact that all types of B Keep) there is a non-trivial
equilibrium, then �H > 1

3E[eB ] .
Suppose that in equilibrium a non-null set of A-types chooses I, given that �B (�B; eB) = K

for every (�B; eB) 2 f�L; �Hg � [0; 1]. In this case A can choose In only if #A = �H . Type
(�H ; eA) goes In i¤

�H >
1

��A (eA)
,

where
��A (eA) = EeA [3�B] = EeA

�
3�B[E

HI
A ]eB

�
= 3�B[E

HI
A ]E[eB] � 3E[eB]:

Hence there is a non-null set of A-types going In only if

�H >
1

��A (eA)
� 1

3E[eB]
.

for some eA. �
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Claim 20 If �H > 1
3E[eB ] the following is an equilibrium

�A
�
�L; eA

�
= O,

�A
�
�H ; eA

�
= I,

�B
�
�L; eB

�
= �B

�
�H ; eB

�
= K,

for every eA, eB. This equilibrium induces the endogenous beliefs �A (eA) = 0, ��A (eA) = 3E[eB],
�B (eB) = eB, �

?
B (eB) = �IB (eB) = 0. Moreover, this is the unique non-trivial equilibrium if

1
3E[eB ] < �

H � 1.

Proof If �B(�B; eB) = K for each type (�B; eB) ofB, the �rst order belief of A is�A (eA) = 0
and the best response of each type (�L; eA) is to stay Out: �A(�L; eA) = O for every eA.
Now consider high-guilt types (�H ; eA). The calculations in the proof of Claim 19 show that
��A (eA) = 3�B[E

HI
A ]E[eB]. In the candidate equilibrium each high-guilt type of A goes In,

therefore �B[E
HI
A ] = 1 and ��A (eA) = 3E[eB] for every eA. Since �H > 1

3E[eB ] , the incentive

condition for �A(�H ; eA) = I is always satis�ed:

��A (eA) �
H = 3E[eB]�H > 1.

Since �A (eA) = 0, then �
?
B (eB) = �

I
B (eB) = 0 and the best response of each type (�B; eB) is

indeed to Keep.
Finally, by the analog of Claim 5, �B = K is B�s only equilibrium decision function if �H � 1,

therefore the equilibrium described above is the unique equilibrium for �H 2
�

1
3E[eB ] ; 1

i
. �

�
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