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Abstract

The paper tests experimentally for limited foresight in sequential games.
We develop a general out-of-equilibrium framework of strategic thinking
based on limited foresight. It assumes the players take decisions focusing
on close-by nodes, following backward induction – what we call limited
backward induction (LBI). The main prediction of the model is tested in the
context of a modified Game of 21. In line with the theoretical hypotheses,
our results show most players think strategically only on close-by nodes
without reasoning backwards from the end of the game. A small fraction of
subjects play close to equilibrium, while few others try to exploit the limited
foresight of their opponent. The results provide strong support for LBI, and
cannot be accounted for using the most popular models of strategic thinking,
let alone equilibrium analysis.
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1 Introduction

How do you figure out moves in a chess game? Presumably, most people think
of what the other is going to do next. Some think of their own next move as
well, and maybe of the opponent’s choice that follows. Deep consideration of
further stages characterizes chess lovers and professionals.1 When, within this
horizon, a player conceives his move as a best-response to the ones that follow,
and those are deduced in the same way, he is performing backward induction
on a limited number of stages. In a nutshell, this represents what we call limited
backward induction (LBI). It is reasonable that one looks further ahead when
one of the kings is menaced, or as the action space shrinks throughout the game.
This paper presents a framework that catches such features of strategic thinking
in sequential games of perfect information, and a novel experiment that tests for
it.

The benchmark for strategic ability set by game theory is hardly matched by
human beings, as widely documented by the experimental literature.2 Backward
induction is no exception.3 Different studies have suggested that the players use
limited look-ahead in extensive form games [e.g., Binmore et al., 2002; Johnson
et al., 2002]. For instance, in Johnson et al. [2002], the subjects need to uncover the
payoffs at different stages by clicking on them. The authors show that the play-
ers focus on the current and the following stage, paying little attention to more
distant ones. Despite these results and the underlying intuition, until recently,
no model of strategic thinking addressed the specific challenge that dynamic
strategic environments pose to individual reasoning in the presence of limited
foresight, which is the goal of the present paper. In carrying out the task, we
retain the intuition underlying backward induction, but we limit the number of
stages on which it is performed.

Under LBI, a player faces what we call a limited-foresight game (LF-game),
which is a section of a subgame of the original game that only encompasses the
future nodes that are closest to the current decision node. The nodes that are
included in the LF-game depend on the player’s foresight. This is endogenously
determined after considering how relevant the stakes are – i.e., how beneficial
strategic thinking is – and how complex the game is – i.e., how costly strategic

1The literature on chess heuristics is vast and spans from artificial intelligence to psychology.
See for example Reynolds [1982].

2See, among other excellent surveys, the one in Selten [1998].
3On the theoretical side, backward induction has been the object of a lively debate [cf., Au-

mann, 1995; Battigalli, 1997; Ben-Porath, 1997; Binmore, 1996]. See Brandenburger and Frieden-
berg [2014a] for an axiomatic approach to backward induction and Bonanno [2001] for a founda-
tion based on temporal logic.
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thinking is – in the original game. The foresight determines the nodes that are
object of strategic consideration.

The LF-game is then completed by assigning intermediate payoffs to its ter-
minal nodes. This is done by projecting the payoffs that arise beyond one’s
foresight on the terminal node of the LF-game with which they are consistent.
Finally, actions consistent with a subgame perfect equilibrium (SPE) of the LF-
game are taken. The higher the foresight, the more nodes are included in the
LF-game so that, in the limit, this coincides with the original game, and the ac-
tions taken are consistent with subgame perfection.

We use a variant of the Game of 21 [Dufwenberg et al., 2010; Gneezy et al.,
2010] to identify LBI. In this simple game players alternate to choose numbers
within a range. Those are added up, until a certain target number is reached. The
player who reaches it wins a prize, the other gets nothing. By picking the correct
numbers, one of the players can secure the victory from the first move. This
advantage transfers to his opponent in case of error. By backward induction, one
can identify a set of dominant strategies where these opportunities are always
exploited. Any SPE is in weakly dominant strategies. Thus, level-k players also
play consistent with equilibrium. This game is also known as the race game, and
we use this more generic label, as our target number is not 21. Consistently with
LBI, previous results [Dufwenberg et al., 2010; Gneezy et al., 2010; Levitt et al.,
2011] show little compliance with SPE. The subjects find it hard to substitute a
subgame with its outcome, and discover the solution only as they approach the
end of the game.4

We design an experiment with two treatments. In a baseline, the subjects play
a standard race game. In a second treatment, we introduce an intermediate small
prize. In both treatments, subjects have the possibility (incentivized) to claim
victory of any prize at any time in the game. The design allows us to identify
reasoning based on limited foresight. Evidence of limited foresight comes from
individuals solving for the intermediate prize before they do for the final one.
However, this seemingly optimal behavior on a LF-game may come not only
from limited foresight, but also from attempts to exploit the limited ability of the
opponent. Claims and the comparison with the baseline treatment are used to
test that the observed actions on the path to the intermediate prize are due to
limited foresight and not to this type of sophisticated behavior.

4Dufwenberg et al. [2010] show that solving a shorter game helps finding the solution to a
longer one and that learning is gradual. Gneezy et al. [2010] find that subjects discover the po-
sitions on the path to the prize sequentially, starting from the last one, by backward analysis.
Levitt et al. [2011] report an interesting correlation between a subject’s performance in the race
game and his ranking as chess player, suggesting the game can capture the ability at backward
induction.
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Our results show most subjects solve for the intermediate prize before they
do for the final one. That is, they reason backwards only on close-by nodes. The
majority of the population proves able to run no more than two or three iterations
of backward induction in our race game. A smaller fraction plays consistent with
equilibrium, and few players use sophisticated strategies of the type described
above.5 Consistently, reasoning efforts, as recorded by the timing of decisions,
are concentrated in the nodes that are closest to a prize – i.e., when this enters
the LF-game. On aggregate, we provide clear evidence of limited foresight, and
in support of LBI.

In the last twenty years, different models have addressed limited strategic
ability.6 Most of them target simultaneous-move games, but some have been
adapted to extensive-form ones. For instance, McKelvey and Palfrey [1998] pro-
pose the agent quantal response equilibrium (AQRE) as the QRE counterpart
for extensive-form games. Ho and Su [2013] and Kawagoe and Takizawa [2012]
adapt level-k models to dynamic games.7 In these models the key ingredients
mirror their static analogue, and the dynamic context plays no specific role on
how the players reason.

Closer to our spirit is the work of Jehiel [1995] on limited forecast models.
As we do, they assume the players do not make a complete plan of actions, and
only reason on a limited number of stages. However, on the one hand, Jehiel
proposes an equilibrium notion, contrary to our out-of-equilibrium one. On the
other, the way in which the players produce their forecasts is our main object of
investigation, while it is not specified in the limited forecast equilibrium. Thus,
the two approaches differ in their objective. So will, in general, their predictions.8

An independent attempt, similar to ours, is being carried out by Roomets
[2010]. Contrary to LBI, in his Horizon-Based Limited Foresight model the fore-
sight is exogenous and the way in which intermediate payoffs are derived is
largely unspecified. Most notably, in Roomets [2010] there is no experimental
test of the model.

Recently, levels of reasoning have been endogenized in a level-k model in a
way similar to ours by Alaoui and Penta [2014]. LBI also shares many other fea-
tures with standard level-k models [Costa-Gomes et al., 2001; Stahl and Wilson,
1995]. Both are based on a hierarchy of decision rules, where each level best

5Experiments on level-k thinking have suggested a similar distribution of levels. Note, how-
ever, that the type of reasoning investigated is different.

6See Crawford et al. [2013] for a survey of those models.
7See also Brandenburger and Friedenberg [2014b] for a more general discussion of levels of

reasoning not based on limited foresight in extensive-form games.
8See also Jehiel [1998a] where a learning justification is provided for the limited forecast equi-

librium, and Jehiel [1998b, 2001] where the concept is applied to repeated games.
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responds to the rule that is one step lower in the hierarchy. The chain of best
replies is anchored to the behavior of a non-strategic level, which, in our case, is
represented by the player choosing before the foresight bound. As level-k, LBI
constitutes an out-of-equilibrium model of behavior, and should be understood
to capture initial responses to a game. However, the underlying type of reason-
ing is different, and LBI predictions generally diverge from the level-k ones, as
made clear by our experiment.

The paper proceeds as follows. Section 2 lays out the theoretical framework.
Section 3 presents the experimental design and procedures. Results follow in
Section 4. Section 5 shows through examples how LBI can be applied to most
studied sequential games, and discusses the relation with level-k and the limited
forecast equilibrium. Section 6 concludes.

