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Abstract

In this paper we propose a model in which the real side of the economy, de-
scribed via a Keynesian good market approach, interacts with the stock market
with heterogeneous speculators, i.e., optimist and pessimist fundamentalists.
Employing analytical and numerical tools, we detect the mechanisms and the
channels through which instabilities get transmitted between markets. In or-
der to perform such analysis, we introduce the “interaction degree approach”,
which allows us to study the complete three-dimensional system by decompos-
ing it into two subsystems, i.e., the isolated financial and real markets, easier
to analyze, that are then interconnected through a parameter describing the
interaction degree between the two markets. Next, we derive the stability con-
ditions both for the isolated markets and for the whole system with interacting
markets. Finally, we show how to apply the “interaction degree approach” to
our model. To this aim, we first classify the possible scenarios according to
the stability/instability of the isolated financial and real markets. For each of
those frameworks we consider different possible parameter configurations and
we show, both analytically and numerically, which are the effects of increasing
the degree of interaction between the two markets. In particular, we find that
the instability of the real market seems to have stronger destabilizing effects
than the instability of the financial market: in fact, the former gets transmit-
ted and possibly amplified by the connection with the financial market, while
the latter gets dampened and possibly eliminated by the connection with the
real market. We conclude our analysis by showing which are the effects of an
increasing bias. Although it is clearly destabilizing when markets are isolated,
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its role becomes more ambiguous when the markets are interconnected. How-
ever, our numerical simulations suggest that increasing the bias has generally
a destabilizing effect.

Keywords: nonlinearities; complex dynamics; oscillators; Keynesian model; animal
spirits; behavioral finance.

JEL classification: C62, D84, E12, E32, G02

1 Introduction

Instabilities are known, both empirically and theoretically, to be features of all mar-
kets: the product markets, the labor market, and the financial markets. Over the last
twenty years, many stock market models have been proposed in order to study the
dynamics of financial markets (see De Grauwe, 2012 and Hommes, 2013). According
to such models, even in the absence of stochastic shocks, the interaction between
heterogeneous speculators accounts for the dynamics of financial markets. Those
models, when endowed with stochastic shocks, are able to replicate some important
phenomena, such as bubbles and crashes, excess volatility and volatility clustering
(see, for instance, Brock and Hommes, 1997, 1998; Chiarella, 1992; Chiarella and
He, 2002; De Grauwe and Grimaldi, 2006a, 2006b; Frankel and Froot, 1986, 1990;
Lux and Marchesi, 1999). However, in this kind of models authors have restricted
their attention to the representation and the dynamics of financial markets only and
the existing feedbacks between the real and financial markets are often completely
neglected. Some exceptions are represented, for instance, by Charpe et al. (2011),
Lengnick and Wohltmann (2013), Scheffknecht and Geiger (2011) and Westerhoff
(2012). Charpe et al. (2011) propose an integrated macro model, using a Tobin-like
portfolio approach, and consider the interaction among heterogeneous agents in the
financial market in order to generate financial market instability. They find that un-
orthodox fiscal and monetary policies are able to stabilize unstable macroeconomies.
Lengnick and Wohltmann (2013) propose an agent-based model with financial markets
interconnected with a New Keynesian model with bounded rationality and explore
the consequences of transaction taxes. The results are endogenous developments of
business cycles and stock price bubbles. Scheffknecht and Geiger (2011) present a fi-
nancial market model with leverage-constrained heterogeneous agents integrated with
a New Keynesian standard model; all agents are assumed to be boundedly rational.
Those authors show that a systematic reaction by central bank on financial market
developments dampens macroeconomic volatility. Finally, in Westerhoff (2012) the
real economy is described via a Keynesian good market approach, while the set-up
for the stock market includes heterogeneous speculators.
Inside the heterogeneous agent literature, only few papers deal with heterogeneous
fundamentalists (see, for instance, De Grauwe and Rovira Kaltwasser, 2007; Diks and
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Dindo, 2008; Heitger, 2010; Manzan and Westerhoff, 2005; Naimzada and Ricchiuti,
2008, 2009; Rovira Kaltwasser, 2010; Westerhoff, 2003).

Our paper belongs both to the strand of literature on the interactions between
real and financial markets, as well as to the literature with heterogeneous fundamen-
talists. In fact, we here present a model in which the real economy, described via a
Keynesian good market approach, and the stock market, with heterogeneous specula-
tors, interact. More precisely, similarly to De Grauwe and Rovira Kaltwasser (2012),
we assume that the financial side is represented by a market where traders behave
in two different ways: optimism and pessimism. On the other hand, in De Grauwe
and Rovira Kaltwasser (2012) only the financial sector is considered, while the con-
nection with the real side of the economy is missing. When comparing our setting to
the one in Westerhoff (2012), we stress that, similarly to what done in that paper,
we assume the real economy to be represented by an income-expenditure model in
which expenditures depend also on the dynamics of the stock market price. On the
other hand, in Westerhoff (2012) the real market subsystem is described by a stable
linear relation, while the financial sector is represented by a nonlinear relation, that
is, by a cubic functional relation. In that way, the oscillating behavior is generated
by the financial subsystem only. In our paper we present instead a model in which
the oscillating behavior is generated also by the real subsystem. To be more precise,
the nonlinearity of the real subsystem is due to the nonlinearity of the adjustment
mechanism of the good market with respect to the excess demand.
As regards the interaction between the two markets we assume that economic agents
operating in the financial market base their decisions on a weighted average between
an exogenous fundamental value and an endogenous fundamental value given by the
current realization of income, while in the real market we assume that private expendi-
tures depend also, with a given weight, on the stock market price. In particular, in our
model the parameter describing the weights represents also the degree of interaction
between the two markets. The extreme values of the weighting parameter correspond
to the two cases of isolated markets and fully interacting markets, respectively.

Analytical and numerical tools are used in order to detect the mechanisms and
the channels through which instabilities get transmitted between markets. The main
contribution of this paper to the existing literature is in fact to focus on the role
of real and financial feedback mechanisms, not only in relation to the dynamics and
stability of a single market, but for those of the economy as a whole.

