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Abstract

In this note, departing from the traditional static and fully rational
economic agent setting, I study a dynamic model of a boundedly ratio-
nal monopolist who, in a partially known environment, follows a rule of
thumb learning process. Instead of considering the classical differential
model with smooth argument, the proposed dynamic model consists of a
piecewise constant argument differential equation, in order to take into ac-
count the more realistic assumption of a lag between the learning activity
and the output production activity. It is shown how this simple first order
differential equation can be rephrased into a nonlinear difference equation
which, differently from the classical model with smooth argument, can
exhibit complex behaviors. The aim of the paper is to illustrate, from
a methodological point of view, the potential applications and the dy-
namical effects of piecewise constant argument differential equations in
economics.
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1 Introduction

The traditional economic agent model is based on the assumption of rationality,
that is, agents make their choices on the basis of the optimization of an objec-
tive function, subject to budget constraints. This approach requires that agents
have a complete knowledge of the objective function and have the computa-
tional skills to solve the optimization problem. Even if a monopolistic market
is a quite simple economic framework, this assumption would at least require
the global knowledge of the market demand function. As several authors under-
lined, “ignorance about demand conditions is a ubiquitous feature of market life
in the real world”, so that the assumption of “ignorant monopolists” seems to be
more realistic (Clower [1]). Simple learning mechanisms have been proposed, in
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which the firm, endowed with reduced rationality, tries to modify output levels
toward the profit maximizing output, following rule-of-thumb mechanisms (see
for example [1, 2]). This means that the profit-maximizing equilibrium is not
reached in one shot, but on the basis of repeated choices following a dynamic
adaptive process (see Colisnk [3]), which requires minimal informational endow-
ment and computational skills. In fact, in this case only a local knowledge of
the demand function is required, which can be for instance obtained through
periodical market experiments and surveys. In the long run, the convergence of
such adaptive process toward the equilibrium point of the traditional static con-
sumer model may be seen as an “evolutionary explanation” of the assumption
of rational behavior.

Similarly to what done in [4, 5, 6, 7, 8, 9], in this paper a simple dynamic
model of a monopolistic firm is studied. Time by time, the firm updates output
decisions in the direction of increasing profit. However, it is more realistic to
assume that the learning activity of data collection and organization, in order
to have a formal representation of the profitability situation, only periodically
occurs, at a different time scale with respect to that of the production decisional
mechanism. Then, it is assumed that the learning process introduces lags in the
planning activity. To this end, the learning activity is assumed to take place
only at integer period times ¢, and it remains the basis of output decisions for
the whole interval [¢t,¢+ 1). From the analytical viewpoint, this can be suitably
represented through piecewise constant argument differential equations.

Differential equations with piecewise constant arguments (DEPCA) are used
to model several real world phenomena. Since the early 1980’s such dynamical
systems have been applied in scientific fields such as engineering, physics, chem-
istry and biomedicine. The first model based on DEPCA was proposed in the
biomedicine context by Busenberg and Cooke (1982) in [10]. Subsequently, the
study of DEPCA and their applications have been considered in other fields:
for a survey, we refer to [11] and to the references therein. The most interesting
aspect about solutions of such systems is that they combine the features of both
differential and difference equations.

The model proposed in this paper represents, to the best of knowledge, a
first attempt toward the application of piecewise constant argument differential
equations to an economic context. The resulting dynamical model generalizes
the underlying static model, because the profit-maximizing equilibrium belongs
to the set of the steady states of the dynamic system. The most significant
aspect of the proposed approach is that, differently from the classical differential
model in which no lags in the planning activity are introduced, the dynamic
modeling based on DEPCA introduces a rich variety of behaviors which can
lead, through a sequence of period-doubling bifurcations, to complex dynamics.
This is essentially due to the peculiar time characterization of the model, in
which two different time scales, a continuous and a discrete one, are involved.
The resulting model can be seen as a bridge model between classical continuous
and discrete time models.

The remainder of the paper is organized as follows: in Section 2 the canonical
static monopoly model is presented, in Section 3 the dynamic monopoly model



with learning is considered and in Section 4 some possible further applications
of the proposed approach are illustrated.

2 The Monopoly model

The relevant feature of a monopoly model is that a single seller, the monopolist,
faces price-taking consumers in a market over one or several periods. This means
that the monopolist, who has market power, can consequently either determine
the price for the product or the supplied quantity (output level). Since price
and output are related through demand function, a decision about price implies
a decision about quantity and vice-versa. In what follows,I shall focus on the
case of a monopolist that, in order to maximize his profit, sets the output level,
described by variable ¢ > 0.

