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Abstract

This paper investigates opinion dynamics and social influence in
directed communication networks. We study the properties of a gen-
eralized boundedly rational model of opinion formation in which indi-
viduals aggregate the information they receive by using weights that
are a function of their neighbors’ indegree. We then present an experi-
ment designed to test the predictions of the model. We find that both
Bayesian updating and boundedly rational updating à la DeMarzo
et al. (2003) are rejected by the data. Consistent with our theoretical
predictions, the social influence of an agent is positively and signif-
icantly affected by the number of individuals she listens to. When
forming their opinions, agents do take into account the structure of
the communication network, although in a sub-optimal way.
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1 Introduction

Research on opinion dynamics and learning in social networks has recently
received increasing attention in the economic literature (see Jackson and
Yariv, 2010, and Acemoglu and Ozdaglar, 2011, for comprehensive reviews).
This growing interest reflected two main factors. At the theoretical level,
the development of powerful new tools of analysis. At the empirical level, a
significant increase in the availability of data sets to test the theoretical pre-
dictions. Several frameworks have therefore been proposed to model opinion
dynamics in social networks, based on different assumptions regarding the
information transmission mechanisms and the sophistication of individuals.
Two main streams can be identified within this literature.

A first group of works includes those that assume perfect rationality, usu-
ally together with perfect information about the network structure and the
probability distributions of states of nature. The aim of these studies is to es-
tablish the optimal strategies and the feasibility conditions in order to reach
an estimate of some state of the world which is correct, or asymptotically
correct, depending on the setting. The basic framework was laid down by
Gale and Kariv (2003). Compared to previous works in the field of social
learning (such as Bikhchandani et al., 1992, Banerjee, 1992 and Smith and
Sørensen, 2000), their main contribution was to analyze the repeated inter-
action of Bayesian individuals over non-trivial (exogenously given) network
structures. Thereafter, this approach was extended in several directions, as
in the work of Acemoglu et al. (2011), who consider the asymptotic proper-
ties of opinion aggregation over a growing random network. Acemoglu et al.
(2010) assume that information flows are also “tagged”, i.e., each agent knows
the origin of each element of information she receives, and uses such “meta-
information” optimally. In their framework, the only obstacle to recovering
the hidden state of nature is the fact that communication is costly, and hence
individuals may communicate only for a limited amount of time.

The second group of works follows a more pragmatic approach: since
reaching a correct consensus is, even when feasible, generally characterized
by a high computational complexity and degree of coordination, it is claimed
that studies assuming perfect rationality cannot credibly model the way in
which humans – and not only humans – process information when commu-
nicating in social networks. As a consequence, rather than starting from
individual or social objectives and deriving optimal strategies, these works
start from reasonably simple protocols for belief updating, and examine to
what extent, under what conditions and with what dynamics, models of
opinion dynamics lead to plausible beliefs.1

1This perspective is taken not only in studies focusing on opinion dynamics in social
networks, but more generally in the literature on social learning (see e.g. Ellison and
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The most common framework in this second group of studies is based on
the model of opinion aggregation by DeGroot (1974). Although this work
does not explicitly refer to a network environment (as do instead French,
1956, and Harary, 1959, in their studies on social power, later generalized
by Friedkin and Johnsen, 1990), since all agents can communicate with all
other agents, each individual can attribute a given weight to others’ opinion,
so that the weights implicitly define a network. These weights, which are
constant over time, then determine the evolution and possible convergence
of opinions. DeMarzo et al. (2003) have taken over this model, with some
variations: in their work, an existing network of connections between agents
is explicitly assumed, while opinions are defined as point estimates rather
than probability distributions. After considering a general model in which
weights can, to some extent, change from period to period, they focus on
the case in which individuals attribute the same weight to all neighbors.
The assumption that agents do not take into account the topology of the
network, but rather update their opinions by simply taking an average of
their neighbors’ opinions with equal weights, leads to opinions that, even
in strongly connected networks, are biased towards the initial beliefs of the
most influential (i.e., better connected) subjects. In this setting, agents’
social influence depends on their positions in the network and, in particular,
on their (and their neighbors’) outdegree.

Some works in the related field of distributed sensors (e.g. Olfati-Saber
and Murray, 2004) characterize the class of network topologies in which un-
biased estimation is obtained even with very simple communication proto-
cols. Other authors extend this framework (Jadbabaie et al., 2012, Jadbabaie
et al., 2013), allowing for new (private) information to arrive over time, while
assuming that agents process their private information in a Bayesian fash-
ion, and characterize the interplay between the added heterogeneity and the
topology of the network. Bala and Goyal (1998) combine the social learn-
ing mechanism with a “learning by doing” approach, in which individuals
obtain information also by observing their own previous outcomes. Buechel
et al. (2012), in their extension of the basic DeGroot model, allow for opin-
ions reported by individuals to differ from actal beliefs, where the difference
reflects a preference for conformity or counter-conformity. Hegselmann and
Krause (2002) add the feature that the structure of the network itself may be
altered endogeneously depending on the similarity of opinions. Their work
is part of a literature focusing on the effects of the “bounded confidence”
phenomenon in terms of non-convergence (see e.g. Hegselmann and Krause,
2005, Dittmer, 2001, Fortunato, 2004), but its novelty lies in the fact that
they consider the interplay of such phenomenon with the structure of an
underlying social network.

Fudenberg, 1993).
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In motivating the search for a model of opinion aggregation, the first
requirement put forward by DeGroot (1974) is that “The process that it de-
scribes is intuitively appealing”. Given the explicit quest of this stream of
literature for credible models, such models were often preferred over Bayesian
ones for interpreting observational and experimental data. Banerjee et al.
(2013) exploit a natural experiment focusing on network data from small
municipalities in rural India. They conclude that the best predictor for the
influence of “injection points” is their eigenvector centrality (as predicted by
DeMarzo et al., 2003). Möbius et al. (2010) present a field experiment inves-
tigating the diffusion of information over the network defined by friendship
relations on Facebook, and seed such network artificially with noisy signals on
some hidden state of the world. This allows the authors to ascertain the pres-
ence of strong information decay, test the main predictions of the DeGroot
(1974) model, and compare them with the possibility of tagged information
(as proposed by Acemoglu et al., 2010).

In a study closely related to the present one, Corazzini et al. (2012)
present a laboratory experiment aimed at testing the presence of persuasion
bias in opinion formation within communication networks. Consistent with
the predictions of DeMarzo et al. (2003), their results indicate that the social
influence of individuals depends on their eigenvector centrality, which in turn
depends on the number of other individuals who, directly or indirectly, listen
to them (i.e., their outdegree). The findings, however, are also consistent
with the presence of an indegree effect, as agents with higher indegree have
higher social influence. In order to explain this phenomenon, Corazzini et al.
(2012) suggest a framework based on the assumption that the weights each
individual places on her neighbors’ opinions are positively related to their
neighbors’ indegree. Intuitively, more informed individuals receive higher
weights when opinions are updated and, as a consequence, also have higher
social influence.

Against this background, the objective of this paper is twofold. First, we
extend the framework by Corazzini et al. (2012) to study a model of opinion
formation that provides a simple generalization of DeMarzo et al. (2003). We
also derive some results concerning more generally linear updating models,
and characterize the way in which efficiency depends on the topology of the
underlying network. Second, we present a laboratory experiment explicitly
designed to test the causal effect of indegree on social influence. The struc-
ture of the directed network used in the experiment allows us to manipulate
indegree without affecting the outdegree and eigenvector centrality of dif-
ferent nodes, thus providing a clean test of the effects of indegree on social
influence.

We show that, in balanced networks, placing higher weight on neigh-
bors with higher indegree is less efficient than placing equal weights on all

4



neighbors. On the other hand, in unbalanced networks it is generally more
efficient to place higher weight on neighbors with higher indegree, and there
exist networks in which it is optimal to place weight only on agents with
highest indegree. Empirically, we find strong evidence of an indegree effect
on opinion formation. The social influence of an agent is positively and
significantly affected by the number of individuals she listens to.

The remainder of the paper is structured as follows. Section 2 provides
the theoretical framework (technical details are in Appendix A). Section 3
describes the experimental design (experimental instructions are in Appendix
B). Section 4 presents the results. Section 5 concludes with a discussion of
the key findings.

