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OPTION PRICING IN AN IMPERFECT WORLD

GIANLUCA CASSESE

Abstract. In a model with no given probability measure, we consider asset pricing in the presence

of frictions and other imperfections and characterize the property of coherent pricing, a notion

related to (but much weaker than) the no arbitrage property. We show that prices are coherent if

and only if the set of pricing measures is non empty, i.e. if pricing by expectation is possible. We

then obtain a decomposition of coherent prices highlighting the role of bubbles. Eventually we show

that under very weak conditions the coherent pricing of options allows for a very clear representation

from which it is possible, as in the original work of Breeden and Litzenberger, to extract the implied

probability. Eventually we test this conclusion empirically via a new non parametric approach.

1. Introduction

It is unanimous the opinion that over the last decades the theory of finance has produced an

impressive number of beautiful results, particularly in asset pricing. At the same time asset pricing

has originated a vast empirical literature with special attention accorded to testing the classical

conclusion of Breeden and Litzenberger [13] and Banz and Miller [4] – namely that option prices

contain valuable information on the risk neutral density. Thus, many authors incline to believe

that the beauty of modern finance, theoretical or applied, lies in the fact that the crucial property

of risk neutral pricing rests ultimately on the simple and sound tenet that a market populated by

rational economic agents admits no arbitrage opportunities.

Notwithstanding the general opinion, the proof of the claim that absence of arbitrage implies risk

neutral pricing, a result known in the literature as the fundamental theorem of asset pricing, has

long been a challenge for mathematical economists, from Harrison and Kreps [40] and Kreps [51] to

Delbaen and Schachermayer [23]. This key result requires in fact a much more stringent condition

than absence of arbitrage, requiring implicitly that agents have the ability of evaluating prospective

profits from trading in a way that involves a high degree of probabilistic sophistication. Financial

models are then an adequate description of markets populated by individuals whose decision process

is dominated by probability assessments. A convincing amount of empirical observations seems,

however, to document that the attitude of investors towards uncertainty is not easy to reconcile with
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2 GIANLUCA CASSESE

probabilistic rationality but rather generates puzzles which contrast with some of the principles of

financial theory.

In asset pricing models probabilistic sophistication gets along with the sophistication of investors

in keeping up with portfolio policies which prescribe to rebalance at a continuous pace. On the

side of trading, the wedge between financial models and real markets is even more apparent as a

consequence of the general neglect accorded by most models to all sorts of market imperfections,

such as bid/ask spreads, transaction costs or restrictions to trade. Some easily observed facts, such

as those documented by Lamont and Thaler in [52] and [53], or the high ratio of option prices

violating some basic no arbitrage condition, become then difficult challenges for financial theory.

The contribution of this work to the asset pricing literature lies in the choice to describe the

market mechanism under a minimal set of assumptions and yet obtain useful characterizations of

financial prices and testable restrictions. A distinguishing feature of this model, first appeared

in [16] (and, more recently, considered by Riedel [60]), is the absence of a given reference proba-

bility measure which is replaced here with a qualitative description of how agents rank uncertain

outcomes. As in the tradition of subjective probability, we believe that probabilities should be

regarded more as the outcome of choice than as an input to it.

Another distinguishing feature of the present paper is the description of the market mechanism.

Not only we consider bid/ask spreads and (to a minor extent) fixed trading costs but we also allow

for several additional restrictions to trade. First, agents may be prevented from forming portfolios

of arbitrarily large size, so that it may not be possible to run money pumps – in case they exist.

Arbitrage phenomena may thus have a minor impact on economic equilibrium and the no arbitrage

principle looses, as a consequence, part of its appeal. Second, not all portfolios may be shorted,

and not just as a result of trading restrictions. In the presence of credit risk, taking long or short

positions should be considered as two separate investments given that the implicit level of risk

depends on the reliability of the investor playing the short side. Third, we do not identify assets

with their payoff so that it is possible to have two assets promising the same payoff at different

prices. Fourth, the opportunity to invest in some asset may be available only if combined with

other assets. Some risky positions are in fact possible only if a convenient level of collateral is put

up. The impact of margins when shorting options, an empirical fact accommodated in our model,

has rarely been considered in asset pricing.

Eventually, we don’t assume the existence of a riskless asset but rather of a numéraire whose non

negative payoff is used as the discount factor. In contrast with the basic principles of neoclassical

economics, the choice of the numéraire, given the absence of a reference probability, is non neutral

and an arbitrage opportunity arising with a given numéraire may no longer be such with a different

discount factor. This point has a clear interpretation from the point of view of risk management

and is also discussed by El-Karoui and Ravanelli [30].

In the framework outlined above we discuss three distinct, increasingly restrictive notions of

market rationality: coherence, efficiency and absence of arbitrage opportunities. We obtain in
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Theorem 3 a characterization of coherent prices in terms of a set of pricing measures. Our result

is near in spirit to that obtained in the pioneering work of Jouini and Kallal [47] (in an L2(P )

setting) but departs from it is several ways. First, pricing measures can only be applied to claims

with limited discounted losses; second, they in our model are just finitely additive. We obtain

in Theorem 4 exact necessary and sufficient conditions for countable additivity which justify the

conclusion that this additional property should be regarded more as a mathematical artifact than an

economic implication. In Theorem 5 we obtain a decomposition of coherent prices which highlights

the role of bubbles. It is also possible to represent pricing measures with a capacity, similarly to

what assumed in the work of Chateauneuf et al. [19]. The connection between with capacities is

also explored in Cerreia-Vioglio et al. [18].

Of course, over the years several authors have investigated restrictions to trading similar to

those considered here. The first contribution is probably due to Demsetz [25] who represents the

transaction mechanism not differently from the production process and interprets its costs as the

reward of a corresponding input. Leaving aside the microstructure literature, in which transaction

costs are the heart of the matter (see Hasbrouck [41], Huang and Stoll [44] and Stoll [65] for a

small sample), there has been a number of papers, from the pioneering work of Hahn [38] to the

more recent one of Bisin [7], trying to incorporate transaction costs into general equilibrium. In

these studies transaction costs act as a limit to the opportunity of exploiting potential arbitrage

profits and contribute to restoring equilibrium. In modern financial theory the first papers on the

matter have been those of Bensaid, Lesne, Pages and Scheinkman [5] and, most of all, of Jouini

and Kallal [47]. More recent papers include Bouchard [12], Napp [58] (who first models trading

restrictions via closed convex cones), Jouini and Napp [48] (who describe investments as cash flows

with convex cone constraints and assume no numéraire), Kabanov and Stricker [49] (who consider

very general forms of costs) and Schachermayer [62]. With no claim to completeness, one should

also mention the work of Amihud and Mendelson [3], Dermody and Prisman [26], Prisman [59]

and, most recently, Roux [61].

A limit intrinsic to this literature is that, with the noticeable exception of Luttmer [56] (who

extends the classical conclusions of Hansen and Jagannathan [39]), none of the preceding papers

produces testable restrictions. Aiming at applications, we focus then on the options market where

trading is for the most part anonymous and our preceding results assume, as a consequence, a more

tractable form. Our aim is to repropose the classical exercise of Breeden and Litzenberger [13] and

of Banz and Miller [4]. A large number of papers have addressed this issue, particularly with non

parametric techniques (see e.g. [1], [2], [46] and [68]). All of these papers, however, start assuming

that the options market is efficient and free of arbitrage opportunities and need as a consequence

a preliminary, careful filtering of the data. We highlight that, despite being generally overlooked,

this first step is likely to induce a selection bias in estimates.

In our setting assuming efficiency of option prices is unnecessary. We prove in Theorem 7 that for

each convex family of derivatives it is possible to extract an implicit, countably additive measure
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associated with its superhedging price; in Lemma 6 we show how to implement this conclusion

numerically. Thus, despite the weak starting assumptions and the potential role of bubbles, our

result is surprisingly near to that of Breeden and Litzenberger.

We elaborate then a non parametric, two step procedure to estimate the probability implicit

in option prices. In the first step, we construct a set of artificial derivatives whose payoff is (i)

as smooth as required and (ii) approximates the option payoff uniformly. A control parameter,

playing conceptually the same role as the bandwidth in kernel regression, calibrates smoothness vs

goodness of fit. Second, we obtain for these derivatives the implied efficient price, which represents

our non parametric estimate. The implied probability is then, as usual, simply the derivative

of this newly obtained price with respect to the parameter playing the role of the strike price.

Differently from other non parametric approaches – the kernel approach of Aı̈t-Sahalia and Lo [2],

the local polynomial methodology of Aı̈t-Sahalia and Duarte [1] or the constrained least squares

approximation of Yatchew and Härdle [68] – is that we do not perform smoothing of the option

prices but rather of their payoff and compute the corresponding price via superhedging. We show

that with an accurate choice of the smoothing parameter and even if taking into explicit account

sample selection effects, our estimates have desirable convergence properties. We conclude with

some empirical analyses on simulated as well as historical datasets.

The paper is structured as follows. In section 2 we describe the market and the trading mecha-

nism. It is introduced and briefly discussed the notion of a negligible event which is crucial to our

approach. In section 3 we discuss the properties of coherence, efficiency and of absence of arbitrage

and, in the following section 4, we obtain an explicit characterization of coherent prices in terms

of pricing measures. In section 5 we develop a decomposition of coherent asset prices from which

emerges the existence of bubbles. We then move to option markets in section 6 where we prove

a general representation for prices of convex derivatives, involving bubbles and an implicit pricing

measure. In the following section 7 we propose our econometric strategy and prove some properties

of the estimator obtained. In the concluding section 8, we illustrate some empirical investigations

using Monte Carlo simulations as well as market data.

Throughout the paper we adopt the following mathematical symbols and conventions. F(X)

denotes the collection of real-valued functions on some space X and F0(X) designates those f ∈
F(X) whose support {x ∈ X : f(x) 6= 0} is a finite set. At times, we prefer fx to f(x). If f ∈ F(X)

and if −X ⊂ X, the symbol f c will be used to denote the conjugate of f , that is the element of

F(X) defined implicitly by letting

(1) f c(x) = −f(−x) x ∈ X

We set conventionally 0/0 = 0, inf ∅ =∞ and
∑

∅ = 0. R denotes the extended real numbers.

2. Markets, Prices, Investors

Assets traded on the market are identified with a “ticker”, α ∈ A, and are associated with a

corresponding payoff, X(α). The latter is modeled simply as a function on some given space Ω, i.e.
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an element of F(Ω). No mathematical structure is imposed on the set of traded payoffs, neither

topological nor measure theoretic. Although it is natural to interpret Ω as the sample space and

X(θ) as a random quantity (and thus to attribute to our model an intrinsic static nature) we may

as well choose Ω = S×R+, with S the sample space and R+ the time domain and thus give to our

construction a full fledge dynamical structure.

2.1. Trading Strategies. Investors trade claims by taking a finite number of either long or short

positions, in respect of the restrictions imposed by the market. A trading rule is then just an

element of the space F0(A). The trading rule which consists solely of one unit of the claim α ∈ A

will be denoted by δα. To each trading rule θ corresponds the final gain

(2) X(θ) =
∑
α∈A

θ(α)X(α)

Of course, X(δα) = X(α).

Inspired by real markets, one may imagine several restrictions to asset trading, further to the

constraints of respecting the balance of budget and of forming finite portfolios. These include short

selling prohibitions or margin requirements and others that ultimately guarantee the enforcement

of some form of bound to losses and, possibly, to prevent investors from taking positions too large.

The symbol Θ, that denotes hereafter the set of all admissible trades, specifies all restrictions to

asset trading. We assume the following:

Assumption 1. Θ is a convex subset of F0(A) containing the origin.

Under Assumption 1 investors need not be permitted to take positions of either sign, long or short.

This is consistent with the restriction to losses recalled above. Moreover, investors may encounter

restrictions in the choice of the scale of the investment. On this point we depart significantly from

much of the literature on asset pricing with or without transaction costs, see e.g. [47], [49] or [56].

A possible relaxation of this restriction is to allow λθ ∈ Θ for all λ ≥ 0 whenever θ ∈ Θ satisfies

X(θ) ≥ 0. A major implication of this is that arbitrage opportunities, when available, may not

have a disruptive impact on market equilibrium and the no arbitrage principle, as a consequence,

may no longer be crucial. Eventually, we do not require that δα ∈ Θ, i.e. that each asset may be

traded individually due, e.g., to the requirement of putting up margins when taking positions on

derivatives markes.

2.2. Prices. For each α ∈ A we denote by qa(α) and qb(α) its ask and bid price respectively.

Assumption 2. The functions qa, qb ∈ F(A) are such that qa(α) ≥ qb(α) for all α ∈ A.

We highlight that in our model financial prices are defined independently of the asset payoff but

depend rather on the asset name. This apparently innocuous detail makes our approach compatible

with some of the pricing anomalies observed on markets by which the trading of one same asset at

different market locations or simply under different names, may produce different prices (see the

examples on close-end funds or of twin stocks reported in Lamont and Thaler [53]).
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In order to form a given trading strategy θ ∈ Θ an investor pays an ask price for each long

position and earns a bid price for each short one. The corresponding cost amounts thus to

(3) q(θ) =
∑
α∈A

[
θ(α)+qa(α)− θ(α)−qb(α)

]
θ ∈ Θ

It is clear that q(δα) = qa(α) and, if −δα ∈ Θ, that qc(δα) = −q(−δα) = qb(α).

The basic assumption behind (3) is that each position in a portfolio is priced separately. This is in

accordance with trading anonymity prevailing in specialist markets but is certainly not an adequate

description of OTC trading. Options markets, on which we shall focus in the last sections, are quite

well represented by (3) at least for orders which fall below the size limits of the market maker. Large

orders, instead, are in general processed on a separate track and the price is set ad hoc.

Market frictions include, further to the bid/ask spread, also some fixed costs, such as brokerage

fees, which are paid by investors to have access to markets. Given that on each market investors

may trade more than one asset, we may thus think of markets as a partition M of subsets of A and

for each M ∈M we designate by c(M) ≥ 0 the corresponding fixed cost. For example, all options on

a given underlying are traded on the same market, independently of the strike or maturity so that

any option strategy will involve the same fees. Thus the fixed cost associated with an investment

strategy is

(4) c(θ) =
∑

{M∈M:supα∈M |θ(α)|>0}

c(M) θ ∈ Θ

A realistic modeling fixed trading costs turns out to be quite difficult due to their extremely various

nature1. (4) is just one possible model.