More precisely, we start by introducing the “interaction degree approach”, which
allows us to study high-dimensional systems with many parameters by decomposing
them into subsystems easier to analyze, that are then interconnected through the
“interaction parameter”. Next, we introduce our model and we derive the stability
conditions both for the isolated markets and for the whole system with interacting
markets. In particular, we find that it is possible to isolate the parameter describing
the degree of interaction between the two markets and that the stability conditions
are fulfilled if it belongs to a range described by two lower bounds and two upper
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bounds. Finally, we show how to apply the “interaction degree approach” to our
model. To this aim, we first classify the possible scenarios according to the stabil-
ity/instability of the isolated financial and real markets: in this way we are led to
analyze four frameworks. For each of those we consider different possible parameter
configurations and we show, both analytically and numerically, which are the effects
of increasing the degree of interaction between the two markets. The conclusions we
get are not univocal: indeed, depending on the value of the other parameters, an
increase in the interaction parameter may either have a stabilizing or a destabilizing
effect, but also other phenomena are possible. Namely, according to the mutual po-
sition of the above mentioned lower and upper bounds of the stability range, it may
also happen that the stabilization of the system occurs just for intermediate values of
the interaction parameter, neither too small, nor too large, or it may as well happen
that one of the the upper bounds is always negative or smaller than one of the lower
bounds and thus we never get a complete stabilization of the system, even if its com-
plexity may decrease and we observe some periodicity windows.
In more detail, the conclusions we get in the various scenarios are summarized here-
inafter.
If both subsystems are stable when markets are isolated, the connection may either
maintain the stability or have destabilizing effects, according to the parameter con-
figuration considered. In particular, the market maker price adjustment parameter
seems to play a crucial role in determining the behavior of the connected markets:
indeed, increasing its value we observe a destabilization of the whole system.
If just the real subsystem is stable when markets are isolated, the connection reduces
the complexity of the economy as a whole and may also lead to a complete stabiliza-
tion. The parameter describing the real market speed of adjustment between demand
and supply seems to play a crucial role in determining the behavior of the connected
markets: indeed, increasing its value we observe a progressive reduction of the sta-
bility range for the interaction parameter, until the stable fixed point is replaced by
a period-two orbit. We stress that in the existing literature on nonlinearities it is
possible to find some examples of stabilization phenomena for interacting oscillating
subsystems (see, for instance, Lloyd, 1995). In particular the stabilization is obtained
by increasing the interaction degree between the subsystems. However, differently
from our model, in those examples the subsystems are symmetric and described by
the same functional relation: moreover, to the best of our knowledge, they do not
belong to the economic literature, but they rather concern biological or physical sys-
tems.
If only the financial subsystem is stable when markets are isolated, the connection
may reduce the complexity of the whole economy until determining the presence of
period-two orbits, but we do not observe a complete stabilization. Again, the market
maker price adjustment parameter seems to play a crucial role in determining the
behavior of the connected markets: indeed, increasing its value we observe a further
destabilization of the whole system, whose dynamics are characterized also by the
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presence of the so called “bubbles” (see Hommes 1991, 1994) and by chaotic attrac-
tors.
Finally, if both subsystems are unstable when markets are isolated, the connection
may reduce the complexity of the whole economy until determining the presence of
low-period orbits, alternating with chaotic bands, but we do not observe a complete
stabilization.

Hence, the instability of the real market seems to have stronger destabilizing effects
than the instability of the financial market: in fact, the former gets transmitted and
possibly amplified by the connection with the financial market, while the latter gets
dampened and possibly eliminated by the connection with the real market.

We conclude our analysis by showing which are the effects of an increasing bias.
Although its effect is clearly destabilizing when markets are isolated, its role becomes
more ambiguous when the markets are interconnected. Indeed, increasing the bias
may have either a stabilizing or a destabilizing role, according to the value of the other
parameters. However, it seems that increasing the bias has generally a destabilizing
effect, as usually we do not reach a complete stabilization, or we achieve it just in
small intervals for the corresponding parameter.

The remainder of the paper is organized as follows. In Section 2 we illustrate the
approach we use to analyze the two interacting markets. In Section 3 we introduce
the model, composed by the real and financial sectors. In Section 4 we derive the
conditions for the steady state stability, both in the case of isolated and interacting
markets. In Section 5 we classify and investigate, both analytically and numerically,
the possible scenarios, determined by the stability/instability of the real and financial
markets, when isolated. Finally, in Section 6 we draw some conclusions and discuss
our results.

2 The interaction degree approach

As we shall see in Section 3, when considering both financial and real markets, we
are led to analyze a nonlinear high-dimensional system with many parameters. Such
features do not allow to easily handle that kind of systems from an analytical view-
point when all the parameters vary, even if we are able to analytically determine the
steady state and the stability conditions for the whole system. For this reason, we
propose an approach that consists in studying, as a first step, the framework with
isolated market, which have a lower dimensionality, are simpler to investigate and
whose different behaviors can be easily classified. Then we make the parameter rep-
resenting the interaction degree increase, keeping the other parameters fixed. In this
way we are able to analytically find (if it exists) the set of values of the interaction
parameter that implies stability. Moreover, the use of numerical tools allows us to
understand what happens also in the unstable regime. This is in fact the strategy
we are going to employ in Section 4 to classify the various scenarios for our system.
However, in Section 3 we believe that the exposition is made more fluent by starting
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with the analysis of the stability conditions for the case of interacting markets and
by deriving next the stability conditions for the framework with isolated markets.

In symbols, if we denote our integrated system by Sω(x1, . . . , xN), where ω ∈
[0, 1] is the interaction degree parameter, when setting ω = 0 we are led to study
two (or, in general, more) isolated subsystems, we denote by S1

0(x1, . . . , xm) and
S2

0(xm+1, . . . , xN), for some m ∈ {1, . . . , N − 1}. When instead ω = 1 the subsystems
are fully integrated. The case with ω ∈ (0, 1) represents a partial interaction between
the subsystems.
In our framework, when setting ω = 0, we find two isolated subsystems, describing the
financial and real markets, respectively. The former is described by two variables, the
stock price and the difference between the shares of optimist and pessimist agents,
while the latter is described by a unique variable, the level of income. We stress
that the influence of the real market on the financial market is due to the fact that
the reference value used in the decisional mechanism by the agents in the financial
market is determined by the level of income. On the other hand, the investments
depend also on the price of the financial asset. Such a double interaction is described
by the parameter ω.

3 The model

3.1 The stock market

With respect to the stock market, we assume that agents are not able to observe the
true underlying fundamental. We suppose instead that they form believes about the
fundamental and, on the basis of this belief, they operate in the stock market. We
consider the trading behavior of two types of speculators: optimists and pessimists.
The label optimist (pessimist) refers to traders that systematically overestimate (un-
derestimate) the reference value used in their decisional mechanism. Both types of
agents belong to the class of fundamentalists as, believing that stock prices will return
to their fundamental value, they buy stocks in undervalued markets and sell stocks
in overvalued markets1. Optimists and pessimists behave in a similar manner, a part
from the fact that the beliefs they have about the reference value, we denote by F

opt
t

and F
pes
t , differ. The perceived reference values are a weighted average between an

exogenous value (F ∗+a and F ∗−a, respectively, with a > 0) and a term depending on
the income value. As regards the latter term, for simplicity, according to Naimzada
and Pireddu (2013) and Westerhoff (2012), we assume for it a direct relationship
with the economic activity value, both for optimists and pessimists. In particular,
the endogenous term of the fundamental value perceived by optimists and pessimists
is given by kYt + a and kYt − a, respectively, where Yt is the national income and k

1To be more precise, we should say that we model agents as fundamentalists, but their effective
behavior depends on the relative position of the stock price with respect to the perceived reference
values (see (3.3) and (3.4)).
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is a positive parameter capturing the above described direct relationship. Hence, we
assume that