2 Theoretical Framework

Following DeMarzo et al. (2003), consider a setting where a setN = {1, ..., N}
of agents, communicating within a social network, want to estimate some un-
known state of the world represented by the parameter θ ∈ R. Each agent
starts with some initial information xi (henceforth referred to as a signal)
about θ. For simplicity, we assume that xi = θ + εi, with εi ∼ N(0, σ2)
independent across agents. The structure of the network is represented as
a directed graph with adjacency matrix q, where qij = 1 if agent i listens
to agent j, and 0 otherwise (we assume qii = 1 for every i).2 We denote as
Si ⊂ N the listening set of an individual i, that is, j ∈ Si ⇐⇒ qij = 1.
Communication takes place in discrete time: at each t ≥ 0, agents report
their current belief to their neighbors. Defining the vector of initial beliefs as
y0 = x, we assume that, for each t ≥ 0, agent i updates her belief according
to an updating rule

yt+1
i = fi(y

t
i1
, . . . , ytiK )

where i1, . . . , iK are the agents in i’s listening set Si (notice that i ∈ Si).
Once the network structure q, the updating rules f1, . . . , fN , and the initial
signals x are determined, the evolution of opinions is obtained. Given an
agent i, if y∞i = limt→∞ yti exists, it will be referred to as her convergence or
asymptotic belief. In what follows, we will be particularly interested in the
case in which convergence beliefs exist and coincide for all i: if this is the
case, we will refer to such limit as the consensus belief, and denote it simply
as y∞.

2Notice that in the graphical representations of networks presented below, an arrow
from i to j means that agent i talks to (rather than listens to) agent j, that is, qji = 1.
This is different from standard convention, but consistent with the instructions of the
experiment presented in Section 3 and with the direction of information flows.
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The foundations for this framework were laid by DeGroot (1974), who
considers the case in which “opinions” are probability distributions rather
than real numbers, and f is linear :3

yt+1
i =

∑
j∈S(i)

πijy
t
j. (1)

where πij is the weight placed by agent i on agent j. DeMarzo et al.
(2003), following the studies on social power of French (1956) and Harary
(1959), introduce an exogenously given network structure q, and analyze in
detail the specific updating rule

yt+1
i =

∑
j∈S(i)

ytj
|S(i)|

. (2)

One key feature of the boundedly rational updating rule in (2) is that
agents do not use in any way the information contained in q: they simply
form their opinion by averaging all opinions they get to know, irrespective of
the network structure.

Consider now a generalized boundedly rational updating rule (henceforth
GBR) that is still linear, but with weights defined as follows:

πij =
qijd

ρ
j∑

h qihd
ρ
h

(3)

where dj is agent j’s indegree (dj = |S(j)| − 1) and ρ ∈ [0,∞) is a
fixed parameter. Such rule, which was first introduced by Corazzini et al.
(2012), provides a simple generalization of the updating rule in (2), while
incorporating plausible and interesting features. Intuitively, when weighting
the opinions of neighbors, agents attribute relatively more importance to
those neighbors who have more direct sources of information, i.e., neighbors
with higher indegree. To illustrate, let us consider some examples.

When ρ = 0,

πij =
qij∑
h qih

=
qij
|S(i)|

we obtain the updating rule in (2), as in DeMarzo et al. (2003): agents update
their opinions by averaging the opinions they get to know, while placing equal
weights on all neighbors.

When ρ = 1,

yt+1
i =

∑n
j=1 qijdjy

t
j∑n

j=1 qijdj
, (4)

3In the context considered by DeGroot (1974), S(i) corresponds to {1, . . . , N}.
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i.e., the opinion of each neighbor is weighted proportionally to her indegree.
In the limit case ρ→∞,

yt+1
i =

∑
j∈arg maxh qhidh

ytj
| arg maxh qhidh|

so that each agent only listens to the individual(s) with maximum indegree
in her listening set. This limit case is useful to provide an intuition of what
happens more generally for high values of ρ: individuals with higher indegree
tend to be the most influential.4

DeMarzo et al. (2003) show that in a strongly connected network, i.e.
where every agent can influence every other agent, any linear updating rule
such that πij > 0 whenever qij > 0 guarantees convergence to a consensus
belief.5 This implies that, in our setting, convergence is ensured for any ρ ∈
[0,∞).6 Moreover, if we rewrite Equation (1) in matrix form as yt+1 = Πyt,
the vector of consensus beliefs ȳ∞ must satisfy the condition

ȳ∞ = Πȳ∞. (5)

i.e. y∞ is a right eigenvector of Π, with eigenvalue 1. DeMarzo et al.
(2003) also show that y∞ can be written as a weighted sum of the initial
signals:

y∞ =
N∑
i=1

wixi, (6)

with w being the unique (normalized) solution to

wΠ = w. (7)

If we consider Π as the adjacency matrix of a weighted network, Equation
(7) can be interpreted as stating that the social influence wi of an individual
i corresponds to her eigenvector centrality (Bonacich, 1972, Jackson, 2010).
In the case of the updating rule in Equation (2), wi also corresponds, up to a

4It should be noted, however, that networks can be designed in which, even for arbitrary
large ρ, agents with maximum indegree and maximum outdegree do not have highest social
influence.

5This is a particular case of their Theorem 1, exploiting the fact that the listening
matrix is row-stochastic, and hence describes a Markov chain which is irreducible and
aperiodic.

6The result does not apply to the limit case ρ→∞: in fact, with the rule described in
Equation (2), convergence of beliefs is not guaranteed, as can be verified from the simple
counterexample defined by S(A) = {B,D}, S(B) = {A}, S(C) = {B,D}, S(D) = {C}. In
this case, agents A and B, who have maximum indegree and are not directly connected, will
never change their own beliefs, and hence, assuming their initial signals differ, agreement
will not be reached.
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scaling factor, to the Katz centrality of i in the original network (Katz, 1953).
It is important to observe that Equation (7) implies that, in the updating rule
proposed by DeMarzo et al. (2003), social influence is increasing in outdegree
(see Appendix A, Theorem 7).

Let us now consider whether consensus beliefs are correct, in the sense of
being optimal aggregates of agents’ initial information. Given that all signals
are equally informative, the consensus belief is correct if wi = 1

N
∀i, i.e.

y∞ =

∑N
i=1 xi
N

= x̄. (8)

Different updating rules can therefore be compared by using the following
measure of efficiency:

E = −
N∑
i=1

(
wi −

1

N

)2

(9)

where E = 0 if consensus beliefs are correct, while E < 0 otherwise.
DeMarzo et al. (2003) have analyzed the GBR rule under the restriction

ρ = 0, showing that it will not, in general, lead to a correct consensus in most
network structures, as more connected agents have excessive social influence.
When ρ > 0, the GBR rule does not always neutralize such inefficiency: while
it may lead to a consensus which is closer to the correct one than for ρ = 0,
this is not a general rule. We thus start by asking more generally whether
there exist rules of thumb that lead to correct beliefs for any given network
structure. The answer is provided by the following theorems.

Theorem 1 Given any strongly connected network Ḡ, there exists a linear
updating rule FḠ which guarantees convergence to the correct consensus.

Proof. See Appendix A.

Theorem 2 Given any linear updating rule F̄ with weights π̄ij which depend
on local properties of the network around i, there exists a strongly connected
network GF̄ on which F̄ does not guarantee convergence to the correct con-
sensus.

Proof. See Appendix A.

While the first result is positive, stating that for any given network it
is possible to find an optimal linear rule, the second ends the quest for the
“perfect” rule of thumb: linear rules cannot be both correct and simple,
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in the sense that weights are determined only by the local properties of a
network.7

For a given value of ρ, the efficiency of the resulting updating rule will
clearly depend on the topology of the network. We will denote as Eρ(G)
the efficiency of the GBR rule when implemented over a network G with
the given value of ρ, and as ρ∗(G) the value of ρ that maximizes Eρ(G). In
the following, some relevant classes of networks will be defined on which the
GBR rule displays particular features in terms of efficiency. In all cases, it
will be assumed that networks are strongly connected.

Let us define two nodes (j, k) as equivalent if, after switching their labels,
it is possible to arrange the other labels of the network in order to obtain an
exact copy of the original one. Then, we can provide the following definitions:

Definition 1 A network structure is anonymous if all nodes are equivalent.8

Definition 2 A belief updating rule F is anonymous if all fi are symmetric
in arguments ytj and ytk, for any pair of equivalent nodes j, k 6= i.

In other words, a rule F is anonymous if the labels of agents do not play
any role. Those two definitions allow us to state the following basic result,
which generalizes Theorems 1 and 2 in French (1956),9 as well as Theorem 9
in Harary (1959).

