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1 Introduction

Instabilities are known, both empirically and theoretically, to be features of all mar-
kets: the product markets, the labor market, and the financial markets. Persistent
irregularities exhibited by macroeconomic variables are usually attributed to random
shocks (see for instance [8, 9]). An alternative explanation is based on phenomena
caused by nonlinearities in the deterministic frameworks (see e.g. [5, 7, 11, 12, 13]).
For instance, in the Keynesian IS-LM model, when introducing nonlinearities and
lags, complex dynamics have been obtained in [1, 2, 3].

Our aim consists in showing that even simpler Keynesian frameworks such as the
income-expenditure setting are able to generate interesting complex dynamics. In
fact the deterministic standard textbook Keynesian income-expenditure model is not
able to produce rich dynamical behaviors given the linearity of the economic relations
and the linearity of the income adjustment mechanism. On the other hand in this
paper we show how the introduction of a simple nonlinearity may produce interest-
ing dynamics. More precisely, we consider a specific sigmoidal functional form for
the adjustment mechanism of income with respect to the excess demand, in order
to bound the income variation. In particular, in our model we introduce parame-
ters representing the reactivity and the bounds of the income adjustment mechanism.
Such a setting is then extended by endogenizing the government expenditure via the
introduction of parameters representing the reactivity and the income target of the
fiscal policy authority. With the aid of analytical and numerical tools we show for
the model without endogenous public expenditure that increasing the reactivity in
the adjustment mechanism destabilizes the system, while decreasing the bounds in
the income adjustment mechanism has a stabilizing effect. Such stabilization occurs
via a sequence of period-halving bifurcations. For the extended model with public
expenditure we find that increasing the reactivity with respect to the difference be-
tween the income target and the current target has a destabilizing effect and that
the steady state value increases if the reactivity increases, if and only if the income
target is larger than the income steady state without public expenditure. From an
economic point of view, the latter result means that, independently of the nature
of the attractor, the weight of the endogenous public expenditure may increase the
value of income, if the target of the fiscal policy authority is sufficiently large. We also
find that the income target has no influence on the stability properties of the system,
while it has a direct influence on the steady state position. Globally, we find that
endogenizing the public expenditure may imply multistability, i.e., the coexistence of
different kinds of attractors. For both cases, with and without public expenditure,
we show that, differently from the linear case in which local instability implies diverg-
ing trajectories, with the introduction of the sigmoidal adjustment mechanism in the
instability regime we have the emergence of an absorbing interval, i.e., an invariant
interval which eventually captures all forward trajectories. Moreover, we show the
existence of chaotic dynamics in the sense of Li and Yorke [10] for both the scenarios
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considered.
The remainder of the paper is organized as follows. In Section 2 we introduce the
model with exogenous government spending. In Section 3 we present analytical and
numerical local results for this setting, and we show the existence of an absorbing
interval. In Section 4 we investigate analytically the first flip bifurcation and the
existence of Li-Yorke chaos. In Section 5 we introduce the model with endogenous
government spending and show how the results in Sections 3 and 4 can be adapted
to that new framework. In Section 6 we present a global scenario with multistability
phenomena. Finally, in Section 7 we draw some conclusions and discuss our results.

2 The model

We consider a model with a Keynesian good market of a closed economy with public
intervention. It is assumed that investment and government expenditures are exoge-
nously given and that consumption has an autonomous component, as well as a term
depending on income. The basic static model is as follows:

Y = C + I + G (2.1)

with

I = I, G = G, C = C + cY,

where Y is aggregate income, C is aggregate consumption, I is aggregate invest-
ment and G is government expenditure. Investment and government expenditures
are exogenous and equal to I and G, respectively. In the consumption function, C

is autonomous consumption and c ∈ (0, 1) is the marginal propensity to consume.
Equation (2.1) is the Keynesian equilibrium condition.

