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Abstract. We prove results concerning the representation of a given distribution by means of

a given random quantity. The existence of a solution to this problem is related to the notion of

conglomerability, originally introduced by Dubins. We show that this property has many interesting

applications in probability as well as in analysis. Based on it we prove versions of the extremal

representation theorem of Choquet and of Skhorohod theorem.
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1. Introduction

Let S and Ω be non empty sets, H a family of real valued functions on S and X a map from Ω

to S. In this paper we consider several problems involving the equation

(1)

∫
hdm =

∫
h(X)dµ h ∈H

in which m is a given positive, real valued, finitely additive set function defined on some ring of

subsets of S. When (1) is solved by a positive, finitely additive set function µ defined on a ring of

subsets of Ω, we speak of m as the distribution of X and of X as the representation of m. These

properties should be interpreted as defined relatively to a given family H which is at the same time

our model of the information available and a constraint to the problem examined. In the general

case addressed in this work we will avoid assuming that S is a metric or a topological space, or

that X is measurable in some appropriate sense.

A classical problem fitting into (1) is the one faced by a statistician who, based on the outcome

of an experiment in the form of a distribution m on S, has to conclude whether the observed

data originate from some a priori model X or not. In similar situations a statistician may perhaps

consider restrictions to the representing measure, such as µ being countably additivite or absolutely

continuous with respect to some reference measure. The traditional representation problem of

Skhorohod is another variant of the one discussed here in which µ is given and X is the unknown.

Another question related, in a less obvious way, to (1) is the problem raised long ago by Lester

Dubins [14] of whether a finitely additive set function m on a product space is strategic, a special

form of the disintegration property. The answer to Dubins’ problem depends on a special condition,

conglomerability (apparently due to de Finetti) that received little attention in probability since

Dubins’paper, with the notable exception of the work of Schervisch, Seidenfeld and Kadane [25].

The conglomerability property, we believe, may be formulated in more general terms than those

in which it was originally stated and it may be applied to more ambitious problems in probability

and analysis than those for which it had been originally devised. The first problem in which

conglomerability turns out to be a crucial property is that of representing linear functionals as

integrals whenever the underlying space is just an arbitrary vector space possessing no additional

property. In this generality a direct integral representation is hardly possible – if meaningful at

all. There is however the possibility that a linear operator T map the original vector space into

an auxiliary function space on which such a representation obtains. In fact we prove in Theorem

1 that this is the case if and only if the given linear functional is T conglomerative. This simple

result admits though a large number of implications of which the existence of a solution to (1) is

just a case in point.

Conglomerability may be nicely restated as a geometric property characterizing two sets of linear

functionals on a vector space. As such, it covers several situations of interest in analysis: a compact

set is conglomerative with respect to the set of its extreme points; in a Banach space with the Radon

Nikodým property a closed bounded set is conglomerative relatively to its strongly exposed points.
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Theorem 2, the most important result in this paper, proves that if Φ and Ψ are two sets of positive

functionals on a vector lattice then Φ is Ψ conglomerative if and only if each φ ∈ Φ is the barycenter

of a (countably additive) measure supported by Ψ. By exploiting the possibility of representing

evaluations as positive linear functionals, this conclusion is then extended in Theorem 3 to obtain

a generalization of the original result of Choquet [10].

We also provide applications to probability. In (1) with S separable we use conglomerability

to explicitly construct one function X that represents any distribution relatively to the family

H of continuous functions on S. This in turn implies that if a given classical probability space

supports a random quantity uniformly distributed on the unit interval then every countably additive

distribution m admits a representation X supported by that same space, a situation related to

the problem of Skhorohod. In addition, we prove that there are stochastic processes, such as

Brownian motion, which can assume whatever family of finite dimensional distributions on R upon

an appropriate choice of the underlying probability.

In the closing section we apply our approach to prove that any convex functions on R decomposes

into the sum of a piecewise linear component and an integral part, a representation curiously near

to the one popular in mathematical finance as a model for option prices.

All proofs are quite simple and, despite the focus on countable additivity, they are obtained by

exploiting the theory of the finitely additive integral in which the measurability constraint is much

less burdensome. We hope to disprove thus, at least partially, the harsh judgment of Bourgin [7, p.

173] that “an integral representation theory based on finitely additive measures is virtually useless”.

2. Notation

Throughout the paper Ω and S are arbitrary, non empty sets and A and Σ rings of subsets of

Ω and S, respectively. The symbol F(Ω, S) (with F(Ω,R) = F(Ω)) is used to denote the family of

all functions mapping Ω into S and F is replaced with L, C or CK when the functions considered

are linear, continuous or continuous with compact support, respectively. If f ∈ F(Ω, S) and A ⊂ Ω

the symbols f |A and f [A] designate the restriction of f to A and the image of A under f . More

generally if H ⊂ F(Ω) and A ⊂ Ω we denote the set {h(ω) : h ∈H , ω ∈ A} as H [A]. A sublattice

H of some function space F(S) is Stonean (or has the Stone property), if h ∈H implies h∧1 ∈H ,

where 1 ∈ F(S) indicates the function assigning the value 1 to all s ∈ S.

S (A ) and B(A ) indicate the families of A simple functions on Ω and its closure in the topology

of uniform convergence. By fa(A ), ba(A ) and ca(A ) we designate the spaces of real valued, finitely

additive set functions on A , the subspace of fa(A ) consisting of elements which are bounded

relatively to the variation norm and the subspace of ba(A ) consisting of countably additive set

functions, respectively. fa(Ω) is preferred to fa(2Ω). A pair (A , λ) with A a ring of subsets of

Ω and f ∈ fa(A )+ is called a measurable structure on Ω. We refer to (Ω,A , P ) as a classical

probability space when A is a σ algebra of subsets of Ω and P is countably additive on A and
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we say that it supports X ∈ F(Ω, S) whenever S is a topological space and X−1(B) ∈ A for every

B ⊂ S open.

We recall a few definitions and facts relative to the finitely additive integral, the main references

being [15] and [4]. If λ ∈ fa(A )+ then we say that X ∈ F(Ω) is λ-measurable if and only if there

exists a sequence 〈Xn〉n∈N in S (A ) such that Xn λ-converges to X, i.e. such that

(2) lim
n
λ∗(|Xn −X| > c) = 0 for every c > 0

where the set function λ∗ and its conjugate λ∗ are defined (with the convention inf ∅ =∞) as

(3) λ∗(E) = inf
{A∈A :E⊂A}

λ(A) and λ∗(E) = sup
{B∈A :B⊂E}

λ(B) E ⊂ Ω.

We say that X is λ-integrable (or that X ∈ L1(λ)) if there is a sequence 〈Xn〉n∈N in S (A ) that

λ-converges to X and such that 〈Xn〉n∈N is Cauchy in L1(λ). The integral of X with respect to

λ is denoted by
∫
Xdλ but at times as

∫
ΩX(ω)dλ(ω) when reference to the underlying space is

important. We shall use the following fact: if A,B ⊂ Ω, λ ∈ fa(A )+ and f ∈ L1(λ), then

(4) 1A ≤ f ≤ 1B implies λ∗(A) ≤
∫
fdλ ≤ λ∗(B).

Associated with λ ∈ fa(A )+ and X ∈ F(Ω) are the following, important collections:

(5a) D(X,λ) =
{
t ∈ R : lim

n
λ∗(X > t− 2−n) = lim

n
λ∗(X > t+ 2−n)

}
(5b) R0(X,λ) =

{
{X > t} : t ∈ D(X,λ)

}
(5c) A (λ) =

{
E ⊂ Ω : λ∗(E) = λ∗(E)

}
.

It is easily seen that A (λ) consists of subsets B of Ω which are λ-measurable, i.e. such that the

corresponding indicator function 1B is a λ-measurable function, and that it forms a ring containing

A . We refer to A (λ) as the λ completion of A . Moreover, there clearly exists a unique extension

of λ to A (λ) and X ∈ F(Ω) is λ-measurable if and only if it is measurable with respect to such

extension. Abusing notation, we will always denote with the same letter, λ, also its extension to

A (λ). A sequence 〈Xn〉n∈N in L1(λ) converges to X in norm if and only if it λ-converges to X and

is Cauchy in the norm of L1(λ), [15, III.3.6]. Following [20], if X ∈ F(Ω, S) and S is a topological

space, we say that X is λ-tight if for all ε > 0 there exists K ⊂ S compact such that λ∗(X /∈ K) < ε.