Lemma 1 On any given anonymous, strongly connected network G on which
all agents play a same linear anonymous updating rule,

1. The beliefs in each period are uniquely determined by π11, . . . , πNN , the
self attributed weights,

2. The asymptotic consensus beliefs are correct: w =
(

1
N
, . . . , 1

N

)
.

7It is interesting to consider a constructive proof of Theorem 1: an algorithm which
for any given network Ḡ finds a linear rule which is efficient over it. Such algorithm is
described in Example 1 of Appendix A, and is based on the existence of a closed path
pN passing through all nodes of the network (possibly more than once). Indeed, it clearly
does not qualify as a “rule of thumb”: in particular, the choice of pN requires significant
ex-ante coordination among agents.

8This is stronger than the concept of regular graph, which only considers the indegree
of vertices (rather than their position in the network), and corresponds instead to the
concept of “automorphic group” employed by Harary (1959).

9While Theorem 2 by French (1956) is indeed a special case of Lemma 1, his Theorem
1 additionally states that on complete networks, the consensus belief is reached in one
step.
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Proof. See Appendix A.

One may wonder if anonymity or linearity alone is a sufficient requirement
for Lemma 1 to hold. The answer is negative: two counter-examples are
given, respectively, by the rules “weight the opinion coming from the highest
labeled neighbor as much as the average of all others” (which is linear but
not anonymous) and “weight the highest opinion coming from the neighbors
as much as the average of all others” (which is anonymous but not linear).

Theorem 3 The GBR rule will, for any choice of ρ, (perform equally, and)
converge to the true average of signals on any anonymous, strongly connected
network.

The theorem is a mere consequence of the GBR updating rule being linear
and anonymous, and of Lemma 1. For an example, see Figure 1, displaying
a complete network with four nodes: since the value of ρ is irrelevant, the
efficiency of the GBR rule is constant, and the value of the loss function is
equal to 0.

Figure 1: An anonymous complete network
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y
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The requirement of anonymity of a network is a very strong one. In fact,
the class of networks on which the GBR rule will perform equally for any
given ρ > 0 is significantly larger than that of anonymous ones. To see this,
notice that on any regular network,10 independently of ρ, each agent will
attribute the same importance to the opinion of each neighbor, since all of
them will have the same indegree. Interestingly, the regularity of the network
is also a necessary condition for ρ to be irrelevant, as stated in the following
theorem.

Theorem 4 On a strongly connected network G, the convergence belief and
social weights obtained under a GBR rule with given ρ > 0 coincide with the
ones obtained under ρ = 0 if and only if G is regular.

10A directed network is regular if all nodes have the same indegree and outdegree (the
two must necessarily coincide).
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Proof. See Appendix A.

The next result concerns a wider class of networks, which includes all
anonymous ones, but also many others, such as undirected networks and
regular networks.

Definition 3 A network is said to be balanced if each node has indegree
equal to outdegree.11

Theorem 5 On any given balanced, strongly connected network G, the GBR
with ρ = 0 is more efficient than with any ρ > 0.

The proof for this theorem is in Appendix A. Still, it can be interesting
to consider an intuitive explanation. On this class of networks, the problem
of persuasion bias is attenuated. Although it is present in the first period, in
the long run agents with higher outdegree exploit their influence to convey
richer information, since they also have higher indegree. Intuitively, their
belief has higher weight, but their own initial opinion gets diluted in their
belief. This does not occur when ρ > 0, which causes agents with higher
outdegree to place even higher weight on their own signal.

For an application of Theorem 5, consider the network structure in Figure
2. While it is not anonymous (nodes B and D are identical, but they differ
from nodes A and C), it shares with the complete network the feature of
being undirected. Figure 2 shows that the optimal value of ρ is 0. Notice that
Theorem 5 only holds asymptotically: it is easy to provide counterexamples
in finite time, by replacing in the definition of efficiency (Equation 9) the
weights wi with those calculated after a finite number of periods.

Figure 2: An undirected, and hence balanced, network
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More importantly for our purposes, outside of those specific classes of
networks, things change radically. While there can be cases of unbalanced

11This definition is adopted from Olfati-Saber and Murray (2004). It is more general
than the ones used by Corazzini et al. (2012) and DeMarzo et al. (2003).
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networks on which a lower ρ still means higher efficiency, this is not the rule.
The network presented in Figure 3, which is the one used in the experiment
presented in Section 3, is characterized by an optimal value of ρ that is
positive (0.04). For higher values of ρ, the social influence of B, who has a
higher indegree, increases, while the one of D decreases.

Figure 3: The network used in the experimental setting
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The following theorem states that no value of ρ is in principle “too high”.

Theorem 6 Given any ρ̄ ∈ [0,∞), there exists a strongly connected network
Ḡ such that ρ∗(Ḡ) > ρ̄.

Proof. See Appendix A.

In short, our results can be summarized as follows. In anonymous net-
works the weights placed on neighbors are irrelevant, since all linear rules
are efficient. In balanced networks, placing higher weight on neighbors with
higher indegree (ρ > 0) is generally less efficient than simply placing equal
weights on all neighbors (ρ = 0). Finally, in unbalanced networks, it may be
optimal to place higher weight on neighbors with higher indegree, and there
exist networks in which the optimal value of ρ is arbitrarily high. In the next
Section we present an experimental test of the effects of indegree on opinion
dynamics and social influence.

3 Experimental Design

The experiment is designed to test the effects of agents’ position in a commu-
nication network on their social influence. More specifically, our experimental
design allows us to manipulate agents’ indegree without affecting their out-
degree and the corresponding eigenvector centrality. Therefore, it enables us
to provide a clean test of the effect of indegree on social influence, that would
be absent under either Bayesian updating or boundedly rational updating à
la DeMarzo et al. (2003).
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3.1 Task

At the beginning of the experimental task, individuals are anonymously
matched in groups of four. In each group, subjects are connected through a
communication network, and each subject is assigned a label (A, B, C, D)
that defines her position in the network. Each subject is assigned an integer
number randomly drawn from a normal distribution, henceforth referred to
as a signal, denoted with xA, xB, xC , xD, respectively. The task is based on
a discrete time setting over 8 rounds. In each round the subjects are asked
to guess the average x̄ = xA+xB+xC+xD

4
of the four signals in their group.

The choice of replacing the population mean (θ) with the sample mean (x̄) is
made to simplify the experimental task, as it allows subjects to concentrate
on the aggregation of information rather than statistical inference.

In order to be able to update their beliefs, at the beginning of each round
subjects receive information from the other group members they are con-
nected to. More specifically, at time t each individual is informed about
the guesses at time t− 1 of the other group members connected to her (the
network structure, that defines who receives information from whom, is de-
scribed in the next subsection). Therefore, while in the first round subjects
only directly know their own signal, over successive rounds they directly or
indirectly receive information about the signals received by the other group
members. If all four group members optimally process the information they
receive, over successive rounds each of them can correctly guess x̄.

The mechanism for eliciting beliefs is as follows: each individual is in-
formed that at the end of the session, one round will be randomly extracted
to determine earnings. Given the guess y∗ of the individual in that round,
and the average of signals in the group (x̄), the individual’s payoff is 15 euro
minus the absolute difference between y∗ and x̄, in addition to a show-up
fee of 5 euros. This implies that individuals have an incentive to report in
each round their best guess for the group average. We adopt a triangular
scoring rule for three reasons. First, a quadratic scoring rule, commonly used
for belief elicitation, would substantially complicate the calculation of pay-
offs, hence increasing the likelihood of mistakes due to mis-comprehensions.
Second, for a given average gain, a quadratic scoring rule would increase the
likelihood of earning very small payoffs, thus adversely affecting the incentive
to exert effort in the task. Third, given normality of signals, our setting is
perfectly symmetric, so that the median of the posterior’s distribution co-
incides with the mean. In addition, more generally, experimental subjects
were explicitly instructed to update their beliefs by averaging all known and
inferred signals, and control questions indicated that such instruction was
clearly understood.
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3.2 Treatments

Figure 4 describes the strongly connected directed network structure we use
in the experiment. The number of nodes is small in order to provide a simple
setting for the experimental subjects, but at the same time sufficiently large
to imply interesting opinion dynamics. The network structure implies that
A is informed about past beliefs of C, B is informed about past beliefs of A
and D, C is informed about past beliefs of B and D, while D is informed
about past beliefs of B. The indegree and outdegree of the four nodes are
A = (1, 1), B = (2, 2), C = (2, 1), D = (1, 2), respectively. The reason for
choosing this specific network structure is that, as explained below, it allows
us to cleanly test the key hypotheses of the experiment.