In a dynamic framework we assume a dependence of consumption at time t on
the income in the same time period, i.e., Ct = C + cYt. The dynamic behavior in the
real economy is represented by an adjustment mechanism depending on the excess
demand. If aggregate excess demand is positive (negative), production increases
(decreases), that is, income Yt+1 in period t + 1 is defined in the following way

Yt+1 = Yt + γg(Et), (2.2)

where γ > 0 is the real market speed of adjustment between demand and supply, g

is an increasing function with g(0) = 0 and Et = Zt − Yt is the excess demand, with
Zt the aggregate demand in a closed economy, defined as

Zt = Ct + It + Gt. (2.3)

We stress that, due to the properties of the map g, the dynamical system generated
by (2.2) has a unique steady state, corresponding to Et = 0, whose expression is given
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by

Y ∗ =
A

1 − c
, (2.4)

where A = C + I +G is aggregate autonomous expenditure and 1
1−c

is the Keynesian
multiplier (see [4]).

Imposing a linear adjustment mechanism, the corresponding dynamical system is
described by equation (2.2) with g equal to the identity map, which can be rewritten
as follows:

∆t+1 := Yt+1 − Yt = γEt, (2.5)

where ∆t+1 represents the income variation. We represent such framework in Figure
1.
Making all terms explicit, in the linear case equation (2.2) can be also rewritten as
follows:

Yt+1 = Yt + γ(Zt −Yt) = Yt + γ(C + I +G− (1− c)Yt) = Yt + γ(A− (1− c)Yt). (2.6)

In order to have a converging behavior towards Y ∗, we need

−1 < 1 − γ(1 − c) < 1,

which is satisfied for γ < 2
1−c

. For a larger value of γ we have instead a diverging

behavior, while for γ = 2
1−c

we have infinitely many period-two cycles.
Looking again at Figure 1, we observe that ∆t+1 may grow unboundedly and, in
particular, when Et limits to ±∞, the same does ∆t+1. However, this is an unrealistic
assumption because of the material constraints in the production side of an economy.

Figure 1: The graph of ∆t+1 as a function of Et in the linear case in (2.5).

Assuming instead that the adjustment mechanism is S-shaped, we specify the function
g as
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g(Et) = a2

(

a1 + a2

a1e−Et + a2

− 1

)

,

with a1, a2 positive parameters.
With such choice, g is increasing and g(0) = 0. Moreover, it is bounded from below by
−a2 and from above by a1. Thus the income variations are gradual and this prevents
the real market from diverging and it may create a real oscillator.
Inserting Zt from (2.3) into (2.2) and recalling the definition of ∆t+1 in (2.5), we
obtain the dynamic equation of the real market in the nonlinear framework

∆t+1 = γa2

(

a1 + a2

a1e−Et + a2

− 1

)

= γa2

(

a1 + a2

a1e−(A−Yt(1−c)) + a2

− 1

)

, (2.7)

that we depict in Figure 2 and that generates the dynamical system we are going to
analyze in the Sections 3 and 4.

Figure 2: The graph of ∆t+1 as a function of Et in the nonlinear case in (2.7).

3 Local analysis and the absorbing interval

In this section we analyze the stability of the steady state in the nonlinear case.
Moreover, we show the presence of an absorbing interval eventually attracting all
forward trajectories.
In view of the subsequent analysis, it is expedient to introduce the map F : R+ → R

defined as

F (Y ) = Y + γa2

(

a1 + a2

a1e−(A−Y (1−c)) + a2

− 1

)

, (3.1)

associated to the dynamic equation in (2.7).
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Proposition 3.1 The steady state Y ∗ in (2.4) is stable if and only if

γ(1 − c) <
2(a1 + a2)

a1a2

.

Proof. The result immediately follows by solving the chain of inequalities −1 <

F ′(Y ∗) < 1 with respect to γ(1 − c). In fact, it is immediate to find that F ′(Y ∗) =

1− γa1a2(1−c)
a1+a2

and thus, in order to get the stability of the steady state, we only need
to impose F ′(Y ∗) > −1. �

Figure 3: The stability regions in the (c, γ)-plane for the linear and nonlinear cases
(in dark yellow and pale yellow, respectively) with a1 = 1 and a2 = 1.2.