3. Finitely Additive Preliminaries

We characterize here measurability and integrability in a convenient way. Some of the following

facts are intuitive and well known under countable additivity. We fix λ ∈ fa(A )+.

Lemma 1. X ∈ F(Ω) is λ-measurable if and only if it is λ-tight and either one of the following

equivalent properties hold: (i) λ∗(X > s) ≥ λ∗(X ≥ t) for all s < t, (ii) R0(X,λ) ⊂ A (λ), (iii)

the set
{
t ∈ R : {X > t} ∈ A (λ)

}
is dense in R.
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Proof. If X is λ-measurable it is λ-tight, [21, p. 190]. Choose 〈fk〉k∈N in S (A ) λ-converging to X

and Aηk ∈ A such that {|X − fk| ≥ η} ⊂ Aηk and λ(Aηk) ≤ λ
∗(|X − fk| ≥ η) + 2−k. Then,

{X ≥ s+ 2η} ⊂ {fk ≥ s+ η or |fk −X| > η} ⊂ {fk ≥ s+ η} ∪Aηk ⊂ {X > s} ∪Aηk

so that λ∗(X ≥ s+ 2η) ≤ λ
(
{fk ≥ s+ η} ∪Aηk

)
≤ λ∗(X > s) + λ

(
Aηk
)
. Assume (i). If t ∈ D(X,λ)

then λ∗(X > t) = limn λ∗(X > t − 2−n) ≥ λ∗(X ≥ t) ≥ λ∗(X > t). The implication (ii)⇒(iii) is

obvious. Assume that (iii) holds. Let tn0 = −2n, tnIn+1 = 2n and choose {tn1 ≤ . . . ≤ tnIn} ⊂ [−2n, 2n]

to be such that {X > tni } ∈ A (λ) for i = 1, . . . , In and sup0≤i≤In |t
n
i − tni+1| < 2−n. Define

(6) Xn =

In−1∑
i=1

tni 1{tni <X≤tni+1} ∈ S
(
A (λ)

)
.

Then {|X −Xn| ≥ 2−n} ⊂ {|X| > 2n−1} so that Xn λ-converges to X whenever X is λ-tight. �

Lemma 2. X ∈ L1(λ) if and only if
∫∞

0 λ∗(|X| > t)dt =
∫∞

0 λ∗(|X| > t)dt <∞. Then,

(7)

∫
Xdλ =

∫ ∞
0

λ∗(X > t)dt−
∫ 0

−∞
λ∗(X < τ)dτ.

Proof. Assume
∫
λ∗(|X| > t)dt =

∫
λ∗(|X| > t)dt < ∞. Then X is λ-tight and the set of t ∈ R

for which {|X| > t} ∈ A (λ) is dense so that |X| is λ-measurable. As in (6) we can construct an

increasing sequence 〈fn〉n∈N in S (A (λ)) such that 0 ≤ fn ≤ |X| and λ-converges to |X|. But then,

∞ >

∫ ∞
0

λ∗(|X| > t)dt ≥ lim
n

∫ ∞
0

λ(fn > t)dt = lim
n

∫
fndλ =

∫
|X|dλ(8)

as 〈fn〉n∈N is Cauchy in L1(λ). Assume conversely that X ∈ L1(λ) and take b > a > 0. If 〈fn〉n∈N
in S (A ) converges to X in L1(λ) and 0 < ε < a, then∫ b+ε

a+ε
λ∗(X > t)dt ≤

∫ b

a
λ(fn > t)dt+ (b− a)λ∗(|X − fn| > ε)

≤
∫ b−ε

a−ε
λ∗(X > t)dt+ 2(b− a)λ∗(|X − fn| > ε)

by [4, 3.2.8.(iii)]. Thus,
∫ b
a λ∗(X > t)dt =

∫ b
a λ
∗(X > t)dt and∫ b

a
λ∗(X > t)dt = lim

n

∫ b

a
λ(fn > t)dt = lim

n

∫
(b ∧ fn − a)+dλ =

∫
(b ∧X − a)+dλ.

Thus
∫∞

0 λ∗(X > t)dt =
∫∞

0 λ∗(X > t)dt =
∫
X+dλ so that

∫
λ∗(|X| > t)dt <∞ and (7) holds. �

Proving uniqueness of the finitely additive set function generating a given class of integrals

requires to identify a minimal measurable structure associated with a given family of functions,

a not entirely standard problem under finite additivity. We make this idea precise based on an

appropriate notion of order. If (A , λ) and (B, ξ) are measurable structures on the same underlying

space then (upon identifying ξ with its extension to B(ξ)) we define the partial order � by writing

(9) (A , λ) � (B, ξ) whenever A ⊂ B(ξ) and ξ|A = λ

Speaking of a minimal measurable structure always refers to the above defined partial order.
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Lemma 3. Let H be a Stonean vector sublattice of F(Ω) and φ ∈ L(H )+. The family M(φ) of

measurable structures (A , λ) on Ω satisfying

(10) H ⊂ L1(λ) and

∫
hdλ = φ(h) h ∈H ,

is either empty or contains a minimal element (Rφ, λφ).

Proof. Assume that (A , λ) ∈M(φ) and denote by R(H , λ) the smallest ring containing

(11) R0(H , λ) =
{
{h > t} : h ∈H+, t ∈ D(h, λ), t > 0

}
.

Write λH = λ|R(H , λ). ∅ ∈ R0(H , λ), as H is Stonean. We claim that (R(H , λ), λH ) is a

minimal element in the collection M(φ).

Suppose that (B, ξ) ∈M(φ). Fix h ∈H+ and consider the classical inequality

1{h>a} ≥
h ∧ b− h ∧ a

b− a
≥ 1{h≥b} h ∈H , b > a > 0.(12)

By the Stone property, the inner term belongs to H , so that ∞ > λ∗(h > a) ≥ ξ∗(h ≥ b), by (4).

Choosing a and b conveniently and interchanging λ with ξ we establish that D(h, λ) ∩ (0,∞) =

D(h, ξ) ∩ (0,∞) and that

λ∗(h ≥ t) = ξ∗(h ≥ t) = ξ∗(h > t) = λ∗(h > t) t ∈ D(h, λ), t > 0

so that R0(H , λ) ⊂ B(ξ). For i = 1, 2 pick hi ∈H+, ti ∈ D(hi, λ) and ti > 0. Fix t1 ∧ t2 ≥ η > 0,

define hη =
(
h1 − (t1 − η)

)+ ∨ (h2 − (t2 − η)
)+

and, since the sets D(hη, λ) are dense in R, choose

δ ∈ (0, t1 ∧ t2] ∩Q ∩
⋂

η∈Q∩(0,t1∧t2]

D(hη, λ).

Then δ ∈ D(hδ, λ), hδ ∈ H+ and {h1 > t1} ∪ {h2 > t2} = {hδ > δ}. In other words R0(H , λ)

is closed with respect to union and, by a similar argument, to intersection as well. Because λ and

ξ are additive and coincide on R0(H , λ) they also coincide on R(H , λ), [4, Theorem 3.5.1]. Let

h ∈H+ and t > s. Then h is λH -tight because h ∈ L1(λ). If s < 0 then λH ∗(h > s) ≥ λ∗H (h ≥ t).
Otherwise there are t′, s′ ∈ D(h, λ) with t > t′ > s′ > s and therefore

λH ∗(h > s) ≥ λH (h > s′) ≥ λH (h > t′) ≥ λ∗H (h ≥ t).

By Lemma 1 h is thus λH -measurable and therefore
∫
hdλH =

∫
hdλ. �

The minimal structure (R(H , λ), λH ) constructed explicitly above will generally depend on λ.

However, since D(h, λ) is dense, the σ ring generated by R(H , λ) corresponds to the usual notion

of the σ-ring generated by the family H .

Lemma 4. Let g ∈ F(Ω)+ be λ-measurable and define the ring Rg =
{
A ∈ A (λ) : g1A ∈ L1(λ)

}
.

There exists a unique λg ∈ fa(Rg)+ such that

(13)

∫
fλg =

∫
fgdλ f ∈ B(λ), fg ∈ L1(λ).
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Proof. (13) implies λg(A) =
∫
1Agdλ for every A ∈ Rg and thus uniqueness. In proving (13)

we may assume that f ∈ B(λ)+. Let 〈fn〉n∈N be an increasing sequence in S (A (λ)) such that

0 ≤ fn ≤ f and fn converges to f uniformly, obtained as in (6). Then fn is λ- and λg-convergent

to f . Moreover, fn and fng are Cauchy sequence in L1(λg) and L1(λ). �

The preceding results may be exploited to prove the existence of distributions.

