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Abstract

In the paper a general framework for large scale modeling of macro-

economic and financial time series is introduced. The proposed ap-

proach is characterized by simplicity of implementation, performing

well independently of persistence and heteroskedasticity properties,

accounting for common deterministic and stochastic factors. Monte

Carlo results strongly support the proposed methodology, validating

its use also for relatively small cross-sectional and temporal samples.
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1 Introduction

In the paper a general strategy for large-scale modeling of macroeconomic

and financial data, set within the factor vector autoregressive model (F-VAR)

framework, is proposed.1

Following the lead of dynamic factor model analysis proposed in Geweke

(1977), it is assumed that a small number of structural shocks are responsible

for the observed comovement in economic data; it is however also assumed

that commonalities across series are described by deterministic factors, i.e.,

common break processes. Comovement across series is then accounted by

both deterministic and stochastic factors; moreover, common factors are al-

lowed in both mean and variance, covering the I(0) and I(1) persistence cases,

as well as the intermediate case of long memory, i.e., (), 0    1. As the

common factors are unobserved, accurate estimation may fail in the frame-

work of small scale vector autoregressive (VAR) models, but succeed when

cross-sectional information is employed to disentangle common and idiosyn-

cratic features.

The proposed fractionally integrated heteroskedastic factor vector autore-

gressive model (FI-HF-VAR) bridges the F-VAR and (the most recent) G-

VAR literature, as, similarly to Dees et al. (2010) and Pesaran and Smith

(2011), a weakly stationary cyclical representation is employed; yet, simi-

larly to Bai and Ng (2004) principal components analysis (PCA) is employed

for the estimation of the latent factors. Consistent and asymptotically nor-

mal estimation is performed by means of , also implemented through

an iterative multi-step estimation procedure. Monte Carlo results strongly

support the proposed methodology.

Overall, the FI-HF-VAR model can be understood as a unified frame-

work for large-scale econometric modeling, allowing for accurate investiga-

tion of cross-sectional and time series features, independent of persistence

and heteroskedasticity properties of the data, from comovement to impulse

responses, forecast error variance and historical decomposition analysis.

After this introduction, the paper is organized as follows. In Section 2 the

econometric model is presented, in Section 3 estimation is discussed, while

Monte Carlo analysis is performed in Section 4; finally, conclusions are drawn

in Section 5.

1The literature on F-VAR models is large. See Stock and Watson (2011) for a survey.
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2 The FI-HF-VAR model

Consider the following fractionally integrated heteroskedastic factor vector

autoregressive (FI-HF-VAR) model

 − Λ − Λ = ()(−1 − Λ−1 − Λ−1) +  (1)

 ∼ (0Σ)

 ()() =  = 
12
  (2)

 ∼ (0 )

where  is a  ×1 vector of real valued integrated and heteroskedastic
processes subject to structural breaks,  = 1   , in deviation from the

unobserved common deterministic () and stochastic () factors; () ≡
0

0 + 1 + 2
2 +  + 

 is a finite order matrix of polynomials in

the lag operator with all the roots outside the unit circle, ,  = 0  ,

is a square matrix of coefficients of order  ;  is a  × 1 vector of zero
mean idiosyncratic i.i.d. shocks, with contemporaneous covariance matrix

Σ, assumed to be coherent with the condition of weak cross-sectional corre-

lation of the idiosyncratic components (Assumption E) stated in Bai (2003,

p.143). The model in (1) actually admits the same static representation of

Bai (2003), as it can be rewritten as  = Λ + Λ + [ − ()]
−1

.

2.1 The common break process component

The vector of common break processes  is  × 1, with  ≤  , and

 × matrix of loadings Λ; the latter are assumed to be orthogonal to

the common stochastic factors , and of unknown form, measuring recurrent

or non recurrent changes in mean, with smooth or abrupt transition across

regimes; the generic element in  is  ≡ (), where ()  = 1  ,

is a function of the time index ,  = 1   .

The idiosyncratic break process () can take different forms. For in-

stance, Bai and Perron (1998) use a discontinuous function,

() = 0 +
P
=1

  (3)

where  is the indicator function, such that  = 1 if     and is 0

otherwise; in Bai and Perron (1998) the break points   are determined

through testing; aMarkov switching mechanism, as in Hamilton (1989), could

however also be employed to this purpose.
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Differently, Enders and Lee (2012) and Baillie and Morana (2009, 2012)

model the break process as a continuous and bounded function of time, by

means of a Fourier expansion (Gallant, 1984), i.e.,

() = 0 +
P

=1

 sin(2 ) +  cos(2 )  ≤ 2 (4)

Similarly Gonzalez and Terasvirta (2008), using a logistic specification

() = 0 +
P

=1

( 
∗) (5)

where the logistic function is ( 
∗) = (1 + exp (− () (∗ − ) ̂∗))

−1
,

 () = exp
¡

¢
,  ∈ [0 1] and  are parameters, 

∗ =  , and ̂∗ is the

estimated standard deviation of ∗. In particular, as  → ∞, (·) becomes
the indicator function, yielding therefore a generalization of the Bai-Perron

specification.

Also similarly Engle and Rangle (2008) and Beran and Weiershauser

(2011), using a spline function

() = (



) (6)

where ( 

) =

+2P
=1

(


) is a spline function of order ,  are unknown

regression coefficients and the functions (·) are spline basis functions defined
as 1 = 1, 2 = (



), ..., +1 = (



), and +2 = (



− ) with  ∈ ¡ 1


 1
¢
.

A semiparametric approach has also been suggested by Beran and Feng

(2002a), using a kernel function, i.e.,

() =
1



P
=1

(
− 


) (7)

where  is the bandwidth and(·) is the kernel function, specified as() =
P

=0


2 for || ≤ 1 and() = 0 for ||  1;  = 0 1 2 , and the coefficient

 are such that
1R
−1
() = 1.

Finally, a random level shift model has been proposed by Engle and Smith

(1999), Ray and Tsay (2002), Lu and Perron (2010) and Perron and Var-

neskov (2012); for instance, Perron and Varneskov (2012) define the break

process as
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() =
P
=1

 (8)

where  = ,  ∼  (0 2) and  ∼  ( 1)

for  > 0.
In the case  =  there are no common break processes, i.e., each

series is characterized by its own idiosyncratic break process and the  ×

factor loading matrix Λ is square, diagonal and of full rank; when    ,

then there exist  common break processes and the factor loading matrix

is of reduced rank (). Hence, in the latter case the series  may be said

cotrending, according to Chapman and Ogaki (1993), nonlinear cotrending,

according to Bierens (2000), or cobreaking, according to Hendry (1996) and

Hendry andMassmann (2007). The representation in (1) emphasizes however

the driving role of the common break processes, rather than the break-free

linear combinations (cobreaking/cotrending relationships) relating the series

.

2.2 The common break-free component

The vector of (zero-mean) integrated heteroskedastic common factors  is

×1, with ≤  , and×matrix of loadings Λ . The order of integration

is  in mean, and  in variance, 0 ≤  ≤ 1, 0 ≤  ≤ 1,  = 1  .
The polynomial matrix  () ≡  − 1− 2

2 − − 
 is of finite

order, with all the roots outside the unit circle; ,  = 1  , is a square

matrix of coefficients of order ;  is a × 1 vector of common zero mean
i.i.d. shocks, with identity covariance matrix ,  [] = 0 all    ,

respectively.

The matrix () is a  × diagonal matrix in the lag operator, speci-

fied according to the integration order (in mean) of the common stochastic

factors, i.e.,

() ≡ (1− )

for the case of (1) integration ( = 1);

() ≡ 

for the (0) or no integration (short memory) case ( = 0);

() ≡ 
©
(1− )1  (1− )2   (1− )

ª

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for the case of fractional integration ((), long memory) (0    1), where

(1−) is the fractional differencing operator; the latter admits a binomial

expansion, which can be compactly written in terms of the Hypergeometric

function, i.e.,

(1− ) =  (− 1 1;)
=

∞P
=0

Γ ( − )Γ ( + 1)
−1

Γ (−)−1 

=
∞P
=0


 (9)

where Γ (·) is the Gamma function.2
In the case  =  there are no common stochastic processes, i.e., each

series is characterized by its own idiosyncratic persistent stochastic compo-

nent, and the  × factor loading matrix Λ is square, diagonal and of full

rank; when    , then there exist  common stochastic processes and the

factor loading matrix is of reduced rank (). Hence, in the latter case the

series  show common stochastic features, according to Engle and Kozicki

(1993). The concept of common feature is broad, encompassing the notion

of cointegration and fractional cointegration (Engle and Granger, 1987; Jo-

hansen, 2011), holding for the 0   ≤ 1 case. The representation in (1)
emphasizes however the driving role of the common stochastic factors rather

than the feature-free linear combinations (cofeature relationships) relating

the series .

2.3 The conditional variance process

The  ×  conditional variance-covariance matrix for the unconditionally

and conditionally orthogonal common factors  is  =  (|Ω−1) ≡
 {1 2  }, where Ω−1 is the information set available at time
period  − 1. Consistent with the constant conditional correlation model of
Bollerslev (1990) and Brunetti and Gilbert (2000), the th generic element

along the main diagonal of  is

() =  + ()
2
  = 1   (10)

where

() ≡ 1− ()− (1− ())(1− ) (11)

2See Baillie (1996) for an introduction to long memory processes.
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for the case of fractional integration (long memory) in variance (0    1);

() ≡ 1− ()− (1− ())(1− ) (12)

for the case of (1) integration in variance ( = 1);

() ≡ 1− ()− (1− ()) (13)

for the (0) or no integration (short memory) in variance case ( = 0); in all

cases

() ≡ 1− () (14)

() = () + () (15)

() ≡ 1+ 2
2 + + 

 (16)

() ≡ 1+ 2
2 + + 

 (17)

and all the roots of the () and () polynomials are outside the unit

circle.

The conditional variance process  ≡  (|Ω−1),  = 1  , is

therefore of the  (  ) type (Baillie et al., 1996)
3, with  =

 { }, or the  ( ) type (Engle and Bollerslev, 1986), for the
fractionally integrated and integrated case, respectively; of the ( )

type (Bollerslev, 1986) for the non integrated case. The model is however

not standard as the intercept component  is time-varying, allowing for

structural breaks in variance; similarly to the mean part of the model, struc-

tural breaks in variance are assumed to be of unknown form, measuring

recurrent or non recurrent regimes, with smooth or abrupt transition; then,

 ≡ (), where () is a continuos or discontinuous bounded function

of the time index ,  = 1   , which can be parameterized as in (3), (4),

(5), (6), or (7). See Engle and Rangel (2008), Baillie and Morana (2009),

Cassola and Morana (2012), Amado and Terasvirta (2008), Hamilton and

Susmel (1994) and Beine and Laurent (2000).

The following (∞) representation can be obtained from each of

the three above models

 =


(1)
+

()

()
2  = 1   (18)

= ∗ + ()
2
 (19)

3An alternative long memory specification for the conditional variance process is pro-

posed by Conrad and Karanasos (2006).
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where ∗ =


(1)
and () =

()

()
= 1+ 2

2 + 

The term ∗ then bears the interpretation of break in variance process,
or time-varying unconditional variance process (no integration case), or long-

term conditional variance level (unit root and fractional integration cases).

To guarantee the non negativity of the conditional variance process at

each point in time all the coefficients in the (∞) representation must
be non-negative, i.e.,  ≥ 0 for all  ≥ 1 and ∗  0 for any . Sufficient

conditions, for various parameterization, can be found in Baillie et al. (1996),

Engle and Bollerslev (1986), Bollerslev (1986), Baillie and Morana (2009),

Conrad and Haag (2006), and Chung (1999).

2.4 Examples of nested models

From (1) and (2), by setting () = , 
12
 = Σ

12
 ,  =  ,  = 

Λ =  , the I(0) homoskedastic F-VAR( ) model

 − − Λ = ()(−1 − − Λ−1) +  (20)

 ∼ (0Σ)

 () =  (21)

 ∼ (0Σ)

is then obtained; moreover, by allowing
12
 to evolve according to (10), (13),

and (14)-(17), with  = , () ≡ 1− 1 and () = 1+ 1,

the I(0) F-VAR( )-GARCH(1,1) model is obtained; also, by assuming (11)

rather then (13), the I(0) F-VAR( )-FIGARCH(1,,1) is obtained. Appli-

cations of the latter models for the modeling of macroeconomic variables in

stationary form and financial returns may be envisaged. See, for instance,

Morana (2013) and Bagliano and Morana (2014) for large-scale applications

to the modeling of the global economy and the macro-finance interface.

Moreover, by setting () ≡ (1− ), the I(1) F-VAR( ) model

 − − Λ = ()(−1 − − Λ−1) +  (22)

 ∼ (0Σ)

 ()(1− ) =  (23)

 ∼ (0Σ)

is obtained, as well as, by imposing the same restrictions as above, the I(1)

F-VAR( )-GARCH(1,1) and F-VAR( )-FIGARCH(1,,1) models. Ap-
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plications of the latter models for the modeling of non-stationary macroeco-

nomic variables and financial asset prices may be foreseen.

In addition to interest rate spreads term structure modeling (Morana,

2014; Cassola and Morana, 2012), other applications of the most general

framework contributed in the paper may also be envisaged, concerning, for

instance, inflation rates and realized moments of financial returns.

2.5 The reduced fractional VAR form

Depending on the persistence properties of the data, the vector autoregressive

representation (VAR) for the factors  and the series  can be written as

follows.

) For the case of fractional integration (long memory) (0    1), by

taking into account the binomial expansion in (9), it follows  ()() ≡
 −Π(), Π() = Π1+Π2

2+  where Π,  = 1 2 , is a square matrix

of coefficients of dimension ; by substituting (2) into (1) and rearranging,

the infinite order vector autoregressive representation for the factors  and

the series  can then be written as∙


 − Λ

¸
=

∙
Π∗() 0

Π∗() ()

¸ ∙
−1

−1 − Λ−1

¸
(24)

+

∙






¸


∙






¸
=

∙


Λ

¸
[

12
 ] +

∙
0



¸


where Π∗() = Π()−1 and Π∗() = [ΛΠ()
−1 − ()Λ ]; since the

infinite order representation cannot be handled in estimation, a truncation

to a suitable large lag for the polynomial matrix Π() is required.4 Hence,

Π() '
∗X
=1

Π
.

4Monte Carlo evidence reported in Chan and Palma (1998) suggests that the truncation

lag should increase with the sample size and the complexity of the ARFIMA representation

of the long memory process, still remaining very small relatively to the sample size. For

instance, for the covariance stationary fractional white noise case and a sample of 100

observations truncation can be set as low as 6 lags, while for a sample of 10,000 observations

it should be increased to 14 lags; for the case of a covariance stationary ARFIMA (1,d,1)

process and a sample of 1,000 observations truncation may be set to 30 lags. See Chan

and Palma (1998) for further details.
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Also for the case of no integration (short memory) ( = 0) and integration

( = 1) the (finite order) vector autoregressive representation for the factors

 and the series  can be written as in (24); yet:

) for the case of no integration (short memory) ( = 0), recalling that

() ≡ , and therefore  ()() =  (), then Π() = 1 + 2
2 +

+ 
;

) for the case of integration ( = 1), it should be firstly recalled that

 ()() ≡  ()(1− ) (25)

≡ ( − )− (1+ 2
2 + + 

)(1− ) (26)

with  = ; the latter may be rewritten in the equivalent polynomial matrix

form

 − Γ1− Γ2
2 − − Γ+1

+1 (27)

where Γ,  = 1   + 1 is a square matrix of coefficients of dimension ,

and

Γ1 + Γ2 + + Γ+1 =  = 

 = − (Γ+1 + Γ+2 + + Γ+1)   = 1 2  ;

then, Π() = Γ1+ Γ2
2 + + Γ+1

+1.

2.5.1 Reduced form and structural vector moving average repre-

sentation of the FI-HF-VAR model

In the presence of unconditional heteroskedasticity, the computation of the

impulse response functions and the forecast error variance decomposition

(FEVD) should be made dependent on the estimated unconditional variance

for each regime. In the case of (continuously) time-varying unconditional

variance, policy analysis may be then computed at each point in time. For

some of the conditional variance models considered in the paper, i.e., the

FIGARCH and IGARCH processes, the population unconditional variance

does not actually exist; in the latter cases the  component just bears the

interpretation of long term level for the conditional variance; policy analy-

sis is still feasible, yet subject to a different interpretation, FEVD referring,

for instance, not to the proportion of forecast error (unconditional) vari-

ance accounted by each structural shock, but to the proportion of forecast

error (conditional) long term variance accounted by each structural shock.
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With this caveat in mind, the actual computation of the above quantities is

achieved in the same way as in the case of well defined population uncondi-

tional variance.