The total cost associated with a trading strategy θ amounts to

(5) t(θ) = q(θ) + c(θ) θ ∈ Θ

It is easy to deduce from (3) and (5) some elementary properties:

Lemma 1. The functional q ∈ F(Θ) defined in (3) is (i) positively homogeneous, (ii) subadditive

and (iii) such that

(6) q(f + g) = q(f) + q(g) for all f, g ∈ Θ with fg ≥ 0

The functional t ∈ F(Θ) defined in (5) is subadditive and satisfies t(0) = 0.

In many a paper on asset pricing with frictions, starting with the seminal paper of Jouini and

Kallal [47], subadditivity is the only distinguishing feature characterizing the existence of bid/ask

spreads. Another paper following this choice is that of Luttmer [56]. In Chateauneuf et al. [19],

the pricing functional is represented via a capacity and is then not only subadditive but even

comonotonic, a property somehow akin to (6). In these papers an explicit description of the costs

of trading is omitted (a remarkable exception is [49]) and in so doing, we claim, one risks to miss

1As a matter of fact transaction fees tend to be stepwise increasing with the order size rather then fixed.
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important details of the price mechanism and to mix up effects that may actually originate from

different sources, e.g. bounded rationality or restrictions to market participation. We will refer to

property (6) as anonymity and, although in the following Theorems 3 through 5 this plays no role,

it will be important when dealing with option prices for which, we believe, it is perfectly adequate.

2.3. The Numéraire Asset. Financial models (with the noteworthy exception of [48]) commonly

assume the existence of a riskless asset, often interpreted as a bond, that may equally well serve

the purpose of borrowing or lending. This assumption plays three distinct roles. First, it enables

agents to move wealth back and forth in time in a safe way and thus provides a firm basis to define

the present value of future wealth. Second, it allows to identify explicitly the numéraire of the

economy, removing the arbitrariness that arises whenever several assets may play that same role.

Third, if the investment in the bond is unrestricted then this asset plays a residual role in portfolio

models, guaranteeing the effectiveness of portfolio constraints.

This assumption is however not only strongly counterfactual but more troublesome than it ap-

pears at first sight. First, if the bond is not fully free of risk but just evolves in a predictable

way (as is often the case in continuous time models) then the role of the discounting asset is no

longer neutral as its implicit risk entwines with the one originating from the underlying asset. El

Karoui and Ravanelli [30] discuss this point at length and show that risk measures are affected by

discounting in a significant way, when the discount factor is risky. Moreover, in equilibrium models,

such as those considering the role of noise trading (see [24] or [63]), the riskless nature of the bond

may not survive Walras law unless its elasticity of supply is infinite2. Eventually if investors are

prone to credit risk one should consider borrowing and lending as two different financial contracts,

given that the final payoff is ultimately a function of the reliability of the two intervening parts.

We summarize the preceding discussion in the following:

Assumption 3. There exists α0 ∈ A such that (i) 1 ≥ X(α0) > 0, (ii) if θ ∈ Θ then θ+ λδα0 ∈ Θ

if and only if λ ≥ 0, (iii) c(δα0) = 0, (iv) q0 > 0.

We shall refer to α0 as the numéraire asset and simplify δα0 , X(α0) and q(α0) as δ0, X0, q0.

Assumption 3.(i) is fairly general to allow for virtually all sorts of dynamics but it excludes the

occurrence of default with no recovery value. If one visualizes the numéraire asset as government

bonds one may perhaps consider this restriction not too far from reality given that in market

economies government bonds have always been redeemed at some positive value. Alternatively,

identifying the numéraire asset with the bank account one may argue, likewise, that the bank

account is in most countries assisted by some form of deposit insurance, maybe just in the form

of the role of lender of last resort played by the Central Bank. As in the real world, in our model

investors are unrestricted in deciding the amount to invest in the numéraire asset, but they cannot

take negative positions as this would more appropriately be considered a different asset, as argued

2See the criticisms to this assumption made by Lowenstein and Willard [55].
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above. Property (iii) may perhaps be seen as the outcome of competition among banks, while (iv)

justifies referring to α0 as the numéraire.

We define normalized payoffs as

(7) X̄(θ) = X(θ)/X0

2.4. Evaluating random quantities. An agent’s decision to invest in a given trading strategy

θ ∈ Θ is motivated, we assume, by the payoff X(θ) that it generates. However, a full description of

this quantity for each possible future state ω ∈ Ω is perhaps a satisfactory mathematical approach

but not necessarily a correct model of how random quantities are evaluated. In other words,

economic agents do not regard future outcomes as functions but rather as equivalence classes.

This is clearly the case in expected utility theory and, more generally, in all models in which

choice is based on a probability judgment. Equivalence, however, is not only a positive conclusion

emerging from an accurate probabilistic assessment, as the classical model implicitly suggests. It

often emerges from the inability of individuals to fully compare events or from their attitude to

focus attention on scenarios selectively, a fact often documented in empirical decision theory and

experimental psychology, and often arising in the form of market exuberance or of overly pessimistic

evaluation of risky assets.

According to a well known study by Kahneman and Tversky [50, p. 282], “people are limited

in their ability to comprehend and evaluate extreme probabilities” and are lead, as a consequence,

to ignore highly unlikely events in order to simplify decision problems. Moreover, due to what the

authors call the isolation effect (p. 271), in comparing alternatives people “disregard components

that the alternatives share and focus on the components that distinguish them”. The same idea has

been taken up more recently by Bordalo, Gennaioli and Shleifer [10] according to whom decision

weights distort probabilities by focusing on salient states, i.e. those outcomes on which lotteries

differ most. Here too the authors suggest that decisions are made by processing only part of the

available information, ultimately, in response to the limits encountered in facing the complexity

often implicit in uncertainty3. Gennaioli, Bordalo and Schleifer [11] explore the asset pricing im-

plications of this approach to uncertainty, contributing to explain some known puzzles such as

preference for skewness and the growth-value puzzle.

This stream of ideas suggests us to treat the equivalence among random quantities, i.e. elements

of F(Ω), as a primitive element and to model it via a binary relation ≥∗ on F(Ω). We assume to

this end4:

Assumption 4. The binary relation ≥∗ on F(Ω) satisfies the following properties for f, g ∈ F(Ω):

(i) f ≥∗ g if and only if f − g ≥∗ 0; (ii) f ≥ 0 implies f ≥∗ 0; (iii) f + 2−n ≥∗ 0 for n = 1, 2, . . .

implies f ≥∗ 0; (iv) f, g ≥∗ 0 and a, b ≥ 0 imply af + bg ≥∗ 0; (v) f ≥∗ 0 and A ⊂ Ω imply

f1A ≥∗ 0.

3Gennaioli and Shleifer [36] refer to this kind of decision making process as local thinking.
4We reserve the notation f ≥ g, f ∨ g, f ∧ g or |f | to pointwise ordering.
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All of these properties are self explaining, save (iii) which states that the conclusion f ≥∗ 0

follows whenever, for all practical purposes, f may be replaced with a quantity which satisfies this

criterion.

We present some examples in which this binary relation and its properties are easily interpreted.

Example 1 (Certainty and probability). One may let ≥∗ reflect certainty – by identifying f ≥∗ g
with f ≥ g – or probabilistic sophistication – if, given a (countably additive) probability P , we define

f ≥∗ g to mean P (f ≥ g) = 1. In either case Assumption 4 is trivially satisfied.

Example 2 (Negligible events). In [16] an ideal N of subsets of Ω was introduced as a model of

those sets that agents consider as negligible. Then the relationship “f ≥ g up to negligibility” was

defined to mean that {f − g < −η} ∈ N for all η > 0. It is clear that such partial order satisfies

Assumption 4. The notion of a negligible set seems to capture part of the evidence emerging from

the above discussion and is best exemplified in the context of partial information. Investments

involving a substantial level of credit risk are often evaluated on the basis of some external report

on creditworthiness. Although the importance of credit rating is generally fully perceived, the risk of

misreporting by the external analysts, originating e.g. from conflict of interests, is often overlooked.

Example 3 (Qualitative probability). In his pioneering work on subjective probability, de Finetti

[22] introduced the idea of qualitative probability i.e. to model the judgment “event A is more likely

than B” as a binary relation, A � B satisfying the axioms: (a) completeness, (b) transitivity, (c)

Ω � A � ∅ for all events A and (d) if C∩A = C∩B = ∅ then A � B if and only if A∪C � B∪C.

If f ∈ F(Ω) then one may define

(8) f ≥∗ g if and only if A ∩ {f − g > −η} � A for all A ⊂ Ω

It is easily proved that the above Assumption 4 holds.

Example 4 (Cash-subadditive risk measure). Let ρ : F(Ω) → R be a cash-subadditive, coherent

risk measure (as defined by El-Karoui and Ravanelli [30, Definition 3.1, p. 568]) so that ρ is (a)

positively homogeneous, (b) subadditive, (c) inversely monotone (i.e. f ≤ g implies ρ(f) ≥ ρ(g))

and such that (d) ρ(f + α) ≥ ρ(f)− α when α ∈ R. Then one may define

(9) f ≥∗ 0 if and only if ρc(f1A) ≥ 0 for all A ⊂ Ω

Upon noting that necessarily ρ(0) = 0, it is easily verified that (9) satisfies Assumption 4.

We also define f >∗ g to mean that f ≥∗ g but g 6≥∗ f (so that f >∗ g if and only if f − g >∗ 0)

and f =∗ g whenever f ≥∗ g and g ≥∗ f . Eventually we define (with the convention sup∅ = −∞)

(10) f∗ = sup{α ∈ R : f − α ≥∗ 0} and f∗ = −(−f)∗

The following facts about the partial order introduced above should be noted:
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Lemma 2. The binary relation ≥∗ defines a partial order on F(Ω). Moreover, (i) f ≥∗ 0 if and

only if f∗ ≥ 0; (ii) f >∗ 0 if and only if f∗ ≥ 0 and f∗ > 0; (iii) if f ≥∗ 0, b ≥ 0 and b is bounded

then bf ≥∗ 0; (iv) if f =∗ 0 then |f | =∗ 0; (v) f ≥∗ 0 implies 1{f<−η} =∗ 0 for all η > 0; (vi) if

a ∈ R then (f + a)∗ = f∗ + a and (f + a)∗ = f∗ + a.

Lemma 2.(iii) together with Assumption 3.(i) leads to the conclusion that X̄ ≥∗ 0 implies

X ≥∗ 0 but the converse need not be true. This complication is a special feature of our model

and, notwithstanding the mathematical difficulties it involves, it highlights the role of discounting

in determining the overall level of risk. The statement X ≥∗ 0, in fact, does not exclude losses

but rather that losses larger than η are ignored, for any η or, yet in other words, that losses may

considered as arbitrarily small. The statement X̄ ≥∗ 0 means, on the other hand, that losses from

X may be hedged away by investing an arbitrarily small amount in the numéraire asset. However,

if the numéraire asset does not guarantee a minimum payoff the arbitrarily small losses associated

with θ may require a potentially unbounded amount of the numéraire asset in order to be hedged.

The problem arises whenever losses occur jointly with a low value for X0, as is often the case during

financial crises. We stress that the choice of the numéraire has risk management implications, a

fact first noted by El-Karoui and Ravanelli [30] and central to their discussion of the cash additivity

property of risk measures. The impact of random numéraires on risk measures is also discussed in

Filipovic [33].

The symbol ba∗ (resp. P∗) will henceforth denote the family of finitely additive set functions m

(resp. probabilities) defined on all subsets of Ω and such that f ∈ L1(m) and
∫
|f |dm = 0 whenever

f =∗ 0. We also define

B∗ = {f ∈ F(Ω) : η ≥∗ |f | for some η > 0} and N∗ = {A ⊂ Ω : 1A =∗ 0}(11)

Remark that f ≥∗ 0 implies {f < −η} ∈ N∗ for all η > 0 but the converse is not true.

3. Coherence, Efficiency and Arbitrage

The basic tenet of financial economics is the assumption that markets do not permit arbitrage

opportunities and it is the purpose of this section to discuss this fundamental principle in the

current framework. In fact, if there is agreement on the general statement of such principle, its

translation into a convenient mathematical notion is much less uncontroversial. Definitions vary

from one another mainly for what concerns the ambient space, the choice been in general, since

Harrison and Kreps [40], some topological space, often Lp, assuming the existence of an exogenously

given probability measure.

Given the preceding discussion we propose the following definition:

Definition 1. A functional φ ∈ F(Θ) is said to be coherent (with the no arbitrage principle) if

X̄(θ) ≥∗ 0 implies φ(θ) ≥ 0; φ is said to be efficient if θ, θ′ ∈ Θ and X̄(θ) ≥∗ X̄(θ′) imply

φ(θ) ≥ φ(θ′). Moreover, θ ∈ Θ is an arbitrage opportunity for φ if

(12) X̄(θ) ≥∗ 0 but φ(θ) ≤ 0
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and at least one of the two inequalities is strict.

Although with no restrictions to short selling and a linear pricing functional they are equivalent

properties, in the general case coherence is weaker then efficiency and it does not guarantee absence

of arbitrage per se but it only excludes immediate arbitrage, i.e. the opportunity to earn money

immediately with only negligible losses in the future. It is still possible, with a coherent pricing

functional, that an investment which yields a strictly positive (discounted) payoff is sold for free.

Coherence is thus a rather basic financial property and we shall investigate it in depth.

The inequality X̄(θ) ≥∗ 0 may be rephrased in terms of the minimal amount ρ(θ) to be invested

in the numéraire asset in order to hedge losses away (if possible). Formally5,

(13) ρ(θ) = inf{c > 0 : X̄(θ + cδ0) ≥∗ 0} = (−X̄(θ)∗) ∨ 0

By Assumption 3.(ii), θ + ρ(θ)δ0 ∈ Θ if and only if ρ(θ) < ∞ or, equivalently, if θ belongs to the

set of hedgeable strategies

(14) Θ∗ =
{
θ : X̄(θ)∗ > −∞

}
In fact regulated markets do not allow investors to enter positions with unlimited potential losses

so that Θ∗ is often considered as the set of all reasonable investment strategies – see [23] where a

condition akin to θ ∈ Θ∗ is the basis for the concept of free lunch with vanishing risk.