Figure 4: Structure of the communication network

A B

CD

The treatment variable is the node that the subject is assigned to within
the network. The four treatments (nodes A, B, C and D) are implemented in
a within-subjects design. This means that, in an experimental session, each
subject performs the task four times, thus taking part in four subsequent
phases of 8 rounds (32 rounds overall). In each of the four phases, each
subject is randomly assigned to a different node (position) in the network.
Therefore, within a session, each individual is assigned each node in exactly
one of the four phases. Subjects receive a different set of signals at the
beginning of each phase, while the composition of the groups is unchanged
throughout the four phases.

Since we aim at assessing if and how agents’ social influence is affected
by their position in the network, it is important to control for the possible
confounding effects of the labels attached to each node (A, B, C, D) and
of subjects’ visual location in the network (upper left, upper right, bottom
left, bottom right). It is possible, for instance, that subjects tend to give
more importance (higher weight) to nodes denoted by letters that come first
in the alphabet (e.g. A vs D). Similarly, subjects might tend to give more
importance to nodes located in the top-left of the network visual display, as
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opposed to the bottom-right. In order to control for such spurious effects, we
implemented the four treatments in each of four sessions keeping constant
the networks structure, while changing in each session the spatial disposi-
tion of the nodes, as detailed in Figure 5.12 The same four sets of signals
were used in each of the four sessions. Therefore, by implementing the four
network nodes with all possible labels and visual locations, while keeping
signals constant, we were able to control for any possible confounding effects
and cleanly identify the causal effects of network structure.

Figure 5: Network structure, by session
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3.3 Hypotheses

Consider the network structure in Figure 4. As detailed in Table 1, there
exists a set of strategies that allows each of the four network members to find
out x̄ in just four rounds. Indeed, there exist several possible combinations
of strategies that result in correct beliefs. With such optimal strategies,
the four agents have equal social influence weights in consensus beliefs, i.e.
w∗ = [0.25, 0.25, 0.25, 0.25].

Table 1: Optimal strategies for each network position, by round

Round A B C D
1 xA xB xC xD

2
xA+y1

C

2

xB+y1
A+y1

D

3

xC+y1
B+y1

D

3

xD+y1
B

2

3
xA+3y2

C

4

xB+2y2
A+y1

D

4

xC+3y2
B

4

xD+3y2
B−y1

D

6

4 yt−1
A yt−1

B yt−1
C

xD+4y3
B−y1

D

4

≥ 5 yt−1
A yt−1

B yt−1
C yt−1

D
Note: agents’ positions in column headings refer to the network structure displayed in
Figure 4.

Let us now consider the predictions for the GBR updating rule described
in equations (1) and (3). Figure 6 shows how the social influence weights

12This means that, for instance, the node that has label B and upper-right position in
session 1, has then label D and bottom-left position in session 2, label C and bottom-right
position in session 3, label A and upper-left position in session 4, respectively.
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for each of the four network nodes change as a function of ρ. When ρ = 0,
agents B and D are the most influential. This, loosely speaking, reflects
the fact that both B and D have an outdegree of 2, while A and C have
an outdegree of 1: the agents who are listened to by more other agents are
the most influential.13 Also note that A is relatively more influential than
C. This reflects indirect social influence, as A communicates to B, who is
one of the two most influential subjects, while C communicates to A. For
ρ > 0, the pattern of social influence weights also reflects agents’ indegree.
In particular, as ρ increases, B becomes progressively more influential, while
the weights of the other three agents tend to zero.

Figure 6: Social influence weights as a function of ρ
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To summarize, Table 2 compares point predictions of social influence
weights for ρ = 0, ρ = 1 and ρ → ∞. When ρ = 0, as in DeMarzo et al.
(2003), B and D have equal social influence weights, similarly to the case of
Bayesian updating. When ρ = 1, so that agents update their beliefs using
weights that are proportional to indegree, B is the most influential agent.
Finally, when ρ→∞, consensus beliefs tend to agent B’s initial opinion.

The pattern described in Figure 6 and Table 2 provides the predictions
to be tested in the experiment. The first hypothesis we test is that agents
optimally update their beliefs. Empirically, the null hypothesis is that all

13Note that B and D have exactly the same weight since they communicate to the same
individuals (C and each other) and, while the link from A to B implies that the latter
is placing a lower weight ( 1

3 rather than 1
2 ) on her own belief, she is hence placing lower

weight also on the information coming from D.
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Table 2: Predictions for social influence weights for different values of ρ

wA wB wC wD
ρ = 0 0.21 0.32 0.16 0.32
ρ = 1 0.18 0.39 0.18 0.26
ρ→∞ 0.00 1.00 0.00 0.00

Note: the predictions refer to the updating rule described in equations (1) and (3) for
the network structure displayed in Figure 4.

nodes have equal weights in consensus beliefs:

H0 : wA = wB = wC = wD = 0.25 (H1)

Note that this is a general test of Bayesian updating versus an unspecified
alternative. In order to test against the specific alternative of the generalized
boundedly rational updating rule, we focus on pair-wise differences between
individual weights. More specifically, as shown in Figure 6, the updating rule
predicts that, for any ρ ≥ 0, an agent in node B is more influential than
in either A or C. Conversely, for all other pair-wise comparisons between
nodes, the sign of the difference between weights is not independent of ρ.
Therefore, the relevant one-sided hypotheses can be stated as follows:

H0 : wB ≤ wA vs H1: wB > wA (H2)

H0 : wB ≤ wC vs H1: wB > wC (H3)

Next, we focus on the value of ρ. For ρ = 0, analogously to the case of
Bayesian updating, the boundedly rational updating rule predicts wB = wD.
On the other hand, for ρ > 0, the rule predicts wB > wD (see Figure 6). We
can thus test the effect of indegree on social influence (ρ > 0), versus the
alternative of no effect (ρ = 0), by comparing the social influence weights of
agents B and D:

H0 : wB ≤ wD vs H1: wB > wD (H4)

3.4 Procedures

The experiment was conducted in the Experimental Economics Lab of the
University of Milan Bicocca between January and March 2013, with 24 sub-
jects participating in each of the four sessions (96 in total). Subjects were
undergraduate students, recruited by e-mail through an online system. The
experiment was ran using z-Tree (Fischbacher, 2007). Subjects on average
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earned 13.8 euro for sessions lasting approximately 80 minutes, including
time for instructions, control questions and payments.

Each session consisted of four eight-round phases. Subjects were informed
that signals and network positions would be randomly determined at the be-
ginning of each phase, while the composition of the groups would remain the
same throughout the session. Subjects were only informed that the signals
would be integer numbers randomly drawn by the system. The four signals
for each group/phase were extracted as follows. An integer number θ was
extracted from a uniform distribution in a range between 200 and 800. Four
positive integers were then randomly drawn from a normal distribution with
mean θ and variance 100.

All the experimental instructions, reported in Appendix B, were provided
to the participants in written form, and also read aloud at the beginning of
the session. Individuals were then asked to answer some control questions.
Each participant had the possibility to take notes and make calculations on
paper, and also to use an on-screen calculator. Moreover, in each round,
the screen reported all the information available (own past guesses and past
guesses of neighbors since the beginning of the phase), in order to guarantee
perfect recall.

The instructions explicitly suggested that, had an individual known with
certainty a subset of the signals for her group, her optimal strategy was
to report their average. This, together with the fact that individuals had
to target the average of four specific numbers (rather than the mean of an
underlying distribution of signals) helped us to minimize mistakes caused
by inappropriate statistical inference, hence ensuring that individuals could
focus on the process of information aggregation.