Hence, the computation of the vector moving average (VMA) representa-

tion for the FI-HF-VAR model depends on the persistence properties of the

data. The following distinctions should then be made.

For the short memory case, i.e., the zero integration order case ( = 0),

the VMA representation for the factors  and the  − Λ gap series can

be written as ∙


 − Λ

¸
=

∙
() 0

()  ()

¸ ∙






¸
 (28)

where () ≡  ()−1, () ≡ Λ ()
−1 and  () ≡ [ − ()]

−1
.

For the long memory case (0    1) and the case of (1) non stationar-

ity ( = 1), the VMA representation should be computed for the differenced

process yielding

(1− )

∙


 − Λ

¸
=

∙
()+ 0

()+  ()+

¸ ∙






¸
 (29)

where ()+ ≡ (1− )(),()+ ≡ (1− )() and  ()+ ≡ (1− ) ().

Impulse responses can then be finally computed as  +
P

=1

+
 for , and

as  +
P

=1

+
 and  +

P
=1

+
 for  − Λ,  = 1 2 

Identification of structural shocks The identification of the structural

shocks in the FI-HF-VAR model can be implemented in two steps. Firstly,

denoting by  the vector of the  structural common factor shocks, the re-

lation between reduced and structural form common shocks can be written

as  =  where  is square and invertible. Therefore, the identifica-

tion of the structural common factor shocks amounts to the estimation of

the elements of the  matrix. It is assumed that  [
0
] = , and hence

Σ
0 = . As the number of free parameters in Σ is ( + 1)2, at

most (+ 1)2 parameters in −1 can be uniquely identified through the
Σ = −1 0−1 system of nonlinear equations in the unknown parameters of

−1. Additional ( − 1)2 restrictions need then to be imposed for ex-
act identification of −1, by constraining the contemporaneous or long-run
responses to structural shocks; for instance, recursive (Choleski) or non re-

cursive structures can be imposed on the VAR model for the common factors
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through exclusion or linear/non-liner restrictions, as well as sign restrictions,

on the contemporaneous impact matrix −1.5

Secondly, by denoting  the vector of  structural idiosyncratic distur-

bances, the relation between reduced form and structural form idiosyncratic

shocks can be written as  = Θ, where Θ is square and invertible. Hence,

the identification of the structural idiosyncratic shocks amounts to the esti-

mation of the elements of the Θ matrix. It is assumed that  [
0
] =  ,

and hence ΘΣΘ
0 =  . Then, in addition to the ( +1)2 equations pro-

vided by Σ = Θ−1Θ0−1, (−1)2 restrictions need to be imposed for exact
identification of Θ−1, similarly to what required for the common structural
shocks.

Note that preliminary to the estimation of the Σ matrix, ̂ should be ob-

tained from the residuals of an OLS regression of ̂ on ̂; the latter operation

would grant orthogonality between common and idiosyncratic residuals.

The structural VMA representation can then be written as∙


 − Λ

¸
=

∙
∗() 0

∗()  ∗()

¸ ∙






¸
(30)

where ∗() = ()−1, ∗() = ()−1,  ∗() =  ()Θ−1, or

(1− )

∙


 − Λ

¸
=

∙
∗()+ 0

∗()+  ∗()+

¸ ∙






¸
 (31)

where ∗()+ ≡ ()+−1, ∗()+ = ()+−1,  ∗()+ =  ()+Θ−1,
according to persistence properties, and 

£


0


¤
= 0 any  .

3 Estimation

Estimation of the model can be implemented following a multi-step pro-

cedure, consisting of persistence analysis,  estimation of the common

factors and VAR parameters in (1),  estimation of the conditional mean

model in (2) and the reduced form model in (24),  estimation of the

conditional variance covariance matrix in (2).

3.1 Step 1: persistence analysis

Each component ,  = 1   , of the vector time series  is firstly de-

composed into its purely deterministic (trend/break process; ) and purely

stochastic (break-free,  =  − ) parts.

5See Kilian (2011) for a recent survey.
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It is then assumed that data obey the model

 =  +   = 1    = 1   (32)

where  and  are orthogonal,  ≡ (), and () is a bounded func-

tion of the time index , evolving according to discontinuous changes (step

function) or showing smooth transitions across regimes.

Depending on the specification of (), a joint estimate of the two com-

ponents can be obtained following Beran and Feng (2001, 2002a), Baillie and

Morana (2012), Beran and Weiershauser (2011), Gonzalez and Terasvirta

(2008), Hamilton (1989), by setting up an augmented fractionally integrated

ARIMA model

() (1− )

³
(1− )


 − 

´
=  (33)

where  = {0 1} is the integer differencing parameter, , −05    05, is

the fractional differencing parameter, () is a stationary polynomial in the

lag operator and  is a white noise disturbance. Heteroskedastic innovations

can also be considered, by specifying  ≡ , with  ∼  (0 1), and

the conditional variance process 2 according to a model of the GARCH

family.

Consistent and asymptotically normal estimation by means of , also

implemented through iterative algorithms, is discussed in Beran and Feng

(2002a,b), Baillie andMorana (2012), Beran andWeiershauser (2011), Perron

and Varsnekov (2012). Extensions of the Markov switching (Hamilton, 1989),

logistic (Gonzalez and Terasvirta, 2008) and random level shift models to the

long memory case have also been contributed by Bordignon and Raggi (2010),

Martens et al. (2003) and Grassi and de Magistris (2011), respectively.

Alternatively, the Bai and Perron (1989) two-step procedure can be fol-

lowed: firstly, structural break tests are carried out and break points esti-

mated; then, dummy variables are constructed according to their dating and

the break process is estimated by running an OLS regression of the actual se-

ries  on the latter dummies, as in (3); this yields ̂ computed as the fitted

process and the stochastic part as the estimated residual, i.e., ̂ = − ̂.6
As neglected structural breaks may lead to processes which appear to

show persistence of the long memory or unit root type (Perron, 1989; Granger

and Hyung, 2004; Diebold and Inoue, 2001), as well as spurious breaks may

6The orthogonality of ̂ and ̂ holds by construction when the break process is

estimated by means of OLS, using break point dates as provided by testing. Orthogonality

can however also be imposed when jointly estimating the deterministic and stochastic

components by means of augmented ARFIMA models.
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be detected in the data when persistence in the error component is neglected

(Nunes et al., 1995; Bai, 1997; Kuan and Hsu, 1998), testing procedures

robust to persistence properties are clearly desirable. In this respect, the Bai

and Perron (1998) -based testing framework allows consistent detection

of multiple breaks at unknown dates for (0) processes, as well as under

long range dependence (Lavielle and Moulines, 2000)7; moreover, under long

range dependence, the validity of an estimated break process (obtained, for

instance, by means of the Bai-Perron tests) may also be assessed by testing

the null hypothesis of long memory in the estimated break-free series (̂),

as antipersistence is expected from the removal of a spurious break process

(Granger and Hyung, 2004; Morana, 2014). Structural break tests valid for

both (0) and (1) series have also been recently contributed by Kejiriwal

and Perron (2010), Harvey et al. (2010), Bai and Carrion-i-Silvestre (2009)

and Oka and Perron (2011).

3.2 Step 2: Estimation of the conditional mean model

 estimation of the reduced form model in (24) is achieved by first es-

timating the latent factors and VAR parameters in (1); then, by estimating

the conditional mean process in (2); finally, by substituting (2) into (1) in

order to obtain a restricted estimate of the polynomial matrix Π∗().

3.2.1 Estimation of the common factors and VAR parameters

Estimation of the common factors is performed by , writing the (mis-

specified) approximating model as

 − Λ − Λ =  (34)

 ∼ (0 2)

 ∼ (0 )

with log-likelihood function given by

 (·) = −

2
ln 2−

2
ln
¯̄
2

¯̄
−1
2

X
=1

( − Λ − Λ)
0
( − Λ − Λ)

2


(35)

7Lavielle and Moulines (2000) have proved the strong consistency of the  estimator

of the break fraction, independently of the rate of decay of the autocovariance function of

the error process, when the number of break points is known; a modified Bayes-Schwarz

criterion is then proposed for the selection of the number of break points.
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 estimation of the latent factors and their loadings then requires the

minimization of the objective function

X
=1

( − Λ − Λ)
0
( − Λ − Λ)  (36)

which can be rewritten as

1



X
=1

( − Λ)
0
( − Λ) +

1



X
=1

( − Λ)
0
( − Λ)  (37)

where  =  + , as  and  are orthogonal vectors, as well as  and .

The solution to the minimization problem, subject to the constraints

−1Λ0Λ =  (38)

−1Λ0Λ =  (39)

is given by firstly minimizing with respect to  and , given Λ and Λ ,

yielding

̂

³
Λ

¡
Λ0Λ

¢−1´
=

¡
Λ0Λ

¢−1
Λ0

̂

³
Λ

¡
Λ0Λ

¢−1´
=

¡
Λ0Λ

¢−1
Λ0 

and then concentrating the objective function to obtain

1



X
=1

0
³
 − Λ

¡
Λ0Λ

¢−1
Λ

´
 +

1



X
=1

0
³
 − Λ

¡
Λ0Λ

¢−1
Λ

´


(40)

which can be mimized with respect to Λ and Λ . This is equivalent to

maximizing



(¡
Λ0Λ

¢−120
Λ0

Ã
1



X
=1


0


!
Λ

¡
Λ0Λ

¢−12)
+ (41)



(¡
Λ0Λ

¢−120
Λ0

Ã
1



X
=1


0


!
Λ

¡
Λ0Λ

¢−12)
 (42)
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which in turn is equivalent to maximizing

ΛΣ̂Λ (43)

subject to

−1Λ0Λ = 

and

Λ Σ̂Λ (44)

subject to

−1Λ0Λ = 

The solution is then found by setting:

• Λ̂ equal to the scaled eigenvectors of Σ̂, i.e., the sample variance

covariance matrix of the break processes , associated with its  largest

eigenvalues; this yields ̂ = −1Λ̂0, i.e., the scaled first  principal com-

ponents of ;

• Λ̂ equal to the scaled eigenvectors of Σ̂, i.e., the sample variance co-

variance matrix of the break-free processes , corresponding to its  largest

eigenvalues; this yields ̂ = −1Λ̂0 , i.e., the scaled first  principal com-

ponents of .

Note that PCA uniquely estimates the space spanned by the unobserved

factors; hence, Λ and  (Λ and ) are not separately identified, as the

common factors  () and factor loading matrix Λ (Λ) are uniquely esti-

mated up to a suitable invertible rotation matrix  (), i.e., PCA delivers

estimates of ∗ ≡  (∗ ≡ ) and Λ∗ ≡ Λ
−1
 (Λ∗ ≡ Λ

−1
 ),

and therefore a unique estimate of the common components Λ ≡ Λ∗∗
(Λ ≡ Λ∗∗) only, which is however all what is required for the compu-
tation of the gap vector.

As shown by Bai and Ng (2013), exact identification of the common

factors can also be implemented, by appropriately constraining the factor

loading matrix while performing PCA or after estimation. In particular,

three identification structures are discussed, involving a block diagonal factor

loading matrix, yield by a statistical restriction imposed in estimation, and

two rotation strategies, yielding a lower triangular factor loading matrix in

the former case and a two-block partitioned factor loading matrix in the latter

case, with identity matrix in the upper block and an unrestricted structure

in the lower block.

Moreover, the number of common factors (, ) is unknown and needs

to be determined; several criteria are available in the literature, ranging from

17



heuristic or statistical eigenvalue-based approaches (Jackson, 1993; Kapetan-

ios, 2010; Cragg and Donald, 1997; Gill and Lewbel, 1992, Robin and Smith,

2000; see also Peres-Neto et al., 2005), to the variance test of Connor and

Korajczyk (1993), and the more recent information criteria (Stock and Wat-

son, 1998; Forni et al., 2000; Bai and Ng, 2002) and “primitive” shock (Bai

and Ng, 2007; Stock and Watson, 2005) based procedures.

Finally, in order to enforce orthogonality between the estimated common

break processes (̂∗) and stochastic factors (̂∗), the above procedure may

be modified by computing the stochastic component ̂ as the residuals from

the OLS regression of  on ̂∗; then PCA is implemented on ̂ to yield

̂∗.

Estimation of the VAR parameters. Conditional on the estimated

(rotated) latent factors, the polynomial matrix () and Λ∗ ≡ Λ
−1
 and

Λ∗ ≡ Λ
−1
 (rotated) factor loading matrices are obtained bymeans of OLS

estimation of the equation system in (1). This can be obtained by first (OLS)

regressing the actual series  on the estimated common break processes (̂∗)

and stochastic factors (̂∗) to obtain Λ̂∗ and Λ̂∗; alternatively, Λ∗ and

Λ∗can be estimated as yield by PCA, i.e., from the scaled eigenvectors of

the matrices Σ̂ and Σ̂, respectively; then, the gap vector is computed as

 − Λ̂∗̂∗ − Λ̂∗ ̂∗ as Λ̂ ̂ ≡ Λ̂∗ ̂∗ and Λ̂̂ ≡ Λ̂∗̂∗, and ̂() is

obtained by means of OLS estimation of the VAR model in (1).

3.2.2 Iterative estimation of the common factors and VAR para-

meters

The above estimation strategy may be embedded within an iterative proce-

dure, yielding a (relatively more efficient) estimate of the latent factors and

the VAR parameters in the equation system in (1).

The objective function to be minimized is then written as

 (Λ Λ   ()) =
1



X
=1

0 (45)

where  = ( − ()) ( − Λ − Λ) 

• Initialization. The iterative estimation procedure requires an initial
estimate of the common deterministic () and stochastic () factors and

the () polynomial matrix, i.e., an initial estimate of the equation system

in (1). The latter can be obtained as described in Section 3.2.1.

• Updating. An updated estimate of the equation system in (1) is

obtained as follows.
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•• First, a new estimate of the  (rotated) common deterministic

factors, and their factor loading matrix, is obtained by the application of PCA

to the (new) stochastic factor-free series −Λ̂∗ ̂∗−̂()
³
−1 − Λ̂∗ ̂∗−1 − Λ̂∗̂∗−1

´
,

yielding Λ̂
()
∗ and ̂

()
∗ .8

•• Next, conditional on the new common break processes and their
factor loading matrix, the new estimate of the common long memory factors

is obtained from the application of PCA to the (new) break-free processes

̂
()
 =  − Λ̂

()
∗ ̂

()
∗

9, yielding Λ̂
()

∗ and ̂
()
∗ .10

•• Finally, conditional on the new estimated common break processes
and long memory factors, the new estimate of the gap vector −Λ̂()∗ ̂

()
∗ −

Λ̂
()

∗ ̂
()
∗ is obtained, and the new estimate ̂()() can be computed

by means of OLS estimation of the VAR model in (1).

•• The above procedure is iterated until convergence, yielding the
final estimates Λ̂

()
∗ , ̂

()
∗ , Λ̂

()

∗ , ̂
()
∗ , and ̂()().11

3.2.3 Restricted estimation of the reduced form model

Once the final estimate of the equation system in (1) is available, the reduced

VAR form in (24) is estimated as follows:

) for the case of fractional integration (long memory) (0    1), the

fractional differencing parameter is (consistently) estimated first, for each

component of the (rotated) common factors vector ̂
()
∗ , yielding the esti-

mates ̂,  = 1  , collected in ̂() matrix.

Considering then the generic element ̂
()
∗ ,

√
 consistent and asymp-

totically normal estimation of the th fractional differencing parameter can

be obtained, for instance, by means of  estimation of the fractionally

integrated ARIMA model in (33), i.e.,

() (1− )
 (1− )


̂
()
∗ = ; (46)

8Alternatively, Λ̂
()
∗ can be obtained by regressing  on ̂

()
∗ (and the initial esti-

mate ̂∗), using OLS.
9Alternatively, the new break-free process can be computed as  − Λ̂∗ ̂∗ −

̂()
³
−1 − Λ̂∗ ̂∗−1 − Λ̂∗ ̂∗−1

´


10Alternatively, Λ̂
()

∗ can be obtained by regressing  on ̂
()
∗ and the updated

estimate ̂
()
∗ , using OLS. This would also yield a new estimate Λ̂

()
∗ to be used in the

computation of the updated gap vector.