The following are some elementary properties:

Lemma 3. The functional ρ defined in (13) satisfies (i) positive homogeneity, (ii) subadditivity,

(iii) X̄(θ) ≥∗ X̄(θ′) implies ρ(θ) ≤ ρ(θ′), (iv) ρ(θ) = 0 if and only if X̄(θ)∗ ≥ 0 and (v)

(15) ρ(θ + aδ0) ≥ ρ(θ)− a for all θ ∈ Θ and a ≥ 0

Moreover,

(16) ρ(θ) = sup

{∫
(−X̄(θ) ∨ 0)dµ : µ ∈ P∗

}
If φ : Θ→ R+ possesses properties (iv)–(v) above, then φ ≤ ρ.

In other words, ρ is a coherent, cash subadditive risk measure on Θ6 and ρ(θ + ρ(θ)δ0) = 0.

Theorem 1. Assume that θ + λδ0 ∈ Θ for every λ > 0 and θ ∈ Θ∗. The total cost functional t

defined in (5) is coherent if and only if

(17) t(θ) + q0ρ(θ) ≥ 0 for all θ ∈ Θ

It admits no arbitrage opportunity if it satisfies

(18) t(θ) + q0ρ(θ) > 0 for all θ ∈ Θ such that X̄(θ)∗ + ρ(θ) > 0

5The first equality in (13) is a definition; the second one is easily established.
6However the basic intuition used by El-Karoui and Ravanelli to justify cash subadditivity (namely that the

discount factor is less than 1, see [30, p. 568]) does not apply as we do not impose X0 ≥∗ 1.



12 GIANLUCA CASSESE

As usual, the absence of arbitrage opportunities implies no a priori bound on the price of claims

with potentially unbounded losses as these cannot be combined in a strategy generating a ≥∗ non

negative discounted payoff. Likewise, we have no upper bound on prices as a consequence of short

selling prohibitions.

By adding convexity to fixed costs we obtain:

Theorem 2. Suppose that the cost functional c in (4) is convex. Then t is coherent if and only if

there exists µ ∈ P∗ such that

(19) t(θ) ≥ q0

∫ (
X̄(θ) ∧ 0

)
dµ for all θ ∈ Θ∗

The assumption that t is convex is crucial to prove Theorem 2 but is hard to justify based on

the available empirical evidence which suggests, contrariwise, that fixed costs increase less than

proportionally.

4. Coherent Pricing

Since the early work of Bensaid et al [5] it is known that many properties of asset prices are

revealed by the super hedging functional and our model is no exception. We adapt this concept in

defining the following extended real valued functional:

(20) π(f) = inf
{
λq(θ) : λX̄(θ) ≥∗ f, λ ≥ 0, θ ∈ Θ

}
f ∈ F(Ω)

Clearly, π(1) ≤ q0 and πc(1) ≥ 0; if, in addition, q is coherent, then π(0) = 0 and πc(f) ≤ π(f) for

all f ∈ F(Ω) – see Lemma 9. But even with coherence we cannot exclude the somehow abnormal

situations π(1) = 0 and πc(1) = 0 (see Example 6 below). In particular:

Lemma 4. πc(1) = 0 if and only if q(θ) ≥ 0 for every θ ∈ Θ∗.

Define

(21) K = {f ∈ F(Ω) : π(|f |) <∞} and K∗ = {f ∈ K : f∗ > −∞}

The set K plays in this paper the role of the ambient space, similarly to Lp(P ) in the traditional

setting. It should be stressed that its definition is entirely endogenous and market based and does

not require the introduction of any mathematical structure.

The following is the most important result of this section.

Theorem 3. The price functional q is coherent if and only if for each h ∈ B∗ the set

(22) M =

{
m ∈ ba∗,+ : K ⊂ L(m) and

∫
fdm ≤ π(f) for all f ∈ K∗

}
contains an element mh such that

∫
hdmh = π(h).
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Abusing slightly the terminology introduced in [16], we refer to M as the set of pricing measures,

traditionally represented as stochastic discount factors. One immediately deduces from Theorem 3

that M is a convex set and that

(23)

{∫
hdm : m ∈M

}
= [πc(h), π(h)] for all h ∈ B∗

If the numéraire is traded with no bid/ask spread and short positions are allowed then {‖m‖ : m ∈
M } = {q0}.

As in other papers in this field, Theorem 3 asserts that a coherent price system is consistent with

a linear pricing rule, i.e. a pricing rule appropriate for a market free of imperfections, namely

(24) qm(θ) ≡
∫
X̄(θ)dm ≥ qc(θ) for some m ∈M and all θ ∈ Θ∗

This conclusion somehow supports the view expressed in the microstructure literature that the bid

and ask prices are set starting from a frictionless, linear price, the consensus price. It does not

justify, as we shall argue later on, the common practice of overcoming market structure issues by

computing mid prices.

Given the exclusive emphasis of the literature on countably additive pricing measures, in the next

result we characterize the additional assumptions needed to this end.

Theorem 4. Let πc(1) > 0 and A be a σ algebra including N . Write Pc∗(A ) = {m ∈ P∗ :

m is countably additive on A }. The following are equivalent:

(i) M admits µ 6= 0 which is countably additive in restriction to A ;

(ii) there exists P ∈ Pc∗(A ) such that for all sequences 〈xn〉n∈N in R and 〈fn〉n∈N in S (A ), (a)

π(1)xn + π(fn) ≤ 0,(b) xn → x ≥ 0 and (c)
∫
|fn − f |dP → 0 imply

∫
fdP ≤ −x;

(iii) there is P ∈ Pc∗(A ) such that for all sequence 〈fn〉n∈N in S (A )+, limn

∫
fndP = 0 implies

limn π
c(fn) = 0.

Theorem 4 may be established without assuming πc(1) > 0 upon replacing π with

πε(b) = sup

{∫
bdm : m ∈M , m(Ω) ≥ ε

}
ε−1 b ∈ B∗

The statement would however be less clear to interpret. Property (iii) clarifies that countable

additivity requires some form of continuity of market prices with respect to the L1(P ) norm, a

property which has to be assumed exogenously. Condition (ii) in Theorem 4 is a specially weak

version of the familiar No-Free-Lunch (NFL) of Kreps [51] which however, involves here only simple

functions and does not require a pre assigned ambient space.

Theorem 4 provides some insight as well, suggesting cases in which M may not admit countably

additive elements.

Example 5. Let Ω be a separable metric space and A its Borel σ algebra. Assume that there

exists an increasing net 〈Nα〉α∈A in N∗ with Nα open and Ω =
⋃
αNα. Fix P ∈ Pc(A ). By
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[8, Proposition 7.2.2], 1 = limα P (Nα) = limk P (Nk) for some suitable sequence 〈Nk〉k∈N from

〈Nα〉α∈A. Set fk = 1Nc
k
. Then, limk

∫
fkdP = 0 while

πc(fk) = inf
m∈M

m(N c
k) = inf

m∈M
m(Ω) = πc(1)

so that condition (ii) of Theorem 4 fails. No pricing measure is then countably additive outside of

the special case πc(1) = 0. Actually, decomposing each m ∈M as m = mc+m⊥, with mc countably

additive and m⊥ purely finitely additive (see [28, III.7.8]), and exploiting the inclusion M ⊂ ba∗,

we conclude that all pricing measures are purely finitely additive.

The special situation illustrated in Example 5 highlights that countable additivity of the pricing

measures may not only fail but actually contrast with coherence if the partial order ≥∗ is an a

priori of the model.

5. Decompositions of Coherent Prices

Based on the results of the preceding section, we develop here some decompositions of coherent

price functionals which highlight the role of asset bubbles.

Theorem 5. The price q is coherent if and only if the set M of pricing measures is the unique

non empty, convex, weak∗ compact subset of ba∗ admitting the decomposition

(25) π(f) = β(f) + sup
m∈M

∫
fdm for all f ∈ K

where β : K → R vanishes on B∗.

For each m ∈ M the quantity
∫
X̄(θ)dm is rightfully interpreted as the fundamental value of

the portfolio θ given m. In order to overcome the arbitrariness implicit in having a multiplicity

of possible pricing measures and obtain an unambiguous definition, it is correct to identify the

fundamental value of θ with the quantity

(26) sup
m∈M

∫
X̄(θ)dm =

∫
X̄(θ)dγ

where on the right hand side we used the representation of a supremum of integrals as the Choquet

integral with respect to a supermodular capacity γ having M as its core7. Differently from classical

asset pricing formulas, the fundamental value is not linear here, due to transaction costs. It could be

interpreted as the maximum price paid for θ in an economy identical with the one considered above

but with no transaction costs. The main point is not only the multiplicity of pricing measures,

which would be prevalent even in an economy with incomplete financial markets, but rather the

fact that the intervening expectations do not agree on the set of traded payoffs so that the integral

appearing in (26) is not invariant with respect to the choice of m ∈M .

In general, deviations of prices from fundamental values are interpreted in the literature as evi-

dence of the existence of bubbles. See [20], [45] or [54] for examples of models dealing with bubbles

7The use of capacities in finance was introduced by Chateauneuf et al. [19, Theorem 1.1] precisely with the aim

of modeling transaction costs. In their paper, however, this representation is an assumption (see also [18]).



OPTION PRICING 15

in continuous time. In so doing, however, inefficiency phenomena and the potential contribution of

asset bubbles to an efficient pricing are mixed together.

Inefficiency is measured by the quantity q(θ)−π(X̄(θ)). The empirical literature typically reports

a relatively large number of violations, e.g., of the PUT/CALL parity, by which, say, a CALL option

may be replaced by a less costly synthetic constructed using the corresponding PUT, future and

riskless asset. Luttmer [56], takes this mispricing as the source of subadditivity. For a coherent

price system inefficiencies are a consequence of the restrictions which prevent investors to exploit

them to obtain immediate profits. Empirical explanations, such as those invoked by Lamont and

Thaler [52], draw attention on the fixed costs of trading which impair the arbitrage profits emerging

from considering prices only. However, even fixed transaction costs would play virtually no role if

investors were not somehow constrained in their ability to either take short positions or in choosing

the scale for their investments arbitrarily large.

We deduce from (25) that, even in the absence of market inefficiencies and even with only two

dates, prices may differ from fundamental values by a bubble component, identified with β. For a

correct interpretation of the economic role of bubbles, let us recall the seminal contribution of Gilles

and Leroy [37] who, in an ambient space of bounded sequences interpret deterministic bubbles as

the non summable part of the asset payoff. As such, bubbles are in fact the price of the tail part of

the asset discounted payoff. We can support the same interpretation here by virtue of the inequality∣∣β (X̄(θ)
)∣∣ ≤ lim

n

{
π
((
X̄(θ)+ − n

)+)
+ π

((
X̄(θ)− − n

)+)}
(27)

By (27), β
(
X̄(θ)

)
is rightfully viewed as the component of the price of θ which only depends on

the event
{∣∣X̄(θ)

∣∣ ≥ n} for all n ∈ N, i.e. on the extreme fluctuations of the portfolio discounted

payoff. Observe that necessarily the numéraire price admits no bubbles. (27) suggests in addition

that, like in other models, bubbles are related to the limit of the price of a CALL option as the

strike price increases to infinity. This finding is consistent with similar conclusions linking the

existence of asset bubbles to some mispricings of options (see [20] and [43]). Assuming some form

of monotone continuity of the pricing functional, as in [19], excludes the existence of bubbles.

The following example illustrates the economic role of bubbles in a special case.

Example 6 (Efficient Bubbles). Consider a market on which X̄(θ) ≥∗ 0 for all θ ∈ Θ and assume

that q(θ) = X(θ)∗ −X(θ)∗. The price function is clearly subadditive and positively homogeneous.

Given that q(θ) ≥ 0 for all θ ∈ Θ it is coherent too although it will be inefficient in general. From

Lemma 4 we know that πc(1) = 0. Assume that X0,∗ = 0 and X∗0 = 1 and that, for each n ∈ N there

exists θn ∈ Θ with X(θn) = a+X02−n with a > 0. Then, X̄(θn) ≥ a+2−n so that X̄(θn)∗ ≥ a+2−n.

On the other hand X(θn)∗ = a and X(θn)∗ = a+ 2−n. But then q0 = 1 while

(28) π(1) = inf
X̄(θ)∗>0

q(θ)/X̄(θ)∗ ≤ inf
n

(1 + a2n)−1 = 0

Thus the numéraire is priced inefficiently and, from (25), the only possible non null efficient price

is a bubble.
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6. Option Pricing

In this section we apply our preceding results to option pricing, under the only assumption that

option are traded anonymously (i.e. that (6) holds) and at non negative prices. X > 0 will be

hereafter the payoff of a given underlying and K(X) the set of strike prices (including k = 0) of all

CALL options written on it. The ticker of each of these options, the corresponding strategy and

price will be indicated by αX(k) ∈ A, θX(k) ∈ Θ and qX(k) respectively. Define also

(29) AX = {αX(k) : k ∈ K(X)} and ΘX = {θ ∈ Θ : θ ≥ 0 and θ(α) = 0 whenever α /∈ AX}

(30) πX(h) = inf

{
λq(θ) : λ

X(θ)

X ∧ 1
≥∗ h, λ > 0, θ ∈ ΘX

}
h ∈ F(Ω)

and

(31) KX = {h ∈ F(Ω) : πX(|h|) <∞}

Observe that the restriction of q to ΘX is coherent, given our assumption of non negative prices.

On the other hand, the change of numéraire implicit in (30) entails a different concept of efficiency.

In particular we shall say that options are priced efficiently if

(32) qX(k) = πX

(
X(θX(k))

X ∧ 1

)
k ∈ K(X)

The criterion adopted in (32) is indeed quite weak as, for example, it does not involve PUT

options nor Futures or short positions. This is desirable since the larger the set of derivatives

involved the more likely is it that efficiency may fail. For example, the PUT/CALL parity is well

known to generate a large number of violations as well as the lower bound for CALL options8.