4 Results

In each of the four sessions, the experimental task was implemented by 24
subjects over 8 rounds in four different phases (32 rounds in total), resulting
in 384 observations for each round (24 subjects × 4 sessions × 4 phases)
and 3072 observations in total. Overall, although there was substantial het-
erogeneity at individual and group level, subjects generally showed to have
clearly understood the experimental task. In the first round of each phase,
94.2 per cent of the subjects truthfully reported their own signal, while 96
per cent of the subjects reported a number within 10 units from their own
signal. In the final round of each phase, 24 per cent of the subjects correctly
guessed the average of the four signals within their group. Accounting for
rounding errors, 55.5 per cent of the subjects reported beliefs within 10 units
from the average of the four signals.
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4.1 Tests of Hypotheses

In order to test hypotheses about the social influence weights of agents in
different network positions,14 we specify each agent’s final belief as a linear
combination of the initial signals of the four agents in her group:

yTi = µ+ wAxi,A + wBxi,B + wCxi,C + wDxi,D + εi (10)

where yTi is agent i’s belief in the last round of each phase, xi,j is the signal
observed by agent j in i’s group, µ is a constant, wj is the social influence
weight of agent j, and εi is an idiosyncratic error term. Equation (10) is
estimated by OLS, under the constraint

∑
j wj = 1. The set of regressors

also includes full sets of dummy variables for sessions and phases. In order
to take into account the dependence of observations belonging to the same
group within each session, standard errors are clustered by 24 independent
groups (there are 6 independent groups in each of the four sessions).

Table 3 presents the results. Since we are focusing on the final observa-
tion from each of the four phases, the overall sample includes 384 individual
observations. Column (1) reports estimates of social influence weights in ab-
solute terms, as in Equation (10). The weights generally differ from 0.25,
with a pattern that is qualitatively consistent with the predictions of the
generalized updating rule: social influence is highest for node B (0.294) and
lowest for node C (0.214). The hypothesis that all nodes have equal weights
(wA = wB = wC = wD = 0.25), as predicted under Bayesian updating, is
strongly rejected by the data (p < 0.01).

Result 1: Bayesian updating is rejected by the data.

Focusing on pair-wise differences between weights (hypothesis H2-H3),
wB is higher than wC , consistent with the predictions of the generalized
boundedly rational rule, and the difference (+0.080) is strongly significant
(p < 0.01). Similarly, wB is higher than wA, although the difference (+0.026)
is not statistically significant (p < 0.25).

Result 2: Pairwise differences between social influence weights
are consistent with the GBR updating rule.

Next, turning to H4, we find that wB is higher than wD and the difference
is strongly significant (p < 0.01). This leads us to reject the null hypothesis
that ρ = 0.

14Throughout the discussion of the results, unless otherwise stated, we will refer to the
four network nodes using the labels of session 1 (see Figure 5). This means that nodes
from sessions 2 to 4 are implicitly relabeled so that they are the same as in session 1.
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Table 3: Estimated social influence weights, overall

(1) (2)
Absolute weights Relative weights

Signal A 0.268*** 0.018
(0.031) (0.031)

Signal B 0.294*** 0.044***
(0.013) (0.013)

Signal C 0.214*** -0.036**
(0.017) (0.017)

Signal D 0.224*** -0.026
(0.023) (0.023)

Number of observations 384 384
Note: figures reported are OLS estimates of social influence weights associated to the
node indicated by the row heading. The weights are expressed in absolute terms (column
1) and as a difference from 0.25 (column 2), respectively. Dependent variable: individual
beliefs in final round. All specifications include full sets of session and phase dummies.
Standard errors clustered at group level reported in brackets. ***p< 0.01, **p< 0.05,
*p< 0.10.

Result 3: The social influence of an individual is positively af-
fected by the number of individuals she listens to.

This finding is important, as it indicates that subjects do not place equal
weights on all their neighbors, but take into account their neighbors’ indegree
when aggregating the information they receive from them. As a result, ceteris
paribus, subjects with higher indegree ultimately have higher social influence.

In order to shed light on these findings, column (2) reports differences of
social influence weights with respect to 0.25, obtained by expressing individ-
ual final-round beliefs as deviations from the average of the four group signals.
The results indicate that wB is significantly higher than 0.25 (p < 0.01), while
wC is significantly lower than 0.25 (p < 0.02). On the other hand, wA and wD
are not significantly different from 0.25 (p < 0.29 and p < 0.13, respectively,
for the corresponding one-sided hypothesis). The different test results for
nodes B and D provide further evidence against a simple updating rule à la
DeMarzo et al. (2003).

4.2 Robustness

In order to assess the robustness of the results to the possible effects of out-
liers, Table 4 reports estimates of (relative) social influence weights obtained
by eliminating from the sample the groups containing the 1%, 5%, or 10%
most extreme observations, where potential outliers are identified by consid-
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ering, for each group member, the difference between the reported beliefs
and the ones predicted by Bayesian updating. This results in a restricted
sample size of 380, 364 and 344 observations, respectively. In all cases, the
estimates are virtually unchanged relative to the overall sample. The hy-
pothesis that all nodes have equal weights (wA = wB = wC = wD = 0.25) is
strongly rejected by the data (p < 0.01). The hypothesis that wB = wD is
also strongly rejected in all cases. Indeed, by eliminating potential outliers,
the estimated weights are even more closely consistent with the theoretical
predictions of the generalized boundedly rational updating rule. In column
(3), for example, where the 10 per cent of the groups reporting the most
extreme deviations from optimal predictions are excluded, the estimated rel-
ative weights are 0.005, 0.053, −0.045 and −0.012. In all cases, wB (wC) is
significantly higher (lower) than 0.25.

Table 4: Social influence (relative weights), robustness

(1) (2) (3)
1 % 5 % 10 %

Signal A 0.013 0.019 0.005
(0.031) (0.032) (0.027)

Signal B 0.049*** 0.051*** 0.053***
(0.014) (0.015) (0.014)

Signal C -0.037** -0.045** -0.045***
(0.017) (0.018) (0.017)

Signal D -0.026 -0.024 -0.012
(0.023) (0.023) (0.017)

Number of observations 380 364 344
Note: the figures reported are estimates of social influence weights, as a difference from
0.25, associated to the subject in the position indicated by the row heading. Dependent
variable: individual beliefs in final round. All specifications include full sets of session
and phase dummies. Standard errors clustered at group level reported in brackets.
***p< 0.01, **p< 0.05, *p< 0.10. Columns (1) to (3): sample restricted by eliminating
groups with most extreme deviations from optimal beliefs (1%, 5%, 10%, respectively).

It should be observed that, although the variance of beliefs held by the
four group members falls steadily over successive rounds in all groups, dis-
agreement persists in many cases, so that beliefs do not converge to a consen-
sus in all cases. In order to assess the potential effects of non-convergence,
Table 5 presents estimates of (relative) social influence weights by individ-
ual network position. Focusing on nodes B and D, in columns (2) and (4),
respectively, estimated social influence weights are qualitatively unchanged
with respect to the overall results in Table 3: the relative weight of B is
positive and significant, while it is negative and significant for C. Agent D
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has a negative relative weight in the final beliefs of agent A. Finally, relative
social influence weights are not different from zero for C.

Table 5: Social influence (relative weights), by node

(1) (2) (3) (4)
Node A Node B Node C Node D

Signal A 0.057 0.015 0.007 -0.009
(0.047) (0.037) (0.040) (0.066)

Signal B 0.038 0.057** 0.015 0.065**
(0.038) (0.024) (0.023) (0.026)

Signal C 0.013 -0.070** 0.024 -0.110***
(0.033) (0.027) (0.022) (0.035)

Signal D -0.109** -0.003 -0.045 0.053
(0.041) (0.025) (0.031) (0.048)

Number of observations 96 96 96 96
Note: the figures reported are estimates of the social influence weights, as a difference
from 0.25, associated to the subject in the position indicated by the row heading.
Dependent variable: individual beliefs in final round. All specifications include full sets
of session and phase dummies. Standard errors clustered at group level reported in
brackets. ***p< 0.01, **p< 0.05, *p< 0.10.

Overall, these results indicate that the effects of network structure on
social influence reported in Section 4.1 are both qualitatively and quantita-
tively robust to the potential effects of outliers. In addition, they are qualita-
tively unaffected by the possible non-convergence of beliefs within individual
groups.

4.3 Further Evidence

The experimental data also allow us to investigate what explains the treat-
ment effects on social influence weights, by looking at how agents at specific
nodes aggregate the information they receive in each round. At individual
level, there can be two possible, not mutually exclusive, mechanisms ex-
plaining differences in social influence between B and D. The first, and most
intuitive, mechanism is that may C place a higher weight on the opinion of
B than on the one of D, because of B’s higher indegree. The second is that,
for the same reason, D may be influenced by B relatively more than B is
influenced by D.