Proposition 1. Let µ ∈ fa(A )+, X ∈ F(Ω, S) and H a Stonean vector sublattice of F(S). There

exists a minimal measurable structure (R,m) on X[Ω] satisfying

(14) h ∈ L1(m) and

∫
h(X)dµ =

∫
hdm h ∈H , h(X) ∈ L1(µ).

Moreover, m is countably additive whenever: (i) µ is countably additive or (ii) S is a topological

space, H ⊂ C(S) and either (a) X is µ-tight or (b) H ⊂ CK(S).

Proof. Upon replacing H with {h ∈ H : h(X) ∈ L1(µ)} and noting that the latter is itself

a Stonean sublattice of F(S) there is no loss of generality in assuming H [X] ⊂ L1(µ). Define

φ ∈ L(H )+ implicitly via φ(h) =
∫
h(X)dµ and R(H [X], µ) as in (11). Let

(15) R̄ =
{
B ⊂ X[Ω] : X−1(B) ∈ R(H [X], µ)

}
and m̄(B) = µ(X ∈ B) B ∈ R̄

Then (R̄, m̄) is a measurable structure on X[Ω] and D(h(X), µ) = D(h, m̄) for every h ∈ H .

Lemma 1 implies that h ∈H is m̄-measurable; by Lemma 2∫
h(X)dµ =

∫
D(h(X),µ)∩(0,∞)

µ(h(X) > t)dt−
∫
D(h(X),µ)∩(−∞,0]

µ(h(X) < t)dt

=

∫
D(h,m̄)∩(0,∞)

m̄(h > t)dt−
∫
D(h,m̄)∩(−∞,0]

m̄(h < t)dt

=

∫
hdm̄

so that φ(h) =
∫
hdm̄. By Lemma 3 there is a minimal measurable structure with this property.

φ is a Daniell integral when µ is countably additive. To prove the same under (ii) we follow

Karandikar [20] and [21] quite closely. We only need to consider case (a), as the restriction to

compact sets is obvious under (b). Let the sequence 〈hk〉k∈N in H decrease to 0. For each n ∈ N,

let An ∈ A , An ⊂ {X ∈ Kn} and µ(Acn) < 2−n, for some Kn ⊂ S compact. Then, hk(X)1An

converges uniformly to 0 and, by absolute continuity of the finitely additive integral [15, III.2.15],

lim
k

∫
hk(X)dµ = lim

k
lim
n

∫
hk(X)1Andµ = lim

n
lim
k

∫
hk(X)1Andµ = 0

which proves the Daniell property. �

When H is Stonean the minimal measurable structure on X[Ω] of Proposition 1 may be written

as (RX
H , µXH ). Letting H be the directed set of all Stonean vector sublattices H of F(S) we obtain

(16) µXH ′
∣∣RX

H = µXH H ,H ′ ∈ H, H ⊂H ′

so that, in the language of [8],
(
µXH : H ∈ H

)
is a finitely additive martingale.
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Claim (ii) was originally formulated, for the case S = Ω = R, by Dubins and Savage [13, p.

190] who refer to m as the “conventional companion” and to the tightness condition as µ not being

“partially remote”. Karandikar [20] revived their proof and extended it to the case S = Rd in [21].

4. Integral Representation of Linear Functionals

We obtain in this section a general theorem concerning the integral representation of linear

functionals on vector spaces. Several results in the next sections will follow from this claim.

Theorem 1. Let H be a vector space and φ ∈ L(H ). Assume that T ∈ L
(
H ,F(Ω)

)
satisfies

(17) ∀h ∈H , ∃h′ ∈H such that |Th| ≤ Th′

and write L =
{
f ∈ F(Ω) : |f | ≤ Th for some h ∈H

}
. The condition

(18) φ(h) < 0 implies inf
ω

(Th)(ω) < 0 h ∈H

is necessary and sufficient for the existence of (i) F⊥ ∈ L(L)+ with F⊥[L ∩B(Ω)] = {0} and (ii)

a measurable structure (R, µ) on Ω such that L ⊂ L1(µ) and

(19) φ(h) = F⊥
(
Th
)

+

∫
Thdµ h ∈H .

Proof. T [H ] is a majorizing subspace of the vector lattice L, by (17). Under (18), writing

(20) F
(
Th
)

= φ(h) h ∈H

implicitly defines a positive linear functional on T [H ]. By [1, Theorem 1.32], F extends as a

positive linear functional (still denoted by F ) to the whole of L. For each α ⊂ H finite, let

hα ∈H be such that Thα ≥
∨
h∈α |Th|, Ωα = {Thα 6= 0} and define Iα ∈ F

(
L,F(Ωα)

)
by letting

Iα(f)(ω) =
f(ω)

Thα(ω)
f ∈ L, ω ∈ Ωα.

Let also

(21) Lα = {f ∈ L : |f | ≤ c Thα for some c > 0} and Hα = Iα[Lα].

Hα is a sublattice of B(Ωα) containing the constants; f, g ∈ Lα and Iα(f) ≥ Iα(g) imply f ≥ g.

Thus, upon writing

(22) Uα
(
Iα(f)

)
= F (f) f ∈ Lα

we obtain yet another positive, linear functional Uα on Hα. [9, Theorem 1] implies

(23) Uα
(
Iα(f)

)
=

∫
Iα(f)dm̄α f ∈ Lα

for some m̄α ∈ ba(Ωα)+. Let mα(A) = m̄α(A ∩ Ωα) for each A ⊂ Ω. By Lemma 4, we can write

(with the convention 0/0 = 0)

(24) F (f) =

∫
f

Thα
1Ωαdmα =

∫
fdµ̄α f ∈ Lα ∩B(Ω)
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with µ̄α = mα,g defined as in (13) with g = 1Ωα/Thα. Given that Lα ∩B(Ω) is a Stonean lattice,

we deduce from Lemma 3 the existence of a minimal measurable structure (Rα, µα) supporting the

representation (24). Define R =
⋃
α Rα and µ(A) = limα µα(A) for all A ∈ R. α ⊂ α′ implies

Lα ⊂ Lα′ , (Rα, µα) � (Rα′ , µα′) as well as the martingale restriction

(25) µα = µα′ |Rα = µ|Rα α ⊂ α′.

But then for each f ∈ Lα with f ≥ 0,

F (f) = lim
k
F (f ∧ k) + lim

k
F ((f − k)+)

= lim
k

∫
(f ∧ k)dµ+ F⊥(f)

=

∫
fdµ+ F⊥(f)

(26)

where we have set F⊥(f) = limk F ((f − k)+) and the inequality µ∗(f > k) ≤ k−1
∫
f ∧ kdµ ≤

k−1F (f) induces the conclusion that f ∧ k is µ-convergent to f and is Cauchy in L1(µ).
∫
|f |dµ ≤

F (|f |) follows from (26) and implies L ⊂ L1(µ). (32) is a consequence of (20) and (26). Necessity

is obvious as the right hand side of (32) defines a positive linear functional on L. �

Condition (17) is trivially true when H is a directed vector space – i.e. an ordered vector space

which is directed by its own partial order – and T a positive map. An immediate corollary is the

following representation of positive linear functionals on vector lattices that may fail to be Stonean.

Corollary 1. Let H be a vector sublattice of F(Ω), L =
{
f ∈ F(Ω) : |f | ≤ h for some h ∈ H

}
and φ ∈ L(H )+. There exists φ⊥ ∈ L(L)+ with φ⊥[L ∩B(Ω)] = {0} and a measurable structure

(R, µ) on Ω such that

(27) L ⊂ L1(µ) and φ(h) = φ⊥(h) +

∫
hdµ h ∈H .

If H is Stonean then φ⊥ is unique and (R, µ) can be chosen to be minimal.

Proof. Take T to be the identity map in Theorem 1. If H is Stonean then φ⊥ is unique since, from

(27), one obtains
∫
hdµ = limk

∫
(h ∧ k)dµ = limk φ(h ∧ k) for each h ∈H+. �

(18) is a minimal condition and simply requires that φ and T do not rank the elements of H

in a totally opposite way. It will appear in various forms in later sections and, following Dubins,

we shall refer to it by saying that φ is T conglomerative. To make the connection with the work of

Dubins [14] more transparent we establish the following version of the problem considered by him:

Corollary 2. Let (B, λ) be a measurable structure on S×Ω and H a Stonean sublattice of L1(λ).