Define the set9

(33) Γ =
{
f ∈ F(R+) : f ≥ 0 = f(0), f convex, lim

n→∞
f(n)/n <∞

}
and observe that

(34) g0
t (x) = (x− t)+ x ∈ R+

defines an element of Γ for all t ≥ 0: let G0 be the corresponding collection. Of course, it is

possible to write other derivatives on X possessing some of the properties of options. In particular,

we denote by G the family of all collections G = {gt : t ∈ R+} such that gt ∈ Γ and

(35) αgs + (1− α)gu ≥ gt whenever α ∈ [0, 1], s, t, u ∈ R+ and αs+ (1− α)u ≤ t

To start discussing the issue of options efficiency, denote by J(X) ⊂ K(X) the subset of strike

prices k possessing the following property

(36) qX(k) ≤ inf {aqX(k1) + (1− a)qX(k2) : k1, k2 ∈ K(X), 0 ≤ a ≤ 1, ak1 + (1− a)k2 ≤ k}

8Cerreia et al. [18] construct a pricing model for markets which are assumed to satisfy the PUT/CALL parity.
9The limit appearing in (33) exists by convexity.
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i.e. which satisfy the butterfly spread condition. One should remark that in the present setting this

is not an arbitrage restriction. In the rest of this section we shall adopt the following

Assumption 5. Let
(
X1{X≤j}

)∗
= j < X∗ for each j ∈ J(X).

The first part of Assumption 5 states that the points included in J(X) are not points of dis-

continuity for X; the second one that each option with strike in J(X) is not out of the money a

priori.

It turns out that CALL options are efficient if and only if they satisfy the butterfly restriction.

Lemma 5. ΘX is priced efficiently if and only if K(X) = J(X).

Carr and Madan [14], assuming the existence of an infinite collection of strike prices, obtain a

result similar to the necessity claim in Lemma 5.

We turn now to the issue of derivatives which may be super hedged exactly. Of course, efficiency

is important to this end as super hedging only involves options which are priced efficiently: from

this perspective, inefficiency is thus comparable to market incompleteness. The next result shows

that derivatives on X with payoff in Γ may hedged perfectly.

Theorem 6. For each G ∈ G and t ∈ R+ there is θGX(t) ∈ ΘX such that

(37)
X(θGX(t))

X ∧ 1
≥∗

gt(X)

X ∧ 1
and qGX(t) ≡ q(θGX(t)) = πX

(
gt(X)

X ∧ 1

)
In Lemma 6 we show how to compute θGX(t) and qGX(t) explicitly. When setting G = G0 as in

(34), the corresponding quantities will be indexed by 0 rather than G0, for simplicity.

The following is the most important result of the paper.

Theorem 7. Each G ∈ G admits βG(X) ≥ 0 and νGX ∈ ca(B(R+))+ such that

(38) qGX(t) = βG(X) +

∫ ∞
t

νGX(x > z)dz for all t ≥ 0

Observe that, by standard rules,

(39)

∫ ∞
t

νGX(x > z)dz =

∫
(x− t)+dνGX(x)

Thus (38), represents the price of the G derivatives as the sum of a bubble part and the funda-

mental value. Observe that necessarily

(40) βG(X) = lim
t→∞

qGX(t)

so that, upon choosing G = G0, the term β0(X) represents the option price as the strike approaches

infinity and contributes to explaining the overpricing of deeply out of the money CALL’s often

documented empirically in some form of the smile effect.

The representation obtained in (38) is akin in principle to (25) but much clearer. The difference

is that the option portfolio θGX(t) is priced efficiently by construction. One deduces immediately

the following:
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Corollary 1. Option prices are efficient if and only if there are β0(X) ≥ 0 and ν0
X ∈ ca(B(R+))+

such that

(41) qX(k) = β0(X) +

∫ ∞
k

ν0
X(x > z)dz for all k ∈ K(X)

In Corollary 1 sufficiency is an easy consequence of the fact that the pricing formula (41), which

holds in general only if k ∈ J(X), is convex in the strike price and of Lemma 5.

The first remarkable implication of Theorem 7 is that it provides a fully explicit CALL function,

qGX , and that this is entirely market based. In empirical analyses the estimation of the CALL

function, dictated by optimal statistical criteria, does not guarantee a direct market interpretation,

although estimates may possess several additional regularity properties that qGX may fail to exhibit.

A second fact arising from (38) is the representation of option prices via a countably additive

measure νGX to which we refer as the probability implicit in option prices although it is clear that

this will in general not be unique but may vary with the choice of the collection G. While such

multiplicity does not diminishes the significance of Theorem 7 it would be desirable to investigate

the role of G more in depth.

Given (38) we may compute

(42) νGX(x > t) = −
dqGX(k)

dk

∣∣∣∣
k=t

for all t ≥ 0

as originally suggested by Breeden and Litzenberger [13] and Banz and Miller [4]. Let us remark,

for the sake of comparison and clarity, that in the model of Black and Scholes, equation (42) gives

the familiar result

(43) νBSX (x > k) = e−rTΦ(d2) with d2 =
ln(S0/k) + (r − 1

2σ
2)T

σ
√
T

so that ‖νBSX ‖ = exp(−rT ). In more general, traditional models, comparing the investment in

a CALL option with strike k and in a zero coupon bond with an investment in the underlying,

efficiency implies the classical bounds for the CALL price, qX ≥ qX(k) ≥ qX − kq0, from which

follows the inequality ‖νX‖ ≤ q0 ≤ 1. However, in a model in which the numéraire asset is not free

of risk such constraints on option prices need no longer hold. In particular, we do not have any a

priori bound to impose on the norm of νX . If, however, we assume in addition X ≥∗ η, we then

obtain

‖ν0
X‖ = ν0

X(x > 0) = lim
k→0

q0
X(0)− q0

X(k)

k
≤ πX(1) ≤ qX(0)

η

A final remark concerns the general treatment of price inefficiency and of the bid/ask spread in

empirical analysis. In most studies a great amount of preliminary work is devoted to cleaning the

dataset from price quotes which utterly violate some basic arbitrage opportunity, often amounting

up to 30% of the sample. Theorem 7 illustrates an approach which allows to obtain the same result

endogenously with no preliminary purging of the data. In this respect our method is similar to that

of Aı̈t-Sahalia and Duarte [1, pp. 16-18] who replace the original prices by weighted least squares

approximations under shape restrictions. For what concerns the bid/ask spread, the common
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approach is to restore price uniqueness by working with mid prices. We argue that this may in

principle introduce distortions in the analysis. To wit, if we assume that the options market is

efficient and given the inclusion ΘX ⊂ Θ∗, one concludes from (24) that for each θX(k) ∈ ΘX

the corresponding mid price may be represented as a risk neutral price qm(k)(θX(k)) for some

m(k) ∈M 10. However, microstructure effects may induce m(k) to depend on k in a relevant way

so that the derivative of the mid option price with respect to the strike may not distinguish between

the probability of the event {X > k} and the distortion of the intervening pricing measure as the

strike changes. As a matter of fact, market makers adjust the bid/ask spread in response to market

pressure. This is the so-called inventory and adverse selection effects, well documented in the

microstructure literature. Huang and Stoll [44], e.g., explicitly model the impact of past trading

on changes of the mid prices11. Another recent paper addressing the structure of the inventory

holding cost is Bollen, Smith and Whaley [9], who document the impact of liquidity on such costs

through the expected time to offsetting trades.

7. Estimating the CALL function

The first step in the direction of implementing Theorem 7 empirically is to choose the collection

G ∈ G ; the second, to compute the quantity qGX(t) explicitly. We solve the latter first.

Lemma 6. Let Assumption 5 hold, choose f ∈ Γ and write (i) f̂ = f(X∗) and di = (X∗ − ji) if

X∗ <∞ or else (ii) f̂ = limn f(n)/n and di = 1. Write also jI+1 = X∗

q =


qX(j0)

qX(j1)
...

qX(jI)

 , f =



f(j1)

f(j2)
...

f(jI)

f̂


, D =



(j1 − j0) 0 . . . 0

(j2 − j0) (j2 − j1) . . . 0
...

...
. . .

...

(jI − j0) (jI − j1) . . . 0

d0 d1 . . . dI


(44)

and w = D−1f . The following programs are mutually equivalent

(45) min
{θ∈ΘX , λ>0}

λq(θ) subject to λ
X(θ)

X ∧ 1
≥∗

f(X)

X ∧ 1

(46) min
a∈RI+1

+

qTa subject to Da ≥ f

and admit as their unique solution

(47) qX(f) = qTw and θX(f) = [θX , θX(j1), . . . , θX(jI)]w

Moreover, w[1] = f(j1)/j1 and

(48) w[i] = sup
x∈R+,x≤ji

f(x)− f(ji−1)

x− ji−1
− f(ji−1)− f(ji−2)

ji−1 − ji−2
i = 2, . . . , I + 1

10Efficiency is necessary to guarantee that the mid price falls in the interval [π(X̄(θX(k))), πc(X̄(θX(k)))]
11See e.g. equation (3), p. 1000.
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For what concerns the choice of G, it is natural to start with the family G0 . By construction

q0
X(k) represents the efficient price of the corresponding option and so it coincides with qX(k) if and

only if k ∈ J(X). More generally one sees that the function q0
X is the highest among the positive,

convex and decreasing curves passing through the knots {(j, qX(j) : j ∈ J(X)}. Aı̈t-Sahalia and

Duarte [1] obtain the same values in the first step of their approach by exploiting a least square

projection technique due to Dykstra [29]. On the data so transformed they apply then a local

polynomial regression, a methodology which generalizes suitably the kernel by replacing constant

functions with polynomials of arbitrary but preassigned degree.

By Lemma 6 we obtain

θ0
X(k) =

I−1∑
i=0

bi(ji+1 − k)+ + bI ĝ
0
k

where the vector b is defined as in (74) and either ĝ0
k = (X∗ − k)+ if X∗ < ∞ or else ĝ0

k = 1. For

definiteness let’s assume X∗ =∞. Then, by (74),

(49) ν0
X(x > t) =

qX(jn)− qX(jn+1)

jn+1 − jn
if jn+1 > t ≥ jn or ν0

X(x > t) = 1 if t ≥ jI

In other words, the implied set function ν0
X coincides – not surprisingly – with the right derivative

of the price function over the discrete set J(X) upon a change of sign.

Despite being a theoretically exact formula, the informational content of (49) is indeed quite

poor empirically, as a consequence of the limited number of options which are priced efficiently

by the market – the size of J(X). In fact ν0
X(x > t) remains constant within two adjacent strike

prices in J(X) or, equivalently, the efficient CALL function q0
X(k) is piecewise linear. Adding the

fictitious efficient prices q0
X(k) to the original data set, thus, does not improve our knowledge of

νX . A quick look at (47) reveals that this follows from options payoffs being piecewise linear.

Obtaining smooth estimates is the goal of all econometric exercises. Although the review of the

different approaches followed in the literature is beyond our scopes (interested readers should refer

to Garcia, Ghysels and Renault [35]), we have a special interest here for nonparametric methods,

nicely reviewed by Yatchew [67].

A forerunner of this stream of studies is the paper by Jackwerth and Rubinstein [46] where the

parameters of a binomial tree are set so as to minimize the distance with actual option prices

given a penalty for deviations from an initial a priori distribution. The absence of arbitrage

assumption is absolutely crucial here and estimating the option price produces simultaneously

an estimate of the risk neutral measure. Aı̈t-Sahalia and Lo [2] estimate the CALL function

using the Nadaraya-Watson kernel and recover the risk-neutral density via the second derivative.

This methodology has optimal asymptotic properties but relatively poor performance in small

samples, a fact common to many non parametric methods and of special concern for options market.

The curse of dimensionality problem, see [67, p. 675], requires to limit as much as possible the

number of state variables. The risk neutral density estimated via kernel smoothing, e.g., need

not be non negative in small samples [2, footnote 11, p. 508]. To circumvent this problem the
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authors propose a semi nonparametric approach in which the price is computed according to the

Black and Scholes formula in which the volatility function is estimated non parametrically. This

choice has the clear advantage of guaranteeing the correct shape of the CALL function. Shape

restrictions are easily accommodated in parametric modeling but are much more troublesome in

the non parametric approach. Papers implementing the nonparametric methodology with shape

restrictions are less numerous and more recent. Further to Aı̈t-Sahalia and Duarte [1] another

example of non parametric techniques incorporating shape restrictions is the paper by Yatchew

and Härdle [68] who follow a least squares approach in Sobolev spaces. Among papers applying

spline techniques to option pricing one should mention Fengler [32] and Yin, Wang and Qi [69].

Although the method followed hereafter is nonparametric, it is radically different from those

adopted by the aforementioned papers as we do not look for smooth estimates of option prices

but rather exact, super hedging prices of smooth derivatives on X. The advantage in doing so, we

believe, is that our estimates maintain a stronger than usual economic interpretation12. Our first

step is then to construct a family Gh ∈ G of derivatives written on X each having a payoff, denoted

by ghk (X), (i) conveniently close to the corresponding CALL option but (ii) twice continuously

differentiable. The latter property guarantees that the corresponding price qhX(k) will be a smooth

function. The class Gh of derivatives will depend on a control parameter, h > 0, which acts in

much the same way as the bandwidth parameter in kernel regression. We give now a more detailed

description.

7.1. The General Approach. Let k, h > 0 be given. Divide the interval [−h, h] into N − 1

intervals of equal length, with endpoints T h = {−h = th1 < . . . < thN = h}, the set of knots. Let

T hk = {k + t : t ∈ T h}. Consider then the following functional (with D2f denoting the second

derivative of f):

(50) Ik(h; f) ≡
N∑
i=1

[
g0
k(k + thi )− f(k + thi )

]2
+ λh3

∫ k+h

k−h

[
D2f(x)

]2
dx

and the program

(51) Ik(h) ≡ min
f∈Γ∩ C 2

Ik(h; f)

It is well known, see [31, Theorem 5.2], that a solution to this problem is given by a C 2 cubic spline

which is linear outside of [k − h, k + h]. Based on the fact that the second derivative of a cubic

spline is locally linear, the infinite dimensional problem (51) conveniently reduces to a (2N − 2)-

dimensional one. Turlach [66] developed a methodology to compute its solution under several

shape restrictions such as (i) f,Df,D2f ≥ 0, i.e. positivity, monotonicity and convexity. To these

constraints we add the following: (ii) f(x) = Df(x) = 0 for x ≤ k − h, (iii) f(k + h) = g0
k(k + h)

12An exception to this conclusion is the XMM methodology proposed by Gagliardini, Gourieroux and Renault [34]

where the GMM is applied with the additional constraint of reproducing a subset of given prices which are considered

a priori to be correct
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and (iv) Df(x) = 1 for x ≥ k + h. Denote

(52) χ(k;h) =
{
f ∈ C 2(R+) : f cubic spline meeting the constraints (i)− (iv)

}
To our purposes the choice of the set of knots plays little role, so we fix N = 5. The existence of

a constrained solution to (51) and the properties of such solution are proved in the next:

Lemma 7. The problem (51) under constraints (i)–(iv) admits one and only one solution, denoted

by ghk ∈ χ(k;h). Let Gh = {ghk : k ∈ R+}. Then, (i) ghk+m(x) = ghk (x −m) for all k,m, x ≥ 0 (so

that Gh satisfies (35)), (ii) g0
k ≤ gh

′
k ≤ ghk whenever h′ ≤ h and (iii) limh→0 supx(ghk − g0

k)(x) = 0.