Table 6 sheds light on this issue by presenting estimates of node-specific
(absolute) weights based on all updating rounds. Looking at the estimates for
node C (column 3), the weight of B (0.435) is substantially higher than the
one of D (0.163), and the difference is strongly statistically significant (p <
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0.01). This provides support to the first of the two mechanisms described
above. The comparison of the weights given to each other by B and D is
non-trivial, since their respective indegrees are different, as they form their
beliefs on the basis of different numbers of neighbors. However, D appears to
substantially under-weigh the information coming from B (0.104), whereas B
does not substantially under-weigh the information received from D (0.325).
The overall effect of indegree on social influence is therefore mainly explained
by the way in which information is processed by C: node B, whose indegree
is twice the indegree of D, receives a weight that is more than twice as large
as the weight for node D.

Table 6: Neighbors’ absolute weights in current beliefs, by node

(1) (2) (3) (4)
Node A Node B Node C Node D

Lagged belief, node A 0.530** 0.000
(0.011) (0.000)

Lagged belief, node B 0.675** 0.435** 0.104**
(0.070) (0.087) (0.018)

Lagged belief, node C 0.470** 0.402**
(0.011) (0.087)

Lagged belief, node D 0.325** 0.163** 0.896**
(0.070) (0.049) (0.018)

Number of observations 672 672 672 672
Note: the figures reported are estimates of neighbors’ weights, based on all updating
rounds. Dependent variable: current belief of agent at the node reported in column
heading, rounds 2-8. All specifications also include full sets of session and phase
dummies. Standard errors clustered at independent group level reported in brackets.
***p< 0.01, **p< 0.05, *p< 0.10.

Finally, since the hypothesis that ρ = 0 is strongly rejected, it is inter-
esting to ask what value of ρ provides the best fit for the experimental data.
We simulated the generalized updating rule with a wide range of values for
ρ, searching for the value that minimizes the sum of squared deviations, over
all individuals, between observed (experimental) and simulated final-round
beliefs:

ρ̂ = arg min
ρ

96∑
g=1

4∑
k=1

(yg,k,T − ȳρk,T )2,

where yg,k,T is the belief of an individual with role k in group g in the final
round, and ȳρk,T is the corresponding theoretical prediction. This produces
an estimate of ρ̂ = 0.30. Interestingly, this is higher than ρ∗ = 0.04, the
value of ρ that provides the best approximation to the results of the optimal
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strategy (see Figure 3). This indicates that agents, as they should, place
higher weight on those neighbors who themselves listen to more peers, but
they do so to a greater extent than would be optimal.

5 Conclusions

Although the mathematical concept of digraph, i.e., a network based on di-
rected relations, was already central in the pioneering works of French (1956)
and Harary (1959), empirical studies of information diffusion in social net-
works have generally not focused explicitly on the respective roles played by
indegree and outdegree. This may be partly reflecting the fact that, although
asymmetric information flows are the norm in opinion formation, most of the
available network data sets (such as those describing friendship relations on
online social networks, co-authorships of academic authors, or traffic flows)
generally describe undirected networks. Recently, however, increasing atten-
tion has been given, both theoretically and empirically, to information flows
in directed networks (e.g. Baños et al., 2013 and Gleeson et al., 2013).

This paper investigated a boundedly rational model of opinion formation
in directed social networks that provides a simple generalization of the linear
updating rules in DeGroot (1974) and DeMarzo et al. (2003). In the model,
agents aggregate the information they receive from their neighbors’ by using
weights that may reflect their neighbors’ indegree. Intuitively, when opinions
are updated, relatively more importance can be attributed to more informed
individuals.

At the theoretical level, our results indicate that, in balanced networks,
placing higher weight on neighbors with higher indegree is generally less ef-
ficient than placing equal weights on all neighbors. On the other hand, in
unbalanced networks, it can be efficient to place higher weight on neighbors
with higher indegree. Indeed, there exist unbalanced networks in which the
optimal importance attributed to indegree is arbitrarily high. At the empiri-
cal level, our experimental results provide clean evidence of a causal effect of
indegree on social influence. Both Bayesian updating and boundedly rational
updating à la DeMarzo et al. (2003) are rejected against the alternative of a
boundedly rational updating rule in which the weight placed on an agent’s
opinion is positively related to the number of individuals she listens to. In-
deed, the importance that agents place on their neighbors’ indegree is higher
than would be efficient.

One possible interpretation of our findings is that agents are aware that,
in the setting considered, placing a higher weight on neighbors with a higher
indegree is efficient. However, in their attempt to aggregate information effi-
ciently while retaining a simple updating rule, agents end up placing exces-
sive weight on neighbors with high indegree. A second possible explanation
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is that, irrespective of any efficiency motivation, agents tend to attribute
some form of authority to peers whom they perceive as better informed, and
this leads them to place a higher weight on the information received from
them. Another possible interpretation of our results is that the weights of the
updating rule could be state-dependent. In the framework by Hegselmann
and Krause (2002), for example, updating weights depend negatively on the
distance between opinions. Since the beliefs of high-indegree agents are, on
average, less extreme than those of low-indegree agents, they can be expected
to be more similar, on average, to the beliefs of the listening agents. In this
perspective, our results could be interpreted as reflecting features of beliefs,
so that network structure, and more specifically indegree, would play a role
only indirectly.

To sum up, our analysis provides causal evidence of an indegree effect
that is at odds with the updating mechanisms most commonly adopted in
the literature on opinion dynamics. When forming their opinion, agents
do not place equal weights on all their neighbors, but use weights that are
positively related to their neighbors’ indegree. As a result, ceteris paribus,
subjects with higher indegree ultimately have higher social influence. This
is an important finding, as it indicates that, despite their inability to fully
account for the structure of their communication network, agents are able to
exploit the information about its local properties. Further research should
contribute to an understanding of the mechanisms explaining the effect of
indegree on opinion formation and social influence.
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Appendix A - Proofs

Proof of Theorem 1. Consider a strongly connected network G: its adja-
cency matrix MG = qij i,j≤N is necessarily irreducible.15 Perfect and Mirsky
(1965) have shown that then there exists another matrix PG, with coefficients
pij such that

• PG is doubly stochastic.16

• pij = 0 ⇐⇒ qij = 0.

The coefficients pij define a new linear updating rule applicable to the network
G.17 Let us calculate the dynamics of the average of beliefs from one period
to another according to this new updating rule:

1

N

∑
i

yt+1
i =

1

N

∑
i

∑
j

pijy
t
j

=
1

N

∑
j

∑
i
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=1

ytj

=
1

N

∑
j

ytj.

Such average is unchanged. By iterating this reasoning, we have that the
average of opinions at any time is equal to the initial mean x̄. When a
consensus is reached, it is by definition the correct consensus.

Proof of Theorem 2. Given a network G, let Ḡ be the corresponding
undirected network (with adjacency matrix q̄ij = 1 ⇐⇒ qij + qji > 0), and
Giδ the subnetwork of G restricted to nodes which are distant at most δ ∈ N
from i in Ḡ. Since the weights π̄ij only depend on local properties of the
network, there must exist a δ̄ ∈ N such that they are only determined based
on G δ̄i . Consider then the networks in figure 7:

Notice that G δ̄E is identical in both networks, and hence the vector of
weights π̄E adopted by E must be identical too. Assume, without loss of
generality, that π̄EAδ̄ ≥ π̄ECδ̄ . In the second network, E gets to know the

15An N ×N matrix q is reducible if the set {1, . . . , N} can be partitioned in two subsets
V1, V2 such that qij = 0 whenever i ∈ V1 and j ∈ V2. This implies that nodes in V1 are
not connected to nodes in V2, and hence that the network is not strongly connected.

16A matrix is doubly stochastic if all its elements are non negative, and each row and
column sums up to 1.

17The relation between the double stochasticity of the updating matrix and the cor-
rectness of the consensus was already recognized by Harary (1959). The rest of the proof
simply generalizes his Theorem 14 to a generic linear rule.
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Figure 7: Locally similar networks for node E
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opinion of agents B, C1, . . . , Cδ only through the link coming from Cδ. Hence,
she is weighting the opinions of those δ̄ + 1 nodes less than the opinions of
the other δ̄ nodes A1, . . . , Aδ̄. Hence, this rule cannot lead to the correct
consensus on such network.

Example 1 Consider a network G with agents numbered from 1 to N , and
execute the following steps:

1. start from agent 1: since the network is strongly connected, there must
be a path from 1 to 2: call it s1, and assume without loss of generality
that it has no cycles;

2. again, since the network is strongly connected, there must be a path
from 2 to 3: assume without loss of generality that it has no cycles,
and call s2 the union of s1 with such a path;

3. by repeating the step above, for each i < N , a path si is constructed,
which goes from 1 to i and passes through any i′ < i: let sN be the
union of sN−1 with a path (again, without cycles) from N to 1: sN is
a cycle which passes through each node at least once and at most N
times;

4. for each pair (i, j) with j 6= i, define πij as 1
N

multiplied by the number
of times that sN passes through the link from j to i (possibly zero). For
each i, define πii as 1−

∑
j 6=i πji.