2 Theoretical framework

2.1 A sketch of Limited Backward Induction

Figure 1 shows a four-stage game. Each outcome a, ...,p is a vector in R2, identi-
fying von Neumann-Morgenstern utilities for each player. Player 1 knows what
Player 2 is choosing at every node in stage four. Reasoning by backward induc-
tion, he substitutes each subgame with its solution and iterates this procedure
backwards, finally choosing his best reply in stage one.

Suppose Player 1 has only limited foresight, and is not able to run backward
induction from the terminal nodes of the game. The dashed line after stage
two represents his foresight bound. He best replies to what he believes the next
mover is choosing, but cannot substitute the subgames that follow with their so-
lution. His level of foresight is two, and solves an LF-game in two stages. We call
pseudo-terminal nodes (histories) the terminal nodes (histories) of the LF-game.

FIGURE 1: A FOUR-STAGE SEQUENTIAL GAME WITH A FORESIGHT BOUND
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To figure out what Player 2 is choosing in stage 2, Player 1 needs some inter-
mediate payoffs for the pseudo-terminal nodes of the LF-game. We assume the
players know the terminal payoffs of the game, and use this information to re-
trieve the intermediate payoffs.9 Each payoff of the LF-game is derived as a pro-
jection of the payoffs of the original game that are consistent with each pseudo-
terminal history. For instance, the payoffs of the LF-game at the pseudo-terminal
history (L,W) are a projection of {a,b,c,d}, those after (L, E) of {e, f,g,h}, and
so on. If Player 1 had a foresight of three stages, the dashed line in figure 1
would move one stage downwards. The LF-game would be larger, and its pay-
offs would be derived from smaller sets of final outcomes. In general, we propose
as projection function the median point in the range of the available payoffs.10

We label Fκ the decision rule of a player with a foresight of κ stages. In reason-
ing backward from the κ-th stage, he implicitly believes that the agent choosing
there acts according to F1. This rule is non-strategic, in the sense that it does not
consider the decisions of any other player, and serves as an anchor of the LBI
reasoning. The agents controlling the next-to-last decision nodes are believed to
act according to F2, and so on. Thus, Fκ best responds to Fκ−1, who best responds
to Fκ−2, . . . , who best responds to F1.

Provided that the foresight bounds of a sequence of players do not coincide,
the beliefs about the next players’ moves are generally incorrect. Moreover, the
moves of one single player in different nodes need not be consistent one with the
other.11

2.2 General notation

Consider a finite game of perfect information Γ = 〈I , (N,4) , l,U〉, where I =

{1,2, ..., I} is the set of players, and N is the set of nodes, partially ordered by the
successor relation 4, so that n′ 4 n if and only if node n′ is on the unique path
from the initial node φ to n. The terminal (resp. non-terminal) nodes are Z (resp.
H); perfect information implies information sets are singletons {h}, where h ∈ H.
For simplicity, we will generally write h for {h}. The mapping l : H→I specifies
the player who moves at each information set. Denote Hi the set of information

9The assumption that players know the terminal payoffs, but ignore the portion of the game
tree that leads to them may seem troublesome at first glance. It is, however, natural in most
contexts: players know the possible payoffs of a chess game, the size of the cake in a bargaining
problem, the possible outcomes of a sequential voting mechanism, etc. Their knowledge of these
payoffs is unrelated to their knowledge and consideration of the game tree that leads to them.
Nevertheless we relax this assumption in Section 5.2.

10That is: the simple average between the minimum and the maximum of the available payoffs.
The issues related to the projection function are discussed in Section 2.4.

11See Section 5.3 for a discussion of the issue.
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sets where i moves. At each information set in Hi, player i’s set of moves is Ai [h],
where each move ai [h] ∈ N is an immediate successor of h.

The successor relation induces a temporal rank on the nodes: φ is of rank
1; n is of rank t if the maximum of the rank of n′ such that n′ ≺ n is t − 1. Let
r(n) denote the rank of n. The extensive-form payoff functions are given by
ui : Z→R, and U = (u1,u2, . . . ,uI). Let Z be the set of all subsets of Z. Function
ζ : H→ Z is such that ζ(h) maps h to {z ∈ Z : h ≺ z} – the terminal nodes that
are successors of h. Finally denote with lH̃ the restriction of l to H̃ ⊆ H.

2.3 Foresight

A player’s foresight represents his depth of strategic thinking. It is a positive
integer that identifies the LF-game tree, and is endogenously derived from a local
optimization problem.12 We define the functions bi : H ×N→ R+ and ci : H ×
N→ R+, where bi(h, s) (resp. ci(h, s)) represents the incremental benefit (resp.
cost) at node h from increasing one’s foresight from s− 1 to s stages. We assume
that the benefit from reasoning depends on the payoffs that are achievable at
node h. The cognitive cost depends on the complexity of the subgame with initial
node h as well as on the player’s cognitive ability. We do not impose restrictions
on the shape of these functions, apart from the following.

Assumption 1. The benefit and cost of reasoning respect the following conditions:

i) if, ∀z,z′ ∈ ζ(h), ui(z) = ui(z′)⇒ bi(h, ·) = 0;

ii) consider two subgames ∆ and ∆′ rooted in h and h′. If these are identical up to
a rescaling of the payoffs, meaning that, for every z ∈ ζ(h) and its corresponding
z′ ∈ ζ(h′), ui(z) = αui(z′), then α > 1⇒ bi(h, ·) ≥ bi(h′, ·);

iii) ci(·,0) = 0;

iv) if #ζ(h) > #ζ(h′)⇒ ci(h, ·) ≥ ci(h′, ·).

A player increases his foresight as far as the benefit of doing so exceeds its
cost. Let the foresight function k : RN

+ ×RN
+ →N be such that, fixed any node h:

k(bi, ci) = min{s ∈N : bi(h, s) ≥ ci(h, s) ∧ bi(h, s + 1) < ci(h, s + 1)}
12In a preliminary version (available online) we endogenized the foresight in a similar, though

formally different way. As the work of Alaoui and Penta [2014], endogenizing levels of reasoning
in a level-k model, was made available in the meantime, we decided to adapt our presentation to
theirs when convenient. See also Diasakos [2008], where a similar exercise is made for dynamic
individual decision problems.
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.
The foresight of player i at h is the value taken by this function at

(bi(h, ·), ci(h, ·)). We generally denote it with the Greek letter κ. The correspond-
ing decision rule under LBI is Fκ. At node h, κ determines the nodes of the LF-
game, Ñ = {h′ ∈ N : h 4 h′ ∧ r(h′)− r(h) ≤ κ}, and the corresponding pseudo-
terminal nodes Z̃ = {z ∈ Ñ : z ∈ Z ∨ r(z)− r(h) = κ}.

The intuition that dynamic strategic thinking is affected in the way assumed
by exogenous variations in the stakes of the game and its complexity is backed
by a number of experimental results. For instance, in the centipede game, most
players are consistent with SPE if the stakes are high [Rapoport et al., 2003], and
a marginal increase in complexity shifts behavior away from SPE [Crosetto and
Mantovani, 2012].

2.4 Intermediate payoffs and the LF-game

The LF-game is completed by associating payoffs to the pseudo-terminal nodes
Z̃. We assume intermediate payoffs are projections of the set of consequences that
are consistent with the pseudo-terminal node they refer to. Let vi : Z → R be a
function such that vi(ζ(h)) maps the payoffs that are achievable at successors of h
to the intermediate payoff of h. A generic LF-game is then Γ̃ =

〈
I , (Ñ,4), lH̃,V

〉
,

where H̃ = Ñ \ Z̃, and V = (v1, . . . ,vn).
In applications one wants to make intermediate payoffs operational. As a

general rule, we propose vi to map the viable terminal payoffs into the median
value within their range, or, equivalently, the average between the minimum and
the maximum in the set:13

vi(ζ(h)) =
maxz∈ζ(h)(ui(z)) + minz∈ζ(h)(ui(z))

2
.