Let {σω : ω ∈ Ω} ⊂ L(H )+. The condition

(28)

∫
hdλ < 0 implies inf

ω
σω(h) < 0 h ∈H



CONGLOMERABILITY 9

is equivalent to the existence of a measurable structure (R, γ) on Ω such that

(29)

∫
hdλ =

∫
σω(h)dγ h ∈H .

Proof. Apply Theorem 1 with T ∈ F
(
H ,F(Ω)

)
defined as Th(ω) = σω(h). �

Dubins considered the case with H = B(S) and Ω a partition of S. The family σ indexed by

Ω is a strategy in his terminology and a probability λ admitting the representation (29) is called

strategic. Theorem 1 in [14] states that λ is σ strategic if and only if it is σ conglomerative.

An inductive limit version of Theorem 4 can also be easily proved.

Corollary 3. For each α in a directed set A, let Hα be a vector space, φα ∈ L(Hα) and let Tα ∈
L(Hα,L(Ω)) satisfy (17). For each α, β ∈ A with α ≤ β let it be defined a map χαβ ∈ L(Hα,Hβ)

satisfying χαα = id, χαγ = χαβ · χβγ for α ≤ β ≤ γ and

(30) φα = φβ · χαβ and Tα = Tβ · χαβ α ≤ β

Write L = {f ∈ F(Ω) : |f | ≤ Tαhα for some α ∈ A, hα ∈Hα}. The condition

(31) φα(hα) < 0 implies inf
ω
Tαhα(ω) < 0 hα ∈Hα, α ∈ A

is necessary and sufficient for the existence of (i) F⊥ ∈ L(L)+ with F⊥[L ∩B(Ω)] = {0} and (ii)

a measurable structure (R, µ) on Ω such that L ⊂ L1(µ) and

(32) φα(hα) = F⊥
(
Tαhα

)
+

∫
Tαhαdµ α ∈ A, hα ∈Hα.

Proof. If (H , 〈χα〉α∈A) denotes the inductive limit of the directed family 〈Hα, χαβ〉α∈A then, given

(30), it is possible to define φ ∈ L(H ) and T ∈ L(H ,F(Ω)) by letting

(33) φ(χαhα) = φα(hα) and T (χαhα) = Tα(hα) α ∈ A, hα ∈Hα.

It is then clear that T satisfies (17) and that (31) is equivalent to φ being T conglomerative. �

5. Extreme Points and Choquet Representation Theorem

Conglomerability may be formulated geometrically in terms of the X-topology, [15, V.3.2]. De-

note by conX(F ) the X-closed conical hull of the set F ⊂ F(X). The function ex ∈ F(F ) satisfying

ex(f) = f(x) for each f ∈ F is an evaluation on F .

Theorem 2. Let X be a vector lattice and let Ψ ⊂ L(X)+ satisfy supψ∈Ψ ψ(x) < ∞ for every

x ∈ X. Denote by R the σ ring on Ψ generated by the evaluations {ex : x ∈ X} on Ψ. Then,

(34) Φ ⊂ conX(Ψ)

if and only if each φ ∈ Φ admits the representation

(35) φ(x) =

∫
Ψ
ψ(x)dµφ(ψ) x ∈ X

with µφ ∈ fa(R)+ countably additive and such that the evaluations on Ψ are µφ-integrable.
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Proof. By ordinary separation theorems φ /∈ conX(Ψ) is equivalent to φ(x) < 0 ≤ infψ∈Ψ ψ(x) for

some x ∈ X and contrasts with (35). Thus if φ ∈ conX(Ψ) then for each x ∈ X there is ψx ∈ Ψ such

that φ(x) < 0 implies ψx(x) < 0. Define T ∈ L
(
X,F(X)

)
and U ∈ F

(
X,Ψ

)
implicitly by letting

(36) Tx(y) = U(y)(x) = ψy(x) x, y ∈ X.

Then φ ∈ Φ is T conglomerative, T [X] ⊂ B(X), as supy∈X |Tx(y)| ≤ supψ∈Ψ |ψ(x)| < ∞, and (17)

follows from |Tx|(y) = |ψy(x)| ≤ ψy(|x|) = T |x|(y). Theorem 1 applies and (32) translates into

(37) φ(x) =

∫
X
Tx(y)dm̄φ(y) =

∫
X
U(y)(x)dm̄φ(y) =

∫
ex(U)dm̄φ x ∈ X

for some m̄φ ∈ fa(X)+ such that {ex(U) : x ∈ X} ⊂ L1(m̄φ). Denote by Y the space L(X) endowed

with the X-topology and let (R̂φ, µ̂φ) be the minimal measurable structure on Ψ that satisfies (14)

with X = U , H = C(Y), S = L(X) and Ω = X. From the inclusion ex ∈ C(Y) we conclude:

φ(x) =

∫
ex(U)dm̄φ =

∫
Ψ
ex(ψ)dµ̂φ(ψ) =

∫
Ψ
ψ(x)dµ̂φ(ψ)

Since Ψ is relatively compact in the X-topology, [15, V.4.1], U is m̄φ-tight. By Proposition 1.(ii).(a),

µ̂φ is then countably additive and can be uniquely extended as a countably additive set function µ̄φ

on the generated σ ring, R̄φ. By the remarks following Lemma 3, R̄φ contains the σ ring generated

by {h ∈ C(Y) : h(U) ∈ L1(µφ)} and, a fortiori, R. It is then enough to set µφ = µ̄φ|R. �

Upon rewriting condition (18) in Theorem 1 in the form φ ∈ conH ({Tω : ω ∈ Ω}) it is apparent

that (34) is just a geometric reformulation of the notion of conglomerability. Theorem 2 thus

asserts that Φ is Ψ conglomerative if and only if each φ ∈ Φ is the generalized barycenter of some

set function µφ concentrated on Ψ where the qualification generalized, suggested by Dynkin [16],

refers to µφ not being a probability.

The conical hull and the X-closure make the inclusion (34) a very weak restriction. While

Theorem 2 extends thus well known results which typically involve the strong closure of the convex

hull, we highlight that the set function intervening in the barycentrical representation (35) need

not be unique here as the collection of evaluations is too poor to deduce some minimality criterion.

Moreover, the lattice structure imposed on X and the restriction to positive functionals are essential

in avoiding additional topological assumptions such as strong compactness (see e.g. [23, p. 14]),

separability or the Radon-Nikodým property (as in [17, p. 355] or [18, corollary 5.3])1.

We now prove a version of the preceding Theorem 2 in which every notion of order is abandoned.

Theorem 3. Let U, V ⊂ Y be non empty sets and let H ⊂ F(Y) separate points of Y and satisfy

(38) sup
v∈V
|h(v)| <∞ for all h ∈H and sup

y∈Y
|h0(y)| =∞ for some h0 ∈H .

Write σ(H |V ) for the σ algebra generated by H |V = {h|V : h ∈H }. The following are equivalent:

1Another version of Choquet theorem valid under weak topological assumptions is the one proved by Dynkin [16,

Theorem 3.1], based on a separability condition (for measures) and the notion of H-sufficiency.
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(i) each u ∈ U admits a net 〈πuα〉α∈A of convex weights on V such that

(39) h(u) = lim
α

∑
v

h(v)πuα(v) h ∈H

(ii) each u ∈ U admits a probability µu ∈ ca
(
Σ
)

such that H |V ⊂ L1(µu) and

(40) h(u) =

∫
V
h(v)dµu(v) h ∈H

If H is a Stonean lattice, the probability µu associated with u ∈ U via (40) is necessarily unique.

Proof. (i) follows from (ii) and ordinary rules of integration. For the converse, write

(41) X =

{
b0 +

N∑
n=1

bnhn : N ∈ N, b0, b1, . . . , bN ∈ R, h1, . . . , hN ∈H

}
to denote the set of affine transforms of elements of H . Define the function κ ∈ F

(
Y,L(X)+

)
by

(42) (κy)x = b0 +

N∑
n=1

bnhn(y) y ∈ Y, x = b0 +

N∑
n=1

bnhn ∈ X

and write Ψ = κ[V ] and Φ = κ[U ]. Observe that (39) is equivalent to the inclusion

(43) Φ ⊂ coX(Ψ)

We deduce from (38) that ∅ /∈ coX(κz + Ψ) for some z ∈ Y. Let f = κz. By ordinary separation

theorems, there exists x0 ∈ X such that (f + Ψ)[x0] ≥ 1. Fix φ ∈ Φ. As in the proof of Theorem 2,

the inclusion f + φ ∈ coX(f + Ψ) implies the existence of an operator Tφ ∈ L
(
X,F(X)

)
as in (36)

with respect to which the set f +φ is congolomerative. To show that Tφ satisfies (17) observe that

|Tφx(y)| = |(f + ψy)(x)| ≤ sup
ψ∈Ψ
|(f + ψ)(x)|(f + ψy)(x0) = Tφx̃(y)

with x̃ = x0 supψ∈Ψ |(f +ψ)(x)|. We are then in the position to apply (35) and obtain, for φ = κu,

(44) x(u+ z) = (φ+ f)(x) =

∫
(ψ + f)(x)dµφ =

∫
x(v + z)dµu x ∈ X

with µu = µφ ∈ fa(R)+ countably additive and R the σ ring on V generated by H . Given that

X contains the constants, we deduce ‖µu‖ = 1 and that

(45) h(u) =

∫
h(v)dµu h ∈H .