Actually, in the proof of Lemma 7 we obtain in addition

(53) gh
′
k (x) = ghk

(
k + (x− k)

h

h′

)
h′

h

so that property (iii) follows easy from

0 ≤ qhX(a)− q0
X(a) ≤ πX

(
gha(X)− g0

a(X)

X ∧ 1

)
≤ gha(a)

(a− h) ∧ 1
qX(0) ≤ gh0a (a)

(a− h0) ∧ 1

qX(0)

h0
h(54)

The content of Lemma 7 are clearly illustrated in Figure 1, Panels A and B.

[Figure 1 about here.]

Figure 1, Panel C illustrates the classical trade-off between smoothness and goodness of fit

associated with the choice of the bandwith h. A large value of h makes the smoothing interval

[k − h, k + h] larger and increases, as a consequence, the distance between g0
l and ghk . At the same

time the number of efficiently priced options with strike price included in such interval, i.e. the size

of the set [k − h, k + h] ∩ J(X), grows. This makes the super hedging of the corresponding payoff

more smooth, as is clearly illustrated by the piecewise linear curves dominating the corresponding

payoff. In particular, in Panel C of Figure 1 we assume to have 6 equally spaced efficient strike

prices ranging from 95 to 105. Thus, in the case h = 2, the super hedging portfolio only contains

3 options while for the case h = 10 it contains all 6. As a general rule the super hedging portfolio

contains 1 element more than the set [k−h, k+h]∩ J(X). This suggests to choose h as a function

of the mesh M of the set J(X). In particular we suggest h = δM with δ ≥ 2 so that super hedging

will involve at least 3 options. A further advantage in so doing is that this guarantees uniform

convergence of ghk to g0
k as, by (53),

7.2. Properties of the Estimator. A different and more classical question, somewhat extraneous

to our model but crucial to the empirical option pricing literature, is whether the proposed estimator

converges to the true price function in the presence of disturbance. The classical formulation, which

requires a reference probability measure P on a σ algebra F of subsets of Ω, is

(55) qX(ki) = F (ki) + εi ki ∈ K(X)

where F is the model and is often taken to be a positive, decreasing, convex, C 2 function whereas

the errors εi are identically and independently distributed with zero expectation.
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Lemma 6 gives an explicit functional form to our estimator:

(56) qhX(a) =
∑

j∈J(X)

wha(j)qX(j)

with wha(j) an element of the vector w obtained after choosing f = gha . Thus, wha(j) ≥ 0 and, at

least in the case in which X∗ =∞ as we assume henceforth,
∑

j∈J(X)w
h
a(j) = 1.

At first sight (56) defines a local averaging estimator for which a well established theory suggests

(see e.g. [67, p. 677]) that the MSE converges to 0 as the sample size diverges. However the

sample J(X) on which it is based is obtained after removing from the original sample K(X) those

prices which are not efficient. This selection mechanism introduces a strong form of correlation

between weights and disturbances. A high value of εi makes the price qX(ki) inefficient, affecting

the selection. Not only, but a high value of εi′ is likely to make option with strike ki relatively

more efficient and thus to increase the value of the corresponding weight. After Heckman [42] it

is known that sample selection may lead to biased and inconsistent estimates unless correcting for

a term which proxies the expected value of disturbances conditional on selection. The same issue

has been recently addressed by Das et al. [21] in the nonparametric setting13.

One easily deduces, from comparison with [21, equation (2.6)], that a special feature of (56) is

that the selection of an option price depends not just on variables pertinent to that option but to

the whole sample. On the other hand, the weights wha(i) are just a function of the subsample J(X),

(48). It is thus natural to follow a two step procedure (similarly to Heckman and to Das et al.)

by first conditioning variables on the selection mechanism and then focusing on the unconditional

properties. It is useful to remark to this end that for every subset z of K(X) the condition J(X) = z

identifies a measurable set, given the selection mechanism (36). Let A ⊂ F be the corresponding

(finite) σ algebra and denote by Pz(·) the conditional expectation given the event J(X) = z, for

z ⊂ K(X)14. The variable Pz(ε) will be our correction term.

Theorem 8. Let F : R+ → R+ in (55) be of class C 2 and assume that P (εi) = P (εiεj) = 0 for

i, j = 1, 2, . . . with i 6= j and

Pz(εi) = Pz(εi′) P

(
sup
i
Pz(ε

2
i )

)
<∞ Pz(εiεj) = Pz(εi′εk′)(57)

for all z ⊂ K(X) and i, i′, k, k′ ∈ z. Then, for any compact interval I ⊂ R+

(58) lim
M→0

sup
a∈I

P
(

(qhX(a)− F (a))2
)

= 0

13Let us mention incidentally that, although the sample selection issue is fully apparent in our approach, it is not

less important in virtually all other approaches to empirical option pricing in which, before moving to estimates, data

are filtered to remove or transform observations which utterly violate some of the shape restrictions dictated by the

theory. The sample selection problem is generally dismissed by presenting data cleaning as totally unrelated to the

property of the model.
14The symbol P (f) will denote hereafter the expectation of f with respect to P .
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Condition (57).(i) is akin to the assumption made by Das et al. that the conditional expectation

of the disturbance given selection depends only on the propensity score, see [21, Assumptions 2.1,

2.2 and 2.3]. Condition (57).(ii) is easily satisfied if, e.g., disturbances are uniformly distributed.

Thus the most delicate property in (57) seems to be the last one. Remark, eventually, that an

increase in the sample size, i.e. in the size of the set K(X), does not guarantee in general that the

size of J(X) increases as well and thus that M → 0.

8. Empirical Applications

In this section we are going to test our methodology in three different ways. First, we consider

the classical model of Black and Scholes and verify how close we get to it for a given choice of h.

The exercise is then repeated upon adding a liquidity smile. Second, introducing a simulated, noise

component we construct then confidence intervals. Eventually, we analyze briefly market data.

8.1. Black and Scholes. We set – as in Aı̈t-Sahalia and Duarte [1] – the current underlying

price at 1, 365, maturity equal to 3 months, the interest rate at 4% and assume no dividends. We

consider 25 strike prices equally spaced between 1, 000 and 1, 700, so that M = 28. We use the

same values of that paper for reasons of comparison. We experiment three possible values of the

smoothing parameter h = δM , namely δ = 2, δ = 5 and δ = 10. Volatility is set at 40%. The

CALL function obtained and the implicit probability extracted from it are plotted in Figure 2. In

panel A we represent the difference qhX(k)− qB&S
X (k) and note that, for all choice of h, the smooth

option price is indeed quite near to the Black and Scholes one (which ranges from 388.54 to 42.38).

In Panel B we consider the same approximation from the perspective of implied volatilities. The

approximation is even more precise for what concerns the implicit probability function, Panel C,

with the possible exception of the values around the extrema of the interval, where the options

available for hedging is forcefully very limited. The curve for δ = 2 is plotted on the right hand

axis.

[Figure 2 about here.]

The situation partly changes upon introducing a smile effect into the data. In particular, we let

volatility decrease linearly with k, from 40% to 20%. Of course, the Black and Scholes implicit

probability, νB&S , changes accordingly to incorporate the effect of the strike on volatility. The

comparison is described in Figure 3. The price associated with the smooth options is now slightly

farer away from the true price, particularly for options just out of the money. This phenomenon,

quite limited, soon disappears when we move from δ = 10 to δ = 5. Deviations from the Black and

Scholes benchmark are more interesting when considering the implicit probability as the smooth

functions (deviations) lie below 0 up to 1460 for all choices of h.

[Figure 3 about here.]

8.2. Monte Carlo Simulation. Still inspired by Aı̈t-Sahalia and Duarte [1], we consider, on the

top the Black & Scholes model with smile, a bid ask structure with noise. In particular, we fix the
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basis spread equal to 10% of the option price with a floor at 50 cents and a cap at 2 dollars. The

resulting price is denoted by qa and represents the correct ask price. We proxy liquidity of options

via the factor `(k) = 1 + 5| exp(rτ)k/S0 − 1| which is 1 for options exactly at the money and gets

as high as 2.3 for deeply in and out of the money options. Liquidity is multiplied by a noise factor

which is uniformly distributed on the interval centered at the origin and with width equal to the

spread. The noise reflects the random arrival of flow orders to market makers inducing them to

modify the theoretical ask and bid price to reflect market pressure. We simulate 5, 000 vectors of

25 noisy prices, one for each quoted strike. For each s = 1, . . . , 5000 the resulting price is thus

qsX(k) = qX(k) + 0.5spread(1 + εs`(k))

The introduction of noise produces a number of arbitrage violations which on average amount to

25% of the sample but ranges up to 48% and is above 30% in the 20% of cases. For any simulation

s = 1, . . . , 5000 we compute, via Lemma 6, the corresponding CALL function qh,sX (k) and the

associated probability νh,sX for different values of h, although we only plot h = M . For each strike

price k, we then compute the 2.5%, the 97.5% quantiles and the mean for the simulated samples

{qh,sX (k)}5000
s=1 and {νh,sX (x > k)}5000

s=1 . In Panel A of Figure 4 we plot the results so obtained for the

case δ = 2 as differences from the theoretical price qa. The corresponding outcomes for the implied

volatility and probability are plotted (in absolute terms) in Panel B and C. It is noteworthy that

the true value always falls inside the confidence interval, suggesting that our approach produces

quite reliable predictions. One may also notice that the two confidence bounds are not symmetric,

especially for options deep in the money, reflecting a sort of negative skewness. The same plots

relatively to the choice δ = 10 appear in Figure 5.

[Figure 4 about here.]

Comparing Figures 4 and 5 illustrates how a high value of δ determines smoother estimates and

a narrower confidence interval, although the distance with respect to the model increases as well.

[Figure 5 about here.]

In the literature much emphasis is on the state price density rather than on the implicit proba-

bility so that the focus is actually on the second derivative of the CALL function. We do not pursue

this exercise here, partly because the presumption that a density actually exists has no financial

basis. In part, however, it is our choice to work with cubic splines that limits our ability to explore

densities. Second derivatives in fact exist but are piecewise linear, making the candidate density

function not particularly interesting for applications. Working with splines of higher order than

three is of course a possible way out but would certainly make our results much less manageable.

8.3. Market Data. Eventually, we consider an application to market data by selecting an arbitrary

trading day – 21st October 2010 – on the S&P 500 options market15. We sample ask quotes at

time intervals of one minute each and disregard quotes for which the reported ask size is below

15We make use of the quote prices provided by CBOE Market Data Retrieval (MDR). The dataset contains, among

other things, information on bid and ask prices and volumes. Data are sampled at a frequency of approximately 1

minute
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100. On the subsample so obtained we have options quotes for 180 different strike prices – ranging

from 50 to 2500 – and 12 possible maturities – from 22nd October 2010 to 22nd December 2012.

We focus on options expiring in November 2010 and their quotes at 12:06,12:39 and 13:03, around

the market downturn of Figure 6.

[Figure 6 about here.]

At the three selected times there are 65, 53 and 67 efficiently quoted strike prices respectively

out of 90, 75 and 99. We therefore have a relatively long cross section of strikes but a rather

high incidence of arbitrage violations (on average 30%). The large number of available strikes is

one of the advantages of working with quoted ask prices, as dictated by our model, rather than

transaction prices. We select the quoted strikes so to have the same support, ranging from 670

to 1255. At 12:39 the lesser number of strikes quoted corresponds to a larger maximum interval

between consecutive strikes, i.e. M = 70, while at the other moments strikes do not differ by

more than 25 and 30, respectively. These values influence our choice of the bandwidth parameter

h for which we select three different values: h = 70, 40, 10. As argued above, the smaller h the less

smooth will be the resulting curve. In particular, smoothness breaks down if for some x the interval

[x− h, x+ h] does not contains a quoted strike, a situation which occurs whenever h < M/2. This

is the case for h = 10 and t = 12 : 39. In the following picture we plot for each time t the curves

corresponding to the three distinct values of h.

[Figure 7 about here.]

It is clear that the loss of smoothness, as captured by the difference among the black and the

green lines, is stronger at 12:29 when the distance between quoted strikes is larger.

Eventually we plot, for the value h = 70, the first and last curve together in Figure 8

[Figure 8 about here.]

to capture the effect of the market downturn on ν. The downward shift of the curve reflects the

impact of the changes of the underlying on the implied probability. In particular, the change of

q(X) from 1181.59 to 1172.57 drives the probability of ending up in the money by, say, 10 dollars

from 42.4% to 48.2%.

These last remarks suggest to investigate the dependence of νX on the current value of the

underlying, although outside of our interests here. Another issue that would be important to

address is the time evolution of the pricing measure.

Appendix A. Mathematical Appendix

In this appendix we present some results which we used in the proofs of the main Theorems.

Auxiliary Results

Let us start with two general results.
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Theorem 9. Let Γ ⊂ F(Ω) be a convex cone and define Γ∗ = {f ∈ Γ : f∗ > −∞}. Then

supf∈Γ f∗ ≤ 1 if and only if there exists m ∈ P∗ such that

(59) Γ ⊂ L1(m) and sup
f∈Γ∗

∫
fdm ≤ 0

Proof. By assumption there is no h ∈ Γ1 = {g ∈ F(Ω) : f ≥∗ g for some f ∈ Γ} such that h ≥ 1.

Thus by [17, Proposition 1], there exists a finitely additive probability m defined on the power

set of Ω and such that Γ1 ⊂ L1(m) and
∫
hdm ≤ 0 for all h ∈ Γ1 such that h > −b for some

b ∈ R. N ∈ N∗ implies 1N ∈ Γ1 so that m(N) ≤ 0 and m ∈ ba∗. On the other hand f ∈ Γ∗

implies fn = f1{f≥f∗−2−n} ∈ Γ1 so that
∫
|f |dm =

∫
|fn|dm < ∞, i.e. f ∈ L1(m); moreover,∫

fdm =
∫
fndm ≤ 0. For the converse, suppose that f ∈ Γ and f∗ > 1. Then {f ≤ 1/2} ∈ N∗

and f ∈ Γ∗ so that 0 ≥
∫
fdm =

∫
{f>1/2} fdm ≥ 1/2, a contradiction. �

Lemma 8. Let L ⊂ F(Ω) be a vector lattice containing B. Each positive linear functional φ on

L admits the decomposition

(60) φ(f) = φ⊥(f) +

∫
fdmφ f ∈ L

where mφ ∈ ba and φ⊥ is a positive linear functional vanishing on B.