This projection function gives a rough idea of what one can gain after a certain
node is reached with minimal computation, and a parsimonious use of informa-
tion arising at distant nodes. A one-fits-all solution is unlikely to be optimal for
every possible game. The proposed rule is not sensitive to any manipulation of
the payoffs that leaves their range unaffected. This may be questionable, for ex-
ample, if the payoff structure is particularly simple. However, fixing a projection
function restricts the degrees of freedom of the model and we thus discourage

13The question of how the subjects project the payoffs is an empirical one. However, any
experimental investigation over it must take into account that foresight and projection function
are generally jointly tested. In our experiment we manage to disentangle the two by making the
projection function irrelevant and focusing on the foresight.
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ad-hoc changes to it.14

The decision rule Fκ prescribes to take decisions following backward induc-
tion on the LF-game. The player choosing at h finds the optimal moves of the
LF-subgames whose roots have as immediate successors only nodes in Z̃. These
subgames are discarded, leaving behind only their solution. He then iterates this
procedure on the immediate predecessors of these subgames, on their predeces-
sors, and so on, until he reaches h. His moves are then consistent with a SPE of
the LF-game. The following statements are true.

Proposition 1. i. Fκ always prescribes at least one move. ii. If the maximal rank of a
node in Γ is T + 1 and t + κ ≥ T + 1, then the moves prescribed by Fκ at h, r(h) = t,
are all and only those that are part of a SPE of Γ.

The proofs are self-evident and are omitted. When the foresight of a player
reaches the terminal nodes, his moves are consistent with a SPE of the subgame
he is deciding in. This entails, in particular, that for κ→∞, Fκ always prescribes
all and only the moves that are consistent with a SPE of the game. In general,
higher foresight implies earlier consistency with SPE.

3 Experimental design

3.1 The Race Game: parameters and treatments

To test for LBI, we design a novel experiment based on a perfect-information
game, known as the race game. In our race game, two players start at position
1 and take turns choosing an integer between 1 and 6. The chosen numbers are
added up, so that the position at stage s is given by the the sum of the num-
bers chosen in stages 1, ..., s plus one. When a player reaches 66, he wins a prize
P = 100, and the other gets nothing. Any race game can be solved by backward
induction. A player wins when choosing at positions 65, ...,60. Thus, a player
choosing at 59 is meant to lose. This position can be reached from 58, ...,53, imply-
ing that a player choosing at 52 is meant to lose. Iterating this reasoning unveils
a sequence of losing positions.15 A player that reaches any of these positions, can
secure the victory of the prize by reaching all subsequent losing positions.

Denote T the ordered set of all positions; the set of losing positions isL= {t∈
T : t = 66− i(6 + 1), for i = 1,2, ...}. The set of winning positions isW = T \ L.

14The issue is similar to that of defining the level zero player in level-k models, or the noise
element in QRE. See Hargreaves Heap et al. [2014] for a discussion of the former.

15We follow the terminology of Gneezy et al. [2010]. Actually, the player who chooses at a
losing position is meant to lose the game, but the player who reaches it is winning.
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Thus, the set of losing positions in our race game is

L = {3,10,17,24,31,38,45,52,59,66}.

A weakly dominant strategy prescribes to reach the closest losing position at
winning positions, and choose whatever number at losing positions. Because 1 /∈
L, Player 1 has an initial advantage, in the sense that he wins the game by playing
any dominant strategy. Whenever a player chooses a move from a dominated
strategy, the advantage transfers to the opponent.

We introduce two modifications to the base game to identify limited foresight.
Intermediate prize: the player who reaches the intermediate position 40 /∈ L
wins a small prize p = 30. Denote Lp and Wp the set of losing and winning
positions on the path to p. As

Lp = {5,12,19,26,33,40},

Player 1 has the initial advantage also with respect to prize p.
Claims: players can claim they are going to win p and P at any time, and inde-
pendently of who is moving. One can claim one or both prizes, eventually at the
same time. Claims are irrevocable and non-strategic: a player gets no informa-
tion on his opponent’s claims, and those are not affecting his payoff. However,
one’s own claims are payoff-relevant: after claiming P (resp. p) at position t, a
player gets 66− t (resp. 40− t) on top of the prize, in case the claim is realized.
In case not, he pays a fine, valued 15.

Our design features two treatments. In T0 the subjects play the standard race
game with payoff-relevant claims and no intermediate prize. In T1 they play the
same race game with the intermediate small prize p, which is the only treatment
variable.

3.2 Equilibrium and out-of-equilibrium hypothesis

The standard race game has nice features for studying limited foresight. It is a
zero-sum game with only two possible outcomes, allowing us to abstract from
preference-related issues. The game features a weakly dominant strategy, essen-
tially unique, for each player, which makes beliefs about the others’ strategies
irrelevant. Finally, the set of payoffs that is achievable after some node is the
same across all nodes within a stage. For instance, the same number of termi-
nal nodes where a player wins P follows position 31 and 32, though the former
belongs to L and the latter to W . It follows that the same intermediate payoffs
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are projected on every pseudo-terminal node of any LF-game. This holds irre-
spectively of the projection function, and its specification is then irrelevant. We
hereafter summarize the predictions of alternative models of behavior, and draw
the experimental hypotheses.

Because Player 1 has the initial advantage, he wins P in any SPE. Player 2 wins
p in T1. They both play a weakly dominant strategy and pass only through posi-
tions L and Lp. A similar statement holds for dynamic level-k models. L0 identi-
fies a fictitious random player, existing only as a belief in the mind of higher-level
players. For k≥ 1, each Lk believes the others are Lk−1 and best replies to this be-
lief. Given that L0 plays a dominant strategy with positive probability, Lk never
plays a dominated strategy. Thus, every level mimics SPE in T0. In T1, L1 may
try to win both prizes. Higher levels play as in SPE, regardless of the parameters.
The players only pass through the losing positions Lp and L. With a possible ex-
ception for the first move, aggregate play is identical to SPE.16

According to LBI, new positions enter the LF-game as the game proceeds.
In T0, if no terminal node is included in the LF-game, the same intermediate
payoffs are associated to all pseudo-terminal nodes, and a player is indifferent
between his moves. As soon as a terminal node is included in his LF-game, he
reaches the positions in L.17 Previous results indeed indicate that individuals are
unable to figure out their dominant strategy from the beginning. They rather dis-
cover it as they gain experience, starting from the losing positions that are close
to the end. These results can certainly be attributed to limited strategic ability,
and are consistent with LBI. However they are not conclusive. In particular, the
standard game does not allow to distinguish reasoning on close-by stages – i.e.,
limited foresight – from reasoning on limited subgames. We call this latter type
of reasoning limited subgame perfection (LSP).

According to LSP, backward reasoning starts at the terminal nodes, but is it-
erated backward for a limited number of stages. A player’s strategy switches
to equilibrium as soon as he gets to a subgame he can solve.18 LSP is not distin-
guishable from LBI in T0, but departs from it in T1. An LSP player acts consistent
with equilibrium over any subgame he can solve. As any subgame represents a
smaller race game, he reaches L, and wins P, if choosing at a position inW . He

16We here use the dynamic level-k model of Kawagoe and Takizawa [2012]. The authors dis-
cuss different types of randomness associated to L0, which may correspond to different behavior
of L1 in T1. The aggregate prediction does not change if we consider more sophisticated models,
as the one by Ho and Su [2013], or allowed the players to revise their beliefs after observing a
move inconsistent with them.

17F1 realizes how to win only when the distance to the prize is lower than 6, F2 when it is lower
than 12, and so on.

18Gneezy et al. [2010] appeal to a sort of LSP in their learning argument.
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only reaches Lp if he is choosing at a position in L. Thus, under LSP, the players
reach L before Lp. Under LBI, in T1 prize p is included in the LF-game before
P. A player is able to distinguish Lp from Wp before L from W . For instance,
he recognizes the difference between 32 ∈ Wp and 33 ∈ Lp before that between
31 ∈ L and 32 ∈W . Thus, the following hypothesis holds under LBI.

Hypothesis 1. The positions in Lp are reached before the positions in L.

The intermediate prize generates LF-games where optimal behavior departs
from the optimal behavior of players reasoning on limited subgames. This is
necessary to identify limited foresight. However, in the presence of the interme-
diate prize there are no longer dominant strategies. Seemingly optimal behavior
on an LF-game may result not only from limited foresight, but also from beliefs
about the limited ability of the opponent. That is, sophisticated players that try
to win both prizes. A sophisticated player postpones reaching L in T1 with re-
spect to what he would do in T0, in order to win both prizes. We exploit the fact
that sophisticated players play differently in T1 with respect to T0 to test for this
alternative explanation. The following hypothesis holds under LBI.

Hypothesis 2. The positions in L are reached at the same time in T1 and in T0.

Because other factors may induce different behavior in the two treatments,
the test is conservative, but not very informative on sophisticated behavior.19 An
alternative view on the issue is provided by claims. Under general assumptions,
claiming decisions are informative on what prize a player is targeting, and allow
us to isolate potentially sophisticated behavior at the individual level.