11For instance, the procedure can be stopped when +1 =
(̂

(+1)
)−(̂())

(̂
(+1)

)+(̂
()
)
 −10−4,

where the objective function is written as in (45).
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alternatively, consistent and asymptotically normal estimation can be ob-

tained by means of the log-periodogram regression or the Whittle-likelihood

function.12

Then, conditionally to the estimated fractionally differencing parameter,

̂ () is obtained by means of OLS estimation of the  () model for

the fractionally differenced common factors (̂()̂
()
∗ ) in (2); hence,  −

Π̂() = ̂ ()̂∗(), where ̂∗() is the ×  diagonal polynomial matrix

in the lag operator containing the ∗th order (∗  ) truncated binomial

expansion of the elements in ̂(). Then, Π̂∗() = Π̂()−1 and Π̂∗() =h
Λ̂
()

 Π̂()−1 − ̂()()Λ
()



i
.

Alternatively, rather than by means of the two-step Box-Jenkins type of

approach detailed above, system estimation can be performed by setting up

a multivariate version of the model in (46)

Φ() () (1− )

̂
()
∗ =  (47)

where Φ() is a finite order stationary polynomial matrix in the lag opera-

tor, yielding
√
 consistent and asymptotically normal estimation performed

by means of Conditional-Sum-of-Squares (Robinson, 2006), exact Maximum

Likelihood (Sowell, 1992) or Indirect (Martin and Wilkins, 1999) estima-

tion.13 OLS estimation of a VAR approximation for the VARFIMA model in

(47) has also been recently proposed by Baillie and Kapetanios (2013), which

would even avoid the estimation of the fractional differencing parameter for

the common stochastic factors. Moreover,

) for the case of no integration (short memory) ( = 0), ̂ () is obtained

by means of OLS estimation of the  () model for the (rotated) common

stochastic factors (̂
()
∗ ) in (2); then Π̂() = ̂1+ ̂2

2 + + ̂
;

) for the I(1) case ( = 1), Γ̂() is obtained bymeans of OLS estimation

of the  (+1)model in levels for the (rotated) common stochastic factors

(̂
()
∗ ), implied by (2), taking into account (26) and (27); then, Π̂() =

Γ̂1+ Γ̂2
2 + + Γ̂+1

+1.

Consistent with Bai and Ng (2006, 2008), in all of the above cases VAR

estimation can be performed as the estimated common factors were actually

observed.

Following the thick modelling strategy of Granger and Jeon (2004), me-

dian estimates of the parameters of interest, impulse responses and forecast

12See Nielsen and Frederiksen (2005) and Chan and Palma (2006) for a survey of alter-

native estimators of the fractional differencing parameter.
13Depending on the parametric structure, system estimation may however become un-

feasible when the number of factors is too large.
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error variance decomposition, as well as their confidence intervals, can be

computed through simulation.

3.3 Step 3: Estimation of the conditional variance-

covariance matrix

The estimation of the conditional variance-covariance matrix for the factors

in (2) can be carried out using a procedure similar to the O-GARCH model

of Alexander (2002):

) firstly, conditional variance estimation is carried out factor by factor,

using the estimated factor residuals ̂, yielding ̂,  = 1 2  ; 

estimation can be performed in a variety of settings, ranging from standard

( ) (Bollerslev, 1986) and (  ) (Baillie et al., 1996)

models to their “adaptive” generalizations (Engle and Rangel, 2008; Bail-

lie and Morana, 2009; Amado and Terasvirta, 2008; Hamilton and Susmel,

1994), in order to allow for different sources of persistence in variance;

) secondly, consistent with the assumption of conditional and uncondi-

tional orthogonality of the factors, the conditional variance-covariance ()

and correlation () matrices for the actual series may be estimated as

̂ = Λ̂̂Λ̂
0
 + Σ̂ (48)

̂ = ̂
∗−12
 ̂̂

∗−12
  (49)

where ̂ = 
n
̂1 ̂2  ̂

o
and ̂∗

 = 
n
̂1 ̂2  ̂ 

o
.

Relaxing the assumption of conditional orthogonality of the factors is also

feasible in the proposed framework, as the dynamic conditional covariances,

i.e., the off-diagonal elements in , can be obtained, after step ) above,

by means of the second step in the estimation of the Dynamic Conditional

Correlation model (DCC; Engle, 2002) or the Dynamic Equicorrelation model

(DECO; Engle and Kelly, 2012).

3.4 Asymptotic properties

The proposed iterative procedure for the system of equations in (1) bears

the interpretation of  estimation, using a Gaussian likelihood function,

performed by means of the  algorithm (Dempster et al., 1977). In the

-step, the unobserved factors are estimated, given the observed data and

the current estimate of model parameters, by means of ; in the -step

the likelihood function is maximized (OLS estimation of the () matrix

is performed) under the assumption that the unobserved factors are known,

21



conditioning on their -step estimate. Convergence to the one-step 

estimate is ensured, as the value of the likelihood function is increased at

each step (see Quah and Sargent, 1992; Watson and Engle, 1983). The latter

implementation of the  algorithm follows from considering the estimated

factors by PCA as they were actually observed. In fact, the -step would

also require the computation of the conditional expectation of the estimated

factors, which may be obtained by means of Kalman smoothing (Doz et

al., 2011, 2012). As shown by Bai and Ng (2006, 2008), however, when

the unobserved factors are estimated by means of PCA in the -step, the

generated regressors problem is not an issue for consistent estimation in the

-step, due to faster vanishing of the estimation error, provided
√
 → 0

for linear models, and  58 → 0 for (some classes of) non linear models,

i.e., the factors estimated by means of PCA can be considered as they where

actually observed, therefore not requiring a Kalman smoothing step.

Note also that the Expectation step of the  algorithm relies on consis-

tent estimation of the unobserved components. In this respect, under general

conditions, 
n√


√

o
consistency and asymptotic normality of PCA,

at each point in time, for the unobserved common components Λ, has

been established by Bai (2003, 2004) for  → ∞ and the case of (0)

and (1) unobserved components;14 this implies the consistent estimation

14In particular, under some general conditions, given any invertible matrix Ξ,
√
 con-

sistency and asymptotic normality of PCA for Ξ, at each point in time, is established

for  → ∞ and
√
 → 0 and the case of I(0) unobserved factors and idiosyncratic

components, the latter also displaying limited heteroskedasticity in both their time-series

and cross-sectional dimensions (Bai, 2003); for  → ∞ and  3 → 0 and the case

of I(1) (non cointegrated) unobserved factors and I(0) idiosyncratic components, similarly

showing limited heteroskedasticity in both the time-series and cross-sectional dimensions

(Bai, 2004). The latter result is actually obtained by applying PCA to the level of the

series, rather than their first differences. Moreover, for both the I(0) and I(1) case,
√


consistency and asymptotic normality of PCA for ΛΞ
−1 is established under the same

conditions, as well as 
n√


√

o
consistency and asymptotic normality of PCA for

the unobserved common components Λ, at each point in time, for  →∞.
The conditions for consistency and asymptotic normality reported in Bai (2003, 2004)

implicitly cover also the case in which PCA is implemented using the estimated break (̂)

and break-free (̂ ≡  − ̂) components, rather than the observed  series; in fact, by

assuming ̂ =  +  and ̂ =  + , then ̂ = Λ +  and ̂ = Λ + , which

are static factor structures as assumed in Bai (2003, 2004). It appears that assumption

E in Bai (2003, pag.143), i.e., weak dependence and limited cross-sectional correlation,

holding for both noise (estimation error) components  and , augmented with the

assumption of their contemporaneous orthogonality, i.e., [
0
] = 0, is then sufficient

for the validity of PCA also when implemented on noisy data. In this respect PCA acts

as noise suppressor: intuitively, PCs associated with the smallest eigenvalues are noise,

which should be neglected when estimating the common factors. PCA estimation of the
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of the gap vector  − Λ − Λ, at the same 
n√


√

o
rate, for

 → ∞, as well. Based on the results for (0) and (1) processes, the

same properties can be conjectured also for the intermediate cases of long

memory and (linear/nonlinear) trend stationarity; supporting Monte Carlo

evidence is actually provided by Morana (2007) and in this study.15

Moreover, likewise in the Maximization step of the  algorithm,
√


consistent and asymptotically normal estimation of the polynomial matrix

() is yield by OLS estimation of the VAR model for the (0) gap vector

 − Λ − Λ
16, which, according to the results in Bai and Ng (2006,

2008), can be taken as it were actually observed in the implementation of

the iterative estimation procedure.

Similarly,
√
 consistent and asymptotically normal estimation of the

block of equations in (2) is obtained by means of OLS estimation of the

conditional mean process first, holding the estimated latent factors as they

were observed, still relying on the results in Bai and Ng (2006, 2008) and

on a consistent estimate of the fractional differencing parameter if needed,

and then performing  estimation of the conditional variance-covariance

matrix.

4 Monte Carlo analysis

Consider the following data generation process (DGP) for the  × 1 vector
process 

 − Λ − Λ = (−1 − Λ−1 − Λ−1) +  (50)

 ∼ (0 2)

where  is a  ×  matrix of coefficients, Λ and Λ are  × 1 vectors
of loadings, and  and  are the common deterministic and long memory

factors, respectively, at time period , with

(1− )(1− ) =  (51)

Then, for the conditionally heteroskedastic case it is assumed

signal component can actually be shown optimal in terms of minimum mean square error

(see, for instance, Castells et al., 2007).
15The use of PCA for the estimation of common deterministic trends has previously

been advocated by Hatanaka and Yamada (2004). See also Langsang and Barrios for

applications to nonstationary data.
16Note that the gap vector  − Λ − Λ is (0), independently of the integration

order of the actual series .
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 =
p
  ∼ (0 1)

[1− − ](1− )
¡
2 − 2

¢
= [1− ]

¡
2 − 

¢
 (52)

while

 ∼ (0 1) (53)

for the conditionally homoskedastic case.

Different values for the autoregressive idiosyncratic parameter , common

across the  cross-sectional units ( = ), have been considered, i.e.,  =

{0 02 04 06 08}, as well as for the fractionally differencing parameter  =
{0 02 04 06 08 1} and the common factor autoregressive parameter ,
setting  = {02 04 06 08} for the non integrated case and  = {0 2} for
the fractionally integrated and integrated cases;    is always assumed in

the experiment. For the conditional variance equation it is assumed  = 005

and  = 090 for the short memory case, and  = 005,  = 030 and  = 045

for the long memory case. The inverse signal to noise ratio (−1) is given
by 22, taking values 

−1 = {4 2 1 05 025}. Finally, Λ and Λ are

set equal to unitary vectors.

Moreover, in addition to the structural stability case, i.e.,  =  = 0,

two designs with breaks have been considered for the component  i.e.,

i) the single step change in the intercept at the midpoint of the sample

case, i.e.,

 =

½
0  = 1  2

4  = 2 + 1  
;

ii) the two step changes equally spaced throughout the sample case, with

the intercept increasing at one third of the way through the sample and then

decreasing at a point two thirds of the length of the sample, i.e.,

 =

⎧⎨⎩ 0  = 1  3

4  = 3 + 1  23

2  = 23 + 1  



The sample size investigated is  = 100 500, and the number of cross-

sectional units is  = 30. For the no breaks case also other cross-sectional

sample sizes have been employed, i.e.,  = 5 10 15 50.

The number of replications has been set to 2,000 for each case.

The performance of the proposed multi-step procedure has then been as-

sessed with reference to the estimation of the unobserved common stochastic

and deterministic factors, and the  and  autoregressive parameters. Con-

cerning the estimation of the common factors, the Theil’s inequality coeffi-

cient () and the correlation coefficient () have been employed in the
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evaluation, i.e.,

 =

vuut 1



X
=1

( − ̂)
2
(

vuut 1



X
=1

2 +

vuut 1



X
=1

̂2 )

 = ( ̂)
p
 () (̂)

where  =   is the population unobserved component and ̂ its estimate.

The above statistics have been computed for each Monte Carlo replication

and then averaged.

In the Monte Carlo analysis, the location of the break points and the

value of the fractional differencing parameter are taken as known, in order

to focus on the assessment on the estimation procedure contributed by the

paper; the break process is then estimated by means of the OLS regression

approach of Bai and Perron (1998). The Monte Carlo evidence provided is

then comprehensive concerning the no-breaks (0) and (1) cases, as well

as for the no-break I() case, concerning the estimation of the common sto-

chastic factor. A relative assessment of the various methodologies which can

be employed for the decomposition into break and break-free components is

however of interest and left for further research.

4.1 Results

The results for the non integration case are reported in Figures 1-2 (and 5,

columns 1 and 3), while Figures 3-4 (and 5, columns 2 and 4) refer to the frac-

tionally integrated and integrated cases (the integrated case, independent of

the type of integration, thereafter). In all cases results refer to the estimated

parameters for the first equation in the model. Since the results are virtually

unaffected by the presence of conditional heteroskedasticity, for reasons of

space, only the heteroskedastic case is discussed. Moreover, only the results

for the  = 2 case are reported for the integrated case, as similar results

have been obtained for the  = 0 case.17

4.1.1 The structural stability case

As shown in Figure 5 (top plots 1-4), for a cross-sectional sample size  = 30

units, a negligible downward bias for the  parameter (on average across

(inverse) signal to noise ratio values) can be noted (-0.02 and -0.03, for the

non integrated and integrated case, respectively, and  = 100 (top plots 1-2);

17See the Appendix for detailed results.
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-0.01 and -0.006, respectively, and  = 500 (top plots 3-4)), decreasing as

the serial correlation spread, −  or − , or the sample size  increase.

Differently, as shown in Figures 1 and 3 (top plots 1 and 3), the downward

bias in  is increasing with the degree of persistence of the common factor

, the (inverse) signal to noise ratio −1, and the serial correlation spread,
−  or − , yet decreasing with the sample size  .

For the non integrated case (Figure 1, plots 1 and 3), there are only few

cases (−  = 04 06 08) when a 10%, or larger, bias in  is found, occurring

when the series are particularly noisy (−1 = 4); for the stationary long

memory case a 10% bias, or smaller, is found for −1 ≥ 2, while for the non
stationary long memory case for −1 ≥ 1 and a (relatively) large sample
( = 500) (Figure 3, plots 1 and 3). Increasing the cross-sectional dimension

 yields improvements (see the next section).

Also, as shown in Figures 2 and 4 (top plots 1-4), very satisfactory is the

estimation of the unobserved common stochastic factor, as the  statistic

is always below 0.2 (0.14 (0.10), on average, for  = 100 ( = 500) for the

non integrated case (Figure 2, top plots 2 and 4); 0.06 (0.03), on average,

for  = 100 ( = 500) for the integrated case (Figure 4, top plots 2 and

4)). Moreover, the correlation coefficient between the actual and estimated

common factors is always very high, 0.98 and 0.99, on average, respectively,

for both sample sizes (Figures 2 and 4, top plots 1 and 3).

Results for smaller and larger cross-sectional samples In Figures 1-2

and 3-4 (center plots, i.e., rows 2 and 3) the bias for the  parameter and the

correlation coefficient between the actual and estimated common factors are

also plotted for different cross-sectional dimensions, i.e.,  = 5 10 15 50,

for the non integrated and integrated cases, respectively; statistics for the

 parameter are not reported, as the latter is always unbiasedly estimated,

independently of the cross-sectional dimension.

As is shown in the plots, the performance of the estimator crucially de-

pends on  ,  , and −1.
For the non integrated case (Figure 1), when the (inverse) signal to noise

ratio is low, i.e., −1 ≤ 05, the downward bias is already mitigated by

using a cross-sectional sample size as small as  = 5, for  = 100; as 

increases, similar results are obtained for higher −1, i.e.,  = 10 15 and

−1 ≤ 1, or  = 50 and −1 ≤ 4 (center plots, column 1-2). For a larger
sample size, i.e.,  = 500 (center plots, column 3-4), similar conclusions hold,

albeit for the  = 5 the (inverse) signal to noise ratio can be higher, i.e.,

−1 ≤ 1; similarly for  = 10 15 with −1 ≤ 2.
For the integrated case (Figure 3) conditions are slightly more restrictive;
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in particular, for the stationary long memory case, when the (inverse) signal

to noise ratio is low, i.e., −1 ≤ 05, the downward bias is already mitigated
by setting  = 5 and  = 100; similar results are obtained for higher −1

and  , i.e.,  = 10 15 and −1 ≤ 1 2, or  = 50 and −1 ≤ 4

(center plots, column 1-2). Similar conclusions can be drawn for  = 500

(center plots, column 3-4), albeit, holding  constant, accurate estimation

is obtained also for higher −1. Similarly also for the non stationary case
(long memory or I(1)); yet, holding  constant, either larger  or lower

−1, would be required for accurate estimation.
Coherently, the correlation coefficients between the actual and estimated

common factors (Figures 2 and 4, center plots), point to satisfactory esti-

mation (a correlation coefficient higher than 0.9) also in the case of a small

temporal sample size, provided the (inverse) signal to noise ratio is not too

high, and/or the cross-sectional dimension is not too low (−1 ≤ 1 and

 = 5; −1 ≤ 2 and  = 10; −1 ≤ 4 and  = 15).