F
opt
t = (1 − ω)(F ∗ + a) + ω(kYt + a) = (1 − ω)F ∗ + ωkYt + a (3.1)

and

F
pes
t = (1 − ω)(F ∗ − a) + ω(kYt − a) = (1 − ω)F ∗ + ωkYt − a, (3.2)

where a > 0 is the belief bias and F ∗ is the true unobserved fundamental, both
exogenously determined. The constant ω ∈ [0, 1] represents the weighting average
parameter. In particular, when ω = 0 the reference value is completely exogenous
and coincides with the reference value of an isolated stock market like in De Grauwe
and Rovira Kaltwasser (2012). When instead ω = 1 the reference value is endogenous.
Optimists’ demand is given by

d
opt
t = α(F opt

t − Pt), (3.3)

and, similarly, pessimists’ demand is given by

d
pes
t = α(F pes

t − Pt), (3.4)

where Pt is the stock price and α > 0 is the reactivity parameter.
The market maker determines excess demand and adjusts the stock price for the next
period. In particular, we denote by ni

t, i ∈ {opt, pes}, the fraction of traders of type
i in the market at time t and we assume that the market maker behavior is described
by the linear price adjustment mechanism

Pt+1 = Pt + µ(nopt
t d

opt
t + n

pes
t d

pes
t ), (3.5)

where µ > 0 is the market maker price adjustment parameter. For simplicity, we
normalize the population size to 1. According to (3.5), the market maker increases
(decreases) the stock price if excess demand n

opt
t d

opt
t + n

pes
t d

pes
t is positive (negative).

We set xt = n
opt
t − n

pes
t , in order to express the fraction of traders as n

opt
t = 1+xt

2
and

n
pes
t = 1−xt

2
, so that we can rewrite (3.5) as

Pt+1 = Pt +
αµ

2

[
(F opt

t − Pt)(1 + xt) + (F pes
t − Pt)(1 − xt)

]
. (3.6)

Recalling the definition of F
opt
t and F

pes
t from (3.1) and (3.2), respectively, we rewrite

(3.6) as

Pt+1 = Pt + αµ {[(1 − ω)F ∗ + ωkYt] − Pt + axt} . (3.7)

We observe that the evolution of the stock price is determined by two factors.
The first one is the deviation of the stock price from its unbiased reference value
([(1 − ω)F ∗ + ωkYt] − Pt) : when the price in period t is below (above) its unbiased
reference value, the price will increase (decrease) in the next period. The second

7



factor involves the fraction of optimists and pessimists in the market. If xt is posi-
tive (negative) there are more (less) optimists than pessimists, so that the price will
increase (decrease) in the next period. The strength of such effect is affected by the
belief bias a. Finally, we notice that with a completely exogenous reference value, i.e.,
with ω = 0, and under rational expectations, (3.7) has a unique steady state given
by P ∗ = F ∗.

Defining now the dynamics of the population of traders, we will assume that they
will start trying an optimistic or pessimistic behavior and, if it turns out to be the
most profitable, they will stick to it; otherwise they will switch to the other behavior in
the next period. Such an evolutionary process is governed by the profits that traders
make in each period. Let us define the profits πi

t realized by type i, i ∈ {opt, pes}, as

πi
t = di

t−1(Pt − Pt−1). (3.8)

Following Anderson et al. (1992) and Brock and Hommes (1997), we assume that the
fraction ni

t of traders of type i is given by the discrete choice model

ni
t =

exp(βπi
t)

exp(βπ
opt
t ) + exp(βπ

pes
t )

, (3.9)

where β ≥ 0 is the parameter representing the intensity of choice. In particular,
if β = 0 the difference between profits is not considered and the behavior choice is
purely random: hence, n

opt
t = n

pes
t = 1

2
. At the other extreme, when β → +∞,

the switches are fully governed by the rational component and all traders are of the
optimistic type (xt → 1) if π

opt
t > π

pes
t , while all traders are of the pessimistic type

(xt → −1) if π
opt
t < π

pes
t ; finally, if π

opt
t = π

pes
t , we find again n

opt
t = n

pes
t = 1

2
and thus

xt = 0.
From the definition of xt and (3.1)–(3.4), (3.7)–(3.9) it follows that

xt = tanh
(β(πopt

t − π
pes
t )

2

)
= tanh

(
µaα2β[(1 − ω)F ∗ + ωkYt−1 − Pt−1 + axt−1]

)
.

3.2 The real market

Similarly to Naimzada and Pireddu (2013) and Westerhoff (2012), we consider a
Keynesian good market interacting with the stock market, in a closed economy with
public intervention. It is assumed that private and government expenditures depend
on national income and on the performance in the stock market. The dynamic be-
havior in the real economy is described by an adjustment mechanism depending on
the excess demand. If aggregate excess demand is positive (negative), production will
increase (decrease), that is, income Yt+1 in period t+1 is defined in the following way

Yt+1 = Yt + γg(Zt − Yt), (3.10)
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where g is an increasing function with g(0) = 0, Zt is the aggregate demand in a
closed economy, defined as

Zt = Ct + It + Gt,

where Ct, It and Gt stand for consumption, investment and government expenditure,
respectively, and γ > 0 is the real market speed of adjustment between demand and
supply. In order to conduct our analysis, denoting by Et = Zt−Yt the excess demand,
we specify the function g as

g(Et) = a2

(
a1 + a2

a1e−Et + a2

− 1

)
, (3.11)

with a1, a2 positive parameters.
With such choice, g is increasing and g(0) = 0. Moreover, it is bounded from below
by −a2 and from above by a1. The presence of the two asymptotes prevents too large
variations in income and thus prevents the real market from diverging, creating a real
oscillator. We stress that this particular analytical specification does not compromise
the generality of the results. In fact, we found analogous achievements for other
sigmoid functions passing through the origin.

As commonly assumed, private and government expenditures increase with na-
tional income. Moreover, like in Naimzada and Pireddu (2013) and Westerhoff (2012),
it is supposed that the financial situation of households and firms depends on the stock
market performance, too. If the stock price increases, the same does private expendi-
ture. On the basis of these considerations, we can write the relation between private
and government expenditures and national income and stock price as

Zt = Ct + It + Gt = A + bYt + ωcPt , (3.12)

where A > 0 defines autonomous expenditure, b ∈ [0, 1] is the marginal propensity
to consume and invest from current income, c ∈ [0, 1] is the marginal propensity to
consume and invest from current stock market wealth, and ω ∈ [0, 1] represents the
degree of interaction between the real and the stock markets2. In particular, when
ω = 0 the real market is completely isolated from the financial market; when ω = 1
the two markets are fully interconnected; for ω ∈ (0, 1) we have a partial interaction.
Inserting Zt from (3.12) into (3.10) and recalling the definition of g in (3.11), we
obtain the dynamic equation of the real market

Yt+1 = Yt + γa2

(
a1 + a2

a1e−(A+bYt+ωcPt−Yt) + a2

− 1

)
.