Consider a player that is able to solve a subgame that starts at some position
t̄, with t̄ < m and t̄ ∈ W ∩Wp. In T0 he reaches a position in L, claims and
wins P. In T1, he either targets P, or p and then P, depending on his belief about
the strategic ability of his opponent. Including claiming decisions, the player
has three undominated strategies: target and claim P (S1); target p and P, claim
p now and P only when sure of getting it (S2); target p and P, claim p and P
(S3). The belief about the strategic ability of the opponent is represented by the
probability that he does not solve the game within position 40. Let q be this
probability. We can prove that in T1, for t̄ < 37 there exists no q such that S2 � S3

and S2 � S1.
Thus, given our parameters, a sophisticated player claims P as soon as he

knows how to win it, and never chooses S2. Intuitively, in order to choose S2,
a player must believe q is high enough to try to win both prizes, but not so high

19For instance, one could think that the presence of p makes the game more complex, resulting
in a lower strategic performance of the subjects.
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to claim P immediately. In our game, the above interval does not exist at any
relevant t̄.20 A derivation of this result can be found in Appendix A. This also
includes the analysis of both constant absolute and constant relative risk aver-
sion, where we show that risk aversion is not a concern in our context.21 Thus,
sophisticated players may reach Lp before L, but should not claim p before P. On
the other hand, under LBI the players claim a prize as soon as they intentionally
reach a position in L or Lp. As positions in Lp are reached before positions in L,
the following hypothesis hold under LBI.22

Hypothesis 3. Prize p is claimed before prize P.

Only under LBI none of the previous hypotheses would be rejected.

3.3 Procedures

The experiment took place at the EELAB of the University of Milan-Bicocca in
June, 2013. The computerized program was developed using Z-tree [Fischbacher,
2007]. The subjects’ interface was similar to the one used by Gneezy et al. (2010).
For each treatment we run 4 sessions with 12 subjects per session, for a total of
96 participants. Participants were undergraduate students from various disci-
plines,23 recruited through an announcement on the EELAB website.

Each subject participated only in one treatment. Subjects played 8 race games.
In each of these rounds they were randomly assigned a new partner (‘strangers’
matching) and a role (Player 1 or 2). We did not impose any time constraint on
individual decisions, so that the subjects’ strategic performance was not biased
by time pressure.

Instructions were read aloud. An English translation of the instructions can
be found in Appendix B. Before starting the experiment, participants filled in a
control test to ensure everybody understood the instructions. At the end, they
were asked to fill in a questionnaire. We gathered qualitative information about
the expectations from the game, the opponent, and the strategy followed. We
recorded their perception on how easy they found the experiment. Finally, we

20In the extremely optimistic scenario of being able to claim P at position 41, an interval of
beliefs that sustain S2 exists if t̄ = 37 or t̄ = 39, and is such that q ∈ [0.77,0.79].

21The intuition for this is is that with risk aversion S2 becomes more attractive relatively to S3,
but less attractive relatively to S1. Thus, as before, until very close to m, there is no reasonable
parameter of risk aversion that sustains S2.

22For obvious reasons, in any SPE the players claim the prize they are going to win at the initial
position, and the same holds for level-k. Under LSP, the players claim P before p.

23Economics and business, law, medicine, psychology, mathematics and natural sciences,
statistics, pedagogy.
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elicited self-reported quantitative measures of risk preferences, using the ques-
tions of the SOEP German Panel.24 Sessions took on average 50 minutes, includ-
ing instructions, control test and final questionnaire.

During the experiment subjects earned Experimental Currency Units (ECU).
At the end, one game was selected at random for each subject, and the ECU
earned in the corresponding game were paid to him privately, according to the
exchange rate 10ECU = 1AC. The average payment was 11.10AC, with a minimum
of 3.50AC, and a maximum of 25.40AC. Subjects received an initial endowment of
5AC that could be partially spent to pay fines.

4 Results

We first analyze actions and claims to test for Hypothesis 1-2. We then report on
the timing of decisions. To facilitate the presentation of the results, we partition
the set of positions into intervals. Each interval is formed by all the positions
within two losing positions, excluding the lower and including the upper bound.
There are ten intervals on the path to P, and six intervals on the path to p.25

4.1 Errors

We say that a player makes a p-error (P-error) if, choosing at a position in Wp

(W), he does not reach a position in Lp (L). That is, if he does not exploit his
advantage toward winning a prize.

In both treatments, around 80 percent of the subjects choosing at a winning
position makes a P-error in the first interval. In intervals 2-7, this percentage
declines of about 20 percentage points in T0, while remains stable in T1. In both
treatments the error rate drops sharply in the last three intervals.26 The rate of
p-errors is above 90 percent in the first interval. It then decreases significantly,
and is below 40 percent in interval 5.

The moment a subject understands the solution of the game is captured by
the last interval where he makes an error. When a subject stops making errors,
we can no longer register errors made by his opponent. As a consequence the
last errors we observe are a lower bound for the actual ones.27 Figure 2 shows

24See Dohmen et al. [2011]
25The intervals for P and p do not perfectly overlap, because L and Lp are disjoint. The sets of

intervals are: {[1, . . . ,3] , [4, . . . ,10] , . . . , [60, . . . ,66]} and {[1, . . . ,5] , [6, . . . ,12] , . . . , [34, . . . ,40]}.
26As a player choosing at random makes an error 83 percent of the time, the choices of many

players are indistinguishable from random play until the last three intervals.
27This implies that we are not allowed to extract from them the distribution of foresight levels

in the population.
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FIGURE 2: AVERAGE LAST ERROR OVER ROUNDS

the average interval of the last error for each round. In T0, the figure decreases
from above the sixth to below the fourth interval. In T1 the average interval is
similar in the first rounds, but the reduction over rounds is smaller. The last p-
error occurs before the last P-error, on average, in all rounds. The magnitude of
the difference is up to three intervals.

We estimate the GLS panel regression model with random effects:

Lastit = γ0 + γTreatTreati + γXXit + γtt + ui + εit,

where Lastit is the interval where individual i makes his last P-error in round
t, Treati is a treatment dummy, Xit is a set of controls, including individual
characteristics, such as gender, age, field of study, self-reported attitudes toward
risk aversion and assessment of how easy the experiment was. The individual-
specific random effect is ui, and εit is the error term.28 Standard errors are clus-
tered at the session level.

Table 1 presents the results from various specifications. Model (1) tests that
the average last error occurs at the same time across treatments, without consid-

28Obviously the analysis is restricted to subjects that won prize P.
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TABLE 1: LAST ERRORS: ACROSS-TREATMENT GLS ESTIMATES

Last P-err Adj. last P-err
(1) (2) (3) (4) (5) (6)

T1 0.94 1.13 0.62 0.46 0.56 0.08
(0.73) (0.74) (0.68) (0.74) (0.73) (0.68)

round -0.30∗ -0.28∗

(0.07) (0.08)

female 2.16∗ 2.23∗ 2.26∗ 2.32∗

(0.47) (0.45) (0.41) (0.40)

age 0.03 0.03 0.02 0.03
(0.03) (0.03) (0.03) (0.03)

risk 0.02 0.03 -0.07 -0.06
(0.12) (0.12) (0.13) (0.13)

easy_exp -0.35 -0.36 -0.37 -0.38
(0.37) (0.36) (0.33) (0.33)

2.faculty 0.36 0.45 0.13 0.22
(0.50) (0.48) (0.37) (0.37)

3.faculty 1.53∗ 1.44∗ 1.77∗ 1.68∗

(0.70) (0.66) (0.69) (0.67)

laterounds -1.71∗ -1.70∗

(0.36) (0.36)

laterounds*T1 1.12∗ 1.07∗

(0.39) (0.40)

constant 5.36∗ 5.83∗ 5.22∗ 5.34∗ 6.55∗ 5.98∗

(0.65) (1.79) (1.65) (0.65) (1.17) (1.03)
N 384 384 384 384 384 384
R-squared 0.03 0.24 0.24 0.01 0.23 0.23
Standard errors in parentheses (clustered at the session level)
∗ p < 0.05

ering any other covariate. The last P-error occurs around one interval later in
T1, but the difference is not significant. Model (2) adds a number of covariates.
As before, the coefficient for the treatment dummy is positive, but not signifi-
cant. The interval of the last P-error significantly decreases over rounds. We also
find winning women make their last P-error more than two intervals later than
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men. This result is consistent with other recent studies that find men can perform
on average more steps of strategic reasoning than women [Dittrich and Leipold,
2014]. Students of economics (1.faculty), statistics, maths and natural sciences
(2.faculty) make their last error significantly earlier than students of other ma-
jors (3.faculty).