R may be replaced with σ(H |V ) and µu with its unique extension to it defined by µu(V ) = 1. �

Without an order structure the conical condition (34) is replaced with the more restrictive

inclusion (43), similar to that considered by several other authors. In particular, if Y is a linear

space and H consists of affine functions, then (39) is equivalent to the more explicit and familiar

condition U ⊂ coH (V ). Most papers on Choquet theorem take Y to a be a locally convex,

topological vector space (often just a Banach space) and H its dual Y∗. In this special case

Theorem 3 may be rephrased into the following minor extension of a result of Edgar [17, p. 355]:
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Corollary 4 (Edgar). Let V be a bounded set of a locally convex space. Then u ∈ co(V ) if and

only if u may be represented as the barycenter of a countably additive probability supported by V .

In particular, in Banach spaces possessing the Radon Nikodým property (and thus the Krein

Milman property [7, 3.3.6]) the validity of the preceding Corollary extends to closed, convex and

bounded (but not necessarily compact) sets. By a theorem of Phelps [7, 3.5.4], a set with such

properties also admits a barycentrical representation with respect to the set of its strongly exposed

points. Eventually in Banach spaces, in which a well developed theory of vector integration is

available, the integral in (40) may be interpreted as the Bochner integral

(46) u =

∫
vdµu

of the identity on V , as remarked in [24].

6. Finitely Additive Representations

Theorem 4. Let m ∈ fa(Σ)+, H a Stonean vector sublattice of L1(m) and X ∈ F(Ω, S). There

is equivalence between the condition

(47)

∫
hdm < 0 implies inf

ω
h
(
X(ω)

)
< 0 h ∈H

and the existence of a minimal measurable structure (R, µ) on Ω satisfying

(48) h(X) ∈ L1(µ) and

∫
hdm =

∫
h(X)dµ h ∈H .

and either one of these properties is implicit in m∗(X[Ω]c) = 0. Moreover, if m is countably

additive, Σ a σ ring and m∗(X[Ω]c) = 0 then µ is countably additive.

Proof. (47) is equivalent to (18) with

φ(h) =

∫
hdm and Th = h(X) h ∈H

Thus, (48) follows from (32) after noting that, in the present setting, φ(h) = limk φ(h∧k) for every

h ∈ H+. If 〈Bn〉n∈N is a decreasing sequence in Σ with X[Ω]c ⊂ Bn and m(Bn) ≤ 2−n and if

h ∈H then∫
hdm = lim

n

∫
h1Bcndm ≥ inf

s∈X[Ω]
h(s) lim

n
m(Bc

n) ≥ inf
ω
h(X(ω)) lim

n
m(Bc

n)

Suppose that m is countably additive, Σ a σ ring and that m∗(X[Ω]c) = 0. Let 〈hn〉n∈N be a

sequence in H with hn(X) decreasing monotonically to 0. If g ∈H and t ∈ D(g,m)∩D(g(X), µ),

then from (15)

(49) {g > t} ∈ Σ(m), {g(X) > t} ∈ R(µ) and m(g > t) = µ(g(X) > t).

We thus have a dense subset of t > 0 for which the following holds:

m(hn+1 − hn > t) = µ(hn+1(X)− hn(X) > t) = 0 n = 1, 2, . . .
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By countable additivity, the sequence 〈hn〉n∈N is thus decreasing m a.s. to h = infn hn. If ε > 0

then {h > ε} ⊂ X[Ω]c and {h > ε} ∈ Σ so that, by assumption, 0 = m(h > 0). But then

limn

∫
hn(X)dµ = limn

∫
hndm =

∫
hdm ≤ 0 and the functional φ above is a Daniell integral. �

The problem of finding a probability space and a random variable on it with a preassigned

distribution is often part of more general problems, e.g. the Skorohod representation theorem, see

section 7. We remark that n the absence of restrictions on µ, the existence of representations is

guaranteed a very weak condition such as conglomerability. If, e.g., X[Ω]c ∈ Σ, then in order for X

to represent m relatively to the whole of L1(m) it is necessary and sufficient that m(X[Ω]c) = 0. If

m consists of sample frequencies, then this condition means that all the observations in the given

sample must belong to the range of X.

Example 1. Let Ω = S = N, let A = Σ be the algebra of finite-cofinite subsets of N and define

implicitly the probability µ ∈ ba(A ) by letting µ(N) = 0 whenever N is finite. It is easily seen

that h ∈ L1(µ) if and only if 〈h(n)〉n∈N is a convergent sequence and that then
∫
hdµ = limn h(n).

Define X ∈ F(Ω, S) by letting X(n) = 2n + 1 so that X[Ω] coincides with the set of odd numbers.

It is obvious that, for A,B ∈ A the inclusions A ⊂ X[Ω] ⊂ B imply that A is finite while B

is cofinite. Thus, µ∗(X[Ω]) = 0 while µ∗(X[Ω]) = 1. Moreover, infn h(X(n)) ≤
∫
hdµ so that

condition (34) of Theorem 4 holds and in fact
∫
hdµ = limn h(n) = limn h(2n+ 1) =

∫
h(X)dµ.

Example 2. Let (Ω,A , P ) be a classical probability space, S = R and let X be a normally dis-

tributed random quantity on Ω. Fix m ∈ ba(B(R))+ arbitrarily and let H = C(R) ∩ L1(m).

Given that P (X ∈ B) > 0 for every B open, we conclude that m is X conglomerative relatively to

H . In other words a normally distributed random quantity can assume any arbitrary distribution

(relatively to the continuous functions) upon an accurate choice of the reference measure.

It is possible to write m = p+ r with p∗(X[Ω]c) = r∗(X[Ω]) = 0 (so that p ⊥ r) by simply letting

(50) r(B) = inf
{
m(B ∩ E) : E ∈ Σ, X[Ω]c ⊂ E

}
B ∈ Σ.

From this remark we obtain,

Corollary 5. Let m ∈ fa(Σ)+ and X ∈ F(Ω, S). There exist r ∈ fa(Σ)+ with r∗(X[Ω]) = 0, a

measurable structure (R, µ) on Ω such that

(51) h(X) ∈ L1(µ) and

∫
hdm =

∫
hdr +

∫
h(X)dµ h ∈ L1(m).

The decomposition (51) is unique if and only if X[Ω] ∈ Σ.

Proof. Existence is clear, given (50) and Theorem 4. If µX denotes the distribution of X induced by

µ (relatively to L1(m)), then µX∗ (X[Ω]c) = 0. If X[Ω] ∈ Σ and if r̂ and µ̂ is another pair satisfying

(51), then |r − r̂| (B) = |r − r̂| (B∩X[Ω])+
∣∣µX− µ̂X ∣∣(B∩X[Ω]c) = 0 for every B ∈ Σ. Conversely,

assume that X[Ω] /∈ Σ(m). Then, letting Σ̄ be the minimal algebra containing Σ and X[Ω], there

exist two extensions m̄1 and m̄2 to Σ̄ with m̄1(X[Ω]) = m∗(X[Ω]) and m̄2(X[Ω]) = m∗(X[Ω]),
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see [4, Theorem 3.4.4]. Denote by r̄i and µ̄i the set functions satisfying (51) associated with m̄i

for i = 1, 2 and let ri = r̄i|Σ and µi = µ̄i|R for i = 1, 2. Then, ri and µi still satisfy (51) while

µ1(Ω) = m̄1(X[Ω]) = m∗(X[Ω]) > m∗(X[Ω]) = µ2(Ω). �

The following is an extension of the notion of conventional companion.