The monopolist, in order to choose his price and output level, faces two kinds
of constraints. Firstly, he faces an internal constraint, imposed by his technolog-
ical structure, which can be analytically represented by the cost function ¢(q),
which relates the quantity produced to the cost of producing that quantity. Sec-
ondly, he faces an external constraint, represented by the consumer’s behavior,
encompassed into the demand function, which relates the market price to the
quantity produced and supplied by the monopolist. As usual, the natural way
to set the monopolist’s optimization problem is to consider the inverse demand
function p(q), which defines the price that must be charged to sell ¢ units of
output, and to look for the optimum output level which maximizes the profit
function

7(q) = p(g)q — c(q)-
In what follows, a linear demand function is considered

p(q):a’_bqva>05b>07 (]‘)
together with a quadratic, increasing cost function
c(q) = dq + eq”, (2)

in which parameters d and e have to satisfy d + 2eq > 0 for all the feasible
output levels ¢ > 0. Profit function

m(q) = (a —d)g — (b+e)q?

is then maximized by a strictly positive output level ¢* provided that first order
condition a — d — 2(b + e)¢* = 0 is satisfied, being second order condition
2(b+e) > 0 always fulfilled. Assuming that a > d, the maximizing output level
and the corresponding optimal price are then the strictly positive quantities

. a—d . (0= d (3)
T80+ T 20t )
It must, only the case of internal optimal output level is considered. The re-

maining situation in which ¢* = 0 could be considered as well, but since it is
economically less interesting, it will not be investigated further.



3 Monopoly model with learning

The assumption of optimizing behavior requires that economic agents have high
computational capabilities and a set of complete information about the envi-
ronment. Actually, the monopolist has a limited and local knowledge of the
demand function. The lack of information is due to the costly and time con-
suming nature of the collecting information activity. It is then more realistic
to assume that the monopolist is not able to reach the equilibrium in one shot
and, consequently, acts on the basis of a local estimate of the marginal profit
7', obtained, for example, through market experiments. The adaptive process
consists of a learning activity and of revising decisions after considering past
output levels and outcomes. One can suppose that the monopolist employs a
rule of thumb as a local (or myopic) profit maximizer. In particular, he looks
at how a variation in the supplied quantity affects the variation of profits. A
positive (negative) variation of profits will induce the monopolist to change the
quantity in the same (opposite) direction from that of the preceding period.
If profits are stationary, the output level is not changed. In this setting, the
time evolution is continuous and the firm takes output decisions continuously.
Conversely, the firm carries out a periodical learning activity of collection and
organization of information and data about the environment in which it acts, in
order to produce a formal representation of the profitability situation (marginal
profit). However, it is not realistic to assume that the learning activity takes
place continuously, with the same timing of the production activity. On the
contrary, it can be supposed that it only periodically takes place, for example
at discrete times n = 0,1,2,..., so that output decisions, during each time pe-
riodn <t<n+1,n=0,1,2..., are based on the representation given by the
learning activity carried out at time ¢ = n. In other words, the decisional process
has two different temporal: the former in which output decisions are taken and
updated and which is suitably described in terms of a continuous time evolution,
and the latter in which learning activity takes place and which is better mod-
eled through a discrete time evolution. The whole decisional mechanism can be
represented through the following nonlinear equation with piecewise constant

argument
dq(t) dm

BTl k(Q(t))d—q[f]at > 0,4(0) = g0 > 0, (4)

where [t] denotes the largest previous integer with respect to ¢ and k(q) is
a positive and increasing function which describes the extent of production
variation of the monopolist following a certain profit signal and depends on the
current monopolistic firm dimension, given by the production volume. In what
follows, the simple linear form

k(q(t)) = vq(t), (5)

is assumed, where v is a positive parameter which gives the relative speed of
adjustment. Considering linear demand function (1) and quadratic cost function



(2), equation (4) becomes

dq(t

W) vty —a— 200+ c)ale] £ > 0.9(0) > 0. )
Due to the presence of the discontinuous term [¢t] in the right hand side of
equation (4), a particular definition of solution of (4) is required. In particular,
a solution of a DEPCA, as precised in [12], has to be a function ¢ : [0, 4+00) —
(0,400) that for each n € N

(A) is continuous on [0, +00);

(B) is differentiable on each interval (n,n+ 1), with one-sided derivatives that
exist for t = n;

(C) solves the smooth argument differential equation (4) on each [n,n + 1).
The analytical solution of problem (6) is studied in the following proposition.

Proposition 1. Let ¢(0) = qo > 0. Then there exists a unique solution of
problem (6) given by

q(t) =qn)expv(a—d—2(b+e)g(n))(t —n)],t€n,n+1),neN. (7)

Proof. As shown in Theorem 2.1 in [12, Ch. 2|, a DEPCA of the form 2/(t) =
f(z(t), x[t]),x(0) = z0, has a unique solution on [0,+00) provided that, for
each p € R, the solution of the classical differential equation z’(t) = f(x(t), )
exists and is unique on the whole interval [0, +00). Concerning (6), this requires
considering the linear Cauchy problem

2 (1) = va(t)(a — d — 2(b + e)p), 2(0) = o,

which indeed has a unique global solution. Then, there exists a unique solution
of DEPCA (6). It is easy to show that (7) satisfies assumptions (A) and (B)
and solves equation (4). O

Thanks to the continuity of the solution of (4), one can write

D= 1 t
q(n+1) H(713111)}()

= Jm g eplla-d-20+am)t-n] @

=q(n)expv(a —d—2(b+e)q(n))],
which allows associating, with the continuous time differential problem (4), a
discrete difference equation, which describes the evolution of ¢(t) at discrete

times. Setting ¢(n) = ¢, for n € N, from (8) one can obtain the discrete
difference equation

qn+1 = f(QH) = (n €XpP [U(a —d-— 2(b + e)Qﬂ)] ,n=0. (9)



Figure 1: Plot of f(q).