4.1.2 The structural change case

While concerning the estimation of the  parameter no sizable differences

can be found for the designs with structural change, relatively to the case

of structural stability18, the complexity of the break process may on the

other hand affect estimation accuracy for the  parameter, worsening as the

number of break points increases, particularly when the temporal sample size

is small ( = 100).

Yet, for the no integration case (Figure 1, bottom plots) already for  =

500 the performance is very satisfactory for both designs, independently of

the (inverse) signal to noise ratio −1 (bottom plots, columns 3 and 4);

differently, for  = 100 the performance is satisfactory (at most a 10% bias)

only when the series are not too noisy (−1 ≤ 1) (bottom plots, columns 1
and 2). Also, similar to the structural stability case, the (downward) bias in

the  parameter is increasing with the degree of persistence of the common

factor , the (inverse) signal to noise ratio −1, and −  or − , yet

decreasing with the sample size  .

Coherent with the above results, satisfactory estimation of the unobserved

common stochastic factor (Figure 2, bottom plots) and break process can

also be noted (Figure 5, bottom plots, columns 1 and 3); for the common

stochastic factor, the  statistic (not reported) is in fact always below 0.2

18The average bias is -0.04 and -0.01, independent of the break process design and

integration properties, when  = 100 and  = 500, respectively. Moreover, similar to the

structural stability case the bias is decreasing as − , − , or the sample size  increase,

independent of the (inverse) signal to noise ratio.
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for  = 500 (0.11 and 0.13, on average, for the single break point and two-

break points case, respectively) and below 0.3 for  = 100 (0.17 and 0.20,

on average; column 1), while the actual and estimated common stochastic

factors are strongly correlated: for  = 100 ( = 500), on average, the

correlation coefficient is 0.96 (0.98) for the single break point case and 0.93

(0.97) for the two-break points case (column 3).

Very accurate is also the estimation of the common break process: the

 statistic is never larger than 0.15 for  = 100 and 0.075 for  = 500

(Figure 5, bottom plots, columns 1 and 3), while the correlation coefficient

is virtually 1 for the single break case and never below 0.96 for  = 100 and

0.99 for  = 500 for the two-break points case (not reported). Given the

assumption of known break points, the performance in terms of correlation

coefficient is not surprising; yet, the very small Theil’s index is indicative

of the ability of the modeling approach to recover the changing level of the

unobserved common break process.

Concerning the integrated case, some differences relatively to the non

integrated case can be noted; as shown in Figure 5 (bottom plots, columns 2

and 4), albeit the overall recovery of the common break process is always very

satisfactory across the various designs, independently of the sample size (the

 statistic is never larger than 0.14; bottom plots), performance slightly

worsens as the complexity of the break process and persistence intensity ()

increase: the average correlation coefficient between the estimated and actual

break processes (center plots) falls from 1 when  = 02 (single break point

case) to 0.93 when  = 1 (two-break points case).

Moreover, concerning the estimation of the common stochastic factor

(Figure 4, center and bottom plots, columns 1-4), for the covariance sta-

tionary case (  05) results are very close to the non integrated case, i.e.,

an  statistic (not reported) always below 0.2 for  = 500 (0.12 and 0.14, on

average, for the single break point and two-break points case, respectively)

and below 0.3 for  = 100 (0.21 and 0.24, on average, respectively); the

correlation coefficient is also very high: 0.94 and 0.91, on average,  = 100

(columns 1 and 2); 0.97 and 0.96, on average,  = 500 (columns 3 and 4).

Differently, for the non stationary case performance is worse, showing av-

erage  statistics (not reported) of 0.32 (0.32) and 0.42 (0.44), respectively,

for the single break point (center plots) and two-break points (bottom plots)

case and  = 100 ( = 500); the average correlation coefficient is 0.79 (0.78)

and 0.68 (0.66), respectively. Coherently, a worsening in the estimation of

the common factor autoregressive parameter , for the  = 08 and  = 1

case, can be noted (Figure 3, center and bottom plots), while comparable

results to the short memory case can be found for   05. The latter find-

ings are however not surprising, as the stronger the degree of persistence
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of the stochastic component (and of the series, therefore) and the less ac-

curate the disentangling of the common break and break-free parts can be

expected; overall, the Monte Carlo results point to accurate decompositions

also for the case of moderate nonstationary long memory, albeit deterioration

in performance becomes noticeable.

5 Conclusions

In the paper a general strategy for large-scale modeling of macroeconomic

and financial data, set within the factor vector autoregressive model (F-

VAR) framework, is introduced. The proposed approach shows minimal

pretesting requirements, performing well independently of integration prop-

erties of the data and sources of persistence, i.e., deterministic or stochas-

tic, accounting for common features of different kinds, i.e., common inte-

grated (of the fractional or integer type) or non integrated stochastic factors,

also heteroskedastic, and common deterministic break processes. Consistent

and asymptotically normal estimation is performed by means of , im-

plemented through an iterative multi-step algorithm. Monte Carlo results

strongly support the proposed approach. Empirical implementations can be

found in Morana (2013, 2014), Cassola and Morana (2012) and Bagliano and

Morana (2014), showing the approach being easy to implement and effective

also in the case of very large systems of dynamic equations.
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Figure 1: In the figure, Monte Carlo bias and RMSE statistics for the autoregressive parameter (φ) are plotted for the case of no breaks (top and center plots) and one (break 1) and two (break 2) breaks (bottom plots), and a conditionally 
heteroskedastic common I(0) factor. Results are reported for various values of the persistence spread φ‐ρ (0.2, 0.4, 0.6, 0.8) against various values of the (inverse) signal to noise ratio (s/n)‐1 (4, 2, 1, 05, 0.25). The sample size T is 100 
and 500 observations, the number of cross‐sectional units N is 30, and the number of replications for each case is 2,000. For the no breaks case, Monte Carlo bias statistics are also reported for other sample sizes N (5, 10, 15, 50) 
(center plots).  
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Figure 2: In the figure, Monte Carlo Carlo Theil’s index (IC) and correlation coefficient (Corr) statistics, concerning the estimation of the conditionally heteroskedastic common I(0) factor, are plotted for the case of no breaks (top and 
center plots) and one (break 1) and two (break 2) breaks (bottom plots). Results are reported for various values of the persistence spread φ‐ρ (0.2, 0.4, 0.6, 0.8) against various values of the (inverse) signal to noise ratio (s/n)‐1 (4, 2, 
1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross‐sectional units N is 30, and the number of replications for each case is 2,000. For the no breaks case, Monte Carlo correlation coefficient statistics are 
also reported for other sample sizes N (5, 10, 15, 50) (center plots). 

0.8 
0.4 

0.6 
0.2 

0.5 1 1.5 2 2.5 3 3.5 4

0.96

0.98

1.00
Corr (N=30)

T=100

T=100

T=500

T=500

T=500

T=100 T=500

- 0.8 
0.4 

0.6 
0.2 

0.8 
0.4 

0.6 
0.2 

0.5 1 1.5 2 2.5 3 3.5 4

0.150

0.175

0.200
IC (N=30)

(s/n)1

- 0.8 
0.4 

0.6 
0.2 

0.8 
0.4 

0.6 
0.2 

0.5 1 1.5 2 2.5 3 3.5 4

0.97

0.98

0.99

1.00
Corr (N=30)

- 0.8 
0.4 

0.6 
0.2 

0.8 
0.4 

0.6 
0.2 

0.5 1 1.5 2 2.5 3 3.5 4

0.075

0.100

0.125

0.150
IC (N=30)

(s/n)1

- 0.8 
0.4 

0.6 
0.2 

N=5 
N=15 

N=10 
N=50 

0.5 1 1.5 2 2.5 3 3.5 4

0.90

0.95

1.00
Corr: =0.8

(s/n)1

N=5 
N=15 

N=10 
N=50 

N=5 
N=15 

N=10 
N=50 

0.5 1 1.5 2 2.5 3 3.5 4

0.90

0.95

1.00
Corr: =0.6

N=5 
N=15 

N=10 
N=50 

N=5 
N=15 

N=10 
N=50 

0.5 1 1.5 2 2.5 3 3.5 4

0.90

0.95

1.00
Corr: =0.8

(s/n)1

(s/n)1

N=5 
N=15 

N=10 
N=50 

N=5 
N=15 

N=10 
N=50 

0.5 1 1.5 2 2.5 3 3.5 4

0.90

0.95

1.00
Corr: =0.6

(s/n)1

N=5 
N=15 

N=10 
N=50 

N=5 
N=15 

N=10 
N=50 

0.5 1 1.5 2 2.5 3 3.5 4

0.85

0.90

0.95

1.00
Corr: =0.4 T=100

(s/n)1

(s/n)1

N=5 
N=15 

N=10 
N=50 

N=5 
N=15 

N=10 
N=50 

0.5 1 1.5 2 2.5 3 3.5 4

0.9

1.0
Corr: =0.2

(s/n)1

(s/n)1

N=5 
N=15 

N=10 
N=50 

N=5 
N=15 

N=10 
N=50 

0.5 1 1.5 2 2.5 3 3.5 4

0.90

0.95

1.00
Cor: =0.4

(s/n)1

N=5 
N=15 

N=10 
N=50 

N=5 
N=15 

N=10 
N=50 

0.5 1 1.5 2 2.5 3 3.5 4

0.85

0.90

0.95

1.00
Corr: =0.2

(s/n)1

N=5 
N=15 

N=10 
N=50 

0.8 
0.4 

0.6 
0.2 

0.5 1 1.5 2 2.5 3 3.5 4

0.93

0.95

Corr (N=30; break 1)

(s/n)1

- 0.8 
0.4 

0.6 
0.2 

0.8 
0.4 

0.6 
0.2 

0.5 1 1.5 2 2.5 3 3.5 4

0.88

0.90

0.92
Corr (N=30; break 2)

(s/n)1

- 0.8 
0.4 

0.6 
0.2 

0.8 
0.4 

0.6 
0.2 

0.5 1 1.5 2 2.5 3 3.5 4

0.96

0.97

0.98

0.99
Corr (N=30; break 1)

(s/n)1

- 0.8 
0.4 

0.6 
0.2 

0.8 
0.4 

0.6 
0.2 

0.5 1 1.5 2 2.5 3 3.5 4

0.95

0.96

0.97

0.98
Corr (N=30; break 2)

(s/n)1

- 0.8 
0.4 

0.6 
0.2 



 

Figure 3:  In the figure, Monte Carlo bias statistics for the autoregressive parameter (φ) are plotted for the case of no breaks (top and center plots) and one (break 1) and two (break 2) breaks (center and bottom plots), and a 
conditionally heteroskedastic common I(d) factor ( 0 1d  ). Results are reported for various values of the persistence spread d‐ρ (0.2, 0.4, 0.6, 0.8, 1) against various values of the (inverse) signal to noise ratio (s/n)‐1 (4, 2, 1, 05, 
0.25). The sample size T is 100 and 500 observations, the number of cross‐sectional units N is 30, and the number of replications for each case is 2,000. For the no breaks case, Monte Carlo bias statistics are also reported for other 
sample sizes N (5, 10, 15, 50) (center plots).  
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Figure 4: In the figure Monte Carlo Carlo correlation coefficient (Corr) statistics, concerning the estimation of the conditionally heteroskedastic common I(d) factor ( 0 1d  ), are plotted for the case of no breaks (top and center 
plots) and one (break 1) and two (break 2) breaks (bottom plots). Results are reported for various values of the persistence spread d‐ρ (0.2, 0.4, 0.6, 0.8, 1) against various values of the (inverse) signal to noise ratio (s/n)‐1 (4, 2, 1, 05, 
0.25). The sample size T is 100 and 500 observations, the number of cross‐sectional units N is 30, and the number of replications for each case is 2,000. For the no breaks case, Monte Carlo correlation coefficient statistics are also 
reported for other sample sizes N (5, 10, 15, 50) (center plots). 
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Figure 5: In the figure, average Monte Carlo statistics (across values for the inverse signal to noise ratio) for the bias in the autoregressive idiosyncratic parameter (ρ) (top plots) and Theil’s index (IC) statistic for the common break 
process (bottom plots) are plotted for the non integrated (I(0)) and integrated (I(d),  0 1d  ) cases. Results are reported for various values of the persistence spreads φ‐ρ (0.2, 0.4, 0.6, 0.8) and d‐ρ (0.2, 0.4, 0.6, 0.8, 1). The sample 
size T is 100 and 500 observations, the number of cross‐sectional units N is 30, and the number of replications for each case is 2,000.  
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Appendix: Monte Carlo results. 
 
               Table 1: No structural break, heteroskedastic case, N=30: bias and RMSE of parameters 

N=30 
autoregressive common factor parameter ϕ 

bias 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.037 -0.063 -0.035 -0.078 -0.060 -0.037 -0.075 -0.064 -0.054 -0.038 
2 -0.028 -0.044 -0.030 -0.055 -0.047 -0.038 -0.055 -0.050 -0.047 -0.039 
1 -0.021 -0.033 -0.027 -0.044 -0.040 -0.036 -0.045 -0.042 -0.041 -0.039 

0.5 -0.019 -0.027 -0.025 -0.037 -0.035 -0.034 -0.039 -0.039 -0.037 -0.037 
0.25 -0.017 -0.025 -0.023 -0.033 -0.032 -0.032 -0.036 -0.036 -0.036 -0.036 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.116 0.133 0.106 0.144 0.123 0.099 0.132 0.118 0.104 0.083 
2 0.110 0.115 0.105 0.119 0.110 0.102 0.107 0.101 0.097 0.088 
1 0.108 0.107 0.103 0.108 0.103 0.100 0.096 0.093 0.091 0.088 

0.5 0.107 0.103 0.102 0.102 0.100 0.099 0.090 0.089 0.088 0.087 
0.25 0.107 0.102 0.101 0.099 0.098 0.098 0.087 0.086 0.086 0.086 

autoregressive parameter ρ 
bias 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.010 -0.011 -0.021 -0.017 -0.024 -0.034 -0.018 -0.026 -0.033 -0.040 
2 -0.012 -0.014 -0.020 -0.014 -0.022 -0.034 -0.019 -0.025 -0.036 -0.046 
1 -0.010 -0.016 -0.025 -0.016 -0.026 -0.034 -0.021 -0.028 -0.040 -0.042 

0.5 -0.011 -0.013 -0.022 -0.017 -0.024 -0.035 -0.016 -0.026 -0.036 -0.044 
0.25 -0.012 -0.019 -0.022 -0.018 -0.023 -0.031 -0.018 -0.021 -0.035 -0.047 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.098 0.100 0.105 0.101 0.105 0.107 0.103 0.106 0.103 0.102 
2 0.103 0.100 0.103 0.098 0.107 0.106 0.103 0.105 0.108 0.109 
1 0.101 0.105 0.107 0.104 0.107 0.107 0.105 0.104 0.107 0.104 

0.5 0.102 0.101 0.103 0.104 0.104 0.107 0.102 0.104 0.107 0.105 
0.25 0.100 0.102 0.104 0.102 0.104 0.106 0.100 0.104 0.106 0.110 

autoregressive common factor parameter ϕ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.027 -0.045 -0.024 -0.054 -0.038 -0.023 -0.044 -0.036 -0.028 -0.020 
2 -0.016 -0.026 -0.015 -0.031 -0.023 -0.015 -0.026 -0.022 -0.018 -0.014 
1 -0.010 -0.016 -0.010 -0.019 -0.015 -0.011 -0.017 -0.014 -0.013 -0.011 

0.5 -0.006 -0.010 -0.007 -0.012 -0.011 -0.009 -0.012 -0.011 -0.010 -0.009 
0.25 -0.005 -0.007 -0.006 -0.009 -0.009 -0.008 -0.009 -0.009 -0.008 -0.008 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.059 0.078 0.056 0.086 0.066 0.050 0.071 0.060 0.051 0.041 
2 0.050 0.058 0.049 0.058 0.050 0.044 0.049 0.044 0.040 0.036 
1 0.047 0.049 0.046 0.046 0.043 0.040 0.039 0.037 0.035 0.034 

0.5 0.047 0.046 0.045 0.042 0.040 0.039 0.034 0.034 0.033 0.033 
0.25 0.046 0.045 0.044 0.040 0.039 0.039 0.033 0.032 0.032 0.032 

autoregressive parameter ρ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.002 -0.002 -0.005 -0.005 -0.004 -0.007 -0.002 -0.004 -0.007 -0.011 
2 0.000 -0.002 -0.005 -0.002 -0.005 -0.007 -0.001 -0.005 -0.006 -0.011 
1 -0.002 -0.004 -0.004 -0.004 -0.006 -0.008 -0.005 -0.005 -0.008 -0.009 

0.5 -0.003 -0.002 -0.002 -0.003 -0.006 -0.009 -0.004 -0.006 -0.007 -0.009 
0.25 -0.002 -0.002 -0.003 -0.006 -0.006 -0.005 -0.005 -0.004 -0.007 -0.010 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.045 0.046 0.045 0.046 0.044 0.042 0.045 0.046 0.042 0.039 
2 0.045 0.044 0.044 0.045 0.044 0.041 0.045 0.044 0.042 0.040 
1 0.045 0.045 0.043 0.045 0.045 0.043 0.044 0.043 0.043 0.038 

0.5 0.045 0.045 0.045 0.044 0.045 0.044 0.045 0.045 0.042 0.039 
0.25 0.045 0.045 0.044 0.045 0.045 0.041 0.044 0.046 0.043 0.040 

 
The Table reports Monte Carlo bias and RMSE statistics concerning the estimation of the common factor (ϕ) and idiosyncratic (ρ) autoregressive parameters. Results are reported for various 
values of the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of 
the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case 
is 2,000. The experiment refers to the case of unobserved autoregressive factor and no breaks. 



