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Abstract

Adjudication errors in contests have a dual nature: they imply at the
same time the unjust exclusion of a meritorious candidate (exclusion error)
and the unjust inclusion of a non-meritorious one (inclusion error). We study
theoretically and experimentally the effects of adjudication errors on contes-
tants’ effort, explicitly disentangling the respective effects of exclusion and
inclusion errors. We show how behavioral aspects, such as risk aversion, loss
aversion and the framing of the incentive scheme (prize vs. penalty) shape
the effects of judgement errors on effort. The experimental findings indicate
that mis-judgements negatively affect bids, with exclusion and inclusion er-
rors contributing equally to the disincentive effects of adjudication errors. A
penalty framing significantly increases bids, relative to a prize framing, both
in the absence of judgement errors and in the presence of adjudication errors.
On the other hand, no significant interaction is found between the framing of
the incentive scheme and the disincentive effects of judgement errors.
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1 Introduction

The best candidate does not always win. Contests are used to allocate resources
in many situations of everyday life (e.g., hirings, promotions, research grants allo-
cations, university admissions, sport tournaments, elections, etc.). They are also
used as incentive schemes to extract maximum effort from contestants (e.g., bonus
schemes). Even though evaluation committees of such competitions try at their best
to abide by fair procedures and objective criteria, misjudgements may occur, pre-
venting a correct identification of the best candidate. As a consequence, adjudication
errors produce inefficiency and undermine incentives to exert effort.

Previous research has analyzed errors in contests in different ways. In stochastic
contests à la Tullock (1980), originally introduced to describe rent seekers’ attempts
to condition policy outcomes, success is non-deterministic. The possibility of errors
is described by a success function that maps effort levels into probabilities of winning.
Different representations of the success function have been proposed in the literature,
sharing the common feature that higher relative effort does not necessarily imply
success (e.g., Konrad, 2009). While Tullock contests introduce uncertainty in the
mapping between effort and success, another strand of the literature, initiated by
Lazear and Rosen (1981), represents errors by introducing a wedge between actual
and observable effort. In particular, they add some random noise to contestants’
effort. This implies that the allocation of prizes is decided on the basis of observable
characteristics that misrepresent the effort actually exerted by contestants.

The starting point of our analysis is the consideration that adjudication errors
have a dual nature, an important feature that so far has been neglected in the
economic literature on contests. Adjudication errors imply at the same time an
unjust exclusion, as a deserving candidate is not rewarded (exclusion error), and an
unjust inclusion, as an undeserving candidate is rewarded (inclusion error).

In psychology, the duality of errors in contests has been discussed by authors
working in the field of behavioral decision making (e.g., Hammond, 1996; Thorngate
and Carroll, 1990; Thorngate et al., 2009). However, this strand of research is
mostly interested in how evaluation committees make their judgements, and thus
focuses on the behavioral aspects and erroneous procedures that may distort their
decisions. Less attention is paid to how, in turn, mis-judgements affect the behavior
of contestants. Within economics, the duality of errors has been discussed in the
literature on crime (e.g., Png, 1986, Kaplow and Shavell, 1994, Polinsky and Shavell,
2009). Rizzolli and Stanca (2012) study experimentally whether the possibility of
convicting an innocent (exclusion error) makes deterrence of criminal behavior less
effective than the possibility of acquitting a guilty individual (inclusion error).

In non-trivial contests, where the number of contested resources is smaller than
the number of competitors, exclusion and inclusion errors generally occur simul-
taneously, representing two sides of the same coin. However, exclusion and inclu-
sion errors are conceptually distinct. Most importantly, they represent two different
channels through which mis-judgements may affect contestants’ effort decisions. Un-



derstanding the role played by exclusion and inclusion errors for effort provision is
important for the design of optimal competitive incentive mechanisms. Contest or-
ganizers may internalize the fact that adjudication errors can occur and, depending
on the economic context, they may place more importance on minimizing the oc-
currence of either exclusion or inclusion errors.1 In fact, while trying to avoid either
type of error, they may incur in the other type. They may decide to adopt a per-
missive (strict) reward scheme in order to avoid excluding (including) the deserving
(undeserving) candidate, making in turn exclusion (inclusion) more likely to occur.
However, it is not clear which is the lesser evil: is it more disincentivizing to be
excessively lenient or strict when rewarding effort?

To answer these questions, we analyze how adjudication errors undermine effort
in the strategic context of an all-pay auction (Hillman and Riley, 1989) with two
symmetric bidders competing for a monetary prize. We decompose an adjudica-
tion error into its exclusion and inclusion components and compare their effects on
bids. We start by characterizing the equilibrium bidding behavior in the presence
of adjudication errors under the assumption of risk neutrality. We then study how
risk aversion and loss aversion influence the effects of adjudication errors. By doing
so, we provide different interpretations of the comparative effects of exclusion and
inclusion on effort, and provide a better understanding of the disincentive effects of
adjudication errors.

For all types of preferences, adjudication errors have a negative impact on effort.
While making winning the auction less valuable – due to the possible exclusion –
they also make losing less unattractive – due to the possible inclusion. Both effects
disincentivize effort. In the presence of risk neutral bidders, exclusion and inclusion
have the same negative impact on effort, as they reduce its marginal return by
the same amount. Risk aversion makes exclusion more detrimental than inclusion:
under the assumption that marginal utility is decreasing in monetary outcomes,
bidders perceive a larger marginal dis-utility from the exclusion outcome (when the
winner does not obtain the reward) relative to the inclusion outcome (when the loser
receives the reward).

Loss aversion also exacerbates the negative effects of exclusion relative to inclu-
sion, although the interpretation is different: the loss associated with the erroneous
exclusion in case of winning looms larger than the gain associated with the erro-
neous inclusion in case of losing. However, this result does not apply in the same
way under different reward schemes. We show that in a financially equivalent reward
structure where, instead of a prize for the winner, a penalties is assigned to loser,2

loss aversion produces opposite results and makes the effect of inclusion equal to
or stronger than that of exclusion.3 In contrast, risk aversion produces the same

1For example, employers may place higher importance on minimizing the occurrence
of inclusion errors rather than exclusion errors as they do not want to waste resources by
hiring or promoting the weaker candidate.

2Examples of penalties on the workplace are demotion, wage cut, dismissal, unpaid
leave of absence, etc.

3For a discussion of the comparative effects of positive and negative incentive schemes
on team effort see Dickinson (2001).
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asymmetric effects in both positive and negative incentive schemes.
We test our theoretical predictions in a laboratory experiment, where we manip-

ulate independently inclusion and exclusion errors, and the framing of the incentive
scheme (positive vs. negative), in a 2x2x2 design. We find that judgement errors
negatively affect bids, with exclusion and inclusion errors contributing equally to
the disincentive effects of adjudication errors. Interestingly, bids are significantly
higher when incentives are framed as penalties, both in the absence of errors and in
the presence of adjudication errors. Yet, there is no significant interaction between
the framing of the incentive scheme and the disincentive effects of judgement errors.

The paper is organized as follows. Section 2 presents the theoretical framework.
Section 3 discusses the experimental design. Section 4 presents the results. Section
5 concludes.

2 Theoretical Framework

Consider an all-pay auction with complete information where two symmetric bidders,
endowed with w ≥ 0, simultaneously choose their bids, b1 and b2, where bi ∈ [0, w],
i = 1, 2, to obtain a monetary prize π ≤ w, which is assigned to the higher bidder
(ties are broken randomly).

We introduce the possibility that an adjudication error occurs, so that merit, i.e.,
the reward, is assigned to the lower and not to the higher bidder. An adjudication
error implies two types of error at once: an error of exclusion, whereby merit is
denied to the higher bidder – and the reward is assigned to none of the two, and an
error of inclusion, whereby merit is attributed to the lower bidder – and the reward
is assigned to both. On the basis of this conceptual distinction, we disentangle the
two errors (exclusion and inclusion) and analyze how they affect equilibrium bids.

We assume that errors occur with a positive probability p ∈ (0, 1
2
).4 For simplic-

ity, we assume that errors are independent of effort levels.

2.1 Linear Preferences

In what follows we describe our baseline model. We assume that bidders are risk
neutral, i.e., their Bernoulli utility function of monetary outcomes u(·) is linear and
u(x) = x. We will relax this assumption in Section 2.2. Propositions 1-4 characterize
the Nash equilibrium bidding behavior in every error scenario: no adjudication error
(used as a benchmark), exclusion error, inclusion error, and adjudication error (both
inclusion and exclusion). Proofs are contained in the Appendix.5

4The assumption that p < 1
2 is without loss of generality and guarantees that, in every

error setting and for every such p, there exists a unique equilibrium in mixed strategies.
5To prove Proposition 1 we follow the proof of Theorem 1 in Baye et al. (1996) –

that characterizes the Nash equilibrium of a standard all-pay auction with n ≥ 2 bidders
and homogeneous valuations – and, on the basis of its outline, we build the proofs of
propositions 2-4, that describe the equilibrium bidding behavior in the presence of errors.
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Proposition 1 (No errors) In the all-pay auction without errors there exists a
unique and symmetric Nash equilibrium, such that both players randomize continu-
ously on [0, π] according to the cdf FN(b) = b

π
.

From the cdf we can derive the expected bid as

EN(b) =

∫ π

0

bdF (b) =

∫ π

0

b

π
db =

π

2
.