2We stress that it would also be possible to assume that aggregate demand Zt depends, rather
than on the stock price Pt, on the price variation Pt −Pt−1. Notice however that this would increase
the dimensionality of our system. We will deal with such new formulation in a future paper.
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Summarizing, when taking into account both the financial and the real markets,
we are led to study the following system describing the whole economy:





Pt+1 = Pt + αµ {[(1 − ω)F ∗ + ωkYt] − Pt + axt}
xt+1 = tanh (µaα2β[(1 − ω)F ∗ + ωkYt − Pt + axt])

Yt+1 = Yt + γa2

(
a1+a2

a1e−(A+bYt+ωcPt−Yt)+a2
− 1

) (3.13)

The associated dynamical system is generated by the iterates of the three-dimensional
map

G = (G1, G2, G3) : [0, +∞) × [−1, 1] × [0, +∞) → R
3,

(P, x, Y ) 7→ (G1(P, x, Y ), G2(P, x, Y ), G3(P, x, Y )),

defined as:





G1(P, x, Y ) = P + αµ((1 − ω)F ∗ + ωkY − P + ax)

G2(P, x, Y ) = tanh (µaα2β[(1 − ω)F ∗ + ωkY − P + ax])

G3(P, x, Y ) = Y + γa2

(
a1+a2

a1e−[A+bY +ωcP−Y ]+a2
− 1

) (3.14)

4 Some local stability results

In order to classify in Section 5 the various scenarios occurring for ω = 0 and investi-
gate their local stability when ω increases, hereinafter we will derive the corresponding
sufficient conditions both in the case of interacting and isolated markets. In fact, the
classification we chose to adopt in the next section relies on the stability/instability
features of the real and financial subsystems when they are isolated. Then, for any
such scenario, we will study what happens when the interconnection between the two
markets increases.
Straightforward computations show that there is a perfect correspondence between
the numerical results in the next section and the analytical conditions derived in Sub-
sections 4.1 and 4.2. In fact, for the reader’s convenience, in correspondence to any
scenario considered in Section 5 we will check what the analytical conditions say and
we will compare those conditions with the numerical simulations performed therein.

4.1 Interacting markets

The map in (3.14) has a unique fixed point in

(P ∗, x∗, Y ∗) =

(
ωAk + (1 − ω)F ∗(1 − b)

1 − b − ω2ck
, 0,

A + ωc(1 − ω)F ∗

1 − b − ω2ck

)
.

The Jacobian matrix for G computed in correspondence to it reads as
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JG(P ∗, x∗, Y ∗) =




1 − αµ αµa αµωk

−µaα2β α2µa2β α2µaβωk

γa1a2ωc

a1+a2
0 1 − γa1a2(1−b)

a1+a2


 . (4.1)

In order to check the stability of the steady state in the various scenarios considered
in Section 4, we are going to use the following conditions (see Farebrother, 1973):

(i) 1 + C1 + C2 + C3 > 0;

(ii) 1 − C1 + C2 − C3 > 0;

(iii) 1 − C2 + C1C3 − (C3)
2 > 0;

(iv) 3 − C2 > 0,

where Ci, i ∈ {1, 2, 3}, are the coefficients of the characteristic polynomial

λ3 + C1λ
2 + C2λ + C3 = 0.

In our framework, we have

C1 = γa1a2(1−b)
a1+a2

− 2 + αµ − µa2α2β;

C2 = 2µa2α2β + 1 − αµ − γa1a2ω2ckαµ

a1+a2
− γa1a2(1−b)

a1+a2
(1 − αµ + µa2α2β);

C3 = µa2α2β
(

γa1a2(1−b)
a1+a2

− 1
)

.

Notice that, making ω explicit, it is possible to rewrite Conditions (i)-(iv) above
respectively as follows:

(i’) ω2 < (1 + C1 + C̃ + C3)
a1+a2

γa1a2ckαµ
:= B1;

(ii’) ω2 < (1 − C1 + C̃ − C3)
a1+a2

γa1a2ckαµ
:= B2;

(iii’) ω2 > (−1 + C̃ − C1C3 + C3
2) a1+a2

γa1a2ckαµ
:= B3;

(iv’) ω2 > (C̃ − 3) a1+a2

γa1a2ckαµ
:= B4,

where we have set

C̃ = 2µa2α2β + 1 − αµ − γa1a2(1 − b)

a1 + a2

(1 − αµ + µa2α2β).

Hence, if
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min{1+C1+C̃ +C3, 1−C1+C̃−C3} > 0 and max{−1+C̃−C1C3+C3
2, C̃−3} < 1,

then the integrated system is locally asymptotically stable at the steady state if

max{B3, B4} < ω2 < min{B1, B2}, ω ∈ [0, 1]. (4.2)

If instead

min{1+C1 + C̃ +C3, 1−C1 + C̃−C3} ≤ 0 or max{−1+ C̃−C1C3 +C3
2, C̃−3} ≥ 1,

it is not possible to have local stability at the steady state, for any ω ∈ [0, 1].

4.2 Isolated markets

In the special case in which ω = 0, System (3.13) can be rewritten as





Pt+1 = P + αµ(F ∗ − P + ax)

xt+1 = tanh (µaα2β[F ∗ − P + ax])

Yt+1 = Y + γa2

(
a1+a2

a1e−[A+(b−1)Y ]+a2
− 1

) (4.3)

and its steady state reads as

(P ∗, x∗, Y ∗) =

(
F ∗, 0,

A

1 − b

)
.

Since in such framework the first two equations in (4.3) depend only on P and x,

and the last one only on Y, implying that the real and stock markets are not related,
as explained in Section 2, instead of considering the three-dimensional system, we
will deal with the two-dimensional subsystem related to the stock market

{
Pt+1 = Pt + αµ {F ∗ − Pt + axt}
xt+1 = tanh (µaα2β[F ∗ − Pt + axt])

and the one-dimensional subsystem related to the real market

Yt+1 = Yt + γa2

(
a1 + a2

a1e−(A+(b−1)Yt) + a2

− 1

)

In this way, in agreement with the findings in De Grauwe and Rovira Kaltwasser
(2012), the steady state above should be split as

(P ∗, x∗) = (F ∗, 0) , Y ∗ =
A

1 − b

12



and, similarly, the Jacobian matrix in (4.1) computed in correspondence to the steady
state should be split as

J1(P ∗, x∗) =

[
1 − αµ αµa

−µaα2β α2µa2β

]
, J2(Y ∗) = 1 − γa1a2(1 − b)

a1 + a2

.

The Jury conditions for the financial subsystem read as

det J1 = µα2a2β < 1,

1 + tr J1 + det J1 = 2 − µα + 2µα2a2β > 0,

1 − tr J1 + det J1 = µα > 0.

Notice that the third condition is always fulfilled, while the first two can be rewritten,
making β explicit, as

αµ − 2

2µα2a2
< β <

1

µα2a2
. (4.4)

From (4.4) we easily infer the destabilizing role of the bias for the financial side of
the economy when the two markets are isolated: indeed, the stability interval for β

gets reduced when a increases.
On the other hand, the real subsystem is locally asymptotically stable at the steady
state if −1 < 1 − γa1a2(1−b)

a1+a2
< 1. The right inequality is always fulfilled (except for

b = 1, but we will always deal with the case 0 < b < 1), while the left inequality holds
if and only if

γ <
2(a1 + a2)

a1a2(1 − b)
.