Table 2: No structural break, heteroskedastic case, N=30: Monte Carlo Theil and correlation statistics 
N=30 

autoregressive common factor 
Theil index 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.187 0.183 0.185 0.174 0.176 0.185 0.175 0.177 0.182 0.195 
2 0.140 0.140 0.142 0.139 0.141 0.146 0.153 0.154 0.158 0.165 
1 0.108 0.111 0.112 0.116 0.117 0.121 0.140 0.141 0.143 0.147 

0.5 0.086 0.092 0.093 0.102 0.102 0.105 0.132 0.132 0.133 0.136 
0.25 0.072 0.081 0.081 0.093 0.093 0.095 0.127 0.127 0.128 0.130 

correlation coefficient  
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.938 0.944 0.943 0.956 0.955 0.949 0.973 0.972 0.968 0.959 
2 0.968 0.972 0.971 0.978 0.977 0.974 0.986 0.986 0.984 0.979 
1 0.984 0.986 0.985 0.989 0.988 0.987 0.993 0.993 0.992 0.990 

0.5 0.992 0.993 0.993 0.994 0.994 0.993 0.997 0.996 0.996 0.995 
0.25 0.996 0.996 0.996 0.997 0.997 0.997 0.998 0.998 0.998 0.997 

Theil index 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.176 0.167 0.170 0.150 0.152 0.162 0.126 0.128 0.135 0.150 
2 0.127 0.121 0.124 0.111 0.113 0.119 0.099 0.100 0.105 0.115 
1 0.093 0.089 0.091 0.084 0.085 0.090 0.081 0.082 0.085 0.092 

0.5 0.068 0.067 0.068 0.066 0.067 0.070 0.070 0.071 0.073 0.077 
0.25 0.052 0.052 0.053 0.054 0.054 0.056 0.063 0.064 0.065 0.067 

correlation coefficient  
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.941 0.948 0.946 0.959 0.958 0.952 0.976 0.975 0.972 0.964 
2 0.969 0.973 0.972 0.979 0.978 0.975 0.988 0.987 0.986 0.981 
1 0.984 0.986 0.986 0.989 0.989 0.988 0.994 0.994 0.993 0.991 

0.5 0.992 0.993 0.993 0.995 0.994 0.994 0.997 0.997 0.996 0.995 
0.25 0.996 0.997 0.996 0.997 0.997 0.997 0.999 0.998 0.998 0.998 

 
 

The Table reports Monte Carlo Theil index and correlation coefficient statistics concerning the estimation of the unobserved common factor component. Results are reported for various values of 
the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of the 
(inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 
2,000. The experiment refers to the case of unobserved autoregressive factor and no breaks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 



                 Table 3: Single break point, heteroskedastic case, N=30: bias and RMSE of parameters 
N=30 

autoregressive common factor parameter ϕ 
Bias 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.050 -0.078 -0.051 -0.099 -0.078 -0.057 -0.101 -0.091 -0.079 -0.062 
2 -0.038 -0.058 -0.045 -0.076 -0.066 -0.057 -0.080 -0.076 -0.071 -0.064 
1 -0.031 -0.047 -0.042 -0.062 -0.060 -0.055 -0.070 -0.068 -0.066 -0.064 

0.5 -0.028 -0.042 -0.039 -0.056 -0.054 -0.053 -0.064 -0.064 -0.063 -0.062 
0.25 -0.027 -0.039 -0.038 -0.053 -0.052 -0.052 -0.062 -0.061 -0.061 -0.061 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.125 0.151 0.123 0.170 0.143 0.119 0.166 0.151 0.135 0.111 
2 0.118 0.130 0.118 0.142 0.130 0.120 0.138 0.132 0.125 0.116 
1 0.113 0.120 0.117 0.127 0.124 0.120 0.125 0.122 0.119 0.117 

0.5 0.111 0.116 0.115 0.121 0.119 0.118 0.118 0.117 0.116 0.115 
0.25 0.111 0.115 0.114 0.117 0.117 0.116 0.114 0.115 0.114 0.114 

autoregressive parameter ρ 
bias 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.021 -0.023 -0.036 -0.027 -0.035 -0.048 -0.031 -0.040 -0.050 -0.064 
2 -0.021 -0.029 -0.033 -0.026 -0.038 -0.049 -0.034 -0.041 -0.051 -0.062 
1 -0.023 -0.023 -0.038 -0.028 -0.031 -0.048 -0.022 -0.035 -0.051 -0.065 

0.5 -0.025 -0.025 -0.034 -0.028 -0.038 -0.049 -0.034 -0.035 -0.049 -0.063 
0.25 -0.020 -0.026 -0.035 -0.027 -0.033 -0.051 -0.027 -0.035 -0.048 -0.063 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.104 0.108 0.112 0.106 0.110 0.117 0.110 0.115 0.121 0.126 
2 0.106 0.108 0.109 0.106 0.113 0.117 0.110 0.114 0.120 0.126 
1 0.103 0.106 0.112 0.107 0.107 0.118 0.106 0.113 0.120 0.129 

0.5 0.105 0.108 0.111 0.106 0.111 0.118 0.111 0.111 0.116 0.126 
0.25 0.106 0.105 0.112 0.108 0.111 0.121 0.108 0.111 0.118 0.126 

autoregressive common factor parameter ϕ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.028 -0.048 -0.027 -0.057 -0.042 -0.026 -0.049 -0.040 -0.033 -0.024 
2 -0.018 -0.029 -0.019 -0.034 -0.027 -0.019 -0.030 -0.026 -0.022 -0.018 
1 -0.012 -0.018 -0.013 -0.022 -0.019 -0.015 -0.021 -0.018 -0.017 -0.015 

0.5 -0.009 -0.013 -0.011 -0.016 -0.014 -0.012 -0.016 -0.015 -0.014 -0.013 
0.25 -0.007 -0.010 -0.009 -0.013 -0.012 -0.011 -0.013 -0.013 -0.013 -0.012 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.060 0.081 0.059 0.091 0.072 0.054 0.076 0.065 0.055 0.044 
2 0.053 0.060 0.052 0.063 0.055 0.047 0.053 0.048 0.043 0.038 
1 0.049 0.051 0.048 0.051 0.047 0.044 0.042 0.039 0.038 0.036 

0.5 0.048 0.048 0.046 0.045 0.044 0.043 0.037 0.036 0.035 0.034 
0.25 0.047 0.046 0.046 0.043 0.042 0.042 0.034 0.034 0.034 0.033 

autoregressive parameter ρ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.002 -0.005 -0.006 -0.004 -0.007 -0.010 -0.005 -0.010 -0.010 -0.013 
2 -0.003 -0.003 -0.009 -0.005 -0.008 -0.009 -0.006 -0.010 -0.008 -0.013 
1 -0.004 -0.005 -0.005 -0.006 -0.008 -0.007 -0.007 -0.008 -0.010 -0.011 

0.5 -0.006 -0.005 -0.007 -0.005 -0.008 -0.011 -0.007 -0.007 -0.009 -0.011 
0.25 -0.004 -0.006 -0.005 -0.006 -0.007 -0.009 -0.006 -0.006 -0.009 -0.012 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.044 0.046 0.045 0.045 0.045 0.044 0.044 0.046 0.044 0.041 
2 0.045 0.044 0.045 0.045 0.045 0.043 0.045 0.046 0.043 0.042 
1 0.045 0.045 0.045 0.046 0.045 0.042 0.046 0.046 0.043 0.039 

0.5 0.046 0.043 0.046 0.045 0.046 0.044 0.046 0.044 0.043 0.041 
0.25 0.044 0.045 0.044 0.045 0.044 0.043 0.045 0.045 0.044 0.040 

 
The Table reports Monte Carlo bias and RMSE statistics concerning the estimation of the common factor (ϕ) and idiosyncratic (ρ) autoregressive parameter. Results are reported for various values 
of the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of the 
(inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 
2,000. The experiment refers to the case of unobserved autoregressive factor and known single break point. 
 
 
 



                 Table 4: Two break points, heteroskedastic case,  N=30: bias and RMSE of parameters 
N=30 

autoregressive common factor parameter ϕ 
bias 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 

4 -0.065 -0.096 -0.068 -0.115 -0.094 -0.070 -0.128 -0.116 -0.102 -0.082 
2 -0.054 -0.076 -0.064 -0.092 -0.081 -0.072 -0.106 -0.100 -0.095 -0.088 
1 -0.048 -0.066 -0.061 -0.078 -0.075 -0.071 -0.094 -0.092 -0.090 -0.087 

0.5 -0.046 -0.061 -0.059 -0.072 -0.070 -0.069 -0.089 -0.088 -0.087 -0.087 
0.25 -0.044 -0.058 -0.057 -0.069 -0.068 -0.068 -0.086 -0.085 -0.085 -0.085 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 

4 0.138 0.168 0.137 0.191 0.162 0.133 0.201 0.184 0.163 0.136 
2 0.127 0.146 0.132 0.161 0.148 0.136 0.171 0.162 0.155 0.145 
1 0.122 0.135 0.130 0.145 0.141 0.136 0.154 0.152 0.149 0.144 

0.5 0.121 0.131 0.128 0.138 0.136 0.134 0.147 0.146 0.145 0.145 
0.25 0.119 0.127 0.127 0.134 0.133 0.133 0.143 0.143 0.142 0.142 

autoregressive parameter ρ 
bias 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 

4 -0.020 -0.024 -0.032 -0.026 -0.035 -0.049 -0.029 -0.038 -0.050 -0.062 
2 -0.021 -0.025 -0.035 -0.027 -0.036 -0.047 -0.027 -0.037 -0.051 -0.062 
1 -0.020 -0.022 -0.038 -0.024 -0.037 -0.051 -0.028 -0.039 -0.048 -0.064 

0.5 -0.021 -0.020 -0.033 -0.027 -0.039 -0.048 -0.030 -0.037 -0.053 -0.059 
0.25 -0.020 -0.022 -0.035 -0.026 -0.037 -0.048 -0.025 -0.042 -0.052 -0.061 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 

4 0.105 0.105 0.107 0.107 0.110 0.116 0.107 0.113 0.119 0.124 
2 0.104 0.105 0.109 0.107 0.113 0.116 0.105 0.114 0.119 0.124 
1 0.104 0.103 0.114 0.107 0.115 0.118 0.110 0.114 0.118 0.127 

0.5 0.103 0.105 0.111 0.108 0.115 0.117 0.108 0.113 0.121 0.122 
0.25 0.103 0.105 0.111 0.107 0.111 0.117 0.105 0.114 0.122 0.122 

autoregressive common factor parameter ϕ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.032 -0.052 -0.030 -0.064 -0.048 -0.032 -0.054 -0.045 -0.038 -0.028 
2 -0.022 -0.032 -0.022 -0.041 -0.033 -0.025 -0.036 -0.031 -0.027 -0.023 
1 -0.016 -0.022 -0.017 -0.029 -0.025 -0.021 -0.026 -0.024 -0.022 -0.020 

0.5 -0.014 -0.017 -0.014 -0.023 -0.021 -0.019 -0.021 -0.020 -0.019 -0.018 
0.25 -0.012 -0.014 -0.013 -0.019 -0.019 -0.018 -0.019 -0.018 -0.018 -0.017 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.065 0.086 0.061 0.100 0.079 0.060 0.084 0.072 0.063 0.050 
2 0.057 0.063 0.053 0.071 0.061 0.052 0.060 0.054 0.050 0.044 
1 0.052 0.053 0.050 0.057 0.053 0.049 0.048 0.046 0.044 0.041 

0.5 0.050 0.049 0.047 0.051 0.049 0.047 0.043 0.041 0.041 0.039 
0.25 0.050 0.047 0.047 0.048 0.047 0.046 0.040 0.039 0.039 0.038 

autoregressive parameter ρ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.006 -0.004 -0.007 -0.005 -0.007 -0.009 -0.005 -0.009 -0.010 -0.012 
2 -0.003 -0.005 -0.006 -0.004 -0.008 -0.009 -0.005 -0.008 -0.008 -0.012 
1 -0.004 -0.006 -0.008 -0.006 -0.007 -0.009 -0.009 -0.009 -0.011 -0.011 

0.5 -0.006 -0.003 -0.007 -0.005 -0.007 -0.011 -0.006 -0.007 -0.011 -0.013 
0.25 -0.005 -0.004 -0.007 -0.006 -0.008 -0.011 -0.006 -0.008 -0.010 -0.011 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.046 0.046 0.043 0.044 0.046 0.044 0.046 0.044 0.044 0.040 
2 0.044 0.045 0.045 0.046 0.045 0.043 0.046 0.046 0.042 0.042 
1 0.045 0.045 0.045 0.047 0.045 0.043 0.047 0.044 0.044 0.039 

0.5 0.046 0.044 0.046 0.045 0.045 0.044 0.046 0.045 0.044 0.041 
0.25 0.046 0.045 0.045 0.046 0.045 0.044 0.045 0.046 0.043 0.040 

 
The Table reports Monte Carlo bias and RMSE statistics concerning the estimation of the common factor (ϕ) and idiosyncratic (ρ) autoregressive parameter. Results are reported for various values 
of the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of the 
(inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 
2,000. The experiment refers to the case of unobserved autoregressive factor and known break points. 