Proof. See [17, Theorem 1]. �

Theorem 10. Let L ⊂ F(Ω) be a vector lattice containing B∗, C ⊂ L a convex set containing

the origin and γ : F(L ) be ≥∗-monotone, subadditive and positively homogeneous. Then

(61) γ

(
N∑
n=1

fn

)
=

N∑
n=1

γ(fn) f1, . . . , fN ∈ C

if and only if there exist (i) a positive linear functional β on L vanishing on B∗ and (ii) m ∈ ba∗,+
such that L ⊂ L1(m)

(62) γ(h) ≥ β(h) +

∫
hdm and γ(f) = β(f) +

∫
fdm for all h ∈ L , f ∈ C

Proof. (61) holds on C if and only if it holds over the whole convex cone generated by C, by positive

homogeneity and the inclusion 0 ∈ C. Let f1, . . . , fN , g1, . . . , gK ∈ C and λ1, . . . , λN , α1, . . . , αK ∈
R be such that

∑K
k=1 αkgk =∗

∑N
n=1 λnfn. Then,

∑K
k=1 α

+
k gk +

∑N
n=1 λ

−
n fn =∗

∑K
k=1 α

−
k gk +∑N

n=1 λ
+
n fn. By (61) and ≥∗ monotonicity

K∑
k=1

α+
k γ(gk) +

N∑
n=1

λ−n γ(fn) = γ

(
K∑
k=1

α+
k gk +

N∑
n=1

λ−n fn

)

= γ

(
K∑
k=1

α−k gk +

N∑
n=1

λ+
n fn

)

=

K∑
k=1

α−k γ(gk) +

N∑
n=1

λ+
n ı(fn)
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i.e.
∑K

k=1 αkγ(gk) =
∑N

n=1 λnγ(fn). Thus the quantity

φ0

(
N∑
n=1

λnfn

)
=

N∑
n=1

λnγ(fn) f1, . . . , fN ∈ C, λ1, . . . , λN ∈ R

implicitly defines a linear functional on the linear span Lin(C) of C. It is easy to conclude from

(61) and subadditivity that

φ0

(
N∑
n=1

λnfn

)
= φ0

(
N∑
n=1

λ+
n fn

)
− φ0

(
N∑
n=1

λ−n fn

)

= γ

(
N∑
n=1

λ+
n fn

)
− γ

(
N∑
n=1

λ−n fn

)

≤ γ

(
N∑
n=1

λnfn

)
and thus that φ0 ≤ γ on Lin(C). By Hahn Banach we may thus find an extension φ of φ0 to the

whole of L such that φ ≤ π. Given that γ is ≥∗-monotone and positive homogeneous we conclude

that φ is positive and, by Lemma 8, that it admits the decomposition (60). Write β = φ⊥ and

m = mφ. If N ∈ N∗, then 1N =∗ 0 so that 0 = φ(1N ) = β(1N ) + m(N) = m(N) i.e. m ∈ ba∗,+.

Likewise, if g ∈ L then 0 ≤ β(|g|1N ) = φ(|g|1N ) ≤ γ(|g|1N ) ≤ 0 so that β vanishes on B∗, as

claimed. The converse is obvious. �

Results from section 2

Proof of Lemma 1. In any lattice X the operation x → x− is subadditive, that is (x + y)− ≤
x− + y−. Thus, if X = {X(α) : α ∈ A} and f, g ∈ F0(X )

q(f + g) =
∑
X∈X

{
[(f + g)(X)+]a(X)− [(f + g)(X)−]b(X)

}
=
∑
X∈X

{
(f + g)(X)a(X) + (f + g)(X)−(a(X)− b(X))

}
≤
∑
X∈X

{
(f + g)(X)a(X) + (f(X)− + g(X)−)(a(X)− b(X))

}
= q(f) + q(g)

Positive homogeneity is clear. Suppose now that f, g ∈ F0(X) satisfy fg ≥ 0 that is f(X) and

g(X) have the same sign for all X ∈ X . It is then obvious that (f + g)(X)− = f(X)− + g(X)−

from which the claim follows. �

Proof of Lemma 2. f ≥ f implies f ≥∗ f . f ≥∗ g and g ≥∗ h are equivalent to f − g ≥∗ 0

and g − h ≥∗ 0 so that f − h = (f − g) + (g − h) ≥∗ 0 by Assumption 4. Let f ≥∗ 0. Then

f − α ≥∗ 0 for all α ≤ 0 so that, from (10), f∗ ≥ 0. On the other hand, f∗ ≥ 0 means that

f + 2−n ≥∗ 0 for n = 1, 2, . . . so that f ≥∗ 0 by Assumption 4. By definition f >∗ 0 if and only

if f∗ ≥ 0 and −f 6≥∗ 0 or, equivalently, (−f)∗ 6≥ 0 i.e. f∗ > 0. Let f and b be as in (iii). The
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claim is clearly true if b is simple, by Assumption 4.(iii) and (iv). Denote by bn and bn two simple

functions such that bn ≥ b ≥ bn ≥ 0 and supω |b − bn|(ω) + |b − bn|(ω) < 2−n. Fix η > 0 and let

b(n) = bn1{f<−η} + bn1{f≥−η}. Then,

fb = (f + η)b− bη ≥ (f + η)bn1{f≥−η} + (f + η)bn1{f<−η} − bη ≥ fb(n)− 2−nη

Thus, by Assumption 4.(ii), fb ≥∗ fb(n) while fb(n) ≥∗ 0 follows from Assumption 4.(iii)–(iv)

and b(n) being simple. Let f =∗ 0, i.e. f ≥∗ 0 and −f ≥∗ 0. Then −f+,−f− ≥∗ 0, by

Assumption 4.(iv) so that −|f | ≥∗ 0; the converse is obvious. Eventually, assume that f ≥∗ 0.

Then −η1{f<−η} ≥ f1{f<−η} ≥∗ 0 so that −1{f<−η} ≥∗ 0. The last property is obvious. �

Results from section 3.

Proof of Lemma 3. The only non trivial property is subadditivity. Let a ≤ f∗ and b ≤ g∗. Then

f + g − (a+ b− 2−n) ≥∗ 0 i.e. a+ b ≤ (f + g)∗. We conclude that (f + g)∗ ≥ f∗ + g∗. But then,(
X̄(θ1)∗ ∧ 0

)
+
(
X̄(θ2)∗ ∧ 0

)
≤
(
X̄(θ1)∗ + X̄(θ2)∗

)
∧ 0 ≤ X̄(θ1 + θ2)∗ ∧ 0

whenever θ1, θ2, θ1 + θ2 ∈ Θ. We conclude that ρ is indeed subadditive. Let φ : Θ → R+ satisfy

(iv) and (v). If ρ(θ) =∞ the inequality ρ(θ) ≥ φ(θ) is obvious; if θ ∈ Θ∗, then X̄(θ+ ρ(θ)δ0) ≥∗ 0

so that 0 = φ(θ+ ρ(θ)δ0) ≥ φ(θ)− ρ(θ). Observe that, by (10), f − (f∗− 2−n) ≥∗ 0 so that f ≥∗ f∗
and {f − f∗ < −η} ∈ N∗ and thus µ(f − f∗ < −η) = 0 when µ ∈ ba∗. Thus, µ ∈ P∗ implies

X̄(θ) ∧ 0 ∈ L(µ) and

sup
η>0

(X̄(θ)∗ ∧ η)− η ≤ sup
η>0

∫
{X̄(θ)≥X̄(θ)∗−η}

(X̄(θ) ∧ 0)dµ ≤
∫

(X̄(θ) ∧ 0)dµ

and ∫
(−X̄(θ) ∧ 0)dµ̄ ≤ (−X̄(θ)∗ + η ∧ 0)

from which we deduce (16). �

Proof of Theorem 1. If θ ∈ Θ∗, let θ′ = θ + ρ(θ)δ0 ∈ Θ. By Lemma 2 and Assumption 3.(iii),

X̄(θ′) = X̄(θ) + ρ(θ) ≥∗ 0 t(θ′) = t(θ) + q0ρ(θ) X̄(θ′)∗ = X̄(θ)∗ + ρ(θ)(63)

Let t be coherent and θ ∈ Θ. If ρ(θ) = ∞ then (17) is trivially true; otherwise, 0 ≤ t(θ′) =

t(θ) + ρ(θ)q0. If, conversely, X̄(θ) ≥∗ 0, i.e. ρ(θ) = 0, then (17) implies t(θ) ≥ 0 so that t is

coherent.

We may restrict attention to θ ∈ Θ∗. Assume that X̄(θ)∗ + ρ(θ) > 0. Then, by (63), θ′ is an

arbitrage opportunity unless t(θ) + q0ρ(θ) > 0. (18) is thus necessary for absence of arbitrage.

Conversely, assume that t meets (18). Choose θ ∈ Θ and fix ε ≥ 0 arbitrarily but such that

X̄(θ)∗ + ρ(θ) + ε > 0. By assumption, θε = θ + [ε + ρ(θ)]δ0 ∈ Θ and X̄(θε)
∗ + ρ(θε) > 0. If (18)

holds then

0 < t(θε) + q0ρ(θε) = t(θ) + [ε+ ρ(θ)]q0
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so that t(θ)+ρ(θ)q0 > −εq0 for all ε > 0. Thus t(θ)+ρ(θ)q0 ≥ 0 for all θ (so that t is coherent) and,

if X̄(θ) >∗ 0, then t(θ) = t(θ)+ρ(θ)q0 > 0. We conclude that t admits no arbitrage opportunity. �

Proof of Theorem 2. Under the current assumptions t is a convex functional. Consider the sets

H0 =
{(
X̄(θ) ∧ 0

)
q0 − t(θ) : θ ∈ Θ

}
and H = {f ∈ F(Ω) : λh ≥∗ f for some h ∈H0, and λ ≥ 0}. If λ1, . . . , λN > 0 and θ1, . . . , θN ∈
Θ then

∑N
n=1 λn

[
(X̄(θn) ∧ 0)q0 − t(θn)

]
≤ λ

[
(X̄(θ) ∧ 0)q0 − t(θ)

]
with λ =

∑N
n=1 λn and θ =∑N

n=1(λn/λ)θn ∈ Θ. Moreover, hn ≥∗ fn for n = 1, . . . , N implies
∑N

n=1 hn ≥∗
∑N

n=1 fn. Thus

H is a convex cone which, by (17), contains no element f with f∗ > 1. We thus conclude from

Theorem 9 that there exists a probability µ ∈ ba∗ such that

H ⊂ L1(µ) and sup
{f∈H :inf f>−∞}

∫
fdµ ≤ 0

Moreover, if θ ∈ Θ∗ and f = (X̄(θ) ∧ 0)− t(θ) then

0 ≥
∫
{X̄(θ)>X̄(θ)∗−η}

fdµ =

∫
{X̄(θ)>X̄(θ)∗−η}

(X̄(θ) ∧ 0)dµ− t(θ) =

∫
(X̄(θ) ∧ 0)dµ− t(θ)

which proves the direct implication. The converse follows from Theorem 1 and (16). �

Results from section 4.

Lemma 9. The functional π : F(Ω)→ R is ≥∗-monotone, positively homogeneous and satisfies

π(X̄(θ)) ≤ q(θ) θ ∈ Θ and π(f + g) ≤ π(f) + π(g)(64)

for all f, g ∈ F(Ω) for which the sum π(f) + π(g) is defined. Moreover, the following properties are

equivalent: (i) q is coherent, (ii) π(0) = 0, (iii) πc(1) ≤ q0 and (iv)

(65) |π(b)| <∞ and π(f) + π(b∗) ≥ π(f + b) ≥ π(f) + πc(b∗) for all f ∈ F(Ω), b ∈ B∗

Proof. Monotonicity, positive homogeneity and the first part of (64) are obvious properties of π.

Assume that f, g ∈ F(Ω) are such that π(f)+π(g) is a well defined element of R. Thus if, say, π(f) =

∞ then π(f) + π(g) =∞ and the second part of (64) is obvious. If, alternatively, π(f), π(g) <∞,

then there exist λf , λg ≥ 0 and θf , θg ∈ Θ such that λf X̄(θf ) ≥∗ f and λgX̄(θg) ≥∗ g so that

λ(X̄(θ′f ) + X̄(θ′g)) ≥∗ f + g, with λ = λf + λg and θ′f = θfλf/λ and θ′g = θgλg/λ (with the

convention 0/0 = 0). Given that, by Assumption 1, θ = θ′f + θ′g ∈ Θ we conclude that

π(f + g) ≤ λq(θ) ≤ λ(q(θ′f ) + q(θ′g)) = λfq(θf ) + λgq(θg)

and, the inequality being true for all λf , λf and θf , θg as above, the second half of (64) follows.