At first, we stress that, recognizing in s = 1 − c the propensity to save, it is
possible to rewrite the stability condition in Proposition 3.1 as γs <

2(a1+a2)
a1 a2

. Hence
it is evident that an increase in γ or s has a destabilizing effect.
Considering instead the stability condition in terms of γ only, we get γ <

2(a1+a2)
a1a2(1−c)

.

Comparing then the thresholds for γ in the linear and nonlinear cases, i.e., γ = 2
(1−c)

and γ = 2(a1+a2)
a1a2(1−c)

, respectively, we find that γ < γ if and only if a1 + a2 > a1a2. In

other terms, since (a1+a2)
a1a2

= 1
a1

+ 1
a2

, we have that γ < γ when a1 and a2 are small
enough. This is the case in Figure 3, where we represent the stability regions in the
(c, γ)-plane for the linear and nonlinear formulations. An intuition of the fact that
small values for a1 and a2 allow to enlarge the stability region can be obtained by
observing that, when reducing a1 and a2, we decrease the current variation of output.
In fact, a1 and a2 appear in the expression of the asymptotes, whose equations in the
(x, y)-plane are y = x − γa2 for x → +∞ and y = x + γa1 for x → −∞, and, as it is
immediate to verify, such straight lines get closer when a1 and a2 decrease.
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Figure 4: The bifurcation diagram w.r.t. γ ∈ [1, 9] for the map F with A = 12,
a1 = 5, a2 = 2.8 and c = 0.6.

Looking again at the shape of the stability region in Figure 3 for the linear (nonlinear)

case, we observe that when γ < 2
(

γ <
2(a1+a2)

a1a2

)

the steady state is stable for any
c and that, when γ increases, we need values for c closer and closer to 1 in order
to stabilize Y ∗. Hence increasing γ has a destabilizing effect, both in the linear and
nonlinear cases. In Figure 4 we depict the bifurcation diagram with respect to γ in
the nonlinear framework, which confirms the destabilizing role of γ. In particular we
stress that, after the chaotic regime following the destabilization of the fixed point,
it is possible to have again a periodic cycle, like in Figure 4, where we end up with a
period-three orbit.
In Figure 5 we depict the bifurcation diagram with respect to γ in the nonlinear
framework, for the same parameter values in Figure 3, except for a bit larger value of
a2. This change makes the loss of stability of the steady state happen for values of γ

smaller with respect to Figure 3, confirming what said above about the destabilizing
role of increasing a2 (and a1).

Since, as observed above, the steady states for the linear and nonlinear scenarios
coincide with Y ∗, we depict in Figure 6 the graph of the maps corresponding to those
two cases in a neighborhood of Y ∗, i.e.,

f : R+ → R, f(Y ) = Y + γ(A − (1 − c)Y )

and F in (3.1), respectively, when a1 + a2 = a1a2, that is, when also the stability
thresholds for the linear and nonlinear scenarios coincide.

Starting from this framework in which a1 + a2 = a1a2, we depict in Figure 7 the
bifurcation diagram for the map F with respect to a1 = a2 ∈ [0, 2], which shows that
decreasing a1 = a2 from 2 (value for which the condition a1 + a2 = a1a2 is satisfied
and both systems are unstable) to 0 has a stabilizing effect.
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Figure 5: The bifurcation diagram w.r.t. γ ∈ [0, 7] for the map F with A = 12,
a1 = 5, a2 = 3.2 and c = 0.6.

Similarly, in Figure 8 we present the bifurcation diagram for the map F with respect
to a1 ∈ [0, 4], when a2 = 4

3
. That picture shows that, if we start with a1 = 4 and

a2 = 4
3

(so that a1 + a2 = a1a2) and we then decrease a1 from 4 to 0, we obtain again
a stabilizing effect.

We now describe some further dynamical features for the map F in the next result.
More precisely, we show the existence of an absorbing interval and thus, differently
from the linear case, in which local instability implies diverging trajectories (see [4]),
in our framework local instability may imply periodic and chaotic orbits.