Hence, when ω = 0 both subsystems are stable if

αµ − 2

2µα2a2
< β <

1

µα2a2
and γ <

2(a1 + a2)

a1a2(1 − b)
. (4.5)

5 Possible scenarios

Starting from the various stability/instability scenarios for the financial and real sub-
systems when isolated, in the next pages we shall investigate what happens in each
framework when the degree of interaction between the two markets increases, in order
to show that varying the parameter ω may produce very different effects depending
on the value of the other parameters and the specific framework considered.
We conclude the section by analyzing the effects of an increasing bias on the stability
of the whole system.
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5.1 Stable financial and real subsystems

In this framework, when isolated, both markets are stable. When ω increases, the
steady state can either remain stable until ω = 1 or can undergo a flip bifurcation, fol-
lowed by a secondary double Neimark-Sacker bifurcation, according to the considered
value of the parameters. In particular, the parameter µ seems to play a crucial role
in this respect. In fact, in Figures 1-3 below we have fixed the parameters as follows:
F ∗ = 5, k = 0.25, α = 0.08, β = 1, c = 1, a = 2, γ = 3.5, a1 = 2, a2 = 4, A = 5, b =
0.7, and µ = 5 in Figure 1, while µ = 28 in Figures 2 and 3. In Figure 1 the steady
state remains stable until ω = 1, while in Figures 2 and 3 a destabilization occurs for
ω ≃ 0.515. More precisely, in Figures 1 and 2 (A) we show the bifurcation diagram for
P with respect to ω ∈ [0, 1], while in Figure 2 (B) we show the bifurcation diagram
with respect to ω ∈ [0, 1] for Y ; in Figure 2 (C) we show the Lyapunov exponent
when ω varies in [0, 1]. In Figures 3 (A) and (B) we depict, in the phase plane, the
fixed point when ω = 0.25 and the period-two cycle when ω = 0.70, respectively;
finally, in Figure 3 (C) we show the time series for P (in red) and Y (in blue) when
ω = 0.95, which highlight a quasiperiodic behavior characterized by long monotonic
increasing motions, followed by oscillatory decreasing motions.

Figure 1: The bifurcation diagram with respect to ω ∈ [0, 1] for P, for µ = 5 and the
initial conditions P (0) = 5, x(0) = 0.8 and Y (0) = 25.

14



(A) (B) (C)

Figure 2: The bifurcation diagrams with respect to ω ∈ [0, 1] for P in (A) and Y
in (B), and the Lyapunov exponent in (C), respectively, for µ = 28 and the initial
conditions P (0) = 5, x(0) = 0.8 and Y (0) = 25.

(A) (B) (C)

Figure 3: The (P, Y )-phase portraits for µ = 28, and ω = 0.25 in (A) and ω = 0.70 in
(B); in (C) the time series for P in red (below) and Y in blue (above) when µ = 28
and ω = 0.95.

Let us now check whether the theoretical results in Section 4 are in agreement
with the numerical achievements above.
First of all let us verify that, for the choice of both the parameter sets above, when
ω = 0 both the financial and real subsystems are stable, i.e., let us check that all the
inequalities in (4.5) are fulfilled. A straightforward computation shows that this is
the case, as the first chain of inequalities reads as −6.25 < 1 < 7.812 and the last
inequality becomes 3.5 < 5 when µ = 5, while the first chain of inequalities reads as
0.167 < 1 < 1.395 and the last inequality is again 3.5 < 5 when µ = 28.
As concerns the stability conditions when ω varies in [0, 1], when µ = 5 we have
B1 = 1.2, B2 = 2.386, B3 = −2.4509, B4 = −6.778, and thus (4.2) reads as ω ∈ [0, 1],
that is, the system is stable for any ω, in agreement with Figure 1; when instead µ = 28
we have B1 = 1.2, B2 = 0.274, B3 = −0.098, B4 = −0.793, and thus (4.2) reads as
ω ∈ [0,

√
B2) = [0, 0.523), that is, the system is stable just for small values of ω, in

agreement with Figure 2.
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Hence, what we find in this scenario is that increasing µ has a destabilizing effect. In
fact, fixing all the other parameters as above, and letting just µ vary, we find that
∂B1

∂µ
= 0, ∂B2

∂µ
< 0, ∂B3

∂µ
> 0 and ∂B4

∂µ
> 0. Hence, the stability region decreases when µ

increases (as B1 does not vary with µ and the upper bound B2 decreases, while the
lower bounds B3 and B4 increase), confirming the highlighted destabilizing effect of
the parameter µ.

Summarizing, for the above parameter configurations, the interaction between
the financial and real markets either maintains the stability of the system, or it has
a destabilizing effect, through a flip bifurcation. We stress that, differently from De
Grauwe and Rovira Kaltwasser (2012), in our model after the flip bifurcation we have
a persistent regime characterized by a two-cycle; moreover, for larger values of ω we
find quasiperiodic motions, following a secondary double Neimark-Sacker bifurcation.

5.2 Unstable financial subsystem - stable real subsystem

In the framework we are going to consider, when isolated, the financial subsystem
is unstable and characterized by quasiperiodic motions, while the real subsystem is
stable. For not too large values of the parameter γ, when ω increases, a stable fixed
point emerges through a Neimark-Sacker bifurcation. According to the value of γ,

that fixed point can either persist until ω = 1 or can undergo a flip bifurcation and
then a secondary double Neimark-Sacker bifurcation; for even larger values of γ, we
just obtain a reduction of the complexity of the system for suitable intermediate
values of ω, but the system is never stabilized.
More precisely, in Figures 4-6 below, the corresponding parameters are: F ∗ = 2, k =
0.1, α = 0.08, β = 1, c = 1, a = 2.4, µ = 28, a1 = 3, a2 = 1, A = 12, b = 0.7, and
γ = 5 in Figure 4, γ = 8 in Figure 5, and γ = 8.8 in Figure 6. In Figure 4 the fixed
point becomes stable for ω ≃ 0.2 and remains stable until ω = 1. In Figure 5, instead
of remaining stable, it undergoes a flip bifurcation for ω ≃ 0.5 and then a secondary
double Neimark-Sacker bifurcation for ω ≃ 0.96. In Figure 6 the fixed point is never
stable: we just observe a reduction of the complexity of the system for ω ∈ (0.2, 0.8),
where we have a stable period-two cycle. In more details, in Figures 4 (A), 5 (A)
and 6 (A) we show the bifurcation diagrams with respect to ω ∈ [0, 1] for P, while in
Figures 4 (B), 5 (B) and 6 (B) we show the bifurcation diagrams for P ; in Figures 4
(C), 5 (C) and 6 (C) we show the Lyapunov exponents when ω varies in [0, 1].
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(A) (B) (C)

Figure 4: The bifurcation diagrams with respect to ω ∈ [0, 1] for P in (A) and Y

in (B), and the Lyapunov exponent in (C), respectively, for γ = 5 and the initial
conditions P (0) = 12, x(0) = −0.3 and Y (0) = 61.

(A) (B) (C)

Figure 5: The bifurcation diagrams with respect to ω ∈ [0, 1] for P in (A) and Y

in (B), and the Lyapunov exponent in (C), respectively, for γ = 8 and the initial
conditions P (0) = 12, x(0) = −0.3 and Y (0) = 61.