Next, we consider the setting where an exclusion error may occur (with proba-
bility p). Denote with qi(bi, bj) the probability that bidder i receives the monetary
reward π, given bids profile (bi, bj), and define it as

qi(bi, bj) =


1− p if bi > bj
1
2

if bi = bj

0 if bi < bj

that is, while the lower bidder never receives the reward, the higher bidder re-
ceives the reward only when no exclusion error occurs, i.e., with probability 1 − p.
Thus, when the exclusion error occurs (with probability p), neither bidder receives
the reward.

Proposition 2 (Exclusion error) In the all-pay auction with exclusion errors there
exists a unique and symmetric Nash equilibrium such that both players randomize
continuously on [0, (1− p)π] according to the cdf FE(b) = b

(1−p)π .

From the cdf we derive the expected bid in the presence of exclusion errors as:

EE(b) =

∫ (1−p)π

0

bdF (b) =

∫ (1−p)π

0

b

(1− p)π
db =

(1− p)π
2

.

Thus, for p > 0, the average equilibrium bid is lower than in the no-error scenario.
We now examine bidding behavior under inclusion errors. We define the proba-

bility of winning of player i, given bids profile (bi, bj), as

qi(bi, bj) =


1 if bi > bj
1
2

if bi = bj

p if bi < bj

that is, while the higher bidder always receives the reward, when the inclusion
error occurs (with probability p) also the lower bidder receives the reward. Thus,
when an inclusion error occurs, both bidders receive the reward.

Proposition 3 (Inclusion error) In the all-pay auction with inclusion errors, there
exists a unique and symmetric Nash equilibrium such that both players randomize
continuously on [0, (1− p)π] according to F I(b) = b

(1−p)π .
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From the cdf we derive the expected bid as:

EI(b) =

∫ (1−p)π

0

bdF (b) =

∫ (1−p)π

0

b

(1− p)π
db =

(1− p)π
2

.

Thus, for p > 0, the average equilibrium bid is lower than in the no-error sce-
nario. Notice that equilibrium bidding behavior in the presence of either exclusion or
inclusion errors coincide. That is, exclusion and inclusion produce the same negative
effect on effort.

We finally examine equilibrium bidding behavior when an adjudication error
occurs with probability p. In this case, both exclusion and inclusion are present:
the higher bidder does not receive the reward, which is instead assigned to the lower
bidder. Thus, we define the probability of receiving the reward for player i, given
bids profile (bi, bj), as

qi(bi, bj) =


1− p if bi > bj
1
2

if bi = bj

p if bi < bj.

Proposition 4 (Adjudication error) In the all-pay auction with adjudication er-
rors there exists a unique and symmetric Nash equilibrium such that both players
randomize continuously on [0, (1− 2p)π] according to FA(b) = b

(1−2p)π .

We derive the expected bid in presence of an adjudication error from the equi-
librium cdf as

EA(b) =

∫ (1−2p)π

0

bdF (b) =

∫ (1−2p)π

0

b

(1− 2p)π
db =

(1− 2p)π

2
.

Hence, the average equilibrium bid is lower than in the no-error scenario. Notice
that, due to linearity,

EN(b)− EA(b) = pπ = EN(b)− EE(b) + EN(b)− EI(b),

that is, the effect of an adjudication error on expected equilibrium bids is equal
to the sum of the effects of its exclusion and inclusion components.

2.2 Risk Preferences

In this section, we relax the assumption of linear preferences and analyze the effects
of mis-judgements on effort under more general assumptions about risk attitudes.

We first derive the equilibrium behavior of bidders with a generic Bernoulli utility
function of monetary outcomes u(·) such that u′(x) ≥ 0 and u(0) = 0. Then, we
analyze how the effects of adjudication errors depend on assumptions about the
second derivative of u(·). Since we cannot derive explicit solutions starting from
a generic u(·), we compare qualitatively the equilibrium behavior in the different
error scenarios by studying the equilibrium cdfs and their supports. Notice that
by keeping the assumption that utility is increasing in monetary outcomes, the
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basic trade-off of standard all-pay auctions prevails even in the presence of errors:
increasing the bid increases the probability of winning but decreases the monetary
payoff.

Consider the setting without errors. The equilibrium cdf, that we call FN(b),
satisfies the indifference condition:

FN(b)u(w + π − b) + [1− FN(b)]u(w − b) = u(w) (1)

where the left hand side represents the expected utility from any bid b, that
depends on whether b is the highest bid or not, while the right hand side is the
expected utility from bidding zero (i.e., the opportunity cost of the bid). By re-
arranging terms, we obtain that the equilibrium cdf is equal to:

FN(b) =
u(w)− u(w − b)

u(w + π − b)− u(w − b)
.

It is immediate to show that bidders randomize continuously on the interval [0, π]
according to FN(·).6

Consider now the setting with adjudication errors, where the reward might be
assigned to the lower rather than to the higher bidder. The equilibrium cdf, that
we call FA(b), satisfies the indifference condition:

FA(b)[(1−p)u(w+π−b)+pu(w−b)]+[1−FA(b)][pu(w+π−b)+(1−p)u(w−b)] =

pu(w + π) + (1− p)u(w) (2)

where the left hand side is the expected utility from any positive bid, that de-
pends on whether it is the highest bid and on the probability that an error occurs
(p), which may affect the expected utility both in case of winning and in case of
losing. The right hand side is the expected utility from bidding zero (and losing),
which is affected by the positive probability of receiving the reward (due to inclu-
sion). By re-arranging terms, we obtain that the cdf that solves the equilibrium
indifference condition (2) is

FA(b) =
(1− p)[u(w)− u(w − b)] + p[u(w + π)− u(w + π − b)]

(1− 2p)[u(w + π − b)− u(w − b)]
.

It is immediate to show that in equilibrium bidders randomize continuously on

the support [0, b
A

] according to FA(·), where b
A

is the solution to condition (2),

given FA(b
A

) = 1.7

6Recall that the upper bound of the support of FN (·) can be found by imposing that
the expected utility from bidding exactly the upper bound (and winning) is equal to the
expected utility from bidding zero. It is immediate to verify that π solves u(w+ π − b) =
u(w) (i.e., equation (1) with FN (π) = 1). The rest of the proof follows the proof of
Proposition 1 in Appendix A.

7The complete proof that this is the equilibrium strategy profile essentially replicates
the proof of Proposition 4 contained in Appendix A, except for the equilibrium indifference
condition that delivers FA(·) and the characterization of the upper bound of the support.
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To analyze the effect of adjudication errors on effort, we perform a qualitative
analysis as follows. First, we compare the two equilibrium cdfs. It can be shown that
the distribution of bids in the no error scenario first order stochastically dominates
the distribution of bids in the adjudication error scenario, i.e., for every b in a generic
support [0, b], it holds that FN(b) ≤ FA(b). Second, we compare the supports of the

two cdfs. In particular, we argue that b
A

is smaller than π. This can be verified by
evaluating condition (2) for b = π. Indeed, the expected utility from winning the
auction by bidding exactly π in the presence of an adjudication error (left hand side
of condition (2) with FA(π) = 1) is smaller than the expected utility from bidding
zero (right hand side of condition (2)). Thus, we obtain the following relation
between expected bids in the two settings:

EA(b) =

∫ b
A

0

[1 − FA(b)] db ≤
∫ π

0

[1 − FA(b)] db ≤
∫ π

0

[1 − FN(b)] db = EN(b).

Hence, the presence of adjudication errors decreases average bids for every u(·)
increasing in its argument.

Consider now the exclusion and the inclusion error settings, where either error
occurs with probability p. We examine first the exclusion error scenario, where
the highest bidder may not receive the reward. The equilibrium cdf FE(b) for an
individual with utility function u(·) must satisfy the indifference condition:

FE(b)[(1− p)u(w + π − b) + pu(w − b)] + [1− FE(b)]u(w − b) = u(w)

from which we obtain that

FE(b) =
u(w)− u(w − b)

(1− p)[u(w + π − b)− u(w − b)]
. (3)

Consider the inclusion error setting, where the lowest bidder may receive the
reward. The equilibrium cdf F I(b) must satisfy the indifference condition:

F I(b)u(w + π − b) + [1− F I(b)][(1− p)u(w − b) + pu(w + π − b)] =

(1− p)u(w) + pu(w + π)

so that

F I(b) =
(1− p)[u(w)− u(w − b)] + p[u(w + π)− u(w + π − b)]

(1− p)[u(w + π − b)− u(w − b)]
. (4)

In order to establish a univocal relation between expected bids in the two error
settings we need to make further assumptions about the shape of u(·). Thus, we
assume that u(·) is concave and compare expected bids in the presence of the two
types of errors when bidders are risk averse.
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Due to decreasing marginal utility, the marginal dis-utility from the exclusion
outcome (u′(w−b)) – i.e., the winner does not receive the reward – is larger than the
marginal dis-utility from the inclusion outcome (u′(w+π−b)) – i.e., the loser receives
the reward. In other words, the exclusion error raises the cost of bidding more than
the inclusion error with respect to the benchmark. Thus, for risk averse bidders,
exclusion generates a stronger distortion, relative to inclusion, on the incentives to
exert effort. We can state the following proposition (the proof is in Appendix A).

Proposition 5 When bidders are risk averse, exclusion errors have a stronger neg-
ative effect on average equilibrium bids than inclusion errors.