It is interesting to notice that the original linear, additive, boundedly rational
continuous time mechanism described by (6) has now become a nonlinear, mul-
tiplicative, boundedly rational discrete time mechanism. However, both mech-
anisms (6) and (8) represent a rule of thumb. In fact, from (4), ¢(t) increases
(resp. decreases) as 7'(¢[t]) = a —d — 2(b+ e)q[t] is positive (resp. negative), as
well as from (9), ¢n4+1 increases (resp. decreases) as exp(a —d —2(b+¢€)g,) > 1
(resp. exp(a —d — 2(b + e)g,) < 1), or, equivalently, again as 7’(¢,) > 0
(resp. 7'(¢n) < 0). It’s worth noticing that f(¢) is a positive function, van-
ishing for ¢ — +oo, increasing for ¢ € (0,1/(2bv + 2ev)) and decreasing for
q € (1/(2bv + 2ev), +00) (see Figure 1 for an example of plot, obtained setting
a=1,0=0.1,d=04, e=1and v =1). The properties of (9) are summarized
in the following proposition.

Proposition 2. Let qo > 0. The only steady state of (9) is the optimal output
level ¢* given by (3), which is locally asymptotically stable provided that

v(a—d) < 2. (10)

Proof. Steady states are obtained by setting f(¢) = ¢, from which one obtains
g = 0, which is excluded since gy > 0, and exp(v(a —d — 2(b+ ¢€)q)) = 1, which
provides ¢ = ¢*. Local asymptotic stability of a steady state x is obtained
imposing | f'(z)| < 1. Since

@) =1-v(a—ad),
the proof is complete. O

Condition (10) simply says that the steady state can be unstable if either
reaction speed v or a — d are sufficiently large. Instable dynamics can then
occur if a too reactive behavior is adopted by economic agents, as well as if,
for example, the market size (influenced by a) is large. A simple example of
unstable dynamics is shown in the bifurcation diagrams with respect to v and a
reported in Figure 2, obtained considering b = 0.1,d = 0.4,e = 1, as in Figure
1.
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Figure 2: (a): Bifurcation diagram for (9) on varying v. (b): Bifurcation diagram
for (9) on varying a.

Using the new state variable x = ¢/(2(b+ ¢€)), equation (9) can be rewritten
as

Tpy1 = Tp explB — an], (11)

where = a — d. Equation (11) is a well-known first order nonlinear difference
equation, with a rich variety of dynamical behaviors, often used in biology to
predict the size of a population after ¢ discrete time steps, and has been proposed
by Ricker in [13] (see also [14, 15, 16, 17, 18, 19]). In ecological modeling, the
state variable x; denotes population size (density) at time ¢ and the parameter
B > 0 describes the intrinsic growth rate. There is a wide analytical literature
about the dynamical behavior of Ricker’s map [20, 21]. Summarizing, Ricker’s
map has a fixed point x* = 3, that is globally attracting provided that 0 <
B < 81 = 2. As [ increases the fixed point can lose stability and a cascade of
period-doublings occurs. When g ~ 5 = 2.5264, an attracting period-2 cycle
appears. It is possible to show that the sequence of period doubling bifurcations
occurs for parameter values forming a sequence (3, with lim, 4o Bn = B4oo,
where 81 = 2.6294. For more details, see [20, 21] and the references therein.

4 Conclusions

In this note a simple dynamic model of a monopolistic firm is presented, in
which the decisional mechanism is represented by a gradient-like rule of thumb.
It is assumed that at each time the firm updates output decisions in the direc-
tion of increasing profits and that there is, in all integer time periods, a learning
activity that represents the basis of output decisions until the next integer time
period. Such a formal representation of the decisional processes is modeled in
a natural way through a piecewise constant argument differential equation. Of
course, there are other areas of economic analysis that can benefit from the
piecewise constant argument equation approach. An economic agent, firm or



consumer, before taking a decision has to produce, periodically, a formal repre-
sentation of the environment in which he acts; such learning activity introduces
a dependence between the variation of the control state variable and data col-
lected in a previous time period. From this point of view it will be interesting to
use this approach in game theory when modeling players involved in a strategic
interaction with other players. In such case, the learning activity can concern
not only prices and economic quantities, but also the other players’ choices.
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