In model (3) we include the interaction between treatment and a dummy for
early (1-4) versus late (5-8) rounds. The treatment has no effect in early rounds.
In late rounds, T1 is associated with a significant delay in last P-errors, estimated
in 1.6 intervals.29,30 This result could be due to the emergence of sophisticated be-
havior or to subjects experiencing greater learning hurdles in T1. To check for the
relevance of sophisticated behavior, if a subject claims both prizes, wins prize p,
and does not make any P-error thereafter, we attribute to him a last P-error equal
to his last p-error, and estimate the previous models on the adjusted variable
(models 4-6). Though the difference across treatments reduces in magnitude, all
of the results carry over to the adjusted variable.

On aggregate, behavior regarding prize P does not differ substantially in T0
and T1. Moreover, the differences that emerge over rounds are only marginally
explained by sophisticated behavior.

Result 1. On aggregate, and in particular in early rounds, the positions in L are reached
at the same time in T1 and in T0, supporting Hypothesis 2.

Figure 3 reports the distributions of the last errors over intervals, by treat-
ment. The distributions for prize P are bimodal. A fraction of subjects, higher
in T0, does not make any error. The majority of the population stops making er-
rors only when close to the final position, and in particular around the intervals
7 and 8. In T1, a majority of the subjects also makes the last p-error less than
three intervals before the prize. The supports of the distributions of the last P-
and p-error are different, as prize p is reached before P. However, recall from
Section 3.2 that the last P-error should happen before the last p-error under LSP
behavior, and that no error should arise under equilibrium and level-k.

In Figure 4, we plot the distribution of the individual differences between
the last P- and p-error. Both the original distribution of the last P-error, and the
one adjusted as described above are represented. The difference between the
two provides a rough measure of the relevance of sophisticated behavior. Both
distributions are biased toward positive values. That is, last P occurs later than

29The reduction in the interval of last P-errors in late vs early rounds is significant also in T1
(Chi-squared test: z = 13.9; P-val < 0.01).

30Similar results are obtained interacting the treatment with a continuous variable for the
rounds - i.e., same intercept across treatments, but different slopes.
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FIGURE 3: DISTRIBUTION OF LAST ERRORS

FIGURE 4: DIFFERENCES BETWEEN THE LAST P-ERROR AND LAST p-ERROR
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TABLE 2: TESTS ON DIFFERENCE BETWEEN LAST P- AND p-ERRORS

Last P Adj. Last P
Obs. Est. diff. (Std. err) F stat. P-val. Est. diff. (Std. err) F stat P-val.

H0: Last P = Last p 192 2.75 (0.35) 61.00 .004 2.38 (0.38) 38.31 .008
Standard errors clustered at the session level. Bold indicates significance at the .05 level.

FIGURE 5: DISTRIBUTION OF CLAIMS

last p-error. Table 2 reports a formal test of this hypothesis, based on one in-
dependent observation per session. The average difference is estimated in 2.75
intervals and is statistically different from zero, even when considering adjusted
last P-errors.

Result 2. The positions in Lp are reached before the positions in L, supporting Hypoth-
esis 1.

4.2 Claims

In both treatments, around 65 percent of the subjects claims he would have won
prize P; 60 percent claims prize p in T1. Most claims end with the claiming
player winning the prize. However, some claims are unwarranted, and a fine is
imposed on 29 percent of both the p-claims and the P-claims. Figure 5 displays
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TABLE 3: P-CLAIMS: ACROSS-TREATMENT GLS ESTIMATES

P-claim Just. P-claim Adj. Just. P-claim
(1) (2) (3) (4) (5) (6) (7) (8) (9)

T1 0.36 0.51 0.18 0.75 0.96 0.42 0.30 0.64 0.20
(0.64) (0.49) (0.50) (0.96) (0.69) (0.67) (0.97) (0.70) (0.68)

win_P 1.10∗ 1.11∗ 1.79∗ 1.85∗ 1.48∗ 1.53∗

(0.36) (0.36) (0.42) (0.36) (0.37) (0.31)

round -0.24∗ -0.36∗ -0.36∗

(0.04) (0.05) (0.05)

female 2.61∗ 2.63∗ 2.74∗ 2.77∗ 2.87∗ 2.91∗

(0.50) (0.52) (0.45) (0.48) (0.42) (0.41)

age -0.05 -0.05 -0.03 -0.03 -0.03 -0.03
(0.05) (0.05) (0.06) (0.06) (0.06) (0.06)

risk -0.39∗ -0.39∗ -0.27 -0.27 -0.31∗ -0.31∗

(0.14) (0.14) (0.15) (0.14) (0.16) (0.15)

2.faculty -0.72∗ -0.73∗ -0.26 -0.23 -0.37 -0.36
(0.35) (0.36) (0.55) (0.60) (0.54) (0.58)

3.faculty 1.34 1.31 1.64∗ 1.62∗ 1.54∗ 1.51∗

(0.78) (0.76) (0.65) (0.60) (0.72) (0.68)

easy_exp -0.08 -0.06 -0.06 -0.07 -0.08 -0.09
(0.27) (0.27) (0.32) (0.30) (0.30) (0.28)

laterounds -1.33∗ -1.79∗ -1.73∗

(0.16) (0.10) (0.10)

laterounds*T1 0.68∗ 1.06∗ 0.81∗

(0.18) (0.12) (0.16)

constant 4.86∗ 7.89∗ 7.38∗ 5.68∗ 7.01∗ 6.19∗ 5.68∗ 7.52∗ 6.72∗

(0.41) (2.29) (2.25) (0.82) (1.96) (1.85) (0.82) (1.98) (1.88)
N 504 504 504 307 307 307 331 331 331
R-squared 0.00 0.32 0.32 0.02 0.38 0.38 0.01 0.39 0.38
Standard errors in parentheses (clustered at the session level)
∗ p < 0.05

the distribution of claims over intervals for T0 and T1. The distribution of P-
claims traces that of last errors, separated between early (intervals 1-2) and late
claimers (intervals 7-9).

We estimate a GLS panel model with random effects, similar to the one pre-
sented above, on the interval where prize P is claimed. Table 3 presents the
results. Standard errors are always clustered at the session level. Results mimic
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TABLE 4: WITHIN-TREATMENT TESTS ON CLAIMS

Treat Claims Obs. Est. diff. (Std. err) F stat. P-val.

H0: Claim P = Claim p T1 All 192 1.98 (0.30) 22.83 .017
T1 Justif. 96 3.58 (0.41) 139.20 .001

H0: Claim P = Last P T0 All 247 0.50 (0.80) 0.39 .576
T1 All 257 1.03 (0.65) 2.56 .208

H0: Claim p = Last p T1 All 231 -0.07 (0.27) 0.07 .80
Standard errors clustered at the session level. Bold indicates significance at the .05 level.

those obtained for the last errors. In particular, on aggregate claims are not made
earlier in T0 with respect to T1. The interaction of late rounds and treatment is
again significant, but the marginal linear effects of treatment in early and late
rounds are not significant (Chi-squared test: early, χ2 = 0.13; P-val = .716; late,
χ2 = 3.12, P-val = .077). Self-reported risk preferences have a significant impact:
among those who claim P, the more a subject is risk-loving, the earlier he claims
on average. The analysis of the treatment effect does not change if we restrict to
claims that are justified, in the sense that the player does not make any error after
he claims, nor if, in addition, we consider adjusted last P-errors to account for
the possibility of sophisticated behavior (models 4-6 and 7-9, respectively).31

Around two thirds of the P-claims are justified in T0. The figure is identical
in T1 if we consider adjusted last P-errors. Otherwise it is around 60 percent,
which is also the percentage of justified p-claims.32 Thus, in both treatments,
some subjects claim before they make their last error. In Figure 6 we represent
the distributions of individual differences between one’s last errors and the cor-
responding claims. This difference is smaller than one for more than 70 percent
of the subjects. The value of minus one corresponds to claiming in the interval
that follows that of the last error, and is modal in both treatments. Overall we
cannot reject that the mean of these distributions is zero in any treatment, and
for both p and P, as reported in Table 4.