The opposite result holds for risk-loving bidders, as their marginal utility is
increasing in monetary outcomes.

To sum up, by comparing all cdfs it is easy to show that with generic risk
preferences FA(b) ≥ FX(b) ≥ FN(b), with X = E, I (with strict inequality for
b > 0). Their supports display the same lower bound of zero and upper bounds that

satisfy: b
A ≤ b

X ≤ b
N
, with X = E, I.8 Hence, it must be the case that EN(b) ≤

EX(b) ≤ EA(b). Yet, the relations between FE(b) and F I(b) and between b
E

and b
I

depend on the curvature of u(·). When bidders are risk averse, FE(b) > F I(b) (for

every b) and b
E ≤ b

I
so that EE(b) ≤ EI(b), while the opposite relations hold true

when bidders are risk lovers.

2.3 Loss Aversion

In this section we analyze the effects of adjudication errors on effort when bidders are
loss averse. Specifically, we assume that the utility function of monetary outcomes
satisfies u(x) = x for x ≥ 0 and u(x) = −λu(−x) for x < 0, with λ > 1. We also
assume that bidders consider their endowment w as a reference point and evaluate
monetary outcomes as positive or negative variations with respect to w.

Loss aversion can be expected to have a negative effect on effort, as it exacerbates
its cost in case of losing. In what follows we describe how loss aversion influences
the effects of judgement errors on effort. In order to do so, it is useful to introduce
an alternative reward structure, whereby incentives are framed as losses instead of
gains. We call the reward structure based on monetary gains a prize scheme, and
the alternative reward structure based on monetary losses a penalty scheme. The
penalty scheme is such that the lowest bidder receives a monetary penalty and the
highest bidder does not. Notice that, the two schemes provide contestants with the
same incentives to exert effort as they both award merit to the highest bidder. Yet,
rewards are different: instead of obtaining a prize, in a penalty scheme, the highest

8To see that b
A
< b

E
it is enough to check that bidders are better off by bidding zero

instead of b
E

in the adjudication error scenario, i.e., (1− p)u(w+ π− bE) + pu(w− bE) <

pu(w+π)+(1−p)u(w), which is always true given that b
E

satisfies condition (3). Similarly,

it is immediate to see that b
I
< b

N
= π as bidders are clearly better off by bidding zero

rather than π in an inclusion error scenario. Indeed, u(w+π−π) < pu(w+π)+(1−p)u(w).
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bidder avoids a penalty. When an adjudication error occurs, the penalty is assigned
to the highest and not to the lowest bidder. An exclusion error implies that (also)
the highest bidder unjustly receives the penalty, while an inclusion error implies that
neither bidder receives it.

In order to make the penalty and the prize scheme financially equivalent, we as-
sume that in the penalty scheme bidders are endowed with 2w, and that the penalty
is as large as the prize π. Thus, monetary outcomes in every error scenario are
algebraically identical across the two schemes.9 Consider, for instance, the scenario
without errors and call GN(·) the penalty scheme counterpart of FN(·) derived from
condition (1). In a penalty scheme the equilibrium indifference condition for bidders
endowed with a generic u(·) becomes

GN(b)u(2w − b) + [1−GN(b)]u(2w − π − b) = u(2w − π). (5)

It is immediate to see that conditions (1) and (5) coincide, due to payoff equiva-
lence, and that this equivalence relation applies to every error scenario. This implies
that all the results presented in propositions 1-5 also hold in a penalty scheme.

However, under loss aversion, bidding behavior across the two schemes may differ.
Every outcome in any error scenario of a penalty scheme is such that bidders bear at
best the bid and at worst both the penalty and the bid. Thus, under loss aversion,
condition (5) becomes:

GN(b)[−λu(b)] + [1−GN(b)][−λu(π + b)] = −λu(π)

Since all outcomes are in the loss domain, loss aversion does not have any bite
in a penalty scheme and

GN(b) =
u(π + b)− u(π)

u(π + b)− u(b)
.

In order to measure the impact of loss aversion on the disincentive effects of
errors, we assume for simplicity that u(x) = x for x ≥ 0 and u(x) = −λx for
x < 0. With linear preferences, in every error setting, the average equilibrium bid of
a penalty scheme coincides with the average equilibrium bid of the baseline model of
Section 2.1 (prize scheme with standard linear preferences). Hence, it is equivalent
to compare the predictions for a prize scheme with loss averse bidders with either
the predictions for penalty scheme with loss averse bidders or those of the simple
setting of Section 2.1. In the presentation of the following results we adopt the prize
versus penalty comparison, as it makes it easier to interpret the role of loss aversion
in shaping the disincentive effects of errors on bids.

9Notice that size of the endowment does not have any implications under the reference
dependence assumption. Yet, reference dependence is a specific assumption on the bidders’
subjective utility, while we want that our set up may ideally suit alternative interpretations.
Thus, we construct the two payoff structures in a way that makes the two schemes payoff-
equivalent and, thus, comparable even without any specific superstructure on the bidders’
preferences.

9



We first analyze the effect of loss aversion on expected bids in the benchmark
without errors. We find that loss averse contestants bid less aggressively in a prize
than in a penalty scheme, as stated in the following proposition.

Proposition 6 In a scenario without errors with loss averse bidders, bids in a
penalty scheme are higher than in a prize scheme.

Proof. The equilibrium mixed strategy profile in this setting can be derived by
replicating the steps of the proof of Proposition 1 (see Appendix), except for point
4. Any bid in the support should provide the same expected utility from bidding
zero, that is

FN(b)(π − b) + [1− FN(b)](−λb) = 0.

The indifference condition yields

FN(b) =
λb

π + (λ− 1)b
. (6)

The support of the equilibrium cdf does not change with respect to the bench-
mark and coincides with [0, π].10 Thus, we can derive the average equilibrium bid
of loss averse bidders as∫ π

0

λπ

(π + b(λ− 1))2
db =

1− λ(1− log λ)

(λ− 1)2
π.

that, for every λ > 1, is smaller than π
2
, which is the average equilibrium bid in

the benchmark, and it decreases with λ.

The intuition for this result is that loss averse bidders are more averse to the
loss that derives from losing in a penalty scheme than they are attracted to the
gain that derives from winning in a prize scheme. This result is in line with recent
evidence showing that loss contracts increase individual and team performance in
the workplace (see Section 5 for a discussion). Importantly, our result suggests that
this may occur also in a competitive environment: negative incentive schemes may
be more effective to extract effort as, due to loss aversion, contestants are more
willing to exert effort in order to avoid losses.

Next, we analyze how loss aversion influences the effects of judgement errors on
average bids by comparing equilibrium behavior across prize and penalty schemes,
under exclusion and inclusion errors, respectively.

Proposition 7 Under loss aversion, for λ large enough, exclusion errors have a
stronger negative effect on bids in a penalty scheme than in a prize scheme.

Proof. The equilibrium mixed strategy profile in this setting can be derived by
replicating the steps of the proof of Proposition 2, except for points 2b and 4. Any
bid in the support must provide the same expected utility from bidding zero that is

10It is immediate to verify that π satisfies point 2.b of the proof of Proposition 1.
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FE(b)[(1− p)(π − b) + p(−λb)] + [1− FE(b)](−λb) = 0. (7)

This indifference condition yields

FE(b) =
λb

(1− p)[π + (λ− 1)b]
.

In addition, the support of the equilibrium mixed strategy now differs with re-
spect to the one of the exclusion error scenario of the baseline model and it is equal
to b = (1−p)π

1+p(λ−1) , that solves (1−p)(π−b)+p(−λb) = 0, that corresponds to condition

(7) with FE(b) = 1. Thus, we can derive the average equilibrium bid of loss averse
bidders as ∫ b

0

b
λπ

(1− p) [π + b(λ− 1)]2
db.

The disincentive effect of an exclusion error with loss averse bidders in a prize
scheme is smaller relative to a penalty scheme if the following inequality holds true:

1− λ(1− log λ)

(λ− 1)2
π − (λ− 1)(p− 1) + λ log λ− λ log[1 + (λ− 1)p]

(λ− 1)2(p− 1)
π

<
π

2
− π(1− p)

2

where the left hand side is the difference between the average bid in the no error
scenario and the average bid in an exclusion error scenario of a prize scheme; the
right hand side measures the effect of an exclusion error in a penalty scheme. It can
be shown that this inequality is not satisfied for every (λ, p), such that λ > 1 and
p ∈ (0, 1

2
). Let us denote λ the degree of loss aversion above which the inequality is

satisfied as a function of p, i.e., λ = f(p). Let us divide both sides for π and denote
the resulting expression on the left hand side as D(λ, p). The above inequality
becomes

D(λ, p) =
1− λ(1− log λ)

(λ− 1)2
− (λ− 1)(p− 1) + λ log λ− λ log[1 + (λ− 1)p]

(λ− 1)2(p− 1)
<
p

2
.

and λ solves D(λ, p) − p
2

= 0. It can be shown that λ decreases with p. That
is, as the probability of an error grows large, less loss aversion is needed to make an
exclusion error in a prize scheme at least as detrimental as in a penalty scheme.

Proposition 8 Under loss aversion, inclusion errors have a stronger negative effect
on bids in a penalty scheme than in a prize scheme.