 
 
 



Table 5: Single and multiple break points, heteroskedastic case, N=30: Monte Carlo Theil and correlation statistics 
N=30 

common autoregressive factor 
1-break point case 

Theil index 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.195 0.195 0.197 0.199 0.201 0.208 0.224 0.225 0.229 0.239 
2 0.151 0.156 0.157 0.169 0.170 0.174 0.208 0.208 0.211 0.216 
1 0.122 0.131 0.132 0.151 0.151 0.154 0.198 0.199 0.200 0.203 

0.5 0.103 0.115 0.116 0.140 0.140 0.142 0.193 0.193 0.194 0.195 
0.25 0.092 0.106 0.107 0.134 0.134 0.135 0.190 0.190 0.190 0.191 

correlation coefficient  
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.932 0.934 0.933 0.936 0.935 0.929 0.932 0.931 0.928 0.919 
2 0.961 0.961 0.960 0.957 0.957 0.954 0.945 0.945 0.943 0.939 
1 0.977 0.975 0.974 0.968 0.968 0.967 0.952 0.952 0.951 0.949 

0.5 0.984 0.982 0.982 0.974 0.974 0.973 0.956 0.956 0.956 0.954 
0.25 0.988 0.985 0.985 0.977 0.977 0.977 0.958 0.958 0.958 0.957 

Theil index 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.178 0.170 0.173 0.157 0.160 0.168 0.141 0.142 0.148 0.162 
2 0.130 0.126 0.128 0.120 0.122 0.128 0.117 0.118 0.122 0.131 
1 0.097 0.096 0.097 0.095 0.097 0.100 0.102 0.103 0.105 0.111 

0.5 0.074 0.075 0.076 0.080 0.080 0.083 0.093 0.094 0.095 0.098 
0.25 0.058 0.062 0.062 0.070 0.070 0.072 0.088 0.089 0.089 0.091 

correlation coefficient  
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.940 0.945 0.944 0.955 0.953 0.948 0.968 0.967 0.963 0.956 
2 0.968 0.971 0.969 0.975 0.974 0.971 0.980 0.979 0.977 0.973 
1 0.983 0.984 0.983 0.985 0.985 0.983 0.986 0.985 0.984 0.982 

0.5 0.991 0.991 0.990 0.991 0.990 0.990 0.989 0.989 0.988 0.987 
0.25 0.994 0.994 0.994 0.993 0.993 0.993 0.990 0.990 0.990 0.989 

2-break point case 
Theil index 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.204 0.209 0.211 0.221 0.223 0.229 0.267 0.268 0.270 0.278 
2 0.162 0.173 0.174 0.195 0.196 0.199 0.254 0.254 0.256 0.260 
1 0.136 0.151 0.152 0.180 0.180 0.182 0.246 0.246 0.247 0.249 

0.5 0.119 0.138 0.139 0.171 0.171 0.172 0.242 0.242 0.243 0.244 
0.25 0.110 0.131 0.131 0.166 0.166 0.167 0.240 0.240 0.241 0.241 

correlation coefficient  
T =100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.923 0.922 0.920 0.916 0.915 0.909 0.890 0.889 0.886 0.877 
2 0.953 0.949 0.948 0.938 0.937 0.935 0.904 0.904 0.902 0.898 
1 0.968 0.963 0.962 0.949 0.948 0.947 0.911 0.911 0.910 0.908 

0.5 0.976 0.970 0.970 0.954 0.954 0.954 0.915 0.915 0.914 0.913 
0.25 0.980 0.974 0.973 0.957 0.957 0.957 0.917 0.917 0.917 0.916 

Theil index 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.185 0.178 0.180 0.166 0.168 0.176 0.157 0.158 0.164 0.176 
2 0.139 0.136 0.138 0.132 0.133 0.139 0.136 0.137 0.140 0.148 
1 0.109 0.109 0.110 0.110 0.111 0.114 0.124 0.124 0.126 0.131 

0.5 0.089 0.092 0.093 0.097 0.097 0.099 0.117 0.117 0.118 0.121 
0.25 0.077 0.082 0.082 0.089 0.090 0.091 0.113 0.114 0.114 0.115 

correlation coefficient  
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.935 0.940 0.939 0.949 0.948 0.942 0.958 0.957 0.954 0.945 
2 0.963 0.965 0.964 0.969 0.968 0.965 0.970 0.969 0.967 0.963 
1 0.978 0.979 0.978 0.979 0.979 0.977 0.976 0.975 0.975 0.972 

0.5 0.986 0.985 0.985 0.984 0.984 0.983 0.979 0.979 0.978 0.977 
0.25 0.989 0.989 0.989 0.987 0.987 0.986 0.980 0.980 0.980 0.979 

 
The Table reports Monte Carlo Theil index and correlation coefficient statistics concerning the estimation of the unobserved common factor component. Results are reported for various values of 
the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of the 
(inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 
2,000. The experiment refers to the case of unobserved autoregressive factor and known break points. 

 
 
 
 



Table 6: Single and multiple break points, heteroskedastic case, N=30: Monte Carlo Theil and correlation statistics 
N=30 

common break process 
1-break point case 

Theil index 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.029 0.037 0.037 0.055 0.055 0.056 0.105 0.105 0.106 0.107 
2 0.028 0.036 0.037 0.055 0.055 0.056 0.105 0.105 0.105 0.106 
1 0.028 0.036 0.036 0.055 0.055 0.055 0.105 0.105 0.105 0.105 

0.5 0.028 0.036 0.036 0.055 0.055 0.055 0.105 0.105 0.105 0.105 
0.25 0.028 0.036 0.036 0.055 0.055 0.055 0.105 0.105 0.105 0.105 

correlation coefficient  
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Theil index 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.013 0.017 0.017 0.025 0.025 0.026 0.048 0.048 0.049 0.049 
2 0.013 0.017 0.017 0.025 0.025 0.026 0.048 0.048 0.048 0.048 
1 0.013 0.016 0.017 0.025 0.025 0.025 0.048 0.048 0.048 0.048 

0.5 0.013 0.017 0.017 0.025 0.025 0.025 0.048 0.048 0.048 0.048 
0.25 0.013 0.016 0.017 0.025 0.025 0.025 0.048 0.048 0.048 0.048 

correlation coefficient  
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2-break point case 
Theil index 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.040 0.052 0.052 0.076 0.077 0.078 0.141 0.141 0.142 0.144 
2 0.039 0.051 0.052 0.076 0.076 0.076 0.141 0.141 0.141 0.142 
1 0.039 0.051 0.051 0.075 0.075 0.076 0.141 0.141 0.141 0.141 

0.5 0.038 0.051 0.051 0.075 0.075 0.075 0.141 0.141 0.141 0.141 
0.25 0.038 0.051 0.051 0.075 0.075 0.075 0.141 0.141 0.141 0.141 

correlation coefficient  
T =100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.997 0.995 0.995 0.988 0.988 0.987 0.957 0.958 0.957 0.955 
2 0.997 0.995 0.995 0.988 0.988 0.988 0.958 0.957 0.958 0.957 
1 0.997 0.995 0.995 0.988 0.988 0.988 0.958 0.958 0.957 0.958 

0.5 0.997 0.995 0.995 0.988 0.988 0.988 0.958 0.957 0.958 0.958 
0.25 0.997 0.995 0.995 0.988 0.988 0.988 0.958 0.958 0.958 0.958 

Theil index 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.025 0.030 0.030 0.039 0.039 0.040 0.070 0.070 0.070 0.071 
2 0.025 0.030 0.030 0.039 0.039 0.040 0.070 0.070 0.070 0.070 
1 0.025 0.029 0.030 0.039 0.039 0.039 0.070 0.070 0.070 0.070 

0.5 0.025 0.029 0.029 0.039 0.039 0.039 0.070 0.070 0.070 0.070 
0.25 0.025 0.029 0.029 0.039 0.039 0.039 0.070 0.070 0.070 0.070 

correlation coefficient  
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.998 0.997 0.997 0.996 0.996 0.996 0.990 0.990 0.990 0.990 
2 0.998 0.998 0.997 0.996 0.996 0.996 0.990 0.990 0.990 0.990 
1 0.998 0.998 0.998 0.996 0.996 0.996 0.990 0.990 0.990 0.990 

0.5 0.998 0.998 0.998 0.996 0.996 0.996 0.990 0.990 0.990 0.990 
0.25 0.998 0.998 0.998 0.996 0.996 0.996 0.990 0.990 0.990 0.990 

 
The Table reports Monte Carlo RMSE, Theil index and correlation coefficient statistics, concerning the estimation of the unobserved common break process component. Results are reported for 
various values of the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various 
values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for 
each case is 2,000. The experiment refers to the case of unobserved autoregressive factor and known break points. 
                
                
 

 



               Table 7: No structural break, heteroskedastic case: bias of autoregressive common factor parameter ϕ  
autoregressive common factor parameter ϕ 

bias    N = 5 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.101 -0.185 -0.101 -0.238 -0.170 -0.099 -0.230 -0.182 -0.142 -0.094 
2 -0.073 -0.125 -0.075 -0.154 -0.115 -0.076 -0.146 -0.122 -0.100 -0.075 
1 -0.049 -0.081 -0.055 -0.098 -0.078 -0.058 -0.096 -0.083 -0.073 -0.058 

0.5 -0.035 -0.055 -0.041 -0.067 -0.056 -0.044 -0.067 -0.060 -0.054 -0.050 
0.25 -0.029 -0.041 -0.033 -0.049 -0.043 -0.037 -0.052 -0.049 -0.046 -0.043 

bias    N = 10 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.072 -0.126 -0.072 -0.155 -0.113 -0.069 -0.150 -0.122 -0.098 -0.066 
2 -0.046 -0.083 -0.053 -0.099 -0.079 -0.057 -0.098 -0.085 -0.071 -0.057 
1 -0.032 -0.055 -0.042 -0.067 -0.056 -0.045 -0.070 -0.063 -0.057 -0.051 

0.5 -0.025 -0.041 -0.034 -0.050 -0.045 -0.039 -0.054 -0.051 -0.048 -0.045 
0.25 -0.018 -0.033 -0.029 -0.041 -0.038 -0.036 -0.046 -0.045 -0.043 -0.042 

bias    N = 15 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.058 -0.098 -0.056 -0.117 -0.086 -0.050 -0.118 -0.099 -0.081 -0.056 
2 -0.037 -0.063 -0.042 -0.077 -0.060 -0.044 -0.082 -0.071 -0.064 -0.052 
1 -0.030 -0.046 -0.037 -0.051 -0.045 -0.038 -0.061 -0.057 -0.053 -0.048 

0.5 -0.023 -0.035 -0.030 -0.040 -0.036 -0.033 -0.051 -0.048 -0.047 -0.045 
0.25 -0.019 -0.030 -0.028 -0.033 -0.032 -0.030 -0.045 -0.044 -0.044 -0.043 

bias    N = 50 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.027 -0.046 -0.027 -0.058 -0.045 -0.028 -0.062 -0.054 -0.047 -0.035 
2 -0.023 -0.034 -0.026 -0.043 -0.037 -0.031 -0.049 -0.047 -0.043 -0.039 
1 -0.019 -0.027 -0.024 -0.035 -0.033 -0.031 -0.043 -0.042 -0.042 -0.040 

0.5 -0.017 -0.024 -0.023 -0.032 -0.031 -0.030 -0.040 -0.039 -0.039 -0.039 
0.25 -0.016 -0.023 -0.022 -0.029 -0.029 -0.029 -0.038 -0.038 -0.038 -0.038 

bias    N = 5 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.091 -0.165 -0.087 -0.208 -0.144 -0.080 -0.190 -0.149 -0.112 -0.070 
2 -0.058 -0.104 -0.057 -0.127 -0.089 -0.052 -0.110 -0.088 -0.067 -0.045 
1 -0.036 -0.062 -0.034 -0.074 -0.052 -0.031 -0.063 -0.050 -0.040 -0.028 

0.5 -0.021 -0.035 -0.021 -0.042 -0.031 -0.019 -0.036 -0.030 -0.024 -0.018 
0.25 -0.014 -0.020 -0.012 -0.024 -0.018 -0.013 -0.022 -0.019 -0.016 -0.013 

bias    N =10 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.058 -0.104 -0.055 -0.129 -0.090 -0.052 -0.110 -0.087 -0.066 -0.043 
2 -0.034 -0.061 -0.034 -0.075 -0.053 -0.032 -0.062 -0.050 -0.040 -0.028 
1 -0.019 -0.035 -0.020 -0.042 -0.031 -0.020 -0.036 -0.030 -0.024 -0.018 

0.5 -0.011 -0.020 -0.013 -0.025 -0.019 -0.014 -0.022 -0.019 -0.016 -0.013 
0.25 -0.007 -0.012 -0.008 -0.015 -0.013 -0.010 -0.015 -0.013 -0.012 -0.010 

bias    N = 15 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.045 -0.078 -0.041 -0.094 -0.066 -0.038 -0.079 -0.063 -0.049 -0.032 
2 -0.027 -0.046 -0.026 -0.054 -0.039 -0.024 -0.045 -0.037 -0.029 -0.022 
1 -0.016 -0.026 -0.016 -0.031 -0.023 -0.016 -0.027 -0.023 -0.019 -0.015 

0.5 -0.010 -0.015 -0.011 -0.018 -0.015 -0.011 -0.017 -0.015 -0.013 -0.011 
0.25 -0.007 -0.010 -0.007 -0.013 -0.011 -0.009 -0.012 -0.011 -0.010 -0.009 

bias    N = 50 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.019 -0.028 -0.015 -0.036 -0.026 -0.016 -0.031 -0.026 -0.021 -0.015 
2 -0.012 -0.016 -0.010 -0.021 -0.016 -0.011 -0.019 -0.017 -0.015 -0.012 
1 -0.009 -0.010 -0.007 -0.014 -0.011 -0.009 -0.014 -0.012 -0.011 -0.010 

0.5 -0.007 -0.006 -0.005 -0.010 -0.009 -0.008 -0.011 -0.010 -0.010 -0.009 
0.25 -0.006 -0.005 -0.004 -0.008 -0.007 -0.007 -0.009 -0.009 -0.009 -0.008 

 
The Table reports Monte Carlo bias statistics concerning the estimation of the common factor (ϕ) autoregressive parameter. Results are reported for various values of the common factor 
autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of the (inverse) signal to noise 
ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 5, 10, 15, 50, and the number of replications for each case is 2,000. The 
experiment refers to the case of unobserved autoregressive factor and no breaks. 
 
 
 
 
 
 

 



               Table 8: No structural break, heteroskedastic case: Monte Carlo correlation coefficient statistic 
autoregressive common factor parameter ϕ 

correlation coefficient    N = 5 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.742 0.764 0.756 0.801 0.795 0.774 0.863 0.861 0.845 0.809 
2 0.846 0.859 0.856 0.885 0.882 0.870 0.925 0.923 0.913 0.892 
1 0.914 0.922 0.920 0.937 0.936 0.928 0.960 0.959 0.953 0.942 

0.5 0.954 0.959 0.957 0.967 0.966 0.962 0.979 0.979 0.976 0.970 
0.25 0.976 0.979 0.978 0.983 0.983 0.980 0.990 0.989 0.988 0.985 

correlation coefficient    N = 10 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.843 0.857 0.853 0.884 0.881 0.867 0.924 0.921 0.913 0.889 
2 0.913 0.921 0.919 0.937 0.935 0.928 0.959 0.958 0.953 0.941 
1 0.954 0.959 0.957 0.967 0.966 0.962 0.979 0.978 0.976 0.969 

0.5 0.976 0.979 0.978 0.983 0.983 0.980 0.990 0.989 0.988 0.984 
0.25 0.988 0.989 0.989 0.992 0.991 0.990 0.995 0.995 0.994 0.992 

correlation coefficient    N = 15 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.886 0.898 0.894 0.918 0.916 0.906 0.947 0.945 0.939 0.922 
2 0.939 0.946 0.944 0.957 0.956 0.950 0.972 0.972 0.968 0.959 
1 0.968 0.972 0.971 0.978 0.977 0.974 0.986 0.985 0.984 0.979 

0.5 0.984 0.986 0.985 0.989 0.988 0.987 0.993 0.993 0.992 0.989 
0.25 0.992 0.993 0.993 0.994 0.994 0.993 0.996 0.996 0.996 0.995 

correlation coefficient    N = 50 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.962 0.966 0.965 0.973 0.972 0.969 0.983 0.983 0.981 0.975 
2 0.981 0.983 0.982 0.986 0.986 0.984 0.992 0.991 0.990 0.988 
1 0.990 0.991 0.991 0.993 0.993 0.992 0.996 0.996 0.995 0.994 

0.5 0.995 0.996 0.996 0.997 0.996 0.996 0.998 0.998 0.998 0.997 
0.25 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.998 

correlation coefficient    N = 5 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.750 0.772 0.765 0.811 0.806 0.786 0.877 0.873 0.859 0.827 
2 0.849 0.864 0.860 0.891 0.888 0.875 0.933 0.930 0.922 0.901 
1 0.916 0.925 0.922 0.941 0.939 0.931 0.965 0.963 0.958 0.947 

0.5 0.955 0.960 0.959 0.969 0.968 0.964 0.982 0.981 0.979 0.972 
0.25 0.977 0.979 0.979 0.984 0.984 0.981 0.991 0.990 0.989 0.986 

correlation coefficient    N =10 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.849 0.864 0.860 0.891 0.887 0.874 0.933 0.930 0.922 0.901 
2 0.916 0.925 0.922 0.941 0.939 0.931 0.965 0.963 0.959 0.947 
1 0.955 0.960 0.959 0.969 0.968 0.964 0.982 0.981 0.979 0.972 

0.5 0.977 0.979 0.979 0.984 0.984 0.981 0.991 0.990 0.989 0.986 
0.25 0.988 0.990 0.989 0.992 0.992 0.991 0.995 0.995 0.995 0.993 

correlation coefficient    N =1 5 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.891 0.903 0.899 0.923 0.920 0.911 0.954 0.952 0.946 0.931 
2 0.941 0.948 0.946 0.959 0.958 0.952 0.976 0.975 0.972 0.964 
1 0.969 0.973 0.972 0.979 0.978 0.975 0.988 0.987 0.986 0.981 

0.5 0.984 0.986 0.986 0.989 0.989 0.987 0.994 0.994 0.993 0.991 
0.25 0.992 0.993 0.993 0.995 0.994 0.994 0.997 0.997 0.996 0.995 

correlation coefficient    N = 50 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.963 0.968 0.966 0.975 0.974 0.970 0.985 0.985 0.983 0.978 
2 0.981 0.983 0.983 0.987 0.987 0.985 0.993 0.992 0.991 0.989 
1 0.991 0.992 0.991 0.994 0.993 0.992 0.996 0.996 0.996 0.994 

0.5 0.995 0.996 0.996 0.997 0.997 0.996 0.998 0.998 0.998 0.997 
0.25 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 

 
The Table reports Monte Carlo correlation coefficients between the actual and estimated common factor. Results are reported for various values of the common factor autoregressive parameter ϕ 
(0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). 
The sample size T is 100 and 500 observations, the number of cross-sectional units N is 5, 10, 15, 50, and the number of replications for each case is 2,000. The experiment refers to the case of 
unobserved autoregressive factor and no breaks. 
 