Proposition 3.2 If the map F in (3.1) is increasing, then the generated dynamical

system is globally stable. Else1, call m and M the unique positive local minimum

point and local maximum point of the map F, respectively, and set m′ := F (m) and

M ′ := F (M). Then the compact interval I = [m′,M ′] is “globally absorbing”, i.e., for

all x̄ ∈ R+ there exists n̄ ∈ N such that F n̄(x̄) ∈ I and for any x ∈ I, F n(x) ∈ I, for

all n ∈ N.

1It is possible to show that no other scenarios may arise for the map F. In fact

F (0) = γa2

(

a1 + a2

a1e−A + a2
− 1

)

> γa2

(

a1 + a2

a1 + a2
− 1

)

= 0

and

F ′(0) = 1 −
γa1a2(a1 + a2)e

−A(1 − c)

(a1e−A + a2)2
,

which is positive for any A large enough. In particular, in the pictures in the present paper, we have
A ≥ 1. In the cases considered, F is positive and locally increasing in a right neighborhood of 0. If
F is not globally increasing, it has a local maximum point, followed by the steady state and then
by a local minimum point, and after that F grows monotonically to infinity.
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Figure 6: The maps describing the dynamics for the linear and nonlinear cases (in red
and cyan, respectively), depicted in a neighborhood of Y ∗ when a1 = 3 and a2 = 1.5,
so that a1 + a2 = a1a2.

Proof. Let us assume at first that F is increasing and show that, given a generic
starting point x̄ in R+, its forward trajectory will tend to Y ∗. Since F (0) > 0 and Y ∗

is the unique fixed point of F, then by continuity, F (x) > x, for every x < Y ∗, and
F (x) < x, for every x > Y ∗. Hence, if 0 ≤ x̄ < Y ∗, then F n(x̄) will tend increasingly
towards Y ∗ as n → ∞, while if x̄ > Y ∗, then F n(x̄) will tend decreasingly towards
Y ∗ as n → ∞.

If the map F is not increasing, let us consider a generic starting point x̄ in R+ and
show that its trajectory will eventually remain in I. If x̄ ∈ I, then by construction
its forward orbit will be trapped inside I, as well. Let us now proceed with the two
remaining cases, i.e., x̄ < m′ and x̄ > M ′. Since Y ∗ ∈ I and by continuity F (x) > x,

for every x < Y ∗, and F (x) < x, for every x > Y ∗, if x̄ < m′, then its iterates
will approach I in a strictly increasing way, while if x̄ > M ′, then its iterates will
approach I in a strictly decreasing way. Once that a forward iterate of x̄ lies in I,

then by construction all its subsequent iterates will be trapped inside I, as well. This
concludes the proof. �

As we shall see in what follows, in the absorbing interval many different dynamic
behaviors may arise. We depicted in Figure 9 the absorbing interval in the case the
map F is not increasing, and in fact in that graph it holds F ′(Y ∗) < −1. Notice that,
in Proposition 3.2, the first scenario (i.e., F strictly increasing) may be seen as a
limit case of the second framework, in which the absorbing set collapses into a unique
point, that is, the steady state.

We conclude the present section by illustrating in some pictures the possible be-
haviors of the map F. In Figure 10 (A) we show the case in which F is strictly
increasing and thus the convergence to Y ∗ is monotone. In Figure 10 (B) we consider
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Figure 7: The bifurcation diagram w.r.t. a1 = a2 ∈ [0, 2] for the map F with
A = 12, γ = 30 and c = 0.6.

Figure 8: The bifurcation diagram w.r.t. a1 ∈ [0, 4] for the map F with A = 5,
a2 = 4

3
, γ = 3 and c = 0.9.

the framework in which, having increased γ, the map F is no more globally increasing
and the convergence to Y ∗ is oscillatory in nature. Finally, in Figure 10 (C) we deal
with the case in which γ is still larger and the forward orbit of a generic starting point
gets trapped in the absorbing interval.

4 The flip bifurcation and chaotic dynamics

In Section 3 we have investigated the existence of an absorbing interval, the stability
conditions for the steady state and what happens after its destabilization. Now
we will describe how such destabilization originates, i.e., through a period-doubling
bifurcation when the reactivity parameter is large enough, and we will show how
complex dynamics do emerge when that parameter is even larger.
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Figure 9: The interval highlighted on the x-axis is the absorbing interval I for the
map F when A = 12, a1 = 5, a2 = 2.8, c = 0.6 and γ = 6. In this case F ′(Y ∗) < −1
and the steady state is locally unstable.