Proof. The equilibrium mixed strategy profile in this setting can be derived by
replicating the steps of the proof of Proposition 3, except for point 4. Any bid in
the support must provide the same expected utility from bidding zero that is

F I(b)(π − b) + [1− F I(b)][(1− p)(−λb) + p(π − b)] = pπ.
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This indifference condition yields

F I(b) =
[(1− p)λ+ p] b

(1− p)[π + b(λ− 1)]
.

The support of the equilibrium cdf is the same as in the inclusion error scenario of
the baseline model and it is equal to b = (1−p)π.11 Thus, we can derive the average
equilibrium bid of loss averse bidders as∫ b

0

b
π [λ(1− p) + p]

[π + b(λ− 1)]2(1− p)
db.

The disincentive effect of an inclusion error with loss averse bidders in a prize
scheme is smaller relative to a penalty scheme if the following inequality holds:

1− λ(1− log λ)

(λ− 1)2
π − (λ− 1)(1− p) + [(λ− 1)p− λ] log[1− (λ− 1)p]

(λ− 1)2(p− 1)
π

<
π

2
− π(1− p)

2
,

where the left hand side is the difference between the average bid in the no error
scenario and the average bid of an inclusion error scenario in a prize scheme; the
right hand side measures the effect of an inclusion error in a penalty scheme. It
can be shown that this inequality is satisfied for every (λ, p), such that λ > 1 and
p ∈ (0, 1

2
).

In the presence of exclusion errors, loss-averse contestants perceive a negative
variation in case of winning that is smaller in a prize than in a penalty scheme,
as the loss looms larger than the non-gain. Similarly, in the presence of inclusion
errors, loss-averse contestants perceive a positive variation in case of losing that is
larger in a penalty scheme than in a prize scheme, as the avoided loss looms larger
than the prize. However, inclusion, differently from exclusion, has an additional
disincentive effect. Specifically, it affects the expected payoff from exerting zero
effort, as in some contingencies the bidder receives the prize (prize scheme) or avoids
the penalty (penalty scheme) at no cost. Since the non-penalty looms larger than
the prize, inclusion induces a variation in the opportunity cost of effort that is
asymmetric across the two reward structures: the opportunity cost increases more
in a penalty scheme than in a prize scheme. Overall, these two effects of inclusion
induce a disincentive effect that is unambiguously larger in a penalty relative to a
prize scheme.12

11Obviously, the upper bound of the support does not change with respect to the baseline
model since the inclusion error does not affect the expected payoff from winning.

12Notice that exclusion does not have any effect on the bid’s opportunity cost. Exclusion
has only a negative effect on the expected payoff from winning the auction that is larger
in a penalty than in a prize scheme. However, this effect may be not sufficient to generate
an asymmetry across the two schemes, when the degree of loss aversion is relatively low.
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We now analyze how the effect of an adjudication error varies across the two
reward schemes. By comparing the difference between the benchmark average equi-
librium bid and the average equilibrium bid in the presence of adjudication errors,
across the prize and the penalty scheme, we obtain the following result:

Proposition 9 Under loss aversion, adjudication errors have a stronger negative
effect on bids in a penalty than in a prize scheme.

Proof. In a penalty scheme loss averse bidders behave like in the baseline model
and randomize continuously on the support [0, (1− 2p)π] according to the cdf:

GA(b) =
b

(1− 2p)π

so that the average equilibrium bid is (1−2p)π
2

. Thus, the difference between
average equilibrium bids in the penalty scheme without and with adjudication errors
can be computed as

π

2
− (1− 2p)π

2
= pπ.

In contrast, due to loss aversion, the equilibrium cdf in a prize scheme differs
with respect to the benchmark as it must satisfy the indifference condition

FA(b)[(1− p)(π − b) + p(−λb)] + [1− FA(b)][(1− p)(−λb) + p(π − b)] = pπ (8)

that yields

FA(b) =
[λ− p(λ− 1)]b

(1− 2p)[π + (λ− 1)b]

where the upper bound of the support is now b = (1−2p)π
1+p(λ−1) .

13 The proof that
this is indeed the equilibrium mixed strategy of every bidder follows the proof of
Proposition 4.

The disincentive effect of an adjudication error with loss averse bidders in a prize
scheme is computed as:

π
[1− λ(1− log λ)]

(λ− 1)2
−
∫ b

0

b
π(λ− (λ− 1)p)

(1− 2p)(π + b(λ− 1))2
db

where the first term is the average equilibrium bid in the no error scenario (de-
rived from the proof of Proposition 6) and the second term is the average equilibrium
bid in the adjudication error scenario. We can rewrite the last expression as

13The upper bound of the support is derived from the condition that expected utility
from the equilibrium strategy in the best case scenario (left hand side of condition (8)
with FA(b) = 1) must be equal to the expected utility from bidding zero.
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π

[
1− λ(1− log λ)

(λ− 1)2
+

− (λ− 1)(1− 2p) + (λ− p(λ− 1)) {log[1 + (λ− 1)p]− log[λ− p(λ− 1)]}
(λ− 1)2(2p− 1)

]
.

It can be shown that this expression is (strictly) smaller than pπ for every λ > 1.

To summarize, when bidders are loss averse, average bids are lower in a prize
scheme than in a penalty scheme, but the negative effect of adjudication errors on
incentives is less strong in a prize scheme.14 These results have interesting implica-
tions for the design of optimal contests. Under loss aversion, penalty schemes may
better suit the objective of contest designers to maximize effort insofar as adjudica-
tion errors are absent. When instead adjudication schemes are defective and errors
may occur, positive incentives has to be preferred to negative incentives.

Next, we consider how loss aversion provides an alternative interpretation to
risk aversion for why exclusion may have a stronger disincentive effect than inclu-
sion. The intuition is that when bidders evaluate monetary outcomes as variations
(namely, gains or losses) relative to their endowment, exclusion generates a possible
loss in case of winning, while inclusion generates a possible gain in case of losing.
First, we analyze the effect of loss aversion on the relation between the two disin-
centive effects in a prize scheme and in a penalty scheme respectively. We can now
develop the analysis at a more general level and study the relation between exclusion
and inclusion with weaker assumptions on preferences, i.e., not necessarily linear.

Under loss aversion, condition (3), i.e., the equilibrium cdf under exclusion errors,
becomes:

FE(b) =
u(0)− u(−b)

(1− p)[u(π − b)− u(−b)]
=

λu(b)

(1− p)[u(π − b) + λu(b)]
.

Under loss aversion, condition (4), i.e., the equilibrium cdf under inclusion errors,
becomes:

F I(b) =
(1− p)[u(0)− u(−b)] + p[u(π)− u(π − b)]

(1− p)[u(π − b)− u(−b)]
=

(1− p)λu(b) + p[u(π)− u(π − b)]
(1− p)[u(π − b) + λu(b)]

.

For loss averse bidders, the possible loss due to exclusion looms larger than the
possible gain due to inclusion. Thus, exclusion gives rise to a harsher distortion
of the incentive to exert effort with respect to inclusion, as bidders prefer avoiding
the loss when winning to making the gain when losing. This intuition leads to the
following proposition (the proof is in Appendix A).

14An alternative way to state these results is that in the absence of errors loss aversion
decreases average bids and it decreases the disincentive effect of an adjudication error.

14



Proposition 10 In a prize scheme with loss averse bidders, exclusion errors have
a stronger negative effect on bids than inclusion errors.

We now analyze how the effects of the two components of an adjudication error
– exclusion and inclusion – affect effort in a penalty scheme. The equilibrium cdf
under exclusion errors in a penalty scheme, for a generic u(x), satisfies:

GE(b)[(1− p)u(2w − b) + pu(2w − π − b)] + [1−GE(b)]u(2w − π − b) = u(2w − π).

Thus, for loss averse bidders, it is equal to:

GE(b) =
u(π + b)− u(π)

(1− p)[u(π + b)− u(b)]
(9)

with support [0, b
E

], whereby b
E

solves (1− p)u(b) + pu(π + b) = u(π).
The equilibrium cdf under inclusion errors in a penalty scheme, for a generic

u(x), satisfies:

GI(b)u(2w−b)+[1−GI(b)][(1−p)u(2w−π−b)+pu(2w−b)] = (1−p)u(2w−π)+pu(2w)

Thus, for loss averse bidders it is equal to:

GI(b) =
(1− p)[u(π + b)− u(π)] + pu(b)

(1− p)[u(π + b)− u(b)]
(10)

with support [0, b
I
], whereby b

I
solves u(b) = (1− p)u(π).

By comparing the two equilibrium cdfs, conditions (9) and (10), respectively, we
obtain the following proposition. The proof is contained in Appendix A.

Proposition 11 In a penalty scheme with loss averse bidders, inclusion errors have
stronger negative effect on bids than exclusion errors. In particular:

Thus, similarly to risk aversion, loss aversion generates an asymmetry between
the negative effects of exclusion and inclusion on average bids. However, the effect
of loss aversion strongly depends on how the incentive scheme is framed and it does
not characterize defective contests in general. In particular, it does not apply to
environments where contest designers adopt penalty schemes to incentivize effort.