 
 
 
 
                 
    



                 Table 9: No structural break, heteroskedastic case,  N=30: bias and RMSE of idiosyncratic autoregressive parameter ρ; Theil and correlation  statistics 
autoregressive parameter ρ 

bias 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.013 -0.013 -0.029 -0.017 -0.026 -0.029 -0.018 -0.028 -0.038 -0.043 -0.021 -0.030 -0.037 -0.046 -0.060 
2 -0.015 -0.015 -0.026 -0.022 -0.026 -0.034 -0.019 -0.027 -0.037 -0.046 -0.021 -0.029 -0.034 -0.048 -0.056 
1 -0.015 -0.016 -0.027 -0.019 -0.021 -0.034 -0.018 -0.028 -0.037 -0.045 -0.021 -0.031 -0.033 -0.045 -0.058 

0.5 -0.015 -0.015 -0.027 -0.018 -0.024 -0.036 -0.021 -0.030 -0.034 -0.050 -0.022 -0.028 -0.036 -0.044 -0.058 
0.25 -0.014 -0.016 -0.023 -0.020 -0.027 -0.036 -0.022 -0.029 -0.036 -0.049 -0.020 -0.031 -0.037 -0.046 -0.057 

root mean square error 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.102 0.103 0.106 0.100 0.102 0.101 0.101 0.106 0.109 0.106 0.105 0.108 0.110 0.110 0.112 
2 0.103 0.104 0.105 0.105 0.107 0.104 0.104 0.105 0.109 0.109 0.104 0.106 0.106 0.111 0.107 
1 0.102 0.103 0.105 0.103 0.101 0.109 0.102 0.103 0.108 0.107 0.104 0.107 0.103 0.106 0.110 

0.5 0.104 0.101 0.105 0.102 0.106 0.105 0.103 0.110 0.107 0.113 0.106 0.106 0.107 0.105 0.109 
0.25 0.102 0.103 0.104 0.105 0.106 0.107 0.104 0.107 0.107 0.112 0.103 0.108 0.110 0.108 0.108 

autoregressive parameter ρ 
bias 

T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.003 -0.002 -0.005 -0.004 -0.005 -0.006 -0.005 -0.004 -0.009 -0.007 -0.003 -0.005 -0.008 -0.009 -0.010 
2 -0.001 -0.003 -0.003 -0.003 -0.006 -0.007 -0.005 -0.007 -0.007 -0.010 -0.003 -0.006 -0.007 -0.009 -0.010 
1 -0.003 -0.002 -0.004 -0.004 -0.006 -0.008 -0.004 -0.006 -0.006 -0.009 -0.005 -0.006 -0.008 -0.009 -0.010 

0.5 -0.002 -0.002 -0.008 -0.004 -0.006 -0.008 -0.005 -0.005 -0.007 -0.009 -0.002 -0.004 -0.005 -0.009 -0.010 
0.25 -0.003 -0.004 -0.006 -0.003 -0.005 -0.008 -0.004 -0.007 -0.006 -0.010 -0.003 -0.007 -0.007 -0.010 -0.010 

root mean square error 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.045 0.045 0.044 0.045 0.045 0.043 0.045 0.045 0.044 0.038 0.044 0.043 0.043 0.038 0.032 
2 0.045 0.044 0.044 0.044 0.045 0.042 0.045 0.045 0.043 0.040 0.045 0.045 0.042 0.041 0.031 
1 0.046 0.046 0.044 0.044 0.044 0.043 0.046 0.044 0.042 0.039 0.045 0.045 0.043 0.039 0.031 

0.5 0.046 0.044 0.046 0.044 0.044 0.043 0.046 0.044 0.043 0.039 0.046 0.045 0.042 0.038 0.031 
0.25 0.046 0.045 0.045 0.046 0.046 0.044 0.044 0.045 0.043 0.039 0.045 0.046 0.041 0.038 0.032 

common long memory factor 
Theil index 

T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.196 0.209 0.211 0.120 0.123 0.130 0.088 0.089 0.095 0.108 0.062 0.063 0.067 0.075 0.097 
2 0.150 0.176 0.177 0.086 0.087 0.092 0.062 0.063 0.067 0.076 0.044 0.044 0.047 0.053 0.069 
1 0.121 0.155 0.156 0.061 0.062 0.065 0.044 0.045 0.048 0.054 0.031 0.032 0.033 0.038 0.049 

0.5 0.101 0.142 0.143 0.043 0.044 0.046 0.031 0.032 0.034 0.038 0.022 0.022 0.024 0.027 0.034 
0.25 0.089 0.135 0.135 0.030 0.031 0.033 0.022 0.022 0.024 0.027 0.015 0.016 0.017 0.019 0.024 

correlation coefficient 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.937 0.950 0.948 0.970 0.969 0.966 0.984 0.983 0.981 0.976 0.992 0.991 0.990 0.988 0.980 
2 0.968 0.974 0.973 0.985 0.984 0.983 0.992 0.991 0.990 0.988 0.996 0.996 0.995 0.994 0.990 
1 0.984 0.987 0.986 0.992 0.992 0.991 0.996 0.996 0.995 0.994 0.998 0.998 0.998 0.997 0.995 

0.5 0.992 0.993 0.993 0.996 0.996 0.996 0.998 0.998 0.998 0.997 0.999 0.999 0.999 0.999 0.998 
0.25 0.996 0.997 0.997 0.998 0.998 0.998 0.999 0.999 0.999 0.998 1.000 1.000 0.999 0.999 0.999 

Theil index 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.176 0.163 0.166 0.068 0.070 0.074 0.043 0.044 0.047 0.054 0.028 0.028 0.030 0.034 0.046 
2 0.129 0.125 0.127 0.048 0.049 0.053 0.031 0.031 0.033 0.038 0.020 0.020 0.021 0.024 0.032 
1 0.096 0.099 0.101 0.034 0.035 0.037 0.022 0.022 0.024 0.027 0.014 0.014 0.015 0.017 0.023 

0.5 0.073 0.083 0.083 0.024 0.025 0.026 0.015 0.016 0.017 0.019 0.010 0.010 0.011 0.012 0.016 
0.25 0.057 0.072 0.072 0.017 0.018 0.019 0.011 0.011 0.012 0.014 0.007 0.007 0.008 0.009 0.011 

correlation coefficient 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.943 0.956 0.954 0.990 0.990 0.988 0.996 0.996 0.995 0.994 0.998 0.998 0.998 0.997 0.996 
2 0.970 0.977 0.977 0.995 0.995 0.994 0.998 0.998 0.998 0.997 0.999 0.999 0.999 0.999 0.998 
1 0.985 0.989 0.988 0.997 0.997 0.997 0.999 0.999 0.999 0.998 1.000 1.000 1.000 0.999 0.999 

0.5 0.992 0.994 0.994 0.999 0.999 0.999 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000 0.999 
0.25 0.996 0.997 0.997 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
The Table reports Monte Carlo bias and RMSE statistics, concerning the estimation of the idiosyncratic autoregressive parameter (ρ), and Monte Carlo Theil index and correlation coefficient 
statistics, concerning the estimation of the unobserved common long memory factor component. Results are reported for various values of the common factor fractional differencing parameter d 
(0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ, and various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 
0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 2,000. The experiment refers to the case of 
unobserved common long memory factor and no breaks, and known fractional differencing parameter. 
 
 
 



                 Table 10: Single and multiple break points, heteroskedastic case, N=30: bias and RMSE of idiosyncratic autoregressive parameter ρ 
     N = 30 

1-break point case 
autoregressive parameter ρ 

bias 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.024 -0.026 -0.031 -0.026 -0.035 -0.051 -0.025 -0.042 -0.049 -0.067 -0.036 -0.041 -0.053 -0.067 -0.084 
2 -0.017 -0.026 -0.037 -0.026 -0.038 -0.048 -0.028 -0.040 -0.053 -0.066 -0.031 -0.043 -0.055 -0.067 -0.082 
1 -0.021 -0.026 -0.036 -0.027 -0.040 -0.053 -0.030 -0.040 -0.047 -0.065 -0.029 -0.039 -0.053 -0.064 -0.081 

0.5 -0.024 -0.022 -0.035 -0.028 -0.038 -0.047 -0.027 -0.042 -0.055 -0.065 -0.036 -0.038 -0.051 -0.069 -0.085 
0.25 -0.024 -0.026 -0.035 -0.025 -0.040 -0.050 -0.033 -0.038 -0.051 -0.061 -0.027 -0.039 -0.053 -0.063 -0.083 

root mean square error 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.104 0.107 0.109 0.106 0.111 0.120 0.107 0.117 0.119 0.129 0.114 0.114 0.121 0.129 0.144 
2 0.104 0.108 0.111 0.108 0.112 0.120 0.107 0.115 0.121 0.129 0.107 0.115 0.121 0.129 0.139 
1 0.103 0.107 0.111 0.108 0.113 0.122 0.109 0.115 0.116 0.127 0.109 0.112 0.122 0.127 0.138 

0.5 0.105 0.104 0.108 0.107 0.113 0.116 0.106 0.114 0.122 0.129 0.112 0.114 0.120 0.132 0.143 
0.25 0.105 0.104 0.111 0.105 0.113 0.120 0.109 0.111 0.120 0.123 0.108 0.114 0.119 0.126 0.141 

autoregressive parameter ρ 
bias 

T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.004 -0.004 -0.005 -0.005 -0.008 -0.010 -0.006 -0.007 -0.010 -0.013 -0.005 -0.010 -0.010 -0.012 -0.014 
2 -0.004 -0.004 -0.007 -0.006 -0.007 -0.010 -0.006 -0.010 -0.010 -0.011 -0.007 -0.009 -0.010 -0.012 -0.014 
1 -0.003 -0.004 -0.006 -0.005 -0.008 -0.009 -0.005 -0.009 -0.010 -0.012 -0.008 -0.007 -0.009 -0.013 -0.015 

0.5 -0.003 -0.005 -0.008 -0.006 -0.008 -0.009 -0.005 -0.008 -0.010 -0.012 -0.006 -0.008 -0.009 -0.012 -0.014 
0.25 -0.004 -0.006 -0.007 -0.005 -0.008 -0.010 -0.007 -0.007 -0.011 -0.014 -0.005 -0.010 -0.011 -0.012 -0.016 

root mean square error 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.045 0.045 0.044 0.046 0.045 0.044 0.045 0.045 0.043 0.040 0.047 0.045 0.044 0.040 0.035 
2 0.044 0.046 0.044 0.045 0.045 0.043 0.046 0.047 0.043 0.039 0.045 0.047 0.045 0.041 0.035 
1 0.043 0.045 0.045 0.045 0.046 0.044 0.046 0.046 0.043 0.041 0.046 0.045 0.043 0.041 0.035 

0.5 0.044 0.045 0.046 0.046 0.044 0.043 0.044 0.047 0.043 0.041 0.045 0.045 0.043 0.040 0.034 
0.25 0.045 0.045 0.044 0.044 0.046 0.043 0.045 0.045 0.045 0.042 0.046 0.048 0.044 0.040 0.037 

2-break point case 
autoregressive parameter ρ 

bias 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.018 -0.024 -0.034 -0.024 -0.041 -0.050 -0.024 -0.038 -0.057 -0.062 -0.026 -0.041 -0.053 -0.065 -0.080 
2 -0.021 -0.026 -0.034 -0.029 -0.037 -0.051 -0.030 -0.040 -0.044 -0.061 -0.031 -0.041 -0.048 -0.064 -0.080 
1 -0.024 -0.025 -0.035 -0.028 -0.039 -0.046 -0.026 -0.038 -0.051 -0.063 -0.031 -0.037 -0.050 -0.063 -0.075 

0.5 -0.022 -0.023 -0.035 -0.028 -0.039 -0.049 -0.028 -0.040 -0.050 -0.065 -0.029 -0.037 -0.049 -0.061 -0.080 
0.25 -0.019 -0.026 -0.030 -0.029 -0.039 -0.050 -0.032 -0.038 -0.047 -0.061 -0.031 -0.039 -0.051 -0.062 -0.077 

root mean square error 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.105 0.103 0.111 0.108 0.115 0.119 0.104 0.113 0.125 0.125 0.106 0.115 0.122 0.127 0.139 
2 0.103 0.109 0.110 0.106 0.112 0.119 0.108 0.116 0.113 0.122 0.108 0.114 0.119 0.126 0.137 
1 0.106 0.105 0.110 0.109 0.113 0.114 0.110 0.112 0.121 0.125 0.109 0.113 0.117 0.125 0.131 

0.5 0.104 0.103 0.111 0.108 0.111 0.118 0.107 0.116 0.121 0.128 0.112 0.113 0.120 0.125 0.137 
0.25 0.102 0.106 0.107 0.108 0.111 0.119 0.109 0.112 0.115 0.122 0.109 0.113 0.118 0.125 0.133 

autoregressive parameter ρ 
bias 

T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.005 -0.006 -0.008 -0.008 -0.006 -0.010 -0.004 -0.007 -0.011 -0.011 -0.006 -0.006 -0.009 -0.013 -0.015 
2 -0.004 -0.005 -0.007 -0.005 -0.008 -0.010 -0.005 -0.009 -0.011 -0.013 -0.006 -0.008 -0.010 -0.012 -0.015 
1 -0.005 -0.006 -0.006 -0.007 -0.006 -0.011 -0.006 -0.010 -0.012 -0.011 -0.005 -0.008 -0.008 -0.012 -0.015 

0.5 -0.005 -0.005 -0.007 -0.006 -0.009 -0.009 -0.005 -0.010 -0.012 -0.013 -0.005 -0.009 -0.009 -0.011 -0.015 
0.25 -0.003 -0.005 -0.008 -0.005 -0.008 -0.010 -0.005 -0.009 -0.010 -0.013 -0.005 -0.009 -0.009 -0.013 -0.015 

root mean square error 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.046 0.046 0.044 0.046 0.044 0.043 0.045 0.044 0.044 0.040 0.045 0.044 0.044 0.041 0.035 
2 0.045 0.044 0.046 0.045 0.047 0.043 0.045 0.044 0.045 0.041 0.046 0.045 0.044 0.039 0.035 
1 0.046 0.046 0.045 0.047 0.045 0.044 0.045 0.046 0.045 0.040 0.045 0.045 0.043 0.040 0.035 

0.5 0.045 0.046 0.044 0.045 0.045 0.043 0.046 0.047 0.044 0.042 0.046 0.047 0.044 0.039 0.035 
0.25 0.045 0.046 0.045 0.044 0.045 0.045 0.045 0.045 0.043 0.041 0.046 0.046 0.044 0.041 0.035 

The Table reports Monte Carlo bias and RMSE statistics concerning the estimation of the idiosyncratic autoregressive parameter (ρ). Results are reported for various values of the common factor 
fractional differencing parameter d (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ, and various values of the (inverse) 
signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 2,000. The 
experiment refers to the case of unobserved common long memory factor and known fractional differencing parameter and break points. 