In T1 the distribution of p-claims is first order stochastically dominant with
respect to that of P-claims. Recalling that sophisticated players should not claim p
before P, we can test whether this is the case for subjects that claim both prizes.
Results show P-claims occur on average 2 intervals later than p-claims and that
this difference is statistically significant (see Table 4). Notably, the subjects for
which the last P-error is different from the adjusted one - i.e., those that we iden-

31If we restrict to justified claims, risk preferences cease to play a role: indeed, there is no risk in
claiming once you know how to win. Consistent with the idea that more risk-loving players are
more likely to try to win both prizes, the coefficients are again significant if we consider claims
that are justified against adjusted last errors.

32All claims are justified in the three intervals that precede a prize.
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FIGURE 6: DIFFERENCES BETWEEN THE LAST ERROR AND THAT OF THE CLAIM

tify as sophisticated from their errors - claim P in the same interval as p on aver-
age (1.40 vs 1.37).

Result 3. On aggregate, prize p is claimed before prize P supporting Hypothesis 3.

4.3 Timing

We consider the time allocated to a decision task as a proxy of the effort allocated
to it.33 Equilibrium reasoning seems to imply that effort is concentrated at the
beginning of the game, after which the players follow the planned strategy. This
is also true for level-k and for any theory where an action plan is specified for
the whole game. Under LSP the effort in taking a decision drops as soon as the
subgame that includes the decision node is solved. Before that, the subjects are
reasoning on distant subgames. It is not clear what this implies for reasoning
efforts. Nevertheless, no special effort should be exerted around the small prize.

Under LBI it is not worth reasoning until a prize enters the LF-game. Before,
all intermediate payoffs are the same, and the LF-game provides no information

33Recall the players were not time constrained.
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FIGURE 7: AVERAGE TIME FOR EACH DECISION OVER POSITIONS

on how to choose meaningfully. Absent in-depth consideration of different alter-
natives, choices are taken quickly.34 The players exert reasoning effort as soon as
a prize is included in the LF-game. The time needed to reach a decision increases
as the players get close to p and P, and then decreases once it is clear who is
going to win the prize.

In Figure 7, the average number of seconds per decision is plotted against the
set of positions, for both treatments.35 In T0, the average decision time remains
flat around ten seconds until position 40. It then increases, peaking around po-
sition 50, and drops back to ten seconds by position 60. From position 40 on
the graph is similar in T1. It shows another symmetric steep increase and fall
between positions 20 and 40. This behavior perfectly matches the pace of reason-
ing efforts under LBI, and is at odds with the other models. Consistent with the
results on errors and claims, decision times suggest that prizes are included in
the LF-game at two or three intervals of distance from each prize, on average.

Overall we find evidence in favor of every single hypothesis derived from LBI. At

34Indeed, the error rate in the first intervals are consistent with random play.
35We plot the three-position averages in order to eliminate idiosyncratic fluctuations between

adjacent positions.

22



the individual level, we also find evidence of some equilibrium and sophisticated
players. There seems to exist a huge divide between those latter subjects and the
rest. This is also proven by the answers to the final questionnaire, which included
an open question about the chosen strategy. Around 15 percent of the subjects
identified the full set of losing positions as the guide for their strategy. Half of the
subjects mentioned as “strategic” a subset of the last three losing positions. In T1
those players mention the last losing positions relative to both p and P. Around
one third of our sample stated they were trying to move as quickly as possible to
the “hot-spots”, close to the prizes.

5 Applications and discussion

In this section we first show how LBI can be applied to some classical examples,
drawing predicted behavior, and comparing it to the experimental evidence.36

We then lay out an extension to the theoretical model. Finally we compare LBI
to level-k models and to the limited forecast equilibrium.

5.1 Examples

Centipede game. The centipede game (Figure 8) is a two-player finite sequential
game. The players alternate choosing whether to ‘take’ and end the game (T)
or to ‘pass’ to the other player (P). The payoff from T in the current decision
node is greater than that received if the other plays T in the next one, but smaller
than the payoffs earned if the other plays P as well. The player active at the last
decision node gets more from T than from P, and is therefore expected to take.
By backward induction, in the unique SPE the game ends at the first terminal
node, implying a huge efficiency loss.

Experimental evidence has found little compliance with SPE in the labora-
tory.37 The typical results feature a bell-shaped distribution of endnodes. Table
5 presents the results from the four and six-leg centipede in the seminal paper
of McKelvey and Palfrey [1992]. Beyond the failure of SPE, it is a robust finding
that longer games are associated, ceteris paribus, with higher endnodes.

A player whose foresight is limited does not reason strategically on the whole
game. For example, assume Player 1 follows decision rule F4. At the beginning of
the game in Figure 8, he reasons backward from the second of the decision nodes

36Roomets [2010] also applies his Horizon-Based Limited Foresight model to these games, and
his results are in line with ours.

37See, for example, Kawagoe and Takizawa [2012]; Levitt et al. [2011]; McKelvey and Palfrey
[1992]; Rapoport et al. [2003].
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FIGURE 8: THE SIX-LEGS CENTIPEDE GAME IN MCKELVEY AND PALFREY [1992]
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TABLE 5: RESULTS FROM MCKELVEY AND PALFREY [1992]

Proportion of observations in each terminal node
1 2 3 4 5 6 7

Four legs .07 .36 .37 .15 .05
Six legs .01 .07 .20 .38 .25 08 .01

where his opponent moves. The payoffs that follow action P at that node are
projected on the pseudo-terminal history (P, P, P, P). The resulting intermediate
payoffs, computed as the median within the range of available payoffs, are (144,
72). Thus, Player 2 is expected to pass at that node (72 > 32). The same holds at
previous nodes, leading Player 1 to choose P. A similar reasoning can be applied,
for every decision rule (F1, F2,. . . ), to every decision node. In this example the
intermediate payoff from P is always higher than the payoff from T. Thus, a
player does not play T unless all terminal nodes are included in his LF-game.38

Ceteris paribus, the longer the centipede, the later this happens.
In the six-leg (four-leg) centipede, for Player 1, F1 prescribes to always pass,

F2 and F3 to take at the next to last node, F4 and F5 to take from the third (first)
node on, and higher levels to always take. For Player 2, F1 and F2 prescribe
to take at the last node; F3 and F4 to take from the fourth (second) node on,
and higher levels to always take. The results in Table 5 can be explained by
a population composed by F2, F3 and F4. Those results are based on averages
over ten repetitions, and the initial-response results display a shift toward lower
foresight levels.39

In a generic centipede game, it is not always necessary for a player to choose
T that the terminal nodes of the centipede game are included in the LF-game.
The point at which Fκ prescribes to play T depends on the progression of the

38This is true not only for the proposed projection function. For example, if a player earns x
by taking at some node, the average of the n payoffs that follow is in the form (1/2 + 4 + 2 +
16...)x/n > x.

39For the first game: a majority of F2 and F3, plus some F1 and F4.
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FIGURE 9: THE SEQUENTIAL BARGAINING GAME IN JOHNSON ET AL. [2002]
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payoffs, because this determines the relation between the intermediate payoffs
and the last visible terminal ones.40

Sequential bargaining. In sequential bargaining (Figure 9) two players must
agree on the division of a cake. The players alternate in proposing a split. The
player receiving the proposal either accepts, in which case the game ends and
the proposed split is implemented, or rejects, in which case they move to the
next round. The cake shrinks every time an offer is rejected. In finite bargain-
ing, the last round of bargaining is an ultimatum game, and its solution provides
the minimal acceptable offer in the previous one. This reasoning can be iterated
backward to the initial node. In the unique SPE, in every round, the players
submit as proposers the minimal acceptable offer, and accept as responders any
offer weakly higher than the minimal acceptable one. Thus, the first offer is im-
plemented, and the game ends. Experimental evidence shows that offers are, on
average, more equitable than in the SPE, and those that are close to equilibrium
are often rejected.41 The first offers are also independent of the number of rounds
of bargaining, even if this determines the roles in the last round and, thus, who
retains more bargaining power.

Figure 9 displays the game used in Johnson et al. [2002]. The cake is initially
worth $5, and it is halved at every new round. The first SPE offer is $1.26. The
average observed one is $2.10. Half of the offers below $2 are rejected. In a treat-
ment where other-regarding preferences are disabled, using robots as opponents,
the average first offer decreases to $1.84.

Under LBI, a player does not realize the last round is an ultimatum game if
this is not included in the LF-game. If the LF-game of Player 1 includes the first

40Kawagoe and Takizawa [2012] present a survey of classical initial-response results in the
centipede game. Behavior is consistent with the population shares outlined above.