The results of propositions 5, 10 and 11 can be summarized as follows: with
positive incentive schemes, both risk aversion and loss aversion imply that exclusion
errors are more detrimental for effort than inclusion errors. In contrast, with negative
incentive schemes, while the implications of risk aversion do not change, loss aversion
has an opposite effect: exclusion has a less strong disincentive effect than inclusion.
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3 The Experiment

The baseline experimental task is a standard all-pay auction where two subjects
compete for a monetary reward. Subjects are matched in pairs and have a monetary
endowment that they can spend to buy tickets at the cost of 1 ECU per ticket. The
subject who buys most tickets wins the contest (ties are broken randomly). However,
the winner of the contest may not obtain the reward, depending on the occurrence
of a random mis-judgement error, as detailed below.

3.1 Design

We manipulate exogenously the presence of exclusion and inclusion errors, and the
framing of the incentive scheme (prize vs penalty), in a 2x2x2 factorial design. In
all treatments, the highest bidder wins the contest. However, the identification of
the winner (loser) of the contest may be subject to either exclusion or exclusion
errors, or both.15 In T1, no errors occur, so that the winner obtains the reward with
certainty. In T2, an error of exclusion may occur with probability 1

4
. In T3, an error

of inclusion may occur with probability 1
4
. In T4, an adjudication error may occur

with probability 1
4
, implying both exclusion and inclusion at the same time.

To summarize, we implement the following four treatments:

T1 - No errors: the winner obtains the reward, while the loser does not obtain it;

T2 - Exclusion error:

– with probability 1
4

the winner does not obtain the reward (thus no bidder
obtains the reward);

– with probability 3
4

the winner obtains the reward while the loser does not
obtain it;

T3 - Inclusion error:

– with probability 1
4

the loser obtains the reward (thus both bidders obtain
the reward);

– with probability 3
4

the winner obtains the reward while the loser does not
obtain it;

T4 - Inclusion and Exclusion (Adjudication) error:

– with probability 1
4

the reward is assigned to the loser and not to the
winner ;

– with probability 3
4

the winner obtains the reward while the loser does not
obtain it;

15The occurrence of an error is determined by a coin toss. Subjects are informed about
the coin toss realization after their bidding decision.
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Each of these four treatments is implemented under two different framings, with
the reward consisting of either receiving a monetary prize (Prize framing) or avoiding
a monetary penalty (Penalty framing), respectively. In the Prize framing, subjects
are endowed with 1000 ECUs and the reward is a prize of 1000 ECU. For subjects
who are awarded the prize, the payoff is given by the endowment, minus the cost
of the tickets, plus the prize; for subjects who are not awarded the prize, the payoff
is the endowment minus the cost of the tickets. In the Penalty framing, subjects
are endowed with 2000 ECUs and compete to avoid a penalty of 1000 ECUs. For
subjects who receive the penalty the payoff is the endowment minus the cost of the
tickets minus the penalty; for subjects who do not receive the penalty the payoff
is the endowment minus the cost of the tickets. The four treatments are therefore
payoff-equivalent across the two framings. Table 1 summarizes the features of all
treatments.

Table 1: Experimental Treatments
Prize framing Penalty framing

Win Lose Win Lose
T1 - No errors Prize No prize No penalty Penalty
T2 - Exclusion error No prize No prize Penalty Penalty
T3 - Inclusion error Prize Prize No penalty No penalty
T4 - Exclusion and Inclusion No prize Prize Penalty No penalty

3.2 Hypotheses

Under standard risk-neutral preferences, Nash equilibrium strategy profiles and ex-
pected bids for each treatment can be summarized as follows. In T1, both players
randomize continuously on [0, 1000] according to the cdf F (b) = b, with an expected
bid of 500. In T2 and T3, both players randomize continuously on [0, 3

4
] according to

F (b) = 4
3
b, with an expected bid of 375. In T4, both players randomize continuously

on [0, 1
2
] according to F (b) = 2b, with an expected bid of 250. Table 2 compares

expected individual bids in ECUs for each of the four treatments.

Table 2: Expected bids, by treatment
Inclusion error

Loser not rewarded Loser rewarded
Winner rewarded 500 375

Exclusion error

Winner not rewarded 375 250

The first set of hypotheses is about the effects of judgement errors on bids in the
absence of reference-dependent preferences (i.e., abstracting from the framing of the
task). Adjudication errors are expected to have a negative effect on bids under any
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expected-utility preferences. This reflects two complementary effects: the exclusion
error component decreases the expected utility of a winning bid; the inclusion error
component increases the expected utility of a losing bid, thus decreasing the expected
net returns from bidding. In addition, under linear utility no interaction is expected
between exclusion and inclusion errors, so that the effects of adjudication errors are
equal to the sum of exclusion and inclusion errors (additivity). Alternatively, under
non-linear utility, exclusion and inclusion errors may be complement or substitutes.

If utility is linear in monetary outcomes, exclusion and inclusion errors have
the same negative impact on the marginal return from bidding and, therefore, on
expected bids. On the other hand, if utility is non-linear, the two errors have different
effects on bids. Under risk aversion, the expected utility from bidding, both in case
of winning and in case of losing, is lower in the presence of exclusion than inclusion
errors.16 Therefore, for a given error probability, risk averse individuals are expected
to bid less in the presence of errors of exclusion than of inclusion. Hence, whereas
under linear utility exclusion and inclusion errors have the same disincentive effect,
under risk aversion exclusion errors have a stronger disincentive effect on bids than
inclusion errors.

Summing up, we test the following hypotheses about the effects of judgement
errors on effort:

H1a: Adjudication errors have a negative effect on bids.

H1b: Both exclusion and inclusion errors have a negative effect on bids.

H1c: Exclusion errors have a stronger disincentive effect on bids than inclusion
errors.

H1d: The effects of exclusion and inclusion errors are non-additive.

The second set of hypotheses concerns the effects of the framing of the incentive
scheme, and the interaction with judgement errors, focusing on the role played by
loss aversion. Under expected-utility preferences, average bids are equal in the Prize
and Penalty framings, irrespective of risk attitudes, since the monetary payoffs are
exactly the same in the two settings. On the other hand, loss aversion would produce
different bids, and different effects of judgement errors, in the two framings.

In the absence of errors, loss aversion implies that bids are higher in a penalty
framing, since the loss perceived in case of losing in a penalty scheme weights more
than a corresponding non-gain in a prize scheme. Hence bidders want to avoid losing
in Penalty more than they want to avoid it in Prize.17 More importantly, under loss

16The reason for this result is that in case of winning with probability (34) monetary
outcomes are the same in T2 and T3, but with probability (14) the winner does not receive
the reward and the payoff is lower in T3 than in T2. In case of losing, with probability
(34) the payoff in T2 and in T3 is the same, but with probality (14) the loser receives the
reward, so that the payoff is higher in T3 than T2.

17Note that reflection may have a similar effect, depending on the curvature of the
utility function.
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aversion adjudication errors have a stronger disincentive effect on bids in the Penalty
than in the Prize framing (see Proposition 9). The intuition is the following: in a
Penalty framing, loss averse subjects perceive a larger negative (positive) variation
in the expected utility from winning (losing) with respect to the benchmark than
in a Prize framing. Thus, the disincentive effect of adjudication errors is stronger
in Penalty than in Prize. Similar predictions apply to inclusion errors, whereas the
effect of the framing is ambiguous in the case of Exclusion errors (Propositions 7
and 8). Finally, as shown in Propositions 10 and 11, in the presence of loss aversion
exclusion errors have a stronger disincentive effect on bids than inclusion errors in
prize but not in penalty.18 As a consequence, the difference between the disincentive
effects of exclusion and inclusion errors is larger in Prize than in Penalty.

Summing up, we test the following hypotheses about the effects of framing on
bidding behavior in the presence of judgement errors:

H2a: In the absence of errors, bids are higher in Penalty than Prize.

H2b: The disincentive effects of adjudication errors are stronger in Penalty
than Prize.

H2c: The disincentive effects of both exclusion and inclusion errors are stronger
in Penalty than Prize.

H2d: The difference between the disincentive effects of exclusion and inclusion
errors is larger in Prize than in Penalty.

3.3 Participants and Procedures

We recruited 256 participants among students at the University of Milan Bicocca us-
ing the ORSEE software (Greiner, 2004). Error-type treatments (Inclusion and Ex-
clusion) were implemented within subjects. Framing treatments (Prize or Penalty)
were implemented between subjects. We ran 8 sessions for each framing (Prize or
Penalty) with 16 subjects per session. In each session, in either of the two framings,
every subject faced all four error-type treatments (Exclusion x Inclusion), play-
ing four phases of 10 rounds for each treatment (40 periods in total). In order to
minimize the consequences of order effects, we implemented a cross-over design by
reversing the order of the four treatments in each session as illustrated in Table 3
(two sessions were run for each of the four sequences of treatments).

In order to avoid repeated game effects, subjects were informed that groups would
be randomly formed in each round. Unknown to subjects, groups of two subjects
were formed in each round by randomly drawing from fixed sets of four subjects.
We thus obtained four independent matching-group observations per session, for a
total of 68 independent group-level observations overall.