Let us now check whether the theoretical results in Section 4 are in agreement
with the numerical achievements above.
First of all let us verify that, for the choice of all the parameter sets above, when ω = 0
just the real subsystem is stable, i.e., let us check that the last inequality in (4.5) is
fulfilled, but not the first chain of inequalities therein. A straightforward computation
shows that this is the case, as the first chain of inequalities reads as 0.116 < 1 < 0.968
and the last inequality becomes 5 < 8.888 when γ = 5; the first chain of inequalities
reads again as 0.116 < 1 < 0.968 and the last inequality is 8 < 8.888 when γ = 8;
finally, the first chain of inequalities reads once again as 0.116 < 1 < 0.968 and the
last inequality is 8.8 < 8.888 when γ = 8.8.
As concerns the stability conditions when ω varies in [0, 1], when γ = 5 we have
B1 = 3, B2 = 1.9004, B3 = 0.0379, B4 = −2.3117, and thus (4.2) reads as ω ∈
(
√

B3, 1] = (0.194, 1], that is, the system is stable for large values of ω, in agreement
with Figure 4; when γ = 8 we have B1 = 3, B2 = 0.271, B3 = 0.035, B4 = −1.34, and
thus (4.2) reads as ω ∈ (

√
B3,

√
B2) = (0.189, 0.521), that is, the system is stable just

for intermediate values of ω, neither too small, nor too large, in agreement with Figure
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(A) (B) (C)

Figure 6: The bifurcation diagrams with respect to ω ∈ [0, 1] for P in (A) and Y

in (B), and the Lyapunov exponent in (C), respectively, for γ = 8.8 and the initial
conditions P (0) = 12, x(0) = −0.3 and Y (0) = 61.

5; finally, when γ = 8.8 we have B1 = 3, B2 = 0.024, B3 = 0.038, B4 = −1.193, and
thus, since B2 < B3, (4.2) implies that there exists no ω for which the system is
stable, in agreement with Figure 6.
Hence, what we find is that increasing γ has a destabilizing effect. In fact, fixing
all the other parameters as above, and letting just γ vary, we find that ∂B1

∂γ
= 0,

∂B2

∂γ
< 0, ∂B3

∂γ
changes sign (in particular, it is negative for γ = 5 and positive for

γ = 8 and γ = 8.8), but B3 always lies in (0, 0.1) for γ ∈ [5, 8.8] and thus it does
not restrict the stability region too much, and finally ∂B4

∂µ
> 0. Hence, the stability

region decreases when γ increases (as B1 does not vary with γ and the upper bound
B2 decreases, while B3 is small and it does not vary a lot, and the lower bound B4

increases), confirming the highlighted destabilizing effect of γ.

Summarizing, for the above parameter configurations, for small values of ω, the
instability of the financial market gets transmitted to the real market. However,
increasing ω decreases the complexity of the whole system. This effect may either
persist until ω = 1 or it may end for larger values of ω, where we find instead
quasiperiodic motions, following a secondary double Neimark-Sacker bifurcation of
the period-two cycle.
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5.3 Stable financial subsystem - unstable real subsystem

In this framework, when isolated, the financial subsystem is stable, while the real
subsystem is unstable. When ω increases, different possible behaviors may arise. We
depict some of them in Figures 7-10 below, where we have fixed the parameters as
follows: F ∗ = 2, k = 0.1, α = 0.08, β = 0.5, c = 1, a = 2.4, γ = 11.5, a1 = 3, a2 =
1, A = 12, b = 0.7, while we have µ = 20 in Figure 7, µ = 28 in Figure 8 and µ = 31
in Figures 9 and 10.
More precisely, in Figure 7 (A) we show the bifurcation diagram with respect to
ω ∈ [0.7, 1] for Y, when µ = 20. For such parameter configuration, when ω ∈ [0, 0.752]
we have just a stable period-two cycle; at ω = 0.752 a period-six cycle emerges, which
coexists with the period-two cycle (see the (P, Y )-phase portrait in Figure 7 (B) for
ω = 0.7948). For ω ≃ 0.823, through a double Neimark-Sacker bifurcation of the
period-two cycle, quasiperiodic motions emerge, which coexist with the period-six
cycle (see the (P, Y )-phase portrait in Figure 7 (C) for ω = 0.826). For ω ≃ 0.830,
the quasiperiodic motions ends and only the period-six cycle survives until ω ≃ 0.88,
where quasiperiodic motions emerge, lasting until ω = 1.
In Figures 8 (A) and 9 (A), we show the bifurcation diagrams with respect to ω ∈ [0, 1]
for P, while in Figures 8 (B) and 9 (B), we show the bifurcation diagrams with respect
to ω ∈ [0, 1] for Y ; in Figures 8 (C) and 9 (C), we represent the Lyapunov exponents
when ω varies in [0, 1]. Finally, in regard to the parameter configuration considered
in Figure 9, we show in Figure 10 (A) the (P, Y )-phase portrait for ω = 0.1, where
we have a period-two cycle, in Figure 10 (B) the (P, Y )-phase portrait for ω = 0.4,
where we have a period-eight cycle, in Figure 10 (C) the (P, Y )-phase portrait for
ω = 0.7, where we have again a period-two cycle, and in Figure 10 (D) the (P, Y )-
phase portrait for ω = 0.9, where we have a chaotic attractor.
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(A) (B) (C)

Figure 7: The bifurcation diagram with respect to ω ∈ [0.7, 1] for Y in (A), for
µ = 20 and the initial conditions P (0) = ..., x(0) = ... and Y (0) = ...; the (P, Y )-
phase portrait showing the coexistence of the period-six cycle with a period-two cycle
for ω = 0.7948 in (B), for µ = 20 and the initial conditions P (0) = 5, x(0) = 0.3 and
Y (0) = 65 for the period-two cycle and P (0) = 4, x(0) = 0.3 and Y (0) = 65 for the
period-six cycle; the (P, Y )-phase portrait showing the coexistence of the period-six
cycle with two closed invariant curves for ω = 0.826 in (C), for µ = 20 and the
initial conditions P (0) = 4, x(0) = 0.3 and Y (0) = 65 for the period-six cycle and
P (0) = 4, x(0) = 0.1 and Y (0) = 64 for the invariant curves.

Let us now check whether the theoretical results in Section 4 are in agreement
with the numerical achievements above.
First of all let us verify that, for the choice of all the parameter sets above, when
ω = 0 just the financial subsystem is stable, i.e., let us check that the first chain of
inequalities in (4.5) is fulfilled, but not the last inequality therein. A straightforward
computation shows that this is the case, as the first chain of inequalities reads as
−0.271 < 0.5 < 1.356 and the last inequality becomes 11.5 < 8.888 when µ = 20;
the first chain of inequalities reads as 0.116 < 0.5 < 0.968 and the last inequality
is again 11.5 < 8.888 when µ = 28; finally, the first chain of inequalities reads as
0.210 < 0.5 < 0.875 and the last inequality is once again 11.5 < 8.888 when µ = 31.
As concerns the stability conditions when ω varies in [0, 1], when µ = 20 we have
B1 = 3, B2 = −0.484, B3 = −0.714, B4 = −1.640, and thus, since B2 < 0, (4.2) im-
plies that there exists no ω for which the system is stable, in agreement with Figure
7; when µ = 28 we have B1 = 3, B2 = −0.240, B3 = −0.288, B4 = −0.690, and thus,
since again B2 < 0, (4.2) implies that there is no ω for which the system is stable, in
agreement with Figure 8; finally, when µ = 31 we have B1 = 3, B2 = −0.182, B3 =
−0.199, B4 = −0.461, and thus, since one again B2 < 0, (4.2) implies that there is
no ω for which the system is stable, in agreement with Figure 9.
Hence, for the selected parameter values, the system is never stable. From the pic-
tures above we also notice that increasing µ has a further destabilizing effect, as the
complexity of the system increases when µ moves from 20 to 31. As shown in Figures
9 and 10, in this latter case we have chaotic dynamics for values of ω close to 1.
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(A) (B) (C)

Figure 8: The bifurcation diagrams with respect to ω ∈ [0, 1] for P in (A) and Y

in (B), and the Lyapunov exponent in (C), respectively, for µ = 28 and the initial
conditions P (0) = 10, x(0) = 0.5 and Y (0) = 61.