(64) also implies π(0) ≤ 0. It is then clear that (ii) is equivalent to (i). If θ ∈ Θ and λ ≥ 0 are

such that λX̄(θ) ≥∗ −1 then (1 + λ)X̄
(
λθ+δ0
1+λ

)
≥∗ 0 so that

π(0) ≤ (1 + λ)q

(
λθ + δ0

1 + λ

)
≤ λq(θ) + q0
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We thus conclude that q0 ≥ π(0) + πc(1) and so that π(0) = 0 implies πc(1) ≤ q0. If b ∈ B∗, then

(64) implies |b|∗π(−1) ≤ π(b) ≤ |b|∗π(1) so that from (iii) we deduce |π(b)| < ∞. But then the

sums π(f) + π(b) and π(f + b) + π(−b) are well defined for each f ∈ F(Ω) and the second half

of (65) follows from (64). Conversely, by (65) we conclude that π(0) = nπ(0) for each n ∈ N and

π(0) ∈ R so that π(0) = 0. �

Proof of Lemma 4. If πc(1) = 0 and X̄(θ) ≥∗ 0 then q(θ) ≥ π(−1). If X̄(θ)∗ < 0 then

X̄(θ)/|X̄(θ)∗| ≥∗ −1 and so q(θ)/|X̄(θ)∗| ≥ 0. Conversely, λX̄(θ) ≥∗ −1 and λ > 0 imply θ ∈ Θ∗

and thus q(θ) ≥ 0 so that π(−1) ≥ 0. �

Denote by

(66) Φ(π) = {φ ∈ F(K ) : φ positive, linear and such that φ ≤ π}

Adopting the notation of Lemma 8 we can also write

(67) M (π) = {mφ : φ ∈ Φ(π)} and Φ⊥(π) =
{
φ⊥ : φ ∈ Φ(π)

}
Proof of Theorem 3. By Lemma 9, if q is coherent then the space K is a vector sublattice

of F(Ω) containing B∗ and π a ≥∗-monotone, positively homogeneous and subadditive functional

on K . Fix h ∈ B∗ and consider the set Ch = {λh : 0 ≤ λ ≤ 1}. By Theorem 10 there is a

positive linear functional βh on K vanishing on B∗ and mh ∈ ba∗,+ such that K ⊂ L1(mh) and

π(f) ≥ βh(f) +
∫
fdmh for all f ∈ K and such that π(h) = βh(h) +

∫
hdmh =

∫
hdmh. Suppose

that g ∈ K∗. Then, g− ∈ B∗ and thus

π(g) ≥ βh(g) +

∫
gdmh = βh(g+) +

∫
gdmh ≥

∫
gdmh

so that mh ∈M . Conversely, if m ∈M and X̄(θ)∗ ≥ 0 then (22) implies

q(θ) ≥ π(X̄(θ)) ≥
∫
X̄(θ)dm =

∫
X̄(θ)1{X̄(θ)>X̄(θ)∗−ε}dm ≥ [X̄(θ)∗ − ε]m(Ω) ≥ −εm(Ω)

for every ε > 0 so that q is coherent. �

Proof of Theorem 4. Choose 0 6= m0 ∈ M to be countably additive on A and write P =

m0/‖m0‖. If the sequences 〈fn〉n∈N and 〈xn〉n∈N satisfy the conditions in (ii), then,∫
fdP = lim

n

∫
fndP ≤ ‖m0‖−1 lim

n
π(fn) ≤ −π(1)/‖m0‖ lim

n
xn ≤ −x

so that (ii) holds. Fix P as in (ii) and, assuming that (iii) fails, pick a sequence 〈fn〉n∈N in

S (A )+ which converge to 0 in L1(P ) but such that infn π
c(fn) > c for some c > 0. Write

hn = −fnπ(1)/πc(fn). Thus hn converges to 0 in L1(P ) but xn = −π(hn)/π(1) = 1 in contrast

with (ii). Let now P be as in (iii) and suppose that for each m ∈M we may construct a sequence

〈Fn(m)〉n∈N in A such that limn P (Fn(m)) = 0 < x(m) ≡ infnm(Fn(m)). For each such m,
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choose n sufficiently large and define hn(m) = 1Fn(m)x(m)−1 so that
∫
hn(m)dP < 2−n while∫

hn(m)dm ≥ 1. The convex set Hn =
{
h ∈ S (A )+ :

∫
hdP < 2−n

}
is thus such that

inf
m∈M

sup
h∈Hn

∫
hdm ≥ 1

Observe that M is convex and weak∗ compact and that Hn is convex. By the minimax Theorem

of Sion [64, Corollary 3.3], there exists then hn ∈Hn such that

πc(hn) = inf
m∈M

∫
hndm ≥ 1/2

The sequence 〈hn〉n∈N so obtained contradicts (iii). �

Lemma 10. If q is coherent then the set M defined in (22) is non empty, convex and weak∗

compact subset of ba+. Moreover, M = M (π) (see (67)).

Proof. If q is coherent, M is non empty by Theorem 3. By (22), M (π) ⊂M . Thus, we only need

to prove that M is closed in the weak∗ topology of ba and that M ⊂M (π). Let m0 be an element

of the closure of M and f ∈ K . Then m0 ∈ ba∗,+ and∫
(|f | ∧ n)dm0 ≤ sup

m∈M

∫
(|f | ∧ n)dm ≤ sup

m∈M

∫
|f |dm ≤ π(|f |)

so that the sequence 〈|f | ∧ n〉n∈N is Cauchy in L1(m0). Moreover, for all c > 016

v(m0)(|f | > c+ |f | ∧ n) ≤ v(m0)(|f | > c+ n) ≤ 1

c+ n

∫
[|f | ∧ (c+ n)]dm0 ≤

π(|f |)
c+ n

which proves that |f |∧n converges to |f | in L1(m0) and so that f ∈ L1(m0) [28, III.3.6] . Moreover,

if f ∈ K∗ ∫
fdm0 = lim

n

∫
(f ∧ n)dm0 ≤ sup

m∈M

∫
fdm ≤ π(f)

which proves that m0 ∈M . Observe that by Tychonoff Theorem [28, I.8.5], the set Φ(π) is compact

in the topology induced on it by K . Let 〈mγ〉γ∈Γ be a net in M (π) converging to m ∈M in the

weak ∗ topology of ba. For each γ ∈ Γ there exists φγ ∈ Φ(π) such that mγ = mφγ . By moving to

a subnet if necessary we obtain that the net 〈φγ〉γ∈Γ converges in the topology induced by K to

some limit φ ∈ Φ(π). Denote by mφ the part of φ representable as an integral, as in (60). If b ∈ B

we have, by the inclusion B ⊂ K that follows from q being coherent,∫
bdmφ = φ(b) = lim

γ
φγ(b) = lim

γ

∫
bdmγ =

∫
bdm

so that m = mφ ∈M (π). �

16By v(m) we total variation of m as defined in [28, III.1.9].
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Results from section 5

Proof of Theorem 5. Indeed if q is coherent then M is a non empty, convex and weak∗ compact

subset of ba, by Lemma 10; moreover, if m ∈M and f ∈ K then, by (22),
∣∣∫ fdm∣∣ ≤ ∫ |f |dm ≤

π(|f |) < ∞ so that (25) may be regarded as an implicit definition of β. Observe that from (22)

and Lemma 10 we obtain

inf
φ∈Φ(π)

φ⊥(f) ≤ π(f)− sup
m∈M

∫
fdm

= β(f)

≤ sup
φ∈Φ(π)

φ⊥(f) + sup
µ∈M

∫
fdµ− sup

m∈M

∫
fdm

= sup
φ∈Φ(π)

φ⊥(f)

(68)

Given that supφ∈Φ(π) φ
⊥(f) = 0 for all f ∈ B∗, as we showed in the proof of Theorem 3, we

conclude that β vanishes on B∗. This proves existence. To show uniqueness, suppose that β̄ and

M̄ is another pair with the same properties of β and M and for which the decomposition (25)

holds. If µ ∈ M̄ \M , then there exists f ∈ B such that supm̄∈M̄

∫
fdm̄ ≥

∫
fdµ > supm∈M

∫
fdm

but β̄(f) = β(f) = 0, a contradiction of (25). To show that (25) is sufficient for q to be coherent,

let f ∈ K∗. Then, f− ∈ B∗ and thus β(f) = β(f+) ≥ 0 and thus

π(f) ≥ sup
m∈M

∫
fdm ≥ f∗ sup

m∈M
‖m‖ = f∗π(1)

Therefore, if X̄(θ) ≥∗ 0 for some θ ∈ Θ then q(θ) ≥ π(X̄(θ)) ≥ 0 and q is coherent. �

Corollary 2. The functional β defined in (25) is positive and satisfies

(69) − lim
n
{π(f)− π(f ∨ −n)} ≤ β(f) ≤ lim

n
{π(f)− π(f ∧ n)} f ∈ K

and

(70) β(f) = lim
n
{π(f)− π(f ∧ n)} f ∈ K∗

Proof. Positivity of β follows from (68) and the fact that φ⊥(f) ≥ 0 for each f ∈ K∗ and φ ∈ Φ(π).

Moreover,

sup
m∈M

∫
fdm = sup

m∈M
lim
n

∫
(f ∨ −n)m ≤ lim

n
sup
m∈M

∫
(f ∨ −n)m ≤ lim

n
π(f ∨ −n)

Likewise, given that φ⊥(f ∧ n) ≤ 0 for all f ∈ K and φ ∈ Φ(π) by Lemma 10

sup
m∈M

∫
fdm = lim

n
sup
m∈M

∫
(f ∧ n)dm = lim

n
sup
φ∈Φ
{φ(f ∧ n)− φ⊥(f ∧ n)} ≥ lim

n
π(f ∧ n)

and (69) is proved. (70) follows from

β(f) = π(f)− sup
m∈M

∫
fdm = π(f)− sup

m∈M
lim
n

∫
(f ∧ n)dm = π(f)− lim

n
sup
m∈M

∫
(f ∧ n)dm

and the fact that supm∈M

∫
(f ∧ n)dm = π(f ∧ n) whenever f ∈ K∗. �
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Results from section 6

Theorem 11. If ΘX is priced efficiently then there are βX ∈ R+ and νX ∈ ca (B(R+))+ such that

(71) qX(k) = βX +

∫ ∞
k

νX(x > t)dt k ∈ K(X)

Proof. Assume that ΘX is priced efficiently as of (32). In restriction to KX the functional πX is

then ≥∗ monotonic, positively homogeneous and subadditive. Moreover, B∗ ⊂ KX . By (32) and

(6), πX is additive on the convex set CX = {X(θ)
X∧1 : θ ∈ ΘX} which contains the origin. Then

Theorem 10 applies. Let φX : KX → R be the ≥∗ positive linear functional such that φX ≤ πX

and that φX = πX in restriction to CX . Observe that (X − k)+/X ∧ 1 ∈ KX for all k ≥ 0 and so

it is possible to define the function F : R+ → R+ implicitly by letting

F (k) = φX

(
(X − k)+

X ∧ 1

)
k ≥ 0

Of course, F (k) = qX(k) for all k ∈ K(X); in addition, it is decreasing and convex. By a standard

result on convex functions, we may write

(72) F (k2) = F (k1) +

∫ k2

k1

f(t)dt 0 < k1 < k2

where, for definiteness, we take f(t) to be the right derivative of F for t ∈ R+. Suppose that

{u ≥ X > t} ∈ N∗ for some 0 ≤ t < u and fix 0 < h ≤ (u − t)/2. There is then a negligible set

outside of which each of the options with strike prices t, t+ h, u− h, u expires in the money if and

only if all the others do. In other words

(X − t)+

X ∧ 1
+

(X − u)+

X ∧ 1
=∗

(X − (t+ h))+

X ∧ 1
+

(X − (u− h))+

X ∧ 1

from which it follows

F (t) + F (u) = φX

(
(X − t)+

X ∧ 1
+

(X − u)+

X ∧ 1

)
= φX

(
(X − (t+ h))+

X ∧ 1
+

(X − (u− h))+

X ∧ 1

)
= F (t+ h) + F (u− h)

Thus,

F (u)− F (u− h)

h
=
F (t+ h)− F (t)

h

i.e. the left derivative of F at u and the right derivative of F at t coincide. There exists then a set

D ⊂ R+ with R+\D at most countable and such that {X > u} 4N1 = {X > t} 4N2 for t, u ∈ D
and N1, N2 ∈ N∗ imply f(t) = f(u). It is therefore possible to define a positive set function λ̂0 on

the collection {{X > t} 4N : t ∈ D, N ∈ N∗} implicitly by letting

(73) λ̂0({X > t} 4N) = −f(t) t ∈ D, N ∈ N∗
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Since f is negative and increasing (by convexity of F ) the identities λ0(Ω) = −f(0), λ0(∅) = 0 and

(74) λ0({X > t} 4N) = sup
{u∈D:u≥t}

λ̂0(X > u) t ∈ R+, N ∈ N∗

define a positive extension λ0 of λ̂0 to the family A0(X) of subsets of Ω formed by Ω, ∅ and all

sets of the form {X > t} 4 N with t ∈ R+ and N ∈ N∗. To see that this indeed defines an

extension, observe that, if there is t∞ ∈ D such that {X > t∞} = ∅ then F (t∞ + h) = F (t∞) and

so f(t∞) = 0. Likewise, if {X > t0} = Ω for some t0 ∈ D, then {X > t0} = {X > 0} so that,

as seen above, f(t0) coincides with f(0). If either t0 or t∞ do not exist, then one can choose the

corresponding value of λ0 arbitrarily. Since the elements of A0(X) are linearly ordered by inclusion

it follows that if Ai = {X > ti} 4Ni and Ni ∈ N∗ for i = 1, 2 with t1 ≥ t2 then

λ0(A1) + λ0(A2) = λ0(X > t1) + λ0(X > t2)

= λ0({X > t1} ∩ {X > t2}) + λ0({X > t1} ∪ {X > t2})

= λ0(A1 ∩A2) + λ0(A1 ∪A2)

as {X > t1} 4 (A1 ∩ A2), {X > t2} 4 (A1 ∪ A2) ⊂ N1 ∪ N2 ∈ N∗. It follows from [6, Theorems

3.1.6 and 3.2.10], that there exists a unique extension λ ∈ ba(A (X))+ of λ0 to the algebra A (X)

generated by A0(X) and thus such that λ(N) = 0 when N ∈ N∗. Let

(75) βX = lim
k→∞

F (k)

Then we obtain from (72)

βX = F (k)−
∫ ∞
k

λ(X > t)dt k ≥ 0

To eventually get (71), write

A =
{
A ⊂ R+ : X−1(A) ∈ A (X)

}
It is clear that A is an algebra containing the algebra A (R+) generated by the left open intervals

of R+. Define then λX ∈ ba(A (R+)) by letting λX(A) = λ(X ∈ A) and observe from (72) that∫
R+
λX(x > t)dt = −

∫
R+
f(t)dt ≤ F (0) so that limt λX((t,∞)) = 0. Exploiting standard rules of

the Lebesgue integral and integration by parts we obtain∫
R+

λ(X > t)dt =

∫
R+

λX(x > t)dt =

∫
R+

xdλX(x) =

∫
xdλX(x)

as λX(x < −t) = 0 for all t ≥ 0. It follows from [27, Lemma 2, p. 191] that, uniquely associated

with λX is its conventional companion νX ∈ ca(A (R+))+ with the property that

(76)

∫
h(x)dλX =

∫
h(x)dνX

for any continuous function h : R→ R for which either integral is well defined. The extension from

A (R+) to the generated σ algebra B(R+) is standard. Thus the representation (71) is implicit in

ΘX being priced efficiently. Suppose that β̂X ≥ 0 and ν̂X ∈ ca(B(R+))+ is another pair for which
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the representation (71) holds. Then, βX − β̂X =
∫∞
k [ν̂X(x > t)− νX(x > t)]dt for all k ≥ 0 which

implies βX = β̂X . �

Proof of Lemma 5. The direct implication is obvious. For the converse, assume that qX(k) pos-

sesses the mentioned properties and thatK(X) = J(X). Represent θ ∈ ΘX as θ =
∑

j∈J(X) θjθX(j).