We start by verifying that the map F undergoes a flip-bifurcation at the unique
steady state Y ∗.

Proposition 4.1 For the map F in (3.1), a flip bifurcation occurs around Y = Y ∗

when γ = 2(a1+a2)
a1a2(1−c)

.

Proof. According to the proof of Proposition 3.1, the steady state Y = Y ∗ is stable
when F ′(Y ∗) > −1. Then, the map F satisfies the canonical conditions required for
a flip bifurcation (see [6]) and the desired conclusion follows. Indeed, when F ′(Y ∗) =

−1, i.e., for γ = 2(a1+a2)
a1a2(1−c)

, then Y ∗ is a non-hyperbolic fixed point; when γ <
2(a1+a2)
a1a2(1−c)

it is attracting and finally, when γ >
2(a1+a2)
a1a2(1−c)

, it is repelling. �

In the proof of Theorem 4.2 we will show the existence of chaos in the sense of
Li-Yorke, as described in Conditions (T1) and (T2) in [10, Theorem 1] (from now
on, Th1 LY). We recall that result in particular applies to self-maps of an interval J,

which are continuous and have a periodic point with period 3. Actually, as observed
in [10], Th1 LY can be generalized to the case in which F : J → R is a continuous
function that does not map the interval J onto itself, as long as it has a period-three
point.

Proposition 4.2 Let F be the map in (3.1). Fix A = 12, a1 = 5, a2 = 2.8, c =
0.6, γ = 6 and set J = [41.946, 44.108]. Then for any point x ∈ J it holds that

y = F (x), z = F 2(x) and w = F 3(x) satisfy w ≥ x > y > z and thus Conditions

(T1) and (T2) in Th1 LY do hold true. In particular 2, for any x ∈ int(J) it holds

2Given an interval I, we denote its interior by int(I) and its boundary by ∂(I).
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(A) (B) (C)

Figure 10: The first iterate for the map F with A = 12, a1 = 5, a2 = 3.2, c = 0.6,
and γ = 1 in (A), γ = 2.5 in (B) and γ = 5.8 in (C), respectively.

that F 3(x) > x, while for any x ∈ ∂(J) it holds that F 3(x) = x, that is, the extreme

points of J have period three.

Proof of Proposition 4.2 : We show that the chain of inequalities w ≥ x > y > z

is satisfied on J by plotting in Figure 11 the graphs of the identity map in blue, of
F in red, of F 2 in green and of F 3 in cyan. A direct inspection of the picture shows
that it is possible to apply Th1 LY on J and thus we immediately get the desired
conclusions. �

Notice that in the statement of Proposition 4.2 we have fixed some particular
parameter values. However, we stress that the result is robust, as the same conclusions
hold for several different sets of parameter values, as well. Moreover, once that a
result analogous to Proposition 4.2 is proven for a certain parameter configuration,
by continuity, the same conclusions still hold, suitably modifying the interval J, also
for small variations in those parameters. Hence, Proposition 4.2 actually allows to
infer the existence of Li-Yorke chaos for the map F when γ lies in a neighborhood of
6 and for some suitable corresponding values of the other parameters.

Notice that both in the statement of Proposition 4.2 and in Figure 11 we consid-
ered the same parameter values like in the bifurcation diagram in Figure 4 (except
for γ there varying on [1, 9]), in order to show that when γ = 6 both the computer
simulations and Proposition 4.2 confirm the presence of chaos.