(A) (B) (C)

Figure 9: The bifurcation diagrams with respect to ω ∈ [0, 1] for P in (A) and Y

in (B), and the Lyapunov exponent in (C), respectively, for µ = 31 and the initial
conditions P (0) = 10, x(0) = 0.5 and Y (0) = 61.

Summarizing, in the case of a stable financial market and an unstable real market,
for the above parameter configurations we have been not able to find stabilizing values
for ω, even if intermediate values of ω may lead to a reduction of the complexity of the
system. In this respect, in Figures 8 and 9 we highlight the presence of the so-called
bubbles (see Hommes 1991, 1994).
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(A) (B) (C) (D)

Figure 10: The (P, Y )-phase portrait for µ = 31 and ω = 0.1 in (A), ω = 0.4 in (B),
ω = 0.7 in (C) and for ω = 0.9 in (D), respectively.

5.4 Unstable financial and real subsystems

In this last framework, when isolated, the financial and the real subsystems are un-
stable. In particular, when ω = 0 both of them may be chaotic. When ω increases,
we did not find a complete stabilization of the system, but we notice some periodicity
windows in Figures 11 and 12 below, where we have fixed the parameters as follows:
F ∗ = 2, k = 0.1, α = 0.08, β = 1, c = 1, a = 2.4, µ = 28, γ = 20, a1 = 3, a2 =
1, A = 12, b = 0.7. Notice that these are the same parameter values considered in
the second scenario, except for a larger value of γ. We already noticed in Subsection
5.2 that increasing γ has a destabilizing effect for the above parameter configuration
and this is confirmed by Figures 11 and 12. More precisely, in Figures 11 (A) and
(B) we show the bifurcation diagrams with respect to ω ∈ [0, 1] for P and Y, respec-
tively; in Figure 11 (C) we show the Lyapunov exponent when ω varies in [0, 1]. In
Figures 12 (A)–(D) we depict, in the (P, Y )-phase plane, the chaotic regime when
ω = 0, a period-twelve cycle when ω = 0.5, a chaotic attractor when ω = 0.8 and a
period-fourteen cycle when ω = 1, respectively.

(A) (B) (C)

Figure 11: The bifurcation diagrams with respect to ω ∈ [0, 1] for P in (A) and
Y in (B), and the Lyapunov exponent in (C), respectively, for the initial conditions
P (0) = 6, x(0) = 0.25 and Y (0) = 0.63.
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(A) (B) (C) (D)

Figure 12: The (P, Y )-phase portrait for ω = 0 in (A), ω = 0.5 in (B), ω = 0.8 in (C)
and for ω = 1 in (D), respectively.

Let us now check whether the theoretical results in Section 4 are in agreement
with the numerical achievements above.
First of all let us verify that, for the choice of the parameter set above, when ω = 0
neither the financial subsystem, nor the real subsystem are stable, i.e., let us check
that neither the first chain of inequalities in (4.5), nor the last inequality therein are
fulfilled. A straightforward computation shows that this is the case, as the first chain
of inequalities reads as 0.116 < 1 < 0.968 and the last inequality becomes 20 < 8.888.
As concerns the stability conditions when ω varies in [0, 1], we have B1 = 3, B2 =
0.024, B3 = 0.038, B4 = −1.193, and thus, since B2 < B3, (4.2) implies that there
exists no ω for which the system is stable, in agreement with Figures 11 and 12.

Summarizing, when both the financial and real markets are unstable, for the above
parameter configuration (as well as for many others we investigated), we may have a
reduction of the complexity until periodic motions, but not a complete stabilization
of the system.

5.5 The role of an increasing bias

We conclude the present section by showing which are the effects of an increasing
bias on the stability of the whole system. Since the results we got are uniform enough
across the various scenarios considered so far, we illustrate our findings just for the
first scenario, in which, when isolated, both the financial and the real subsystems are
stable. Indeed, in Figure 13 below we have fixed the parameters as follows: F ∗ = 5,
k = 0.25, α = 0.08, β = 1, c = 1, γ = 3.5, a1 = 2, a2 = 4, A = 5, b = 0.7, ω = 0.9
and µ = 5 in Figure 13 (A), where we show the bifurcation diagram for P with respect
to a ∈ [2, 7], while µ = 28 in Figure 13 (B), where we depict the bifurcation diagram
for P with respect to a ∈ [2, 3.9]. In Figure 13 (A) the steady state gets destabilized
for a ≃ 5.9 through a Neimark-Sacker bifurcation. In Figure 13 (B) the steady state
is instead unstable for values of a close to the boundary of the considered interval,
while it is stable for intermediate values of a.

Hence, even if the destabilizing role of the bias is clear when markets are iso-
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(A) (B)

Figure 13: The bifurcation diagrams for P with respect to a ∈ [2, 7] with µ = 5 in
(A) and with respect to a ∈ [2, 3.9] with µ = 28 in (B), respectively, both obtained
for the initial conditions P (0) = 10, x(0) = 0.25 and Y (0) = 50.

lated (see (4.4)), Figure 13 suggests that its role becomes more ambiguous when the
markets are interconnected. Indeed, increasing a may have either a stabilizing or a
destabilizing role, according to the value of the other parameters. However, taking
into account also the conclusions we got for the other scenarios, it seems that in-
creasing a has generally a destabilizing effect, as usually we do not reach a complete
stabilization, or we achieve it just in small intervals for the bias.

