
 

DEPARTMENT OF ECONOMICS, 
MANAGEMENT AND STATISTICS 

UNIVERSITY OF MILAN – BICOCCA 

  

 
 

DEMS WORKING PAPER SERIES 
 
 

Oil Price Forecastability and Economic 
Uncertainty 

 
Stelios Bekiros, Rangan Gupta, Alessia Paccagnini 

 
 

No. 298 – April 2015 
 
 
 
 
 
 
 
 

 
Dipartimento di Economia, Metodi Quantitativi e Strategie di Impresa 

Università degli Studi di Milano - Bicocca 
http://dems.unimib.it/ 



Oil Price Forecastability and Economic Uncertainty

Stelios Bekirosa,b1 Rangan Guptaa,c2 Alessia Paccagninid3

aIPAG Business School , bEuropean University Institute , cUniversity of Pretoria, dUniversità

degli Studi di Milano - Bicocca

1aIPAG Lab, IPAG Business School, 184 Boulevard Saint-Germain, 75006 Paris, France.; Tel.:
+33 01 53 63 36 00 ; Fax: +33 01 45 44 40 46; bEuropean University Institute, Department of
Economics, Via della Piazzuola; 43, I-50133, Florence, Italy; Tel.: +39 055 4685 916; Fax: +39
055 4685 902; E-mail address: stelios.bekiros@eui.eu;

2Department of Economics, University of Pretoria, Pretoria, 0002, South Africa. E-mail ad-
dress: rangan.gupta@up.ac.za

3Corresponding author: Department of Economics, Università degli Studi di Milano - Bicocca
- Milan 20126 Tel +39 02 6448 3046, Email: alessia.paccagnini@unimib.it.



Abstract

Information on economic policy uncertainty (EPU) does matter in predicting oil returns

especially when accounting for omitted nonlinearities in the relationship between these two

variables via a time-varying coe¢ cient approach. In this work, we compare the forecastabil-

ity of standard, Bayesian and TVP-VAR models against the random-walk and benchmark

AR models. Our results indicate that over the period 1900:1-2014:2 the time-varying VAR

model with stochastic volatility outranks all alternative models.

JEL Classi�cation: C22, C32, C53, E60, Q41
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1 Introduction

Hamilton (2008) indicates that nine out of ten recessions in the US since World War II

have been preceded by an increase in oil prices. Interestingly, Hamilton (2009) goes as

far as arguing that a large proportion of the recent downturn in the US GDP during the

�Great Recession�can be attributed to the oil price shock of 2007-2008. Stock and Watson

(2003) also show the ability of oil price in predicting growth and in�ation. A recent strand of

literature emphasizes the role of economic policy uncertainty (EPU) on real activity (Bloom,

2009; Jones and Olson, 2013), which in turn a¤ects oil-price movements, as depicted in Kang

and Ratti (2013a, b) and Antonakakis et al. (2014). To the best of our knowledge, this is

the �rst attempt to forecast oil returns using a news-based measure of EPU. This measure,

developed by Baker et al., (2013), relies on an automated text-search process of large US

newspapers and identi�es articles that use words related to economic policy, regulation and

uncertainty. In our approach we compare the ability of VAR, standard Bayesian VARs and

time-varying parameter VARs, against random-walk and univariate AR models of real oil

returns over the monthly out-of-sample period 2007:1-2014:2, using an extended in-sample

period of 1900:1-2006:12. The paper is organized as follows: section 2 brie�y presents the

various econometric models and section 3 discusses the data and results; �nally section 4

concludes.

2 Econometric Models

The econometric models used include the classical and Bayesian VAR, a time-varying

VAR with stochastic volatility (TVP-VAR) and a new TVP-VAR with Markov-switching

heteroscedasticity as in Bekiros and Paccagnini (2014). Our benchmark models are the

random-walk (RW) and an AR(p) model.

2.1 Classical VAR

As suggested by Sims (1980) it has the following compact format
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Yt = Xt�+U (1)

where Yt is a (T � n) matrix with rows Y 0t ; X is a (T � k) matrix (k = 1+ np; p =number

of lags) with rows X 0
t = [1; Y 0t�1; :::; Y

0
t�p]. U is a (T � n) matrix with rows u0t, � is a

(k � n) = [�0;�1;:::;�p]
0, while the one-step ahead forecast errors ut have a multivariate

N(0;�u) conditional on past observations of Y: Based on the Akaike information criterion

the optimal lag p is set at 6.