From Lemma 6 in the Appendix we know that there exists θ∗ =
∑

j∈J(X) θ
∗
j θX(j) ∈ ΘX such that

X(θ∗)

X ∧ 1
≥∗

X(θ)

X ∧ 1
and q(θ∗) = πX

(
X(θ)

X ∧ 1

)
Moreover, from (47) and (79) we conclude that for n = 0, . . . , I − 1

n∑
i=0

θ∗i =

∑
i≤n θi(jn+1 − ji)−

∑
i≤n−1 θi(jn+1 − ji)

jn+1 − jn
=

n∑
i=0

θi

and θ∗I = θI so that θ = θ∗ and thus q(θ) = πX(X(θ)/(X ∧ 1)). ΘX is thus priced efficiently. �

Proof of Theorem 7. The existence of θX(gt) satisfying (37) is proved in Theorem ?? in the

Appendix. Consider the function t→ qGX(t). It is clear that qGX(t) ≥ 0 and that, when a, t, u, z are

as in (35) then

qGX(z) = πX

(
gz(X)

X ∧ 1

)
≤ πX

(
agt(X) + (1− a)gu(X)

X ∧ 1

)
≤ aπX

(
gt(X)

X ∧ 1

)
+ (1− a)πX

(
gu(X)

X ∧ 1

)
= aqGX(t) + (1− a)qGX(u)

Each qGX(t) may equivalently be viewed as the fictitious price of a CALL option written on X with

strike price t. Such artificial options market would then be priced efficiently, as the corresponding

CALL function clearly satisfies the conditions of Lemma 5, with KG(X) = R+. But then, the

representation (38) follows directly from Theorem 7. �

Results from section 8

Lemma 11. The functional πX defined in (30) and acting on KX is ≥∗-monotone, positively

homogenous and subadditive. Moreover, B∗ ⊂ KX and πX(1) > 0.

Proof. To show B∗ ⊂ KX it is enough to show that 0, 1 ∈ KX which is however obvious if options

have non negative prices and in view of the inequality πX(1) ≤ qX(0). Then 0 ≤ πX(|b|) ≤ b∗π(1).

The remaining properties are obvious. �

Lemma 12. Let Assumption 5 hold, choose f, g ∈ Γ and let either (i) f̂ = f(X∗) if X∗ < ∞ or

else (ii) f̂ = limn f(n)/n (ĝ being defined likewise). If f = X(θ) with θ ∈ ΘX , then

(77)
f(X)

X ∧ 1
≥∗

g(X)

X ∧ 1
if and only if f(kn) ≥ g(kn) n = 1, . . . , N and f̂ ≥ ĝ

where K(X) = {kn : n = 0, . . . , N} and k0 = 0.
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Proof. If f(kn) < g(kn) − ε for some ε > 0 and n = 1, . . . , I then by continuity there exists

kn − 1 > η > 0 such that f < g − ε in restriction to the set An = {kn − η < X ≤ kn}. Likewise, if

f̂ < ĝ − ε then f < g − ε in restriction to the set A = {X > X∗ − η}, if X∗ <∞, or A = {X > t}
for some t ∈ N if X∗ =∞. By Assumption 5, however, neither An nor A belong to N∗; moreover,

X ∧ 1 = 1 on these sets so that f(X)/(X ∧ 1) ≥∗ g(X)/(X ∧ 1) is contradicted.

Conversely, if f(kn) ≥ g(kn) holds for n = 1, . . . , I, then, given that f(0) = g(0) = 0, that g

is convex and f piecewise linear, we conclude that f(x) ≥ g(x) for all 0 ≤ x ≤ X∗ and so that

f(X) ≥ g(X) and thus f(X)/(X ∧ 1) ≥∗ g(X)/(X ∧ 1). �

Proof of Lemma 6. It is, first of all, clear that in solving (45) one may restrict attention to

portfolios formed with options with strike prices in J(X). This implies that j0 = 0 and that each

λX(θ) with λ > 0 and θ ∈ ΘX in (45) may be taken to be of the form
∑I

i=0 ai(X − ji)+ so that

λq(θ) = qTa with aT = [a0, a1, . . . , aI ] ∈ RI+1
+ . Write

ga(X) =
I∑
i=0

ai(X − ji)+ and ĝa =

{
ga(X∗) if X∗ <∞
limn ga(n)/n otherwise

and observe that ga is a convex function, being a linear combination of convex functions with

positive weights. Remark also that [ga(j1), . . . , ga(jI), ĝa]T = Da. Fix f ∈ Γ. By Lemma 12
ga(X)
X∧1 ≥∗

f(X)
X∧1 is equivalent to Da ≥ f .

Define the vectors w,b ∈ RI+1 implicitly by letting

(78) bIdI = qX(jI) and bIeI +
I−1∑
i=n

bi =
qX(jn)− qX(jn+1)

jn+1 − jn
n = 0, . . . , I − 1

with eI = 1 if X∗ <∞ or else eI = 0 and

(79)

n∑
i=0

wi =
f(jn+1)− f(jn)

jn+1 − jn
n = 0, . . . , I − 1 and

I∑
i=0

widi = f̂

The following properties are easily established by induction: (i) b ≥ 0 (as j0, . . . , jI ∈ J(X)) (ii)

w ≥ 0 (as f ∈ Γ), (iii) bTD = qT and (iv) w = D−1f . But then,

min
{θ∈ΘX ,λ>0:λX(θ)≥∗f(X)}

q(θ) = min
{a∈RI+1

+ :Da≥f}
qTa = min

{a∈RI+1
+ :Da≥f}

bTDa ≥ bT f = qTw

�

Results from section 8

Proof of Lemma 7. By a result of Turlach [66, p. 85] the program (51) admits as its solution a

cubic C 2 spline of the form

ghk (x) =

5∑
i=1

1[k+thi ,k+thi+1)(x)P hk,i

(
x− (k + thi )

)
x ∈ R+

where, as in the text, thi = (i−3)h/2 for i = 1, . . . , 5, th6 =∞ and P hk,i is a polynomial of degree 3. It

is clear from the constraints imposed to (51) that indeed ghk ∈ Γ. Moreover, these same constraints
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imply that ghk (x) = g0
k(x) when x /∈ [k−h, k+h] while 1 ≥ Dghk (x) ≥ 0 on [k−h, k+h]. Thus, ghk−g0

k

is increasing on (−∞, k] and decreasing afterwards, so that supx(ghk−g0
k)(x) ≤ (ghk−g0

k)(k) = ghk (k).

Moreover, the (non empty) set of solutions is clearly convex and the functional Ik(h; f) is strictly

convex in f so that the solution is necessarily unique. Define

ḡhk (x) = ghk (2k − x) + (x− k) x ≥ 0

One deduces from (50) that

Ik(h; ḡhk ) =
5∑
i=1

[g0
k(k + thi )− ḡhk (k + thi )]2 +

∫ k+h

k−h
D2(ḡhk (x))2dx

=
2∑
i=1

[ḡhk (k + thi )]2 + ḡhk (k)2 +
5∑
i=4

[ḡhk (k + thi )− thi ]2 +

∫ k+h

k−h
D2(ḡhk (x))2dx

=
5∑
i=4

[ghk (k + thi )− thi ]2 + ḡhk (k)2 +
2∑
i=1

[ghk (k + thi )]2 +

∫ k+h

k−h
D2(ghk (x))2dx

= Ik(h; ḡhk )

However, since the solution is unique, we have the symmetry relation

(80) ghk (x) = ghk (2k − x) + (x− k) x ≥ 0

Let f ∈ χ(k;h) and let h > h′ and

Tf(x) = f

(
k + (x− k)

h

h′

)
h′

h

Observe that T : χ(k;h)→ χ(k;h′) is one to one and onto and that D2Tf(x) = h/h′D2f(k + (x−
k)h/h′). Thus,

Ik(h
′;Tf) =

5∑
i=1

[g0
k(k + th

′
i )− Tf(k + th

′
i )]2 + (h′)3

∫ k+h′

k−h′
(D2Tf(x))2dx

= (h′/h)2
5∑
i=1

[g0
k(k + thi )− f(k + thi ]2 + (h′)2h

∫ k+h

k−h
(D2f(z))2dz

= (h′/h)2Ik(h; f)

Thus f solves the program (51) relatively to h if and only if Tf solves it relatively to h′. By

uniqueness we conclude that (53) holds. Observe then, if x ≤ k

gh
′
k (x) = ghk (k + (x− k)h/h′)h′/h ≤ ghk (x)h′/h ≤ ghk (x)

a conclusion which extends to x > k by (80). This proves (ii). Given that 0 ≤ Dghk (x) ≤ 1 we

conclude that

0 ≤ gh′k (x)− g0
k(x) ≤ gh′k (x)− g0

k(x) = gh
′
k (k) =

h′

h
ghk (k)

so that ghk decreases to g0
k uniformly in x.
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If y = k′ − k ∈ R, then

ghk (x) =

5∑
i=1

1[k′+thi ,k
′+thi+1)(x+ y)P hk,i(x+ y − (k′ + thi )) ≡ γhk (x+ y; k′)

It is obvious that γhk (x+ y; k′) = γhk (x; k) and that g0
k+y(x+ y) = g0

k(x). But then, for i = 1, . . . , 5,

g0
k′(k

′ + thi )− γhk (k′ + thi ; k′) = g0
k(k + thi )− γhk (k + thi ; k) = g0

k(k + thi )− ghk (k + thi )

and that ∫ k+h

k−h
D2γhk (x; k)2dx =

∫ k′+h

k′−h
D2γhk (x+ y; k′)2dx

Using the notation of (50), we conclude that

Ik(h) = Ik(h; γhk (·; k)) = Ik+y(h; γhk (·; k′)) ≥ Ik′(h) k > 0, y ∈ R

The same inequality holds after exchanging k for k′ so that γhk (·; k′) and ghk′ are both C 2 splines of

degree 3 solving (51) and thus coincide, by uniqueness. We conclude that ghk+y(x) = ghk (x− y) and

thus, if 0 ≤ a ≤ 1 and k3 ≤ ak1 + (1− a)k2,

aghk1(x) + (1− a)ghk2(x) = aghk3(x+ (k1 − k3)) + (1− a)ghk3(x+ k2 − k3)

≥ ghk3(x+ ak1 + (1− a)k2 − k3))

≥ ghk3(x)

proving (i). �

Proof of Theorem 8. Exploiting the inclusion F ∈ C 2 we can rewrite (56) as

(81) qhX(a) = F (a)+
∑

ki∈J(X)

wha(i)[DF (a)(ki−a)+
1

2
D2F (a)(ki−a)2+o((ki−a)2)]+

∑
ki∈J(X)

wha(i)εi

From (48) we know that wha is a constant conditional on each selection z; moreover, given that

gha(x) = g0
a(x) whenever x /∈ Br(a), the open ball of radius r around x, we conclude that wha(i) = 0

unless ki−1 < a+ h and ki+1 > a− h i.e. unless ki ∈ B(δ+1)M (a). The first sum on the right hand

side of (81) is then majorized by

|DF (a)|(δ + 1)M +
1

2
D2F (a)(δ + 1)2M2 + o((δ + 1)2M2)

On the other hand by (57).(i)

P

 ∑
ki∈J(X)

wha(i)εi

 = P

 ∑
ki∈J(X)

wha(i)Pz(εi)

 = P

Pz(ε1)
∑

ki∈J(X)

wha(i)

 = P (ε1) = 0

Likewise, from (48) and the fact that gha is symmetric around a we conclude that

wha(1) = o(M) and wha(i) ≤ 1

2
D2gha(a)M + o(M) for i > 1(82)
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so that, by (57).(ii)

P

 ∑
ki∈J(X)

wha(i)2ε2
i

 ≤ P
sup

i
Pz(ε

2
i )

∑
ki∈J(X)

wha(i)2


≤ P

sup
i
Pz(ε

2
i )

∑
ki∈J(X)

wha(i)

 o(M)

≤ o(M)P

(
sup
i
Pz(ε

2
i )

)
Eventually, if i0, j0 ∈ z,

P

 ∑
{i 6=j:ki,kj∈J(X)}

wha(i)wha(j)εiεj

 = P

Pz(εi0εj0)
∑

{i 6=j:ki,kj∈J(X)}

wha(i)wha(j)


= P (εi0εj0)− P

Pz(εi0εj0)
∑

ki∈J(X)

wha(i)2


= −P

Pz(εi0εj0)
∑

ki∈J(X)

wha(i)2


so that, by (82), the last term is clearly less than

P (|Pz(εi0ε0j)|)O(M)

This together with continuity of D2gha proves (58). �
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Figure 1. Smoothing Option Payoff by h.
In Panel A and B we plot the payoff ghk (x) and its derivative Dghk (x) for k = 100 and different

values of h. We have set λ = 0.25. In Panel C we have drawn for the cases h = 2, 10 the smooth

payoff ghk (x) together with the payoff of the portfolio superhedging it, assuming the existence of

options with strikes 97, 99, 101, 103 and 105.
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Figure 2. Deviations from Black and Scholes.
In Panel C the curve relative to δ = 2 is represented on the right hand side scale.
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Figure 3. Deviations from Black and Scholes in the Presence of a Smile Effect.
σ = 0.4− 0.2(k − 1000)/700 and νB&S = −∂qB&S /∂K − ∂qB&S /∂σ dσ /dk .
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Figure 4. Simulated 95% Confidence Intervals for the case δ = 2.
The confidence bands were obtained after 5.000 Monte Carlo simulations.
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Figure 5. Simulated 95% Confidence Intervals for the case δ = 10.
The confidence bands were obtained after 5.000 Monte Carlo simulations.
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Figure 6. The S&P 500 Index on 21st October 2010.
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Figure 7. νh(X > x) on 21st October 2010, Maturity 20th November 2010.
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Figure 8. νh(X > x) at 12:06 and 13:03 for the case h = 70.