18Reflection would also result in different predictions for the two framings. In particular,
it can be shown that decreasing marginal utility operates in two opposite directions in
the two framings so that exclusion (inclusion) has a stronger disincentive effect in Prize
(Penalty).
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Table 3: Sequence of treatments, by session
Phase 1 Phase 2 Phase 3 Phase 4

Sequence 1 T1 T2 T3 T4
Sequence 2 T2 T1 T4 T3
Sequence 3 T3 T4 T1 T2
Sequence 4 T4 T3 T2 T1

In each session, upon arrival at the laboratory subjects were randomly assigned
to computer terminals, located in cubicles that did not allow communication or
visual interaction. To ensure public knowledge, instructions were distributed and
read aloud separately for every treatment (see Appendix B for the instructions,
translated from Italian). In order to check the understanding of the instructions
subjects were asked to answer a set of control questions. The session started only
after all subjects had answered the questions correctly. At the end of each round
subjects were informed about both own and co-player’s payoffs in that round. At
the end of the experiment subjects were paid in cash according to their performance
in one of the 40 periods, randomly selected.

The experiment was programmed and conducted with the software z-Tree (Fis-
chbacher, 2007). Average earnings in the experiment were about 14 euros (including
a participation fee of 2 euros), for sessions taking on average about 75 minutes.

4 Results

This section presents the experimental results. We start by providing an overview
of bidding behavior across treatments. Next, we report test results for the effects of
mis-judgement errors and the framing of the incentive scheme, respectively.

4.1 Overview

Figure 1 compares actual and theoretical bids, by treatment, pooling all subjects
across the two framings. Observed bids are generally lower than theoretical bids,
possibly reflecting the effects of repetition (see below). In the absence of judgement
errors (T1), actual and theoretical bids are 445 and 500, respectively. Underbidding
is also observed in the presence of exclusion error (T2, 308 vs. 375) and inclusion
error (T3, 302 vs. 375). Actual and theoretical bids are instead relatively similar
in the presence of adjudication errors (T4, 233 vs. 250). At a descriptive level,
treatment effects are qualitatively consistent with the theoretical predictions. The
presence of exclusion and inclusion errors, both jointly and individually, produces
a substantial reduction in average bids. Average bids are relatively similar in the
presence of exclusion and inclusion errors, respectively. The joint disincentive effect
of the two types of errors is smaller than the sum of the individual effects of exclusion
and inclusion errors.

Figure 2 illustrates the effects of repetition on bidding behavior within treat-
ments, by comparing observed and predicted bids by treatment over 10 rounds
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Figure 1: Actual versus predicted bids, by treatment
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averaging across different phases (treatment-specific experience). Observed average
bids follow a similar pattern in the four treatments: they are close to predicted bids
in the initial rounds and decline over successive repetitions. The declining pattern
within phases is more pronounced in T2 and T3, while relatively less strong in T1
and T4.

Figure 3 examines the effects of repetition on bidding behavior across phases,
by comparing observed and predicted bids by treatment over 40 periods (overall
experience). Average bids display a downward trend over rounds in T2 (exclusion)
and T3 (inclusion), while the declining trend is absent in the absence of errors (T1)
and less evident in the presence of adjudication errors (T4). Overall, these patterns
indicate that the effects of repetition should be taken into account as they might
interact with treatment effects.

4.2 Effects of Mis-judgements on Effort

In order to test the effects of mis-judgement errors on effort, we use a regression
model that explains observed average group-level bids as a function of dummy vari-
ables for treatment effects (exclusion and inclusion errors) and their interaction:

b̄i,t = δ0 + δ1EXCi,t + δ2INCi,t + δ3EXC ∗ INCi,t + βxi,t + εi,t (1)

where b̄i,t denotes average bids (in Euro cents) in group i and period t, with
i = 1, ..., 64 indicating independent matching groups and t = 1, ..., 40 indicating pe-
riods. EXCi,t (INCi,t) is a dummy indicating whether group i can face an exclusion

21



Figure 2: Actual versus predicted bids over rounds, by treatment
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Figure 3: Actual versus predicted bids over periods, by treatment
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(inclusion) error in period t. EXCi,t is 1 in treatments T2 and T4 and 0 otherwise,
while INCi,t is 1 in treatments T3 and T4 and 0 otherwise. The vector x includes
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treatment-specific experience (a dummy that takes value 0 for the first five rounds
within a treatment and 1 for the last five rounds), overall experience (a dummy that
takes value 0 for the first 20 periods within a session and 1 for the last 20 periods)
and a full set of session dummies. Standard errors are clustered by independent
groups of four individuals.

Table 4 reports OLS estimates for alternative specifications of equation (1). Col-
umn (1) focuses on the joint effect of exclusion and inclusion errors, i.e. adjudication
error (δ1 + δ2 + δ3). The estimated effect of adjudication errors is large (-212.3) and
strongly significant. Column (2) reports the estimated effects of exclusion and inclu-
sion errors, respectively, under the assumption of additivity (δ3 = 0). Both exclusion
and inclusion errors have a negative and significant effect on bids (δ̂1 = −103.0 and
δ̂2 = −109.2, respectively). Column (3) relaxes the assumption of additivity, indi-
cating the presence of a negative interaction between exclusion and inclusion errors
(δ̂3 = 67.3 has the opposite sign of the main effects). Therefore, exclusion and inclu-
sion errors are substitutes, as the sum of the effects of the two error components is
larger (in absolute value) than the effect of adjudication errors. Column (4) reports
the estimate for the difference between the effects of exclusion and inclusion errors
(δ1 − δ2). The difference is small (6.2) and not statistically significant. The null
hypothesis that exclusion and inclusion errors have the same disincentive effect on
bids cannot be rejected.

Table 4: Effects of judgement errors on effort

(1) (2) (3) (4)
Adjudication -212.3**

(18.3)
Exclusion -103.0** -136.7**

(13.8) (19.8)
Inclusion -109.2** -142.9**

(14.2) (21.0)
Exclusion * Inclusion 67.3*

(28.2)
Exclusion - Inclusion 6.2

(21.2)
R2 0.31 0.31 0.31 0.31
Number of observations 2560 2560 2560 2560

Note: dependent variable: average group-level bids in euro cents; OLS estimates; the set
of regressors also includes dummy variables for treatment-specific experience and overall
experience, and a full set of session dummy variables; standard errors (in parenthesis)
clustered by independent matching group; * indicates p<0.05, ** indicates p<0.01.

Table 5 assesses how repetition interacts with the effects of judgement errors,
by comparing treatment effects between rounds 1-5 and 6-10 (treatment-specific
experience), and between periods 1-20 and 21-40 (overall experience). Both overall
and treatment-specific experience increase the size of the effect of adjudication errors.
A similar result applies to the effects of both exclusion and inclusion errors. The
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interaction between exclusion and inclusion errors becomes stronger and statistically
significant when subjects are more experienced. This indicates that the evidence of
non-separability is reinforced by experience. Finally, the difference between the
effects of exclusion and exclusion errors is positively related to overall experience
(-74.2 and +52.3 in periods 1-20 and 21-40, respectively).

Table 5: Mis-judgements and effort, effects of repetition

Rounds 1-5 Rounds 6-10 Periods 1-20 Periods 21-40
Adjudication -196.1** -228.4** -134.1 -256.1**

(21.7) (19.7) (97.3) (70.9)

Exclusion -117.8** -155.5** -118.5** -154.9**
(21.5) (23.4) (33.7) (20.3)

Inclusion -129.7** -156.0** -44.3 -207.2**
(25.2) (23.1) (97.8) (60.0)

Exclusion * Inclusion 51.5 83.1* 28.6 106.0**
(31.8) (31.4) (42.7) (35.5)

Exclusion - Inclusion 11.9 0.5 -74.2 52.3
(22.8) (24.1) (105.2) (57.9)

R2 0.31 0.32 0.31 0.28
Observations 1280 1280 1280 1280

Note: dependent variable: average group-level bids in euro cents; OLS estimates; the set
of regressors also includes dummy variables for treatment-specific experience and overall
experience, and a full set of session dummy variables; standard errors (in parenthesis)
clustered by independent matching group; * indicates p<0.05, ** indicates p<0.01.

4.3 Mis-judgements and the Framing of Incentives

Figure 4 compares average bids in Prize and Penalty framings, respectively. Average
bids are higher in the Penalty scheme in every treatment. As shown in Table 6,
the difference in average bids between Penalty and Prize framings is statistically
significant in the absence of errors (T1) and in the presence of adjudication errors
(T4).

Table 7 compares the effects of judgement errors across framings. The effect of
adjudication errors is relatively similar in Penalty and Prize framings (-206.5 and
-218.1 euro cents, respectively). Consistently with the theoretical predictions, the
disincentive effects of both exclusion and inclusion errors are stronger in Penalty
than in Prize framings, although the difference is not statistically significant. The
effects of exclusion and inclusion errors are small and not statistically significant in
both Penalty and Prize framings.

To sum up, the main results about the effects of the framing of the incentive
scheme are as follows:
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Figure 4: Average bids by framing, by treatment
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Table 6: Average bids by treatment and framing

Penalty framing Prize framing Penalty-Prize
T1 490.8** 399.1** 91.7*

(31.6) (30.4) (43.5)
T2 340.9** 275.6** 65.2

(33.3) (29.2) (44.0)
T3 326.1** 278.0** 48.2

(30.4) (28.7) (41.4)
T4 284.3** 181.0** 103.4**

(33.0) (18.9) (37.7)
R2 0.76 0.72 0.74
Number of observations 1280 1280 2560

Note: dependent variable: average group-level bids in euro cents; OLS estimates; the set
of regressors also includes dummy variables for treatment-specific experience and overall
experience, and a full set of session dummy variables; standard errors (in parenthesis)
clustered by independent matching group; * indicates p<0.05, ** indicates p<0.01.