5 The extended model: endogenous government

spending

In the present section, we present a suitable modification of the model so far analyzed.
In fact, instead of an exogenous government expenditure G = G, in analogy to what
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Figure 11: The identity map (in blue) and the first three iterates of the map F (in
red, green and cyan, respectively) for A = 12, a1 = 5, a2 = 2.8, c = 0.6 and γ = 6.
The interval highlighted on the x-axis is J from Proposition 4.2.

done with consumption, we assume

Gt = G + σ(Y F − Yt),

where Y F and σ are positive constants denoting respectively the income target of the
fiscal authority and the reactivity of the fiscal policy with respect to the difference
between the income target and the current income. With this new formulation, the
expression for the excess demand becomes

Et = Zt − Yt = A + cYt + σ(Y F − Yt) − Yt (5.1)

and the corresponding dynamic equation is given by

Yt+1 = Yt + γa2

(

a1 + a2

a1e−(A+σY F
−Yt(1−c+σ)) + a2

− 1

)

. (5.2)

Similarly to what done in Section 3, we introduce the map Fσ : R+ → R defined
as

Fσ(Y ) = Y + γa2

(

a1 + a2

a1e−(A+σY F
−Y (1−c+σ)) + a2

− 1

)

, (5.3)

associated to the dynamic equation in (5.2).

In equilibrium, the excess demand in (5.1) vanishes and thus we find the expression
for the steady state in the next result.
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Proposition 5.1 The dynamical system generated by the map Fσ in (5.3) has the

unique steady state

Y ∗

σ =
A + σY F

1 − c + σ
. (5.4)

It holds that
∂Y ∗

σ

∂σ
=

(1 − c)Y F − A

(1 − c + σ)2
,

which is positive if and only if Y F > A
1−c

= Y ∗ in (2.4), and

∂Y ∗

σ

∂Y F
=

σ

1 − c + σ
,

which is always positive.

We now analyze the stability of the steady state in Proposition 5.2.
Some comments on the sign of the derivatives in Proposition 5.1 can be found in the
subsequent discussion.

Proposition 5.2 The steady state Y ∗

σ in (5.4) is stable if and only if

γ(1 − c + σ) <
2(a1 + a2)

a1 a2

.

Proof. The result immediately follows by solving the chain of inequalities −1 <

F ′

σ(Y ∗

σ ) < 1 with respect to γ(1−c+σ). In fact, it is immediate to find that F ′

σ(Y ∗

σ ) =

1 −
γa1a2(1−c+σ)

a1+a2

and thus, in order to get the stability of the steady state, we only
need to impose F ′

σ(Y ∗

σ ) > −1. �

Hence, Proposition 5.2 allows to infer that the steady state is stable when both
γ and σ are small enough. In particular, the stability condition in Proposition 5.2

may be rewritten in terms of γ as follows: γ <
2(a1+a2)

a1a2(1−c+σ)
. Setting γ = 2(a1+a2)

a1a2(1−c+σ)

and comparing it with the threshold γ = 2(a1+a2)
a1a2(1−c)

encountered in Section 3, we notice
that the presence of σ makes the stability region smaller with respect to the case of
an exogenous government spending.

We illustrate the destabilizing role of σ in Figures 12 (A)-(B) below, in which
we represent the bifurcation diagrams with respect to σ for the first iterate of Fσ

for A = 1 and A = 4, respectively, while keeping the other parameters fixed. In
both cases, when σ increases, the system gets destabilized: notice however that ∂Y ∗

σ

∂σ

is positive in the first scenario and negative in the second one. In fact, as stated in
Proposition 5.1, it holds that ∂Y ∗

σ

∂σ
> 0 if and only if Y F > A

1−c
= Y ∗, that is, the

steady state value increases (decreases) when σ increases if and only if the target
value Y F is larger than the steady state value in absence of endogenous government
spending.
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(A) (B)

Figure 12: The bifurcation diagrams w.r.t. σ ∈ [0, 7] for the map Fσ with a1 = 3,
a2 = 1, c = 0.6, γ = 1, Y F = 5, and A = 1 in (A) and A = 4 in (B), respectively.