41See the review in Roth [1995].
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two rounds of bargaining, he foresees intermediate payoffs of $0.625 each follow-
ing a rejection in round two. Reasoning backward, he understates, with respect
to SPE, his minimal acceptable offer in the second round, and expects Player 2 to
offer P ∼= $0.63 and keep $1.87. He then overstates the minimal acceptable offer
of his responder in the first round, and offers P ∼= $1.87. If Player 2 has a simi-
lar foresight, he rejects any offer below this value.42 This prediction matches the
average offer in the robot treatment of Johnson et al. [2002].

Given a distribution of foresight levels in the population, the length of the
game does not affect the behavior of all players whose foresight does not reach
the terminal nodes. Thus, despite its role in allocating bargaining power, under
LBI the length of the game has no impact on the distribution of the first offers.

5.2 An extension to infinite games and further developments

Stage payoffs and sight. We here relax, for a broad class of games, the assump-
tion that the players know the terminal payoffs of the game. In infinite games,
and where retrieving information about the payoffs is costly, the players may
disregard the payoffs that arise beyond a certain stage.43 This extension will also
prove useful in Section 5.3 when comparing LBI to the limited forecast equilib-
rium.

To discriminate between close and distant payoffs, it must be possible to rep-
resent terminal payoffs as the sum of the payoffs gained along the game. That is,
the payoff function must be additively separable. Let πi : N→ R be a function
identifying single-stage payoffs. A game satisfies Additive Separability (AS) if:

ui(z) = ∑
h:h4z

πi(aj [h]),

where aj [h] is the move of the player who active at h.
An agent with a sight λ ∈N at node h, with r(h) = t, sees all successors of

h with rank smaller or equal to t + λ and the corresponding stage payoffs. If
t + λ ≥max(r(z)), the player sees all relevant information about the game from
the first stage, as in our base model.

The sight is exogenous. If the payoffs satisfy AS, the sight of a player always

42If Player 1 only sees the first round of bargaining, he offers P ∼= $1.26. Low foresight levels
do not match subgame perfect first offers in general. The initial offer oscillates as foresight varies,
and is lower (higher) when an even (odd) number of rounds are not included in the LF-game.

43Disregarding distant payoffs, and considering the close ones is an instance of present-bias,
though not in the standard sense. Present-bias and, more generally, discounting refer to prefer-
ences. As we assume the terminal payoffs are von-Neumann-Morgenstern utilities, we exclude
preference-related aspects from our analysis.
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provides information about payoffs to players, and identifies a game. The fore-
sight of the players is determined on this truncated game. In particular, the cost
and benefit of further foresight levels, and the intermediate payoffs are assessed
using only the information provided by one’s sight.

The decision rule Fκ,λ follows backward induction on a LF-game with κ stages,
where the payoffs obtained within λ stages are projected on the pseudo-terminal
nodes. This extended version of LBI applies to infinite games, implicitly assum-
ing that players treat them as finite ones.44 If the sight and the foresight coincide
LBI admits as special cases myopic behavior, and beliefs of myopic behavior on
the part of others.
Developments. A note is needed on what our account of foresight does not
cover. First, in our model there is no separation between one’s foresight and his
beliefs about others’ foresight. This is what excludes, for example, the possibility
of strategic sophistication. Nor there is a separation between one’s foresight and
the ’type’ of reasoning that is implemented within its bounds. We decided to fo-
cus on this simple framework for the sake of isolating the predictions of limited
foresight, in a context where these restrictions seem plausible. These generaliza-
tions of the model, that both our intuition and experimental results indicate as
well deserving, are left for future research.

5.3 Comparison with related models

Strategic thinking in LBI and level-k. LBI and level-k are first-response models.
They explain out-of-equilibrium behavior of untrained subjects. They are based
on a hierarchy of decision rules, such that each best replies to the next lower one.
This chain of best replies is anchored to a rule that is non-strategic, in the sense of
not being based on any belief about others. Level zero (L0) is usually modeled as
a randomizer; F1 optimizes over the intermediate payoffs that follow his decision
node.

A level-k player believes the opponents are of level k − 1, and that they be-
lieve the others are of level k− 2. When applied to dynamic contexts the players
specify an action plan for the whole game that is consistent with their beliefs [cf.,
Ho and Su, 2013; Kawagoe and Takizawa, 2012]. Under LBI, Fκ implicitly im-
poses decreasing levels of foresight on the agents that are active at the following
nodes: the belief on the next active player is consistent with Fκ−1, that on the
following with Fκ−2, and so on. Following this decision rule, a player’s moves

44Relating infinite-horizon games to finite ones is an old topic in game theory [e.g., Fudenberg
and Levine, 1983].
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need not form a consistent action plan.45

Thus, level-k and LBI imply different inconsistencies across levels of higher
order beliefs. Within the LF-game, the player assumes the others’ beliefs to be
consistent with his owns: one’s belief about the next player’s belief about the
decision rule of the third player in the row is consistent with his own belief about
this latter player’s decision rule. However, beliefs regarding the choices of the
same player, including himself, at any two different nodes, are inconsistent, as a
lower foresight is imposed both on the others’ and on one’s own future self.46 In
level-k it is the other way around.

The different features of LBI with respect to level-k models make the two
models best suited for different situations. We argue that LBI is better suited to
address games where the dynamic aspects are salient. Our experiment provides
such an example, showing a case where LBI succeeds where level-k fails.

LBI and the limited forecast equilibrium. LBI and the limited forecast equi-
librium (LFE) [Jehiel, 1995] share the same motivation: studying extensive-form
games where players have limited foresight. In every stage an action is chosen
based on predictions about a limited number of the forthcoming moves. In the
LFE, the strategies are constrained to be justified, in the sense that they maxi-
mize the payoff obtained within one’s horizon, given the forecast. The forecasts
are constrained to be correct, in the sense of being consistent with the equilibrium
strategies.

Under LBI, actions also maximize the payoff, given one’s forecast, but fore-
casts need not be correct. Correct forecasts are justified in Jehiel [1998a] through a
learning argument. The equilibrium captures the limiting outcome after the play-
ers have gained sufficient experience. LBI targets, instead, out-of-equilibrium,
first-response behavior.

Example 1 in Jehiel [1995, p.504] shows the difference. The players choose
sequentially from a binary action space, with A1 = {U, D}, and A2 = {L, R}.
Their action remains valid for the current stage and the following one. The stage
payoffs of the game are displayed in Table 6. They depend on the actions that are
valid in each stage. The game is infinitely repeated. The players maximize their
average payoff within their horizon, given their forecasts, and do not consider
what happens beyond it. In the example, the players have a foresight of two

45The fact that players do not form a complete action plan implies differences in behavior when
a game is played in the normal and in the extensive form, a result backed by a number of studies
[e.g., Cooper and Van Huyck, 2003].

46If beliefs did not feature this inconsistency, a player’s horizon would immediately extend to
that of his future self, turning down the assumption of limited foresight. One can see this as if,
under LBI, the players were split into agents, each choosing at a different node.
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TABLE 6: STAGE PAYOFFS IN EXAMPLE 1 OF JEHIEL [1995]

UL UR DL DR
(3,2) (0,3) (2,1) (2,0)

stages, so that they only forecast the next player’s action. For comparability, we
liken them to LBI players with a sight of two stages, and an identical foresight, so
that they forecast the same moves, and optimize over an identical set of payoffs.47

The strategy profile where Player 1 starts by playing U, plays U after L, D
after R thereafter, and Player 2 always plays L, is a LFE [Jehiel, 1995, p. 507]. Un-
der LBI, both players believe their opponent to act myopically. Player 1 expects
Player 2 to choose R after U, and L after D. He takes action D. Player 2 expects
Player 1 to choose U after L, and D after R. He takes action L. Thus, the players
play differently than in the above LFE. Moreover, their choices are inconsistent
with any LFE, because they are based on incorrect forecasts.48

6 Conclusion

The paper studies whether agents reason according to limited foresight. We
present a general framework of out-of-equilibrium behavior in sequential games,
Limited Backward Induction, according to which players take decisions follow-
ing backward induction over the close-by nodes that fall within their foresight.
LBI formalizes the common intuition that players forecast decisions only within
a limited horizon, and act consistently with these imprecise forecasts.

We develop an experimental design, based on the race game, which allows to
test for limited foresight. In a baseline treatment, the subjects compete to reach a
prize which is achieved at the end of the game. In a second treatment, they can
also obtain a small prize which is achieved before the end of the game, by giv-
ing the opponent the opportunity to secure the victory of the final prize. Results
show the subjects solve for the small prize before they do for the final one. As so-
phisticated strategies that aim at winning both prizes can be excluded as an over-
all explanation, the data provide clear evidence of limited foresight. Backward
reasoning is the main cognitive procedure used by the subjects. As assumed

47In a related model, Jehiel [2001] allows players to take into account also the expected payoffs
beyond the horizon of their forecasts, so that payoffs are more similar to our standard interme-
diate ones.