Corollary 6. Let X ∈ F(Ω, S), µ ∈ fa(A )+ and a Stonean vector sublattice H ⊂ F(S) satisfy

H [X] ⊂ L1(µ). Let W be a non empty set and Z ∈ F(W,S). The condition

(52)

∫
h(X)dµ < 0 implies inf

w
h(Z(w)) < 0 h ∈H

is equivalent to the existence of a minimal structure (R, λ) on W such that

(53) H [Z] ⊂ L1(λ) and

∫
h(X)dµ =

∫
h(Z)dλ h ∈H .

Moreover, λ is countably additive whenever (i) µ is countably additive, (ii) X is µ-tight and H ⊂
C(S) or (iii) H ⊂ CK(S).

In Theorem 4 the representing measure µ is completely unrestricted. A possible mitigation is to

require that µ vanishes on a given collection N of subsets of Ω. Let henceforth N be an ideal of

subsets of Ω, i.e. N,M ∈ N and A ⊂ N imply N ∪M,A ∈ N .

Theorem 5. Let m, H and X be as in Theorem 4. The condition

(54)

∫
hdm < 0 implies sup

N∈N
inf
ω∈Nc

h
(
X(ω)

)
< 0

is equivalent to the existence of a measurable structure (R, µ) on Ω with N ⊂ R which satisfies

(55) µ[N ] = {0}, h(X) ∈ L1(µ) and

∫
hdm =

∫
h(X)dµ h ∈H .

Moreover, if m is a countably additive set function on a σ ring, N is closed with respect to countable

unions and m∗
(
X[N c]c

)
= 0 for all N ∈ N then µ is countably additive.

Proof. Define the binary relation � on F(Ω) by letting for each f, g ∈ F(Ω)

(56) f � g if and only if sup
N∈N

inf
ω∈Nc

(f − g)(ω) ≥ 0.

Since N is an ideal, � is a partial order and f ≥ g implies f � g. Moreover, fi � gi for i = 1, 2

implies f1 ∨ f2 � g1 ∨ g2. In fact, f1 ∨ f2 � fi � gi i.e. f1 ∨ f2 ≥ gi − ε outside of some Ni ∈ N .

Thus, f1∨f2 ≥ g1∨g2−ε outside of N1∪N2 ∈ N which, by (56), is equivalent to f1∨f2 � g1∨g2.

But then, if f̃ denotes the class of elements of F(Ω) equivalent to f , it is easy to see that, relatively

to pointwise ordering, the set

(57) F =
{
f ∈ F(Ω) : f ∈ h̃(X) for some h ∈H

}
is a Stonean vector sublattice of F(Ω). Writing

(58) φ(f) =

∫
hdm f ∈ h̃(X), h ∈H
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implicitly defines, via (54), a positive linear functional on F so that, by Corollary 1, we conclude

that there exists a minimal measurable structure (R, µ) satisfying

(59) f ∈ L1(µ) and φ(f) =

∫
fdµ f ∈ F

If N ∈ N then 1N ∈ 0̃, 1N ∈ F and µ(N) = 0. Then (55) follows while the converse implication,

is obvious.

The last claim will be proved, once again, by showing that under the stated conditions the

functional φ defined in (58) is a Daniell integral over F . In fact, let 〈fn〉n∈N be sequence in F

decreasing pointwise to 0. Let hn ∈ H be such that fn ∈ h̃n(X), n = 1, 2, . . .. Define gn =∧
1≤j≤n hj . As shown above, fn ∈ g̃n(X). Let g = limn gn. Of course, fn � g(X) so that, by the

countable union property, {g(X) > ε} ⊂
⋃
n{g(X) ≥ fn + ε} ∈ N and {g > ε} ⊂ X[{g(X) ≤ ε}]c.

By assumption then, m(g > ε) = 0 and so

lim
n

∫
fndµ = lim

n

∫
gn(X)dµ = lim

n

∫
gndm =

∫
gdm = 0.

�

Example 3 (Example 2 continued). Let X be normally distributed on some classical probability

space (Ω,A , P ) and let N consists of all P null sets. The set X[N ] has empty interior for each

N ∈ N , i.e. X[N c] = R so that

sup
N∈N

inf
ω∈Nc

h(X(ω)) = sup
N∈N

inf
s∈X[Nc]

h(s) = sup
N∈N

inf
s∈X[Nc]

h(s) = inf
s∈R

h(s) h ∈ C(R).

The conglomerative property (54) then holds for every m ∈ fa(B(R))+ with H = C(R). Thus,

the representing measure Q under which X assumes the distribution m may chosen to vanish on

P -null sets. If, in addition, m is countably additive then Q � P . Of course the same conclusion

would be true of any variable possessing a strictly positive density over the whole of R.

Theorem 4 may be extended to stochastic processes.

Theorem 6. Let a family I of finite subsets of some set I be directed by inclusion. For each t ∈ I,

let Rt be a ring on some non empty set St and Xt ∈ F(Ω, St). For each α ∈ I write

(60) Sα = ×
t∈α
St, Rα = ⊗

t∈α
Rt and Xα = ×

t∈α
Xt,

let πα be the projection of S onto Sα and let Hα a Stonean vector sublattice of F(Sα) such that

(61)
{
h ◦ πα : h ∈Hα

}
⊂
{
h′ ◦ πβ : h′ ∈Hβ

}
α ⊂ β.

Assume that the family (mα : α ∈ I), mα ∈ fa(Rα)+ is projective, i.e.

(62) mβ(B × Sβ\α) = mα(B) α ⊂ β, B ∈ Σα.

The condition

(63)

∫
hαdmα < 0 implies inf

ω
hα(Xα(ω)) < 0 α ∈ I, hα ∈Hα ∩ L1(mα)
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is equivalent to the existence of a minimal measurable structure (A , µ) on Ω such that

(64)

∫
hαdmα =

∫
hα(Xα)dµ hα ∈Hα ∩ L1(mα), α ∈ I.

If, for each α ∈ I , mα admits a countably additive extension m̄α to the generated σ algebra

satisfying m̄α∗([Xα]c) = 0 then µ is countably additive.

Proof. (64) follows from Corollary 3 once we identify φα with the mα expectation, χα with the

adjoint π∗α of the projection πα and upon writing Tα(hα) = hα(Xα). In fact,∫
hαdmα =

∫
π∗αhα(X)dµ =

∫
hα(πα(X))dµ =

∫
hα(Xα)dµ

If each Hα is Stonean then H =
⋃
α∈I π∗α[Hα] is a Stonean vector sublattice of F(S). From this

we deduce the minimality property. �

The preceding result has immediate implications for Brownian motion.

Corollary 7. Let X = (Xt : t ∈ R+) be brownian motion on some filtered probability space,

(Ω,F , (Ft : t ∈ R+), P ) and let (mt1,...,tn : t1, . . . , tn ∈ R+) be a projective family with mt1,...,tn ∈
fa(B(Rn)). There exists a probability space (Ω,A , Q) such that

(65) mt1,...,tn(B) = Q(Xt1 , . . . , Xtn ∈ B) B ∈ B(Rn).

Proof. It is enough to remark that if α = {t1 < . . . < tn} ⊂ R+, {s1, . . . , sn} ⊂ R and ifB ⊂ Rn is an

open set containing {s1, . . . , sn} then there exist open sets B1, . . . , Bn ⊂ R such that s′i− s′i−1 ∈ Bi
for i = 1, . . . , n (and s′0 = 0) implies {s′1, . . . , s′n} ∈ B. Given the property of normally distributed,

independent increments, P (Xt1 , . . . , Xtn ∈ B) > 0. Thus, the conglomerability condition (63) is

satisfied for all hα continuous. This is enough to prove the claim. �

7. Applications to Probability

In this section we first investigate the classical problem of Skhorohod which has been studied by

a number of authors too large to give exact references. We have been influenced by the work of

Berti, Pratelli and Rigo [3]. The starting point is the construction of a universal representation for

the case of a separable space.

Corollary 8. Let U ∈ F(Ω) with U [Ω] having non empty interior and let S be a separable,

topological space. There exists a Borel function H ∈ F(R, S) with countable range and such that

X = H(U) represents m relatively to C(S) ∩ L1(m) for every m ∈ fa(Σ)+.