In regard to the dependence of the steady state on Y F , we saw in Proposition 5.1
that instead ∂Y ∗

σ

∂Y F > 0. Hence we stress that, although by Proposition 5.2 Y F does not
influence the stability of the steady state, that parameter does influence its position.
In particular, increasing Y F moves Y ∗

σ to the right. Through some pictures (see
Figures 13 (A)-(C) below) we show that Y F also influences the position of the critical
points, that simultaneously emerge when the map F is not globally increasing3. In
fact, increasing Y F moves, not only the steady state, but also the local minimum and
maximum points to the right on the x-axis, and consequently the absorbing interval
gets moved to the right, too, together with the attractor possibly contained in it.
This means that, no matter what kind of attractor the system has, the income value
levels corresponding to that attractor increase when the income target increases.

In order to illustrate such phenomena, we represent in Figures 13 (A)-(C) below
the first iterate of Fσ for Y F = 1, Y F = 30 and Y F = 60, respectively, while keeping
the other parameters fixed.

Also in this context with an endogenous government spending, we obtain a result

3In fact, similarly to what argued for the map F in (3.1), it is possible to show that

Fσ(0) = γa2

(

a1 + a2

a1e−(A+σY F ) + a2
− 1

)

> γa2

(

a1 + a2

a1 + a2
− 1

)

= 0

and

F ′
σ(0) = 1 −

γa1a2(a1 + a2)e
−(A+σY

F )(1 − c + σ)

(a1e−(A+σY F ) + a2)2
,

which is positive for any A large enough. In the cases considered in the present paper, Fσ is positive
and locally increasing in a right neighborhood of 0. When Fσ is not globally increasing, it has a local
maximum point, followed by the steady state and then by a local minimum point, and after that Fσ

grows monotonically to infinity.
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(A) (B) (C)

Figure 13: The graph of the first iterate of the map Fσ with A = 6, a1 = 4, a2 =
2.5, c = 0.85, γ = 3, σ = 1, and Y F = 1 in (A), Y F = 30 in (B) and Y F = 60 in (C),
respectively.

similar to Proposition 3.2, whose precise statement reads as follows:

Proposition 5.3 If the map Fσ in (5.3) is increasing, then the generated dynamical

system is globally stable. Else, call m and M the unique positive local minimum

point and local maximum point of the map Fσ, respectively, and set m′ := Fσ(m) and

M ′ := Fσ(M). Then the compact interval I = [m′,M ′] is “globally absorbing”, i.e.,

for all x̄ ∈ R+ there exists n̄ ∈ N such that F n̄
σ (x̄) ∈ I and for any x ∈ I, F n

σ (x) ∈ I,

for all n ∈ N.

We omit the proof as it follows the same steps used to prove Proposition 3.2.

The absorbing interval in the case the map Fσ is not increasing is depicted in
Figure 14.

Let us now make precise the statement of a result analogous to Proposition 4.1,
according to which the map Fσ undergoes a flip-bifurcation at the unique steady state
Y ∗

σ . Again, we omit the proof as it is analogous to that of Proposition 4.1.

Proposition 5.4 For the map Fσ in (5.3), a flip bifurcation occurs around Y = Y ∗

σ

when γ = 2(a1+a2)
a1a2(1−c+σ)

.

We now show the existence of Li-Yorke chaos for the scenario with endogenous
government spending.

Proposition 5.5 Let Fσ be the map in (5.3). Fix A = 1, a1 = 3, a2 = 1, c =
0.6, γ = 1, Y F = 5, σ = 4.5 and set J = [5.965, 6.238]. Then for any point x ∈ J

it holds that y = Fσ(x), z = F 2
σ (x) and w = F 3

σ (x) satisfy w ≥ x > y > z and thus

Conditions (T1) and (T2) in Th1 LY do hold true. In particular, for any x ∈ int(J)
it holds that F 3

σ (x) > x, while for any x ∈ ∂(J) it holds that F 3
σ (x) = x, that is, the

extreme points of J have period three.
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Figure 14: The interval highlighted on the x-axis is the absorbing interval I for the
map Fσ when A = 4, a1 = 3, a2 = 2, c = 0.6, γ = 1, σ = 3.7 and Y F = 5.

Proof. In analogy with the proof of Proposition 4.2, we show that the chain of
inequalities w ≥ x > y > z is satisfied on J by plotting in Figure 15 the graphs of
the identity map in blue, of Fσ in red, of F 2

σ in green and of F 3
σ in cyan. A direct

inspection of the picture shows that it is possible to apply Th1 LY on J and thus we
immediately get the desired conclusions.