48The players may realize that their forecasts are not correct, and modify them. To capture how
behavior would evolve requires a learning model based on LBI, which goes beyond the scope of
this paper. Under which conditions LBI would converge to LFE in such a model is an interesting
question that we leave for future research.
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under LBI, it does not proceed backwards from the terminal nodes. Rather, it
is routinely performed on the few stages that follow the current decision node.
Alternative models, including equilibrium and dynamic level-k models, fail to
rationalize the evidence.

We believe our results represent a significant contribution to the understand-
ing of initial-response behavior in sequential games. Nevertheless, quantifying
precisely the heterogeneity of foresight types, and understanding how portable
these are across games, call for further experimental investigation. A full classifi-
cation will likely include also equilibrium and sophisticated players, which also
show up in our sample.

On the theoretical side, LBI is a flexible framework and applies to all sequen-
tial games with perfect information, including infinite ones. As the foresight
grows, in the limit LBI mimic subgame perfection. At the other end, it encom-
passes perfect myopia as a special case. The framework is suitable for further
developments. A promising direction seems to be the merger of models of fore-
sight, levels of reasoning and sophistication in a unified framework that would
then apply to any dynamic game. Simultaneously, one could study how lim-
ited foresight evolves with experience, as similarly done in Mengel [2014]. Our
results provide some insights for this latter line of research, since we observe di-
verging learning patterns in the two treatments for reasons that seem related to
the partial sophistication of the subjects.

The possible presence of limited foresight bares important consequences and
insights for many contexts. For instance, this paper shows how LBI can rational-
ize observed behavior in widely studied games, such as centipede and sequen-
tial bargaining games. By ignoring limited foresight, one might also estimate
incorrectly individual discount factors in all settings that include planning and
anticipating distant decisions. More generally, LBI is a promising tool for all situ-
ations where end-of-game effects seem relevant. For instance, a relation between
limited foresight and bubble formation in experimental asset markets is already
being hypothesized by Bosch-Rosa and Meisner [in progress].
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A Sophisticated behavior and risk aversion

Denote M the position where P is obtained, and m the position where p is ob-
tained. Let F < 0 be a generic fine. The current position is t̄. The expected payoff
from S1 is P + (M − t̄). The expected payoff from S2 is p + (m − t̄) + q(P +

(M − m− aopp,m)), where q is the probability that the opponent does not solve
the game within m, and aopp,m is the action of the opponent at m. The expected
payoff from S3 is p + (m− t̄) + q(P + (M− t̄)) + (1− q)F. Using simple algebra
one obtains that, for a risk neutral player, S2 � S3 and S2 � S1 if and only if:

∆P + ∆M

P + ∆M − aopp,m
≤ q ≤ −F

m + aopp,m − t̄− F
(1)

where ∆P = P− p and ∆M = M− m. It follows that, in the game played in T1,
for t̄ < 37 there exists no q such that S2 � S3 and S2 � S1.

A similar reasoning applies to risk averse players. Consider a player, whose
utility function is ui(x) =−e−αx, α > 0, featuring constant absolute risk aversion.
Then S2 � S3 and S2 � S1 if and only if:

1− e−α(∆P+∆M)

1− e−α(P+∆M−aopp,m)
≤ q ≤ 1− e−αF

1 + e−α(P+M−t̄) − e−α(P+∆M−aopp,m) − e−αF
(2)

33



FIGURE 10: BELIEFS SUSTAINING S2: CARA (STARS), CRRA (CIRCLES)

Consider now a player whose utility function is ui(x) = x1−ρ

1−ρ , ρ > 0 featuring
constant relative risk aversion. Slightly abusing notation for simplicity, let uj,ω,
j ∈ {1,2,3}, ω ∈ {g,b}, be the (rescaled) utility of the player when his strategy is
Sj, conditional on state ω. In case the opponent does not solve the game within
m, ω = g; otherwise, ω = b.

u1,ω = (p + m + ∆P + ∆M − t̄)1−ρ

u2,g = (2p + m + ∆P + ∆M − t̄− aopp,m)
1−ρ

u2,b = (p + m +−t)1−ρ

u3,g = (2p + 2m + ∆P + ∆M − 2t̄)1−ρ

u3,b = (p + m− t̄ + F)1−ρ

Then S2 � S3 and S2 � S1 if and only if:

u1,ω − u2,b

u2,g − u2,b ≤ q ≤ u3,b − u2,b

(u2,g − u2,b)− (u3,g − u3,b)
(3)

If we apply our parameters to the previous inequalities we obtain that, in G1,
if a player is not able to reach m in a single move (i) under CARA, for α < 0.8
there exists no q such that S2 � S3 and S2 � S1, and (ii) under CRRA, for ρ < 0.5
there exists no q such that S2 � S3 and S2 � S1.

In Figure 10 the bounds of the interval for q, in the case of CARA (stars) and
CRRA (circles), are plotted against the coefficient of (constant or relative) risk
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aversion. To sustain S2, q must be higher than the dashed line, and lower than
the solid line. It is assumed that t̄ = 34 and kopp,m = 1, giving the interval the
highest chances to exist and the largest magnitude. As shown, for low levels of
risk aversion, there exists no belief supporting S2. For intermediate values, a tiny
interval of beliefs appears. The interval never grows beyond a magnitude of 0.06,
corresponding to a belief q between .83 and .97.

B Experimental Instructions

Welcome to this experiment in decision-making. Please, read these instructions
carefully. The amount of money you earn depends on the decisions you and
other participants make. In the experiment you will earn ECU (Experimental
Currency Units). You will receive 50 ECU as initial endowment. At the end of
the experiment we will convert the ECU you have earned into euros according
to the rate: 1 Euro = 10 ECU. You will be paid your earnings privately and confi-
dentially after the experiment. Throughout the experiment you are not allowed
to communicate with other participants in any way. If you have a question
please raise your hand. One of us will come to your desk to answer it.
[Between square brackets, we report the instructions specific to T1]

The game

• The game you will play has two players, P and Q.

• The players decide sequentially: they take turns, one after the other. Each
decision consists in a number of steps, between 1 and 6 (included).

• You start at position 1. P is the first to decide.

• At the beginning, P chooses a number of steps between 1 and 6. Summed
to the initial position, those steps determine a new position (example: P
chooses 3; new position = 1+3 = 4).

• Then Q chooses a number between 1 and 6. Those are summed to the posi-
tion reached by P (example, follows: B chooses 5; new position = 4 + 5 = 9).
And so on.

• The game ends when one of the players reaches position 66 with his deci-
sion.

• You are always informed of the current position.
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Prizes

• [When a player reaches position 40 with his choice, he obtains the prize A,
valued 30 ECU].

• When a player reaches position 66 with his choice, he obtains the prize [B],
valued 100 ECU.

• At any time you can claim you are going to win the prize [A or the prize B;
you are allowed to claim both prizes].

• If a player obtains the prize he has claimed, he earns, on top of the prize,
a number of ECU equal to the difference between 66 [the position of the
prize] and the position where he has declared to win it (example: P de-
clares at position 60 he is going to win the prize, and then wins; he receives
6 ECU on top of the prize [P declares at position 35 he is going to win prize
A, and then wins; he receives 5 ECU on top of the prize]).

• If a player does not win a prize he has claimed, he gets a fine worth 15 ECU.

• When a player declares he is going to win [a prize], his opponent is not
informed and can himself declare he is winning [the same prize].

• The number of ECU earned are the sum of the initial endowment, the
prize[s] and the adjunctive ECU obtained, minus the fine[s].

Structure of the experiment

• You will play 8 rounds of this game.

• You will be randomly assigned to role P or Q.

• In every new round you will play against a new partner, chosen at random
between the other participants.

• You will never play twice with the same partner.

Earnings

• Only one out of the eight rounds will be paid to you.

• At the end of the experiment, one number between 1 and 8 will be selected
at random by the computer, and the corresponding game will be paid.
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• You will be informed of the chosen game, of your final payoff in ECU and
of the corrosponding Euros.

Concluding remarks

You have reached the end of the instructions. It is important that you understand
them. If anything is unclear to you or if you have questions, please raise your
hand. To ensure that you understood the instructions we ask you to answer a few
control questions. After everyone has answered these control questions correctly
the experiment will start.
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