1. In the absence of judgement errors, bids are higher in a Penalty than in a Prize
incentive scheme.

2. In the presence of adjudication errors, bids are higher in a Penalty than in a
Prize incentive scheme.

3. There is no significant interaction between the framing of the incentive mech-
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Table 7: Effects of mis-judgements, by framing

Penalty framing Prize framing Penalty-Prize
Adjudication -206.5** -218.1** 11.6

(25.2) (32.3) (40.6)

Exclusion -149.9** -123.4** -26.5
(29.6) (26.5) (39.4)

Inclusion -164.7** -121.1** -43.6
(32.6) (35.3) (47.7)

Exclusion * Inclusion 108.1** 26.4 81.7
(37.6) (41.4) (55.5)

Exclusion - Inclusion 14.7 -2.3 17.0
(39.7) (31.8) (50.5)

R2 0.24 0.23 0.26
Number of observations 1280 1280 2560

Note: dependent variable: average group-level bids in euro cents; OLS estimates; the set
of regressors also includes dummy variables for treatment-specific experience and overall
experience, and a full set of session dummy variables; standard errors (in parenthesis)
clustered by independent matching group; * indicates p<0.05, ** indicates p<0.01.

anism and the effects of mis-judgements.

5 Discussion and Conclusion

We studied the disincentive effects of judgement errors in contests, focusing on the
respective effects of the exclusion and inclusion components of adjudication errors.
Theoretically, we have shown how behavioral aspects, such as risk aversion, loss
aversion and the framing of the incentive scheme (prize vs. penalty) shape the
effects of judgement errors on effort. Due to risk aversion, the negative effect of
exclusion dominates the one of inclusion in both positive and negative incentive
schemes. Loss aversion interacts with the effects of errors in different ways in the
two reward schemes: in prize schemes exclusion dominates inclusion, while in penalty
schemes exclusion has either the same or a less strong effect than inclusion. The
comparison of bidding behavior across the two framings suggests that loss averse
bidders bid more aggressively and perceive adjudication errors as more detrimental
in a penalty scheme than in a prize scheme.

We tested experimentally the effects of an adjudication error, factorized in its
exclusion and inclusion components, in the strategic context of an all-pay auction.
The results indicate that adjudication errors negatively affect average bids in both
positive and negative incentive schemes. Moreover, average bidding behavior is more
aggressive in a penalty than in a prize scheme. However, in both reward schemes,
the effects of exclusion and inclusion are not significantly different, in contrast with
the implications of behavioral aspects like risk and loss aversion. Therefore, it is not
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the case that penalizing (or not rewarding) the best candidate (exclusion error) is
perceived as more frustrating than not penalizing (or rewarding) the worst candidate
(inclusion error). This insight can contribute to the design of (second best) optimal
contests. Given that the two errors do not have a different disincentive effect on
effort, it is more compelling to avoid the inclusion error as it is more costly for the
contest organizer.

An additional finding of our experiment is that subjects bid more aggressively un-
der penalty incentive schemes than under prize incentive scheme, something that has
received relatively little attention in experimental literature on contests. This is an
important result for the design of optimal incentives in competitive environments.19

Several recent studies have provided evidence that loss contracts – whereby penalties
are assigned for not reaching a productivity target – increase workplace individual
performance, both in the lab and in the field ( Brooks, et al., 2011; Hossain and List,
2012; Fryer et al., 2012; Armantier and Boly, 2015).20 To the best of our knowledge,
studies on the effects of gain and loss schemes on effort in competitive settings have
limited their attention to work team contests. While in Dickinson (2001) prizes and
fines are assigned to high and low contributors to the team goal, in Hong et al.
(2015) rewards and punishments are assigned to the team overall, depending on its
performance, and equally redistributed among its members. However, in both cases,
individual effort can be driven by social concerns for the partners’ payoffs that are
completely absent in a context like the one we implemented, whereby competition
occurs at the individual level.

Another aspect of our experimental findings that deserves consideration is that
observed average bids overall are relatively close to risk neutral theoretical pre-
dictions. Instead, overbidding is a widespread phenomenon observed in many ex-
periments on contests.21 However, it is worth noticing that overbidding mostly
characterizes experimental lottery contests, while for experimental all-pay auctions,
the evidence is mixed.22 Most importantly, as discussed by Sheremeta (2013), over-
bidding rates may depend on a series of characteristics of the experimental design.
Factors like the number of bidders, the payoff structure (prize and endowment rela-
tive sizes), the bidders’ experience (number of repetitions) and the matching protocol

19We are aware of only a recent experiment by Chowdhury et al. (2016) on the effects
of property rights on contest outcomes under loss aversion, that implement a similar
manipulation on the reward structure. Specifically, in their gain treatment two players
start with no prize and bid and whoever wins, gets a prize. In their loss treatment
two players start with own prizes and bid and whoever loses, loses his prize. Even if
theoretically there should be no difference in bids in these two treatments, the authors
find that subjects bid more in the loss treatment.

20In contrast, in a different context Levitt et al. (2012) find that the framing of educa-
tional incentives as gains or losses does not significantly affect effort.

21See for example Millner and Pratt (1989), Davis and Reilly (1988), Potters et al.
(1998), Sheremeta and Zhang (2010), Corazzini et al. (2010), Faravelli and Stanca (2012),
Price and Sheremeta (2015) among many others.

22For example, Potters et al. (1998) compares behavior in a lottery contest and in an
all pay auction and finds over-dissipation only in the former.
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(anonymous or not, repeated or random) can influence the overbidding rate.23

Among the existing experimental studies on symmetric auctions, the closest to
ours in terms of payoff structure is Gneezy and Smorodinsky (2006).24 Yet, while in
our experiment bidders receive an endowment in every round, in their experiment
bidders receive a large endowment one time at the beginning of the experiment.25

Thus, our subjects may perceive a more salient cap on their bids in each round
and this may be the reason why we observe lower average bids. Moreover, in their
experiment bidders are at least four.26 As the number of bidders is widely recognized
to have a positive effect on overbidding,27 this additional difference in the design
may contribute to explain the differences with our findings.

The existence of a cap on bids is one of the arguments provided by Potters et al.
(1998) to explain why they do not find strong evidence in favor of overbidding in an
all-pay auction setting that shares some crucial characteristics with ours: the same
number of bidders, the same matching protocol (random and anonymous matching),
and a large number of rounds that is at least as twice as in other studies (30 in their
experiment). In every round subjects are endowed with an amount of money that is
slightly above the prize value and this cap may exert a stronger pressure on average
bids with respect to Gneezy and Smorodinsky (2006) design, making Potters et al.
(1998) results more similar to ours.

Our paper sheds light on the underlying mechanisms through which adjudication
errors in contests affect effort and it opens up fruitful avenues for future research,
as errors can affect many relevant strategic contexts (e.g., labor market, education,
scientific dissemination, political lobbying or elections, etc.) and have a significant
economic impact. Moreover, in many competitions (e.g., for bonuses in the work-
place or job positions) contested resources are not always available in fixed amounts.
There might be some uncertainty at the competition stage on whether such resources
will either remain the same, abound or vanish at the awarding stage, especially in pe-
riods of high economic volatility. Our study opens up the way for analyzing contests
that incorporate uncertainty over the amount of available resources.

23A subset of papers within this literature specifically investigate the overbidding phe-
nomenon in contests manipulating some of these design characteristics and find for example
that: the larger the number of bidders, the higher the overbidding rate (probably due to
a lower collusion among bidders); the lower the gap between the endowment and the prize
value, the stronger the downward pressure on bidding, thus the lower is the overbidding
rate.

24Other experimental studies on symmetric all pay auctions are Ong and Chen (1998),
Ernst and Thoni (2013), Lugovsky et al. (2010), Klose and Sheremeta (2012).

25In Gneezy and Smorodinsky (2006) design, subjects have an endowment of 1000 ECU
spread over 10 rounds and the prize in each round is 100 ECU.

26Like in our experiment Gneezy and Smorodinsky (2006) adopt a random anonymous
matching.

27In fact, Gneezy and Smorodinsky (2006) study the effect of the number of bidders on
overbidding rates, implementing an all-pay auctions with four, eight and twelve bidders.
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Appendix A: Proofs

It can be easily shown that in none of the all-pay auctions considered in Section
2 there exists a Nash equilibrium in pure strategies. Let us provide some notation
that we will adopt in the following proofs. Let bi and bi denote the lower and upper
bound of player i’s equilibrium bid distribution Fi(·). Also, let αi(·) denote the size
of a mass point in i’s distribution. Let Ui(b, Fj(·)) be player i’s expected utility from
bid b given the strategy of the opponent j, Fj(·).

In order to construct the mixed-strategy Nash equilibrium of each error setting,
we first obtain the lower and the upper bounds of the supports of the two mixed
strategies (points 1 and 2 below); next, we prove that equilibrium mixed strategies
are continuous (point 3); finally, we derive the symmetric equilibrium cdf F (·).

Proof of Proposition 1. The proof goes along the following steps:

1. We prove that the supports of the two equilibrium mixed strategies have the
same lower bound, which is equal to zero, i.e., b1 = b2 = 0, and that there is
no atom in zero, i.e., Fi(0) = 0, i = 1, 2.