The updating rule having such πij as updating weights is a valid linear rule.
If we consider sN as a weighted network where the weight of a link is given
by πij, it is strongly connected, and its adjacency matrix is doubly stochastic.
Hence, the resulting updating rule leads to the correct consensus.

Proof of Lemma 1.
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Consider the influence weights for the opinion of a given agent as a vector
in the standard n− 1-simplex, ωtij. For instance,

ω0
i = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−i

)

that is, before receiving any information from neighbors, the opinion of each
agent is entirely formed by her initial signal. With a linear belief updating
rule, the evolution of such vectors is simply described as a straightforward
rewriting of (1):

ωti =
n∑
j=1

qijπijω
t−1
j

= πiiω
t−1
i +

∑
j 6=i

qijπijω
t−1
j .

Since the network is anonymous, all neighbors of a given node are equivalent;
and since the rule is anonymous, each node hence places an equal weight to
each neighbor. So the above can be rewritten as

ωti = πiiω
t−1
i +

(1− πii)
di

∑
j 6=i

qijω
t−1
j , (5.11)

where di is agent i’s indegree. Notice that yti = ωti · x, and hence the beliefs
are uniquely determined once πtii is fixed for each i.

For what concerns point 2, let us define the system as biased at a given
time t̄ if for some h

N∑
i=1

ωt̄ih 6= 1.

Let us assume without loss of generality that t̄ is the first time for which this
happens. Notice that t̄ > 0, since

N∑
i=1

ω0
ih = ω0

hh = 1,

and that

N∑
i=1

ωt̄ih =
N∑
i=1

N∑
j=1

qijπijω
t̄−1
jh

=
N∑
j=1

ωt̄−1
jh

N∑
i=1

qijπij.
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Since the network and the rule are anonymous, the value of the nested sum
must be the same for all j, and since the sum of qijπij across j and i is N ,
the value of such nested sum must be N

N
= 1. So

N∑
j=1

ωt̄−1
jh =

N∑
i=1

ωt̄ih 6= 1.

But this contradicts the hypothesis that t̄ is the first time at which the
system is biased.

Proof of Theorem 4. One implication is obvious: given any agent i, let
d̄ be the (equal, by assumption) indegree of all di + 1 agents in S(i). Then,
by applying Equation (3), we have that for each j ∈ S(i),

πij =
d̄ρ

(di + 1)d̄ρ
=

1

di + 1
,

that is, the updating weights do not depend on the value of ρ - hence the
consensus belief and social influence weights do not either. For the reverse
implication, notice that if a network G is not regular, there is at least a pair
of agents i, j with different indegree and such that i listens to j (if this is
not the case, it is easily to show by induction that the network is regular).
Define now as Hk the set of agents h such that there exist j′, j′′ ∈ S(h) with
k = dj′ < dj′′ . Intuitively, we are considering all agents i on whose updating
weights ρ does matter, because the neighbors have different indegree, and
classifying them based on the lowest indegree of a neighbor: the underlying
idea of the remaining of the proof is that this will allow us to identify an agent
who is necessarily disadvantaged, in terms of social influence, by a strictly
positive value of ρ. Let k̄ be the smallest k such that Hk is non-empty -
the non-regularity assumption means precisely that there exists at least one
such k. Let ī ∈ Hk̄, and j̄ ∈ S(i) such that dj̄ = k̄. Notice that, for each
i′ ∈ S−1(j̄), we have that j̄ must have smaller or equal indegree than all
other agents in S(i′) (otherwise, we would have found a non-empty Hk′ with
k′ < k̄). As a consequence, πi′j̄ will be weakly smaller with ρ > 0 than with
ρ = 0, and πīj̄ will be strictly smaller. But since we know that

wj̄ =
N∑
i=1

πij̄wi,

this means that wj̄ will strictly decrease as a function of its neighbors,
and hence that at least some wi will be affected by a change of ρ.

Proof of Lemma 5. Let G be a balanced network with adjacency matrix
q. Under ρ = 0 the social influence of an agent is positively related to her
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outdegree and the outdegree of the agents she talks to - the entity of the re-
lation being given precisely by the product of the updating coefficients along
each possible path between the two agents. Instead, the effect of an increase
in ρ on the social influence of an agent i is clearly related to her indegree.
However, in a balanced network, the indegree and outdegree coincide. This
implies that an increase in ρ will amplify the vector of absolute differences
between w and the vector of unbiased weights

(
1
N
, . . . , 1

N

)
and hence decrease

efficiency (defined as the sum of squares of such absolute differences).

Proof of Theorem 6.
Given a natural number K, consider a network having the following bi-

nary tree-like structure:

• an agent A1 listens to two other agents A2,1, A2,2,

• each agent Ak,i listens to two other agents Ak+1,2i−1, Ak+1,2i, for each
k < K,

• each “leaf” agent AK,i listens to A1 and to her “close relatives” AK,i−1

and AK,i+1 (AK,1 listens to AK,2K and AK,2, while AK,2K , listens to
AK,2K−1 and AK,1).

Notice that,

• the structure is perfectly symmetric, in the sense that all the agents
positioned on a given “layer” will exhibit the same vector of updating
weights (which we will hence denote for simplicity as πk−1,k and πk,k
rather than πAk−1,iAk,j and πAk,iAk,i , respectively) and the same social
influence (which we will hence denote as wk rather than wAk,i),

• for most of the layers of this structure, the updating weights are inde-
pendent from ρ; namely, for any k such that 1 ≤ k < K − 1,

πk,k = πk−1,k =
2ρ

3 · 2ρ
=

1

3

and hence

wk =πk,kwk + πk−1,kwk−1

=
1

3
wk +

1

3
wk−1

=
1

2
wk−1;

• as a consequence, since the number of agents on a given layer double at
each level, this means that the sum of social influences of all agents in
a given layer, which we will denote as Wk, is the same for any k from
1 to K − 1.
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Now consider the social weight of A1. The updating weights of a leaf
(which has indegree 3, rather than 2) can be calculated as:

πK,1 =
2ρ

2ρ + 3ρ + 3ρ + 3ρ
=

2ρ

2ρ + 3ρ+1
; πK,K =

3ρ

2ρ + 3ρ+1
.

and since 2K leafs listen to A1,

w1 =π1,1w1 + 2KπK,1wK

=
1

3
w1 + 2K

2ρ

2ρ + 3ρ+1
wK

=2K
3 · 2ρ−1

2ρ + 3ρ+1
wK

=⇒ W1 =
3 · 2ρ−1

2ρ + 3ρ+1
WK .

Assume the optimal level of ρ is bounded above by some ρ̂. This means
that for K →∞, this last ratio will tend to a finite limit. That is,

WK ∼ W1 = W2 = · · · = WK−1

and hence, since the sum of all wi is 1, w1 = W1 will converge to 0 asymptot-
ically as α

K
, where α is a constant. Now, it easy instead to verify that since,

for given K̄,

2K̄
3 · 2ρ−1

2ρ + 3ρ+1

ρ→∞→ 0

and such term is continuous in ρ, we can define ρK̄ such that

2K̄
3 · 2ρK̄−1

2ρK̄ + 3ρK̄+1
= 1;

it is easy to see that ρK̄
K̄→∞→ ∞. When the GBR rule is applied with such

ρK , we have, by definition, that w1 = wK . That is,

WK

2K
= W1 = W1 = W2 = · · · = WK−1.

The sum of the weights still sums up to 1, but now the nodes with the
maximum influence are 2K+1 (all leafs, and A1) so now each influence weight
will converge to 0 as 1

2K
(or faster), rather than as α

K
.

Now, observe that the correct weights converge to 0 as 1
N

= 1
2K+1−1

.
Hence, the sum of square deviations in the case of any finite ρ will converge

towards at least
(
α
K

)2
= α2

K2 , while in the case of ρ = ρK it will converge
towards at most

2K+1 ·
(

1

2K

)2

=
2K+1

22K
=

1

2K−1

K→∞
<

α2

K2
.