Proof. Given that [a, b] ⊂ U [Ω] for some a, b ∈ R then, upon replacing U with a suitable continuous

transformation, we can assume that U [Ω] = [0, 1]. Let S0 be a countable, dense subset of S and

ι ∈ F(N, S0) an enumeration of S0. Define,

(66) G(x) = inf{n ∈ N : 1− 2−n ≥ x} x ∈ (0, 1) and H = ι ◦G.
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H maps (0, 1) onto S0. Moreover, if we endow N with its power set then both G and ι are Borel –

since G−1(n) = (1− 2−(n−1), 1− 2−n] – and thus so is H. If h ∈ C(S)∩L1(m) and
∫
hdm < 0 then

{h < 0} is an open, non empty subset of S and as such it contains some element ι(nh) of S0. The set

Bh = {ω : U(ω) ∈ G−1(nh)} is non empty (as U [Ω] = [0, 1]) and coincides with {ω : X(ω) = ι(nh)}.
Thus, Bh ⊂ {h(X) < 0} so that m is X conglomerative relatively to C(S) ∩ L1(m). �

Corollary 8 extends to the case of finite additivity and of a separable state space the classical

idea of generating a random quantity with given distribution by applying to a uniformly distributed

random quantity the inverse of the corresponding cumulative density function. Interestingly, we

obtain that the same function X represents all possible distributions relatively to the class of

continuous functions and for some suitable set function µ. Let us also mention the possibility of

dropping the condition that S is separable by assuming that m is supported by a measurable,

separable subset of S.

We highlight the advantage of doing without measurability. Constructing a function such as U

in Corollary 8 is a rather trivial exercise as long as Ω has the right cardinality. Requiring that U

is uniformly distributed on the unit interval under some classical probability measure P , as in the

following Theorem 7, requires, in contrast, additional assumptions – see e.g. [2] where P is taken

to be non atomic.

The following result is inspired by [3, theorem 3.1].

Theorem 7. Let S be a normal, separable topological space and (Ω,A , P ) a classical probability

space supporting a random quantity U uniformly distributed on (0, 1). Let either m ∈ fa(Σ)+

be countably additive or S be compact. There exists a Borel function g ∈ F((0, 1), S) such that

X = g(U) is supported by (Ω,A , P ) and

(67)

∫
hdm =

∫
h(X)dP h ∈ C(S) ∩ L1(m).

Proof. If S is compact then the restriction of m to R
(
C(S)∩L1(m),m

)
is countably additive. Let H

be the map defined in (66). Then, as was shown in the proof of Corollary 8, m is H conglomerative

relatively to C(S) so that, by Theorem 4,

(68)

∫
hdm =

∫
h(H)dµ h ∈ C(S) ∩ L1(m)

for some countably additive µ ∈ fa(R)+ and R an appropriate ring of subsets of (0, 1). We claim

that σR = B((0, 1)). Recall that σR is generated by sets of the form {h(H) > t} which are Borel

since h is continuous and H is Borel. Conversely, if 0 ≤ a ≤ b ≤ 1 then the set H[(a, b)] is a finite

subset of S – and therefore closed. For any other finite subset F of H[(a, b)c] we can find a function

f ∈ F(S, [0, 1]) such that f = 1 on H[(a, b)] and f = 0 on F . Thus (a, b) ⊂ {f(H) ≥ 1} ∈ σR.

Since H[(0, 1)] is countable we find a sequence 〈fn〉n∈N of such functions each vanishing on a finite

subset of H[(a, b)c] so that the intersection
⋂
n{fn(H) ≥ 1} is again an element of σR and coincides

with (a, b). In other words, we can assume that µ is defined on the Borel sets of (0, 1). From the

classical Skhorohod theorem, we deduce the existence of an S valued random quantity Z supported
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by ((0, 1),B((0, 1)),Λ) (with Λ the Lebesgue measure on (0, 1)) and admitting µ as its distribution,

i.e. ΛZ = µ. On its turn, Λ = PU . A repeated application of Theorem 4 with g = H ◦ Z and

X = g(U) gives∫
hdm =

∫
h(H)dµ =

∫
h(g)dΛ =

∫
h(X)dP h ∈ C(S) ∩ L1(m).

Thus the random quantity X is supported by (Ω,A , P ) and represents m relatively to C(S). �

8. Convex Functions

Eventually, we turn attention to convex functions. For f ∈ F(R) we denote by D+f and D−f

the right and left derivatives and by f(x+) and f(x−) the right and left limits at x, provided such

quantities exist.

Theorem 8. Let X ∈ F(Ω) and ϕ ∈ F(R) and fix x0 ∈ arginfx∈R ϕ(x). For each u, v ∈ R define

(69) hvu(x) = (v − x ∨ u)+1{x>x0} − (v ∧ x− u)+1{x≤x0} x ∈ R.

Let N be an ideal of subsets of Ω and RX the σ ring σ({s < X ≤ t} : s, t ∈ R). The following

properties are mutually equivalent:

(i) ϕ is convex and {u < X < v} ∈ N implies D−ϕ(v) ≤ D+ϕ(u);

(ii) there exist y+
0 , y

−
0 ∈ R and a measurable structure (R, λ) on Ω such that (a) N ⊂ R and

λ[N ] = {0}, (b) limn λ
∗(|X − x0| < 2−n) = 0 and (c) for all v ≥ u

(70) hvu(X) ∈ L1(λ) and ϕ(v)− ϕ(u) = y+
0 h

v
u(x0+) + y−0 h

v
u(x0) +

∫
hvu(X)dλ

Moreover, if x0 ∈ R and {|X − x0| < c} ∈ N for some c > 0 then y+
0 = y−0 ;

(iii) there exist y+
0 , y

−
0 ∈ R and ν ∈ fa(RX)+ countably additive such that (a) ν(X ∈ A) = 0 for

A open and X−1(A) ∈ N and (b) for all v ≥ u

(71) hvu(X) ∈ L1(ν) and ϕ(v)− ϕ(u) = y+
0 h

v
u(x0+) + y−0 h

v
u(x0−) +

∫
hvu(X)dν

Moreover, if x0 ∈ R and {|X − x0| < c} ∈ N for some c > 0 then y+
0 = y−0 .

Proof. (i)⇒(ii). Set conventionally

D+ϕ(∞) = D−ϕ(∞) = lim
x→∞

D+ϕ(x) and D+ϕ(−∞) = D−ϕ(−∞) = lim
x→−∞

D+ϕ(x)

and observe that necessarily |D+ϕ(x0)|, |D−ϕ(x0)| < ∞. Put y+
0 = D+ϕ(x0) and y−0 = D−ϕ(x0).

If x0 ∈ R and {u < X < v} ∈ N for some u ≤ x0 ≤ v then by assumption D+ϕ(x0) ≤ D−ϕ(v) ≤
D+ϕ(u) ≤ D−ϕ(x0) so that y+

0 + y−0 = 0. Write D =
{
t : D−ϕ(t) = D+ϕ(t)

}
∪ {x0} and define

Au = {u < X ≤ x0}, Av = {x0 < X ≤ v} and

(72) R0 =
{(
Au ∩N c

u

)
∪
(
Av ∩N c

v

)
∪N : u, v ∈ D, Nu, Nv, N ∈ N

}
.
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It is clear that R0 contains N (upon taking u = v = x0) as well as {Au, Av : u, v ∈ D}. Moreover,

it is routine to verify that R0 is closed with respect to union and intersection with

(73a) H1 ∪H2 =
(
Au1∧u2 ∩N c

u

)
∪
(
Av1∨v2 ∩N c

v

)
∪N

(73b) H1 ∩H2 =
(
Au1∨u2 ∩ N̂ c

u) ∪
(
Av1∧v2 ∩ N̂ c

v

)
∪ N̂

whenever Hi =
(
Aui ∩ N c

ui

)
∪
(
Avi ∩ N c

vi

)
∪ Ni ∈ R0 for i = 1, 2. Write F (x) =

[
D+ϕ(x ∨ x0) −

y+
0

]
+
[
D−ϕ(x ∧ x0)− y−0

]
and

(74) λ0(H) = F (v ∨ x0)− F (u ∧ x0) when H = (Au ∩N c
u) ∪ (Av ∩N c

v) ∪N ∈ R0.