2.2 BVAR model

A Bayesian VAR (BVAR) imposes restrictions on the numerous VAR parameters by spec-

ifying normal prior distributions with zero means and small standard deviations for all

coe¢ cients, with a decreasing standard deviation as the lags increase. Popular priors are

the "Minnesota " ones, written as follows

�i � N(1; �2�i) and �j � N(0; �
2
�j
); (2)

where �i denotes the coe¢ cients associated with the lagged dependent variables in each

equation of the VAR, while �j represents any other coe¢ cient. The prior variances �2�i and

�2�j specify the uncertainty of the prior means, �i = 1 and �j = 0, respectively. In this

study, since our variables are mean-reverting, we impose �i = 0 as well, i.e., a white-noise

mean prior. The speci�cation of the standard deviation of the distribution of the prior

imposed on variable j in equation i at lag m, for all i; j and m, denoted by S(i; j;m), is

speci�ed as follows

S(i; j;m) = [w � g(m)� F (i; j)] �̂i
�̂j
; (3)

where

F (i; j) =

8><>: 1 if i = j

kij otherwise, 0 � kij � 1
(4)
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is the tightness of variable j in equation i relative to variable i and by increasing the

interaction, i.e. it is possible for the value of kij to loosen the prior. The term w measures

the standard deviation on the �rst lag, and also indicates the overall tightness. The function

g(m) = m�d; d > 0 is the measurement of the tightness on lag m relative to lag 1, and is

assumed to have a harmonic shape with a decay of d, which tightens the prior on increasing

lags. Following the literature on the Minnesota prior settings, we experimented with various

combinations (0.3, 0.5; 0.1, 1.0; 0.2, 1.0; 0.2, 2.0; 0.1, 2.0) of w and d respectively, with

kij set equal to 0.5. We found that w = 0.3 and d = 0.5 produced the best out-of-sample

forecast on average, and hence, we only report the results based on this prior setting for

the BVAR.

2.3 TVP-VAR model

As evidenced in D�Agostino et al. (2013), a VAR with time-varying parameters and sto-

chastic volatility can predict well many US macroeconomic variables. To model oil price

and uncertainty, we implement the following set up:

Yt = ct +
KX
j=1

BtYt�j + 

1=2
t "t; (5)

where the VAR coe¢ cients �t = vec(fct; Btg) evolve as random walks, �t = �t�1 + �t:

Following Cogley and Sargent (2005), the covariance matrix of the innovations �t (
t) can

be factored as:


t = A
�1
t Ht

�
A�1t

�:0
(6)

where
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At =

264 1 0

�21;t 1

375 and

Ht =

264 h1;t 0

0 h2;t

375 ;
with hi;t evolving as geometric random walks: lnhi;t = lnhi;t�1 + e�t: We assume that the
non-zero and non-one elements of the matrix At is a RW such as �21;t = �21;t�1 + � t: The

model is estimated allowing for stochastic volatility in �t, as suggested in Baumeister et al.

(2013) and Cogley et al. (2008). In this last case, Barnett et al. (2014) evidence how the

VAR coe¢ cients may change faster during the recent crisis, while the changes are small in

tranquil periods, hence the TVP-VAR is a better forecasting tool during turmoil events.

We estimate the model using a Gibbs sampling algorithm and the posterior simulated is

computed as proposed by Carter and Kohn (2004).

2.4 TVP-VAR model with Markov-Switching Heteroscedasticity

We utilize the multivariate state-space TVP-VAR model of Bekiros and Paccagnini (2014)

with ht the error of the measurement equation and Qt the covariance matrix of the state

equation. Both equations incorporate time varying coe¢ cient and state transition matrices.

As an alternative to the classical TVP-VAR with homoskedastic volatility (stochastic or

not) they assume that the measurement and state equation error structure is dependent on

unobserved discrete-time, discrete-state Markov processes (TVP-VAR-MS). To estimate the

model they introduce a Quasi-optimal Kalman �ltering approach with two-state Markov-

switching heteroskedasticity. Their set-up is intended to capture a low- and high-volatility

regime, as observed in prior and post-crisis periods. They consider the following �rst-order,

!-state Markov-switching model of heteroskedasticity:

4



Qt = Q
St = Q1�1t +Q2�2t + � � �+Q!�!t

ht = h
St = h1�1t + h2�2t + � � �+ h!�!t

p =

0BBBBBBB@

p11 p12 � � � p1!

p21 p22 � � � p2!
...

...
. . .

...

p!1 p!2 � � � p!!