6 Conclusion and future directions

In the present paper we proposed a model belonging both to the strand of literature
on the interactions between real and financial markets, as well as to the literature with
heterogeneous fundamentalists. In fact, in the model we presented the real economy,
described via a Keynesian good market approach, interacts with the stock market
with heterogeneous speculators. More precisely, similarly to De Grauwe and Rovira
Kaltwasser (2012), we assumed that the financial side is represented by a market
where traders behave in two different ways: optimism and pessimism. However, dif-
ferently from our setting, De Grauwe and Rovira Kaltwasser (2012) deal only with
the financial sector, while the connection with the real side of the economy is missing.
Moreover, similarly to Westerhoff (2012), we assumed the real economy to be rep-
resented by an income-expenditure model in which expenditures depend also on the
dynamics of the stock market price. On the other hand, in Westerhoff (2012) the real
market subsystem is described by a stable linear relation and the oscillating behavior
is generated by the financial subsystem only. In our paper the oscillating behavior is
generated instead also by the real subsystem.
We employed analytical and numerical tools in order to detect the mechanisms and
the channels through which instabilities get transmitted between markets. The main
contribution of the present paper to the existing literature lies in fact in our focus
on the role of real and financial feedback mechanisms, not only in relation to the
dynamics and stability of a single market, but for those of the economy as a whole.
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In order to perform such analysis, we introduced the “interaction degree approach”,
which allowed us to study the complete three-dimensional system by decomposing it
into two subsystems, i.e., the isolated financial and real markets, easier to analyze,
that are then interconnected through the “interaction parameter”. We classified the
possible scenarios according to the stability/instability of the isolated financial and
real markets: in this way we have been led to analyze four frameworks. For each of
those we considered different possible parameter configurations and we showed, both
analytically and numerically, which are the effects of increasing the degree of inter-
action between the two markets. The conclusions we got are not univocal: indeed,
depending on the value of the other parameters, an increase in the interaction param-
eter may either have a stabilizing or a destabilizing effect, but also other phenomena
are possible. Nonetheless, comparing the results in the various scenarios, we could
infer that the instability of the real market seems to have stronger destabilizing effects
than the instability of the financial market: in fact, the former gets transmitted and
possibly amplified by the connection with the financial market, while the latter gets
dampened and possibly eliminated by the connection with the real market.
We concluded our analysis by showing which are the effects of an increasing bias.
Although it is clearly destabilizing when markets are isolated, we found that its role
becomes more ambiguous when the markets are interconnected. Indeed, increasing
the bias may have either a stabilizing or a destabilizing role, according to the value of
the other parameters. However, our numerical simulations suggested that increasing
the bias has generally a destabilizing effect, as usually we did not reach a complete
stabilization, or we achieved it just in small intervals for the corresponding parameter.

Future research should focus, for instance, on extending the model in order to
include money and other financial assets. A different possible extension could concern
the introduction in our model of chartists, in order to check whether they have a
destabilizing effect also in the present context, or of unbiased fundamentalists, as
already done in De Grauwe and Rovira Kaltwasser (2012), in view of comparing the
results in the different scenarios.

25



References

Anderson, S., de Palma, A., Thisse, J., 1992. Discrete Choice Theory of Product
Differentiation. The MIT Press.

Brock, B., Hommes, C., 1997. A rational route to randomness. Econometrica 65,
1059–1095.

Brock, B., Hommes, C., 1998. Heterogeneous beliefs and routes to chaos in a simple
asset pricing model. Journal of Economic Dynamics and Control 22, 1235–1274.

Charpe, M., Flaschel, P., Hartmann, F., Proaño, C., 2011. Stabilizing an unstable
economy: Fiscal and monetary policy, stocks, and the term structure of interest
rates. Economic Modelling 28, 2129–2136.

Chiarella, C., 1992. The dynamics of speculative behavior. Annals of Operations
Research 37, 101–123.

Chiarella, C., He, X., 2002. Heterogeneous beliefs, risk and learning in a simple
asset pricing model. Computational Economics 19, 95–132.

De Grauwe, P., 2012. Lectures on Behavioral Macroeconomics. Princeton University
Press, New Jersey, USA.

De Grauwe, P., Grimaldi, M., 2006a. The Exchange Rate in a Behavioral Finance
Framework. Princeton University Press, New Jersey, USA.

De Grauwe, P., Grimaldi, M., 2006b. Exchange rate puzzles: a tale of switching
attractors. European Economic Review 50, 1–33.

De Grauwe, P., Rovira Kaltwasser, P., 2007. Modeling optimism and pessimism in
the foreign exchange market. Working Paper 1962, CESifo.

De Grauwe, P., Rovira Kaltwasser, P., 2012. Animal spirits in the foreign exchange
market. Journal of Economic Dynamics and Control 36, 1176–1192.

Diks, C., Dindo, P., 2008. Informational differences and learning in an asset market
with boundedly rational agents. Journal of Economic Dynamics and Control
32, 1432–1465.

Farebrother, R.W., 1973. Simplified Samuelson conditions for cubic and quartic
equations. The Manchester School 41, 396–400.

Frankel, J., Froot, K., 1986. Understanding the US dollar in the eighties: the
expectations of chartists and fundamentalists. Economic Record 62, 24–38.

26



Frankel, J., Froot, K., 1990. Chartists, fundamentalists and trading in the foreign
exchange market. American Economic Review 80, 181–185.

Heitger, F., 2010. Asset Price and Wealth Dynamics with Heterogeneous Expectations-
A Dynamic Nonlinear Structural Model Approach. Ph.D. Thesis. University of
Kiel.

Hommes, C., 1991. Adaptive learning and roads to chaos: The case of the cobweb.
Economics Letters 26, 127–132.

Hommes, C., 1994. Dynamics of the cobweb model with adaptive expectations and
nonlinear supply and demand. Journal of Economic Behavior and Organization
24, 315–335.

Hommes, C., 2013. Behavioral Rationality and Heterogeneous Expectations in Com-
plex Economic Systems, Cambridge University Press, Cambridge.

Lengnick, M., Wohltmann, H.-W., 2013. Agent-based financial markets and New
Keynesian macroeconomics: a synthesis. J. Econ. Interact. Coord. 2013, 1–32.

Lloyd, A.L., 1995. The Coupled Logistic Map: A Simple Model for the Effects of
Spatial Heterogeneity on Population Dynamics. J. Theor. Biol. 173, 217–230.

Lux, T., Marchesi, M., 1999. Scaling and criticality in a stochastic multi-agent
model of a financial market. Letters to Nature 397, 498–500.

Manzan, S., Westerhoff, F., 2005. Representativeness of news and exchange rate
dynamics. Journal of Economic Dynamics and Control 29, 677–689.

Naimzada, A., Pireddu, M., 2013. Dynamic behavior of real and stock markets with
a varying degree of interaction. Submitted.
Available at http://ssrn.com/abstract=2294032

Naimzada, A., Ricchiuti, G., 2008. Heterogeneous fundamentalists and imitative
processes. Applied Mathematics and Computations 199, 171–180.

Naimzada, A., Ricchiuti, G., 2009. The dynamic effect of increasing heterogeneity
in financial markets. Chaos, Solitons and Fractals 41, 1764–1772.

Rovira Kaltwasser, P., 2010. Uncertainty about fundamentals and herding behavior
in the FOREX market. Physica A 389, 1215–1222.

Scheffknecht, L., Geiger, F., 2011. A behavioral macroeconomic model with en-
dogenous boom-bust cycles and leverage dynamics. Discussion paper 37-2011,
University of Hohenheim.

27



Westerhoff, F., 2003. Expectations driven distortions in the foreign exchange market.
Journal of Economic Behavior and Organization 51, 389–412.

Westerhoff, F., 2012. Interactions between the real economy and the stock market:
A simple agent-based approach. Discrete Dynamics in Nature and Society 2012,
Article ID 504840.

28