Table 11: Single and multiple break points, heteroskedastic case, N=30: Monte Carlo Theil and correlation statistics 
N=30 

common long memory factor 
1-break point case 

Theil index 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.211 0.249 0.250 0.290 0.291 0.296 0.315 0.315 0.318 0.323 0.337 0.337 0.338 0.341 0.350 
2 0.170 0.221 0.222 0.273 0.273 0.276 0.305 0.305 0.307 0.310 0.331 0.332 0.332 0.334 0.339 
1 0.144 0.205 0.206 0.262 0.263 0.264 0.299 0.299 0.300 0.302 0.328 0.329 0.329 0.330 0.332 

0.5 0.129 0.196 0.196 0.256 0.256 0.257 0.296 0.296 0.296 0.297 0.327 0.327 0.327 0.328 0.329 
0.25 0.119 0.191 0.191 0.252 0.253 0.253 0.294 0.294 0.294 0.295 0.326 0.326 0.326 0.326 0.327 

correlation coefficient 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.923 0.900 0.898 0.882 0.881 0.877 0.829 0.829 0.826 0.820 0.767 0.766 0.765 0.763 0.754 
2 0.952 0.923 0.923 0.900 0.899 0.897 0.839 0.839 0.837 0.834 0.771 0.771 0.771 0.769 0.765 
1 0.967 0.936 0.936 0.908 0.908 0.907 0.844 0.844 0.843 0.842 0.774 0.774 0.774 0.773 0.771 

0.5 0.975 0.942 0.942 0.913 0.913 0.912 0.846 0.846 0.846 0.845 0.775 0.775 0.775 0.775 0.774 
0.25 0.979 0.946 0.945 0.915 0.915 0.915 0.848 0.848 0.848 0.847 0.776 0.776 0.776 0.775 0.775 

Theil index 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.180 0.176 0.179 0.316 0.316 0.318 0.323 0.324 0.324 0.326 0.327 0.327 0.328 0.329 0.332 
2 0.135 0.142 0.143 0.309 0.309 0.310 0.320 0.320 0.321 0.322 0.326 0.326 0.326 0.327 0.328 
1 0.103 0.119 0.120 0.305 0.305 0.306 0.318 0.318 0.319 0.319 0.325 0.325 0.325 0.326 0.326 

0.5 0.082 0.106 0.106 0.303 0.303 0.303 0.317 0.317 0.317 0.318 0.325 0.325 0.325 0.325 0.325 
0.25 0.069 0.098 0.098 0.302 0.302 0.302 0.317 0.317 0.317 0.317 0.324 0.324 0.324 0.325 0.325 

correlation coefficient 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.939 0.947 0.945 0.791 0.791 0.789 0.781 0.781 0.781 0.779 0.776 0.776 0.775 0.774 0.772 
2 0.967 0.968 0.967 0.797 0.797 0.796 0.784 0.784 0.784 0.783 0.777 0.777 0.776 0.776 0.775 
1 0.982 0.979 0.979 0.800 0.800 0.799 0.785 0.785 0.785 0.785 0.777 0.777 0.777 0.777 0.776 

0.5 0.989 0.985 0.984 0.801 0.801 0.801 0.786 0.786 0.786 0.786 0.777 0.777 0.777 0.777 0.777 
0.25 0.993 0.988 0.987 0.802 0.802 0.802 0.786 0.786 0.786 0.786 0.778 0.778 0.778 0.778 0.777 

2-break point case 
Theil index 

T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.226 0.279 0.280 0.358 0.358 0.362 0.402 0.402 0.403 0.407 0.447 0.447 0.448 0.450 0.453 
2 0.188 0.255 0.256 0.345 0.345 0.347 0.395 0.395 0.396 0.398 0.445 0.445 0.445 0.446 0.448 
1 0.165 0.242 0.242 0.338 0.338 0.339 0.391 0.391 0.392 0.393 0.443 0.443 0.443 0.444 0.445 

0.5 0.152 0.235 0.235 0.334 0.334 0.334 0.389 0.389 0.390 0.390 0.442 0.442 0.443 0.443 0.443 
0.25 0.144 0.231 0.231 0.332 0.332 0.332 0.388 0.388 0.388 0.389 0.442 0.442 0.442 0.442 0.442 

correlation coefficient 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.910 0.880 0.879 0.748 0.747 0.743 0.699 0.699 0.696 0.690 0.648 0.647 0.646 0.643 0.639 
2 0.940 0.906 0.905 0.765 0.765 0.763 0.710 0.709 0.708 0.705 0.653 0.653 0.653 0.651 0.648 
1 0.956 0.919 0.919 0.774 0.774 0.773 0.715 0.715 0.714 0.713 0.656 0.656 0.656 0.655 0.653 

0.5 0.964 0.926 0.926 0.778 0.778 0.778 0.718 0.718 0.717 0.717 0.658 0.658 0.658 0.657 0.656 
0.25 0.968 0.929 0.929 0.781 0.781 0.780 0.719 0.719 0.719 0.719 0.658 0.658 0.658 0.658 0.657 

Theil index 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.188 0.191 0.193 0.412 0.412 0.413 0.436 0.436 0.436 0.437 0.454 0.454 0.455 0.455 0.456 
2 0.146 0.160 0.161 0.408 0.408 0.409 0.434 0.434 0.435 0.435 0.454 0.454 0.454 0.454 0.455 
1 0.118 0.141 0.141 0.406 0.406 0.407 0.434 0.434 0.434 0.434 0.454 0.454 0.454 0.454 0.454 

0.5 0.100 0.129 0.130 0.405 0.405 0.405 0.433 0.433 0.433 0.433 0.453 0.453 0.454 0.454 0.454 
0.25 0.090 0.123 0.124 0.405 0.405 0.405 0.433 0.433 0.433 0.433 0.453 0.453 0.453 0.453 0.454 

correlation coefficient 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.933 0.936 0.934 0.686 0.686 0.684 0.660 0.659 0.659 0.657 0.639 0.639 0.638 0.638 0.635 
2 0.960 0.957 0.956 0.693 0.692 0.692 0.662 0.662 0.662 0.661 0.640 0.640 0.640 0.639 0.638 
1 0.975 0.968 0.967 0.696 0.696 0.695 0.664 0.664 0.663 0.663 0.640 0.640 0.640 0.640 0.640 

0.5 0.982 0.974 0.973 0.698 0.698 0.697 0.664 0.664 0.664 0.664 0.641 0.641 0.641 0.641 0.640 
0.25 0.986 0.976 0.976 0.699 0.698 0.698 0.665 0.665 0.665 0.665 0.641 0.641 0.641 0.641 0.641 

 
The Table reports Monte Carlo Theil index and correlation coefficient statistics concerning the estimation of the unobserved common long memory factor component. Results are reported for 
various values of the fractional differencing parameter d (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ, and various 
values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for 
each case is 2,000. The experiment refers to the case of unobserved common long memory factor and known fractional differencing parameter and break points. 

 
 
 



Table 12: Single and multiple break points, heterokedastic case, N=30: Monte Carlo Theil and correlation statistics. 
N=30 

common break process 
1-break point case 

Theil index 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.040 0.076 0.076 0.078 0.078 0.078 0.089 0.089 0.089 0.089 0.096 0.096 0.096 0.096 0.097 
2 0.039 0.076 0.076 0.077 0.078 0.078 0.089 0.088 0.089 0.089 0.096 0.096 0.096 0.096 0.097 
1 0.039 0.076 0.076 0.077 0.077 0.078 0.088 0.088 0.089 0.089 0.096 0.096 0.096 0.096 0.097 

0.5 0.039 0.076 0.076 0.077 0.077 0.077 0.088 0.088 0.088 0.089 0.096 0.096 0.096 0.096 0.096 
0.25 0.039 0.075 0.075 0.077 0.077 0.077 0.088 0.088 0.088 0.088 0.096 0.096 0.096 0.096 0.096 

correlation coefficient 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Theil index 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.019 0.038 0.038 0.091 0.091 0.091 0.094 0.095 0.095 0.095 0.096 0.096 0.096 0.096 0.096 
2 0.018 0.038 0.038 0.091 0.091 0.091 0.095 0.095 0.095 0.095 0.096 0.096 0.096 0.096 0.096 
1 0.018 0.038 0.038 0.091 0.091 0.091 0.095 0.095 0.095 0.095 0.096 0.096 0.096 0.096 0.096 

0.5 0.018 0.038 0.038 0.091 0.091 0.091 0.095 0.095 0.095 0.095 0.096 0.096 0.096 0.096 0.096 
0.25 0.018 0.038 0.038 0.091 0.091 0.091 0.095 0.094 0.094 0.095 0.096 0.096 0.096 0.096 0.096 

correlation coefficient 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2-break point case 
Theil index 

T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.054 0.101 0.101 0.108 0.108 0.109 0.122 0.122 0.122 0.123 0.134 0.134 0.134 0.134 0.135 
2 0.054 0.101 0.101 0.108 0.108 0.109 0.122 0.122 0.122 0.122 0.134 0.134 0.134 0.134 0.135 
1 0.053 0.101 0.101 0.108 0.108 0.108 0.122 0.122 0.122 0.122 0.134 0.134 0.134 0.134 0.134 

0.5 0.053 0.100 0.101 0.108 0.108 0.108 0.122 0.122 0.122 0.122 0.134 0.134 0.134 0.134 0.134 
0.25 0.053 0.100 0.100 0.108 0.108 0.108 0.122 0.122 0.122 0.122 0.134 0.134 0.134 0.134 0.134 

correlation coefficient 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.994 0.981 0.981 0.956 0.956 0.956 0.947 0.947 0.947 0.946 0.936 0.935 0.935 0.935 0.935 
2 0.994 0.981 0.981 0.956 0.956 0.956 0.947 0.947 0.947 0.947 0.935 0.936 0.935 0.935 0.935 
1 0.994 0.981 0.981 0.956 0.956 0.956 0.947 0.947 0.947 0.947 0.935 0.935 0.935 0.935 0.935 

0.5 0.994 0.981 0.981 0.956 0.956 0.956 0.947 0.947 0.947 0.947 0.935 0.935 0.935 0.935 0.935 
0.25 0.994 0.981 0.981 0.956 0.956 0.956 0.947 0.947 0.947 0.947 0.936 0.935 0.936 0.935 0.935 

Theil index 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.032 0.055 0.055 0.127 0.127 0.127 0.134 0.134 0.134 0.134 0.138 0.138 0.138 0.138 0.138 
2 0.031 0.054 0.054 0.127 0.127 0.127 0.134 0.134 0.134 0.134 0.138 0.138 0.138 0.138 0.138 
1 0.031 0.054 0.054 0.127 0.127 0.127 0.134 0.134 0.134 0.134 0.138 0.138 0.138 0.138 0.138 

0.5 0.031 0.054 0.054 0.127 0.127 0.127 0.134 0.134 0.134 0.134 0.138 0.138 0.138 0.138 0.138 
0.25 0.031 0.054 0.054 0.127 0.127 0.127 0.134 0.134 0.134 0.134 0.138 0.138 0.138 0.138 0.138 

correlation coefficient 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.997 0.993 0.993 0.941 0.941 0.941 0.936 0.936 0.936 0.936 0.933 0.933 0.933 0.933 0.933 
2 0.997 0.993 0.993 0.941 0.941 0.941 0.936 0.936 0.936 0.936 0.933 0.933 0.933 0.933 0.933 
1 0.997 0.993 0.993 0.941 0.941 0.941 0.936 0.936 0.936 0.936 0.933 0.933 0.933 0.933 0.933 

0.5 0.997 0.993 0.993 0.941 0.941 0.941 0.936 0.936 0.936 0.936 0.933 0.933 0.933 0.933 0.933 
0.25 0.997 0.993 0.993 0.941 0.941 0.941 0.936 0.936 0.936 0.936 0.933 0.933 0.933 0.933 0.933 

 
The Table reports Monte Carlo Theil index and correlation coefficient statistics concerning the estimation of the unobserved common break process component. Results are reported for various 
values of the fractional differencing parameter d (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ, and various values of 
the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case 
is 2,000. The experiment refers to the case of unobserved common long memory factor and known fractional differencing parameter and break points. 
 
 
 



Table 13: Single and multiple break points, heteroskedastic case: Monte Carlo correlation coefficient statistics. 
common long memory factor 
correlation coefficient   N = 5 

T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.741 0.783 0.776 0.855 0.851 0.836 0.916 0.913 0.904 0.880 0.954 0.953 0.947 0.934 0.895 
2 0.845 0.872 0.868 0.919 0.917 0.907 0.955 0.953 0.948 0.934 0.976 0.975 0.972 0.965 0.944 
1 0.912 0.929 0.927 0.956 0.955 0.950 0.976 0.975 0.973 0.965 0.988 0.987 0.986 0.982 0.971 

0.5 0.953 0.963 0.962 0.977 0.977 0.974 0.988 0.987 0.986 0.982 0.994 0.994 0.993 0.991 0.985 
0.25 0.976 0.981 0.980 0.989 0.988 0.987 0.994 0.994 0.993 0.991 0.997 0.997 0.996 0.995 0.993 

correlation coefficient   N = 10 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.852 0.884 0.880 0.971 0.970 0.966 0.987 0.987 0.985 0.981 0.995 0.995 0.994 0.992 0.986 
2 0.917 0.936 0.934 0.985 0.985 0.982 0.994 0.993 0.992 0.990 0.997 0.997 0.997 0.996 0.993 
1 0.956 0.967 0.965 0.992 0.992 0.991 0.997 0.997 0.996 0.995 0.999 0.999 0.999 0.998 0.997 

0.5 0.977 0.983 0.982 0.996 0.996 0.996 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.998 
0.25 0.988 0.991 0.991 0.998 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 

correlation coefficient   N = 15 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.894 0.917 0.914 0.980 0.979 0.976 0.992 0.991 0.990 0.987 0.997 0.997 0.996 0.995 0.991 
2 0.943 0.956 0.954 0.990 0.989 0.988 0.996 0.996 0.995 0.993 0.998 0.998 0.998 0.997 0.996 
1 0.970 0.977 0.976 0.995 0.995 0.994 0.998 0.998 0.998 0.997 0.999 0.999 0.999 0.999 0.998 

0.5 0.985 0.988 0.988 0.997 0.997 0.997 0.999 0.999 0.999 0.998 1.000 1.000 1.000 0.999 0.999 
0.25 0.992 0.994 0.994 0.999 0.999 0.999 1.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 

correlation coefficient   N = 50 
T = 100 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.964 0.973 0.972 0.994 0.994 0.993 0.997 0.997 0.997 0.996 0.999 0.999 0.999 0.998 0.997 
2 0.982 0.986 0.986 0.997 0.997 0.996 0.999 0.999 0.999 0.998 1.000 1.000 0.999 0.999 0.999 
1 0.991 0.993 0.993 0.998 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 

0.5 0.995 0.997 0.996 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.998 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

correlation coefficient   N = 5 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.756 0.802 0.796 0.945 0.943 0.936 0.976 0.975 0.972 0.964 0.990 0.990 0.988 0.985 0.974 
2 0.853 0.884 0.881 0.971 0.970 0.966 0.988 0.987 0.985 0.981 0.995 0.995 0.994 0.992 0.987 
1 0.918 0.937 0.935 0.985 0.985 0.983 0.994 0.994 0.993 0.990 0.998 0.997 0.997 0.996 0.993 

0.5 0.956 0.967 0.966 0.992 0.992 0.991 0.997 0.997 0.996 0.995 0.999 0.999 0.999 0.998 0.997 
0.25 0.978 0.983 0.982 0.996 0.996 0.996 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.998 

correlation coefficient   N = 10 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.852 0.884 0.880 0.971 0.970 0.966 0.987 0.987 0.985 0.981 0.995 0.995 0.994 0.992 0.987 
2 0.918 0.937 0.935 0.985 0.985 0.982 0.994 0.993 0.993 0.990 0.998 0.997 0.997 0.996 0.993 
1 0.956 0.967 0.966 0.992 0.992 0.991 0.997 0.997 0.996 0.995 0.999 0.999 0.999 0.998 0.997 

0.5 0.977 0.983 0.982 0.996 0.996 0.996 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.998 
0.25 0.988 0.991 0.991 0.998 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 

correlation coefficient   N =1 5 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.894 0.917 0.915 0.980 0.980 0.977 0.992 0.991 0.990 0.987 0.997 0.996 0.996 0.995 0.991 
2 0.943 0.956 0.954 0.990 0.990 0.988 0.996 0.996 0.995 0.994 0.998 0.998 0.998 0.997 0.995 
1 0.970 0.977 0.977 0.995 0.995 0.994 0.998 0.998 0.998 0.997 0.999 0.999 0.999 0.999 0.998 

0.5 0.985 0.988 0.988 0.998 0.997 0.997 0.999 0.999 0.999 0.998 1.000 1.000 1.000 0.999 0.999 
0.25 0.992 0.994 0.994 0.999 0.999 0.999 1.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 

correlation coefficient   N = 50 
T = 500 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.964 0.973 0.972 0.994 0.994 0.993 0.997 0.997 0.997 0.996 0.999 0.999 0.999 0.999 0.997 
2 0.982 0.986 0.986 0.997 0.997 0.996 0.999 0.999 0.998 0.998 1.000 1.000 0.999 0.999 0.999 
1 0.991 0.993 0.993 0.998 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 

0.5 0.995 0.997 0.996 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.998 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
The Table reports Monte Carlo correlation coefficients between the actual and estimated common long memory factor. Results are reported for various values of the fractional differencing 
parameter d (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ, and various values of the (inverse) signal to noise ratio (s/n)-

1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 5, 10, 15, 50, and the number of replications for each case is 2,000. The experiment 
refers to the case of unobserved common long memory factor and no breaks. 