Hence the most efficient ρ for K →∞ must also tend to ∞.
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Theorem 7 Consider two strongly connected networks G1, G2, with adja-
cency matrices q1, q2, identical except for an element:

0 = q1
ī,j̄ 6= q2

ī,j̄ = 1.

Let w1 and w2 be the vectors of social influence weights resulting from the
GBR updating rule implemented with ρ = 0 on G1 and G2, respectively. Then,
w2
j̄ > w1

j̄ .

Let us define ∆i =
w2
i−w1

i

w1
i

, the (relative) increase in the social influence of an

agent i when adding the link from j̄ to ī: Theorem 7 simply states that ∆j̄

is positive. In order to prove it, we prove the following stronger result.

Lemma 2 Consider G1, G2, w1, w2, as above. Then, ∆j̄ ≥ ∆i for all i 6= j̄.

Proof of Lemma 2.
Let π1

ij and π2
ij be the weights attributed by i to j in G1 and G2, respec-

tively, and let S1(i), S2(i) be the listening sets of i in the two networks.
Notice that, whenever i 6= ī, then π1

ij and π2
ij coincide. Equation (7) allows

us to express the social influence of an agent as a linear combination of the
social influence weights of the agents she talks to. By plugging it in the
definition of ∆i, the same can be done for what concerns the relative change
of influence; for any i 6= j̄, the listeners set

S−1(i) = {j : i ∈ S(j)}

is unchanged, and so we have

∆i =
w2
i − w1

i

w1
i

=
∑

j∈S−1
1 (i)

π2
jiw

2
j − π1

jiw
1
j

w1
i

.

Let us define ∆̂i as:

∆̂i =
∑

j∈S−1
1 (i)

π1
ji(w

2
j − w1

j )

w1
i

=
∑

j∈S−1(i)

π1
jiw

1
j∆j

w1
i

.

We can observe that:

• ∆j̄ > ∆̂j̄, since S−1
2 (j̄) = S−1

1 (j̄) ∪ {̄i}, while π1
ij̄ = π2

ij̄ for all i 6= ī,

• ∆j < ∆̂j for any other j ∈ S−1
1 (̄i), since π1

īj < π2
īj, while π1

ij = π2
ij for

all i 6= ī,

• ∆j = ∆̂j for any j 6∈ S−1
2 (̄i).
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Now, assume Lemma 2 is false. That is, there exists j′ 6= j̄ such that
∆j′ > ∆j̄. Let us assume, without loss of generality, that ∆j′ ≥ ∆i for all i.
We can then write:

∆j′ ≤ ∆̂j′ =
∑

i∈S−1(j′)

πij′w
1
i∆i

w1
j′

≤
∑

i∈S−1(j′)

πij′w
1
i∆j′

w1
j′

=
∆j′

w1
j′

∑
i∈S−1(j′)

πij′w
1
i

=∆j′
w1
j′

w1
j′

= ∆j′ .

We can see that both inequalities must be binding. The first implies that j′ 6∈
S−1

2 (̄i), and hence j′ 6∈ S−1
1 (̄i); the second that ∆i = ∆j′ for all i ∈ S−1(j′).

By applying the same process recursively to any such i, and exploiting the
strong connectedness of the network, we can show that ∆j̄ = ∆j′ , which
contradicts the initial assumption.18

Proof of Theorem 7. The sum of social influence weights is by definition
1 in any network:

N∑
i=1

w1
i = 1 =

N∑
i=1

w2
i .

As a consequence, the weighted sum of percentage changes ∆i must be 0:

N∑
i=1

w1
i∆i = 0

(with all weights w1
i strictly positive). Since ∆̂i is a linear combination of ∆j

for different j, if we had ∆j = 0 for all j, then we would have ∆̂i = 0 for all

i. Instead we know that ∆j < ∆̂j for some j. So the maximum ∆i, which is
guaranteed by Lemma 2 to be ∆j̄, must be strictly positive.

Notice that ∆ī is not guaranteed to be negative. The influence of ī will
decrease in relative terms (that is, compared to ∆̂ī), but the increase in
influence of j̄ may more than compensate this effect if there is a short path
from ī back to j̄.

Similarly, ∆j̄ is not guaranteed to be positive if ρ > 0. Again, social
influence will increase in relative terms, but for sufficiently high values of

18If the chosen path from j′ to j̄ passes through S−1
1 (̄i), the contradiction will arise even

before reaching j̄.

33



ρ the increase in influence of ī will be large enough to make the influence
weights of all other agents decrease.
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Appendix B - Experimental Instructions

[Translated from Italian]
Welcome and thank you for taking part in this experiment. During the

experiment talking or communicating with other participants is not allowed
in any way. If you have a question at any time, raise your hand and one of
the assistants will come to answer your question. By carefully following the
instructions you can earn a sum of money that will depend on the choices
made by you and the other participants. On top of that amount, you will
receive in any case 5 e for the participation in this experiment.

General Rules

• 24 subjects will take part in this experiment.

• The experiment takes place in 4 phases of 8 rounds each, for a total of
32 rounds.

• At the beginning of the experiment 6 groups of four subjects will be
randomly and anonymously formed by the computer.

• You will be assigned to one of the 6 groups. You will interact only with
those in your group, without knowing their identity. The composition
of each group will remain unchanged throughout the experiment.

The development of a phase

• In the first round of each of the four phases, in all groups, each subject
will be randomly and anonymously assigned a different role: A, B, C,
and D.

• The computer will randomly generate four integers that we will define
as signals. Each component of the group will be shown only one of the
four signals. Signals will be denoted as xA, xB, xC , and xD.

• In each of the 8 periods of the phase, each subject will be asked to
guess the mean of the four signals extracted by the computer for that
phase: x̄ = (xA+xB+xC+xD)

4
.

• For making each guess, there is a maximum time of 120 seconds (which
will be shown by a counter in the top right corner of the screen).

• At any moment, it is possible to open a calculator by simply clicking
its icon, in the bottom left corner of the screen.

How earnings are determined
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• Individual earnings will depend on how close the guess comes to the
value of x:

– At the end of the experiment, the computer will randomly extract
one of the 32 periods.

– The earnings will be equal to 15 euros minus the difference (in
absolute value) between x and the guess made in the selected
round.

– If this difference turns out to be negative, the subject will earn 0
euros.

• Examples:

– if x = 1424 and the guess is 1424, the difference is 0 and earnings
are 15 euros.

– if x = 308 and the guess is 311.5, the difference is 3.5 and earnings
are 11.5 euros.

– if x = 803.25 and the guess is 792, the difference is 11.25 and
earnings are 3.75 euros.

– se x = 62.5 and the guess is 30.5, the difference is 32 and earnings
are 0 euros, since 15− 32 < 0.

In each of this cases, the participant will also receive 5 euros for
participating in the experiment.

• In each round, the optimal guess (which allows to get the maximum
earnings) depends on the information that each subject has on the
signals:

– if she knows only her own signal, the optimal choice is her own
signal,

– if she knows or can deduce two signals, her optimal choice is the
mean of the two signals;

– if she knows or can deduce three signals, her optimal choice is the
mean of the three signals;

– if she knows or can deduce four signals, her optimal choice is the
mean of the four signals.

Information

• In each of the tree phases

36



– In the first round, each subject knows his own signal.

– From the second round onwards, before making his choice, each
subject will be informed by the computer of the choices made in
the previous rounds by some of the components of his group, based
on the structure represented in the following figure:

• Therefore, before making his choice

– A will be informed of the choices made by C.

– B will be informed of the choices made by D.

– C will be informed of the choices made by A and B.

– D will be informed of the choices made by A and C.

• The roles (A, B, C, D), the signals (xA, xB, xC , xD) and by consequence
their mean will change at each phase: the computer will generate them
randomly before the first period of the phase.

Feedback e payments

• At the end of each phase the computer will show to each subject the
four signals of his group, their mean, and the choices made.

• At the end of the experiment each subject will be shown the round the
computer has selected to determine payments, the value of x for his
group, the choice she made and the corresponding amount earned in
euro.

• The experiment will terminate and the amount earned by each subject
will be paid in cash.

Control questions
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1. If you knew only your signal (a), what would be your optimal guess?
...............

2. If you knew your signal (a) as well as the one of another member of
your, group (b), what would be your optimal guess? ...............

3. If you knew your signal (a) as well as the ones of two other members
of your group (b and c), what would be your optimal guess? ...............

4. If you knew your signal (a) as well as the ones of three other members of
your group (b, c, and d), what would be your optimal guess? ...............
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