Similarly to what observed in relation to Proposition 4.2, by continuity, Proposi-
tion 5.5 actually allows to infer the existence of Li-Yorke chaos for the map Fσ when
σ lies in a neighborhood of 4.5 and for some suitable corresponding values of the other
parameters.

Notice that both in the statement of Proposition 5.5 and in Figure 15 we con-
sidered the same parameter values like in the bifurcation diagram in Figure 12 (A)
(except for σ there varying on [0, 7]), in order to show that when σ = 4.5 both
the computer simulations and Proposition 5.5 confirm the presence of chaos. In
this regard, we stress that, for instance, we could have written Proposition 5.5 with
A = 4, a1 = 3, a2 = 1, c = 0.6, γ = 1, Y F = 5, σ = 6 and J = [6.376, 6.951] as well,
in agreement with the chaotic behavior detected in Figure 12 (B) for those parameter
values.

6 Global analysis

In Sections 3 to 5, we presented some theoretical results about the dynamics of our
systems, both with exogenous and endogenous government spending. We saw that
in both frameworks different kinds of dynamics can occur, such as the existence of
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Figure 15: The identity map (in blue) and the first three iterates of the map Fσ (in
red, green and cyan, respectively) for A = 1, a1 = 3, a2 = 1, c = 0.6, γ = 1, Y F = 5
and σ = 4.5. The interval highlighted on the x-axis is J from Proposition 5.5.

absorbing intervals, stable steady states, periodic cycles and chaotic behaviors. In
this section we investigate, using bifurcation and time series diagrams, the global
behavior of the system as the parameter σ increases.
In particular, in Figure 16 we illustrate a numerical example in which, from a stable
steady state to a chaotic attractor, a multistability scenario occurs. Indeed we show
that there exists a sufficiently large value of σ for which we have the coexistence of a
stable three-orbit with a chaotic attractor in four pieces. In Figure 17 we present a
magnification of Figure 16, in which we better illustrate that coexistence phenomenon.
Moreover, in Figures 18 (A)-(B) we show the time series corresponding to the period-
three cycle with initial condition Y (0) = 1 and to the chaotic attractor in four pieces
with initial condition Y (0) = 3, respectively.

7 Conclusions

In this paper we showed how a rich variety of dynamical behaviors can emerge in the
standard Keynesian income-expenditure model when a nonlinearity is introduced,
both in the cases with and without endogenous government spending. A specific sig-
moidal functional form has been used for the adjustment mechanism of income with
respect to the excess demand, in order to bound the income variation. With the aid
of analytical and numerical tools, we investigated the stability conditions, bifurca-
tions, as well as periodic and chaotic dynamics. Globally, we studied multistability
phenomena, i.e., the coexistence of different kinds of attractors.
Here we proposed a simple model, in order to improve our knowledge about the role of
nonlinearities in the emergence of complex behaviors. Of course, it may be extended
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Figure 16: The bifurcation diagram w.r.t. σ ∈ [0, 5] for the map Fσ with A = 3, a1 =
3, a2 = 4.6935, c = 0.8 , γ = 0.8 and Y F = 5, which highlights a multistability
phenomenon characterized by the coexistence of a stable three-orbit with a chaotic
attractor in four pieces.

in various directions, for instance introducing further nonlinearities in the definition
of the relevant economic variables. Moreover, subsequent work should focus on ex-
tensions of the present model in view of considering money supply, interest rate and
the general price level, too, aspects that are taken into account in more sophisticated
classes of models, such as the IS-LM and AD-AS frameworks.
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Figure 17: A magnification of Figure 16 for σ ∈ [3.7, 4.2], in order to better show the
coexistence of a stable three-orbit with a chaotic attractor in four pieces.

(A) (B)

Figure 18: The time series corresponding to the period-three cycle in Figures 16
and 17 in (A) and the chaotic attractor in four pieces in (B), with initial conditions
Y (0) = 1 and Y (0) = 3, respectively.
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