1CCCCCCCA
(7)

where �jt = 1 if St = j and �jt = 0 if St 6= j (j = 1; 2; : : : ; !), pij = Pr [St = jjSt�1 = i], for

i; j = 1; 2; : : : ; !, and
!P
j=1

pij = 1. The unobserved-state variable St evolves according to a

Markov process with the transition probability matrix. In particular for a two-state Markov-

switching model of heteroskedasticity: Pr [St = 1jSt�1 = 1] = P11; Pr [St = 0jSt�1 = 1] =

1 � P11; Pr [St = 1jSt�1 = 0] = 1 � P00; Pr [St = 0jSt�1 = 0] = P00:They estimate the hy-

perparameters via an approximated conditional log-likelihood function and show how pre-

diction and smoothing can be obtained. The decoupling of the Kalman �lter is derived

as

yt = (z
0
t 
 IN)�t + "t; with V ar("t) = V ar(h

j
t)�� = �hj�� (8)

�t = (Tt 
 IN)�t�1 + (Rt 
 IN)�t; with V ar(�t) = V ar(Q
j
t)
�� = �Qj 
�� (9)

where V ar("t) = V ar(hjt) = �hj and V ar(�t) = V ar(Qjt) = �Qj are block diagonal

matrices, although a more general formulation does not constrain them to be diagonal.

However, restrictions are needed on the matrices for the model to be identi�able. The

technical speci�cities of the model can be found in Bekiros and Paccagnini (2014). Finally,

prediction is produced via P(i;j)�t+1jt = P
(i;j)
t+1jt 
��, where P

(i;j)
t+1jt is the MSE matrix from the

corresponding univariate model.
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3 Data and Results

The two variables of concern comprise real oil prices obtained by dividing the Western

Texas Intermediate (WTI) by the Consumer Price Index (CPI), and EPU. Standard unit

root tests indicate that the log-EPU is stationary as opposed to the logarithm of real oil

price, hence the latter is transformed to real oil returns (month-on-month growth rate of

real oil price) to ensure mean-reversion. In order to further rationalize the use of TVP-

VARs we employed the BDS test (Brock et al., 1996) which overwhelmingly rejected the

null hypothesis that AR- or VAR-�ltered errors are i.i.d for all possible dimensions, thus

implying an omitted nonlinear structure.1

We analyze the ability of the EPU to forecast real oil returns over the period 2007:1-

2014:2, i.e., during the recent global crisis, using an in-sample period spanning 1900:1-

2006:12. All the models are estimated recursively over the out-of-sample period to produce

1- to 24-months-ahead RMSEs. In Table 1, we report the RMSEs from the RW whilst the

rest of the models are reported relative to the RW. Based on the results, we can draw the

1Details are available upon request from the authors.
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following conclusions: (a) all models outperform the RW at all horizons; (b) on average,

the TVP-VAR model with stochastic volatility is the best performer followed by the TVP-

VAR-MS; (c) in speci�c horizons, the TVP-VAR produces the maximum gain at 1- to 18-

and 20- to 22-steps-ahead, while the TVP-VAR-MS is the best for the 19-month-ahead and

the AR model at 23- and 24-steps-ahead; (d) �nally, using the MSE � F test statistic of

McCracken (2007) we con�rm that the TVP-VAR model statistically outperforms the RW

at 1% signi�cance level at all horizons 2 and the AR model at horizons of 1- to 12-steps-

ahead (1% level) and 14-months (5%). Overall, information on EPU helps in forecasting

real oil returns when allowing for adaptive learning or inherent nonlinearities as captured

by the TVP-VARs 3

4 Conclusions

The importance of oil prices in determining movements of US growth and in�ation is well-

established, hence accurate forecasting is of paramount importance. Moreover, recent works

in the literature advocate in favor of economic policy uncertainty driving oil-price �uctua-

tions. Against this backdrop, we compare the forecastability of various uni- and multivariate

models of real oil returns and EPU. Our results indicate that TVP-VARs outperform the

others in all horizons till two-years-ahead relative to the benchmark Random Walk. Conse-

quently, information on EPU does matter in predicting oil returns out-of-sample, especially

when accounting for adaptive nonlinearities in the relationship between these two variables

via a time-varying coe¢ cient approach.

2This test compares the null of equal forecasting ability between a restricted (RW or AR) and an
unrestricted model (in our case the best performing VAR on average, i.e., TVP-VAR). For all the other
models, theMSE�F is signi�cant at least at the 5% level over all horizons. Complete details are available
upon request from the authors.

3The TVP-VAR-MS allows for regime shifts, yet the particular out-of-sample period does not incorporate
various regimes but only one i.e., the crisis period. Qualitatively similar results were obtained when we
used other periods based on identi�ed structural breaks by the Bai and Perron (2003) tests e.g., 1986:9 or
1999:1, the latter corresponding to the introduction of the euro.
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