To see that λ0 is well defined observe that if u1 ∧ x0 < u2 ∧ x0 and(
Au1 ∩N c

u1

)
∪
(
Av1 ∩N c

v1

)
∪N1 =

(
Au2 ∩N c

u2

)
∪
(
Av2 ∩N c

v2

)
∪N2 ∈ R0

then {u1 ∧ x0 < X ≤ u2 ∧ x0} ∈ N . Thus by (i) and the fact that u1, u2 ∈ D and that u1 < x0,

D−ϕ(u1 ∧ x0) = D−ϕ(u2 ∧ x0) i.e. F (u1 ∧ x0) = F (u2 ∧ x0)

and likewise F (v1 ∨ x0) = F (v2 ∨ x0). In other words λ0 ∈ fa(R0)+ with λ[N ] = {0}. Moreover,

if H1, H2 ∈ R0 then by (73)

λ0(H1) + λ0(H2) = F (v1 ∨ x0) + F (v2 ∨ x0)− F (u1 ∧ x0)− F (u2 ∧ x0)

= F (v1 ∨ v2 ∨ x0) + F ((v1 ∧ v2) ∨ x0)− F ((u1 ∨ u2) ∧ x0)− F (u1 ∧ u2 ∧ x0)

= λ0(H1 ∪H2) + λ0(H1 ∩H2)

i.e. λ0 is strongly additive on R0. It follows from [4, 3.1.6 and 3.2.4] that λ0 admits a unique

extension λ1 ∈ fa(R1)+ to the generated ring R1. Let I be an interval with endpoints in R∪{x0}.
Given that D is dense in R ∪ {x0}, λ∗(X ∈ I) < ∞. By [4, 3.4.1 and 3.4.4] we obtain a further

extension λ ∈ fa(R)+ to the ring R =
{
A ⊂ Ω : λ∗1(A) <∞

}
. Then {X ∈ I} ∈ R and X1I(X) is

λ-measurable whenever I is as above, by Lemma 1. Therefore,∫ v∨x0

u∨x0
D+ϕ(t)dt = y+

0 h
v
u(x0+) +

∫ v∨x0

u∨x0
1D[D+ϕ(t)−D+ϕ(x0)]dt

= y+
0 h

v
u(x0+) +

∫ v

u
1Dλ1(x0 < X ≤ t)dt

= y+
0 h

v
u(x0+) +

∫ v

u
λ(x0 < X ≤ t)dt

= y+
0 h

v
u(x0+) +

∫ ∞
x0

(v − u ∨X)+dλ (by Lemma 2)

and similarly
∫ v∧x0
u∧x0 D

+ϕ(t)dt = y−0 h
v
u(x0)−

∫ x0
−∞(v ∧X − u)+dλ. We conclude

ϕ(v)− ϕ(u) =

∫ v∨x0

u∨x0
D+ϕ(t)dt+

∫ v∧x0

u∧x0
D−ϕ(t)dt = y+

0 h
v
u(x0+) + y−0 h

v
u(x0) +

∫
hvu(X)dλ.



20 GIANLUCA CASSESE

Fix an increasing 〈un〉n∈N and a decreasing 〈vn〉n∈N sequence in D converging to x0, with un <

un+1 < x0 if x0 > −∞ and vn > vn+1 > x0 if x0 <∞. Then,

lim
n
λ∗(un < X < vn) ≤ lim

n
D+ϕ(vn)−D+ϕ(x0)−D−ϕ(un) +D−ϕ(x0) = 0

so that limn λ
∗(|X − x0| < 2−n) = 0.

(ii)⇒(iii). Let un and vn be as above and define hvu(x;n) = hvu(x) for x /∈ (un, vn] or else

hvu(x;n) = hvu(un)
un+1 − x
un+1 − un

if un < x ≤ un+1

hvu(x;n) = hvu(vn)
x− vn+1

vn − vn+1
if vn+1 < x ≤ vn

hvu(·;n) is a continuous function vanishing outside of the interval [u ∧ vn+1, v ∨ un+1]. Moreover:

(a)
{∣∣hvu(x;n)− hvu(x)

∣∣ > c
}
⊂ (un, vn] so that hvu(X;n) is λ-convergent to hvu(X), (b)

∣∣hvu(x;n)
∣∣ ≤∣∣hvu(x;n+ 1)

∣∣ ≤ ∣∣hvu(x)
∣∣ , (c) limn h

v
u(x;n) = hvu(x) for all x 6= x0 and (d) hvu(X;n) is λ-measurable

and therefore an element of L1(λ). Let ν be the conventional companion of λ relatively to the

family {h(X) : h ∈ CK(R)}. Observe that if x0 ∈ R and hn ∈ CK(R) is such that 1(un,vn] ≥ hn ≥
1(un+1,vn+1], then

ν∗({X = x0}) ≤ lim
n

∫
hn(X)dλ ≤ lim

n
λ(un < X ≤ vn) = 0

It follows that ∫
hvu(X)dλ = lim

n

∫
hvu(X;n)dλ = lim

n

∫
hvu(X;n)dν =

∫
hvu(X)dν

Let I ⊂ R be an open interval with X−1(I) ∈ N and 〈gn〉n∈N a sequence of non negative,

continuous functions which increases to 1I . It is then obvious that

0 = lim
n

∫
gn(X)dλ = lim

n

∫
gn(X)dν = ν(X ∈ I).

The conclusion extends to open sets.

(iii)⇒(i). If ϕ satisfies (71) it is clearly convex since the function v → hvu(x) is convex for every

u ≤ v. Assume that u < v and {u < X < v} ∈ N . Then, ν(u < X < v) = 0 so that, for arbitrary

u < t < v

(75)
ϕ(v)− ϕ(u)

v − u
=


y+

0 + ν(x0 ≤ X < t) if v > u ≥ x0

y−0 + ν(t ≤ X < x0) if x0 ≥ v > u

y+
0 if v > x0 > u

and (i) follows. �

The above result can be stated in a slightly different way:

Corollary 9. Let X ∈ F(Ω) with X[Ω] = R, ϕ ∈ F(R) and define x0 and hvu as in Theorem 8. ϕ

is convex if and only if there exist y+
0 , y

−
0 ∈ R and a countably additive, measurable structure (R, ν)
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on Ω such that ν(u < X < v) = 0 whenever D+ϕ(v) ≤ D−ϕ(u) and

(76) hvu(X) ∈ L1(ν) and ϕ(v)− ϕ(u) = y+
0 h

v
u(x0+) + y−0 h

v
u(x0−) +

∫
hvu(X)dν v ≥ u

where y+
0 = y−0 if x0 ∈ R and D+ϕ(x0 + c) = D−ϕ(x0 − c) for some c > 0.

Proof. Define N =
{
{u < X < v} : u, v ∈ R, D+ϕ(v) ≤ D−ϕ(u)

}
. From X[Ω] = R follows that

{u < X < v} ∈ N if and only if D+ϕ(v) ≤ D−ϕ(u) and that N is an ideal of sets. Then (76)

follows from Theorem 8.(iii). �
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Quelconques, Ann. Inst. Fourier 13, 139-154.

[13] L. E. Dubins, L. J. Savage (1965), How to Gamble if You Must, McGraw-Hill, New York.

[14] L. E. Dubins (1975), Finitely Additive Conditional Probability, Conglomerability and Disintegrations, Ann.

Probab. 3, 89-99.

[15] N. Dunford, J. T. Schwartz (1988), Linear Operators. Part I, Wiley and Sons, New York.

[16] E. B. Dynkin (1978), Sufficient Statistics and Extreme Points, Ann. Probab. 6, 705-730.

[17] G. A. Edgar (1975), A Noncompact Choquet Theoerm, Proc. Amer. Math. Soc. 49, 354-358.

[18] G. A. Edgar (1976), Extremal Integral Representations, J. Func. Anal. 23, 145-161.

[19] P. R. Halmos (1974), Measure Theory, Springer-Verlag, New York.

[20] R. Karandikar (1982), A General Principle for Limit Theorems in Finitely Additive Probability, Trans. Amer.

Math. Soc. 273, 541-550.

[21] R. Karandikar (1988), A General Principle for Limit Theorems in Finitely Additive Probability: the Dependent

Case, J. Multivariate Anal. 24, 189-206.

[22] J. Lukeš, J. Malý, I. Netuka, J. Spurný (2010), Integral Representation Theory. Applications to Convexity,

Banach Spaces and Potential Theory, de Gruyter, Berlin.



22 GIANLUCA CASSESE

[23] R. R. Phelps (2000), Lectures on Choquet’s Theorem, Lect. Notes Math. 1757 Springer-Verlag, Berlin-Heidelberg.

[24] H. P. Rosenthal (1988), On the Choquet Representation Theorem in E. W. Odell Jr. and H. P. Rosenthal (eds.),

Functional Analysis, Lect. Notes Math. 1332, Springer-Verlag, Berlin-Heidelberg.

[25] M. J. Schervish, T. Seidenfeld, J. B. Kadane (1984), The Extent of Non-Conglomerability of Finitely Additive

Probabilities, Z. Wahrsch. verw. Geb. 66, 205-226.
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