(a) We first show that the lower bounds must coincide, i.e., b1 = b2. Bids
lower than zero are ruled out a priori. Suppose that the lower bound of
either player, say player 2, is larger, i.e., 0 ≤ b1 < b2. Player 1 will put no
density on the interval [b1, b2) because the probability of winning is zero.
Thus, for player 2 is profitable to deviate to a lower bid b < b2, whereby,
as long as b > b1, the probability of winning is the same as in b2, but the
payoff is larger.

(b) Secondly, we show that lower bounds are equal to zero, i.e., b1 = b2 = 0.
Suppose that b1 = b2 = b > 0. We first argue that b1 = b2 = b implies
that at least one player puts no mass on b. Suppose that both F1(b)
and F2(b) are larger than zero. Then, either player, say player 1, could
profitable deviate to b + ε so to increase the probability of winning by a
finite amount. Secondly, we argue that it cannot be the case that only
one player, say player 1, puts no mass on b, i.e., F1(b) = 0. Indeed, if this
is the case, then player 2 incurs in a certain loss at b and, thus, has the
incentive to shift the mass away. Thus, it must be the case that both F2(b)
and F1(b) are equal to zero. Finally, we argue that F2(b) = F1(b) = 0
implies that b1 = b2 = 0. If no player puts mass on the lower bound b,
then either player has the incentive to deviate to a strategy that puts
mass on zero, where the probability of winning is the same as in b but
the payoff is larger. Thus, it must be the case that b = 0.

(c) Third, we show that no player has an atom in zero, i.e., αi(0) = 0, i = 1, 2.

Suppose that α1(0) > 0 and α2(0) > 0. Either player, say player 2, can
relocate α2(0) on ε > 0 so to increase the probability of winning by a
finite amount. Thus, it cannot be the case that both players bid zero
with strictly positive probability.

Suppose that only one player, say player 2, bids zero with strictly positive
probability, i.e., α1(0) = 0 and α2(0) > 0. Player 2 has an incentive to
deviate and shift mass of size α2(0) to ε > 0 so to increase the probability
of winning by a finite amount.
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2. Next, we prove that the supports of the two equilibrium mixed strategies have
the same upper bound, i.e., b1 = b2 = π.

(a) We first show that the upper bounds coincide, i.e., b1 = b2. Suppose that,
the upper bound of either player, say player 1, is larger, i.e., b2 < b1 ≤ π.
Then, player 1 finds it profitable to deviate to a lower upper bound where
the probability of winning is the same as in b1, but the payoff is larger.
Hence, it must be the case that b1 = b2.

(b) Secondly, we show that the upper bounds must be equal to π. Suppose
that b1 = b2 = b < π. Then, player 1 finds it profitable to bid b1 slightly
above b1, as long as π − b1 is positive, so to win with certainty. Thus, it
must be the case that b1 = b2 = π.

3. We now prove that the equilibrium is a continuous mixed strategy equilibrium,
that is no bid in the support is played with strictly positive probability.

Suppose there exists a bid b in the support of either player’s mixed strategy,
say player 1’s, such that α1(b) > 0. This implies that F1(·) is discontinuous
at b. Hence, there is some ε > 0 arbitrarily small such that player 2 puts no
density on the interval [b− ε, b). Thus, player 1 would be better off by bidding
slightly less than b obtaining the same probability of winning and a larger
payoff.

Suppose that there exists a bid b on which both players put strictly positive
probability. Then, either of the two can profitably deviate by shifting mass
from b to b+ ε so to increase the probability of winning by a finite amount.

4. Points 1 to 3 have shown that both players randomize continuously on the
support [0, π]. Now, we compute the equilibrium mixed strategy profile. As
any bid in the support should provide the same expected utility, we impose
that for i = 1, 2, j 6= i:

Ui(b, Fj(·)) = Ui(0, Fj(·)) ⇐⇒ Fj(b)π − bi = 0

Hence, for every j = 1, 2, Fj(b) = b
π
. Notice that the probability of a tie is

zero for any bid in the support. �

Proof of Proposition 2. The proof coincides with the proof of Proposition 2 up
except for point 2 and 4. Thus, we elaborate points 2 and 4 only.

1. As point 1 in Proof of Proposition 1.

2. Next, we prove that the supports of the two equilibrium mixed strategies have
the same upper bound, i.e., b1 = b2 = (1− p)π.

(a) We first show that the upper bounds coincide, i.e., b1 = b2. Suppose that,
the upper bound of either player, say player 1, is larger, i.e., b2 < b1 ≤
(1 − p)π. Then, player 1 finds it profitable to deviate to a lower upper
bound where the probability of winning is the same as in b1 (i.e., 1− p),
but the payoff is larger. Hence, it must be the case that b1 = b2.
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(b) Secondly, we show that the upper bounds must be equal to (1− p)π.

Suppose that b1 = b2 = b < (1−p)π. Then, either player finds it profitable
to bid b slightly above b, as long as the expected return (1 − p)π − b is
positive, so to increase the probability of winning by a finite amount.

Suppose that b1 = b2 = b > (1 − p)π. Then, either player by bidding b
would get the prize with probability (1 − p) and encur in a loss. Hence,
it must hold that b1 = b2 = (1− p)π.

3. As point 3 in Proof of Proposition 1.

4. Points 1 to 3 have shown that both players randomize continuously on the
support [0, (1−p)π]. Now, we compute the equilibrium mixed strategy profile.
As any bid in the support should provide the same expected utility, we impose
that for i = 1, 2, j 6= i:

Ui(b, Fj(·)) = Ui(0, Fj(·)) ⇐⇒ (1− p)Fj(b)π − b = 0

Hence, for every j = 1, 2, Fj(b) = b
(1−p)π . Notice that the probability of a tie

is zero for any bid in the support. �

Proof of Proposition 3. To prove the result of Proposition 3 we follow the
previous proofs. However, since some arguments are slightly different, we report
them for completeness.

1. We prove that the supports of the two equilibrium mixed strategies have the
same lower bound, which is equal to zero, i.e., b1 = b2 = 0, and that there is
no atom in zero, i.e., Fi(0) = 0, i = 1, 2.

(a) We first show that the lower bounds must coincide, i.e., b1 = b2. Bids
lower than zero are ruled out a priori. Suppose that the lower bound
of either player, say player 2, is larger, i.e., 0 ≤ b1 < b2. Player 1 will
put no density on the interval (b1, b2) because the expected utility from
any bid b1 in this interval is lower than the expected utility from b1, as
pπ − b1 < pπ − b1. Thus, for player 2 is profitable to deviate to a lower
bid b2 < b2, whereby, as long as b2 > b1, the probability of winning is the
same as in b2 (i.e., α1(b1)), but the payoff is larger.

(b) Secondly, we show that lower bounds are equal to zero, i.e., b1 = b2 = 0.
Suppose that b1 = b2 = b > 0. We first argue that b1 = b2 = b implies
that at least one player puts no mass on b. Suppose that both F1(b)
and F2(b) are larger than zero. Then, either player, say player 1, could
profitable deviate to b + ε so to increase the probability of winning by a
finite amount. Secondly, we argue that it cannot be the case that only
one player, say player 1, puts no mass on b, i.e., F1(b) = 0. Indeed, if this
is the case, then player 2 has the incentive to shift the mass from b to
b+ ε so to increase the probability of winning by a finite amount. Thus,
it must be the case that both F2(b) and F1(b) are equal to zero. Finally,
we argue that F2(b) = F1(b) = 0 implies that b1 = b2 = 0. If no player
puts mass on the lower bound b, then either player has the incentive to
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deviate to a strategy that puts mass on zero, where the probability of
winning is the same as in b, i.e., p, but the payoff is larger. Thus, it must
be the case that b = 0.

(c) Third, we show that no player has an atom in zero, i.e., αi(0) = 0, i = 1, 2.

Suppose that α1(0) > 0 and α2(0) > 0. Either player, say player 2, can
relocate α2(0) on ε > 0 so to increase the probability of winning by a
finite amount. Thus, it cannot be the case that both players bid zero
with strictly positive probability.

Suppose that only one player, say player 2, bids zero with strictly positive
probability, i.e., α1(0) = 0 and α2(0) > 0. Player 2 has an incentive to
deviate and shift mass of size α2(0) to ε > 0 so to increase the probability
of winning by a finite amount.

2. Next, we prove that the supports of the two equilibrium mixed strategies have
the same upper bound, i.e., b1 = b2 = (1 − p)π, with an argument similar to
the one of point 2 of Proposition 1.

(a) We first show that the upper bounds coincide, i.e., b1 = b2. Suppose
that, the upper bound of either player, say player 1, is larger, i.e., b2 <
b1 ≤ (1 − p)π. Then, player 1 finds it profitable to deviate to a lower
upper bound where the probability of winning is the same as in b1, but
the payoff is larger. Hence, it must be the case that b1 = b2.

(b) Secondly, we show that the upper bounds must be equal to (1− p)π.

Suppose that b1 = b2 = b < (1−p)π. Then, either player finds it profitable
to bid b slightly above b, as long as the expected return (1 − p)π − b is
positive, so to win with certainty.

Suppose that b1 = b2 = b > (1 − p)π. Then, either player by bidding b
would get the prize with certainty and obtain a payoff (π − b) which is
less than what he would get from bidding zero (pπ). Hence, it must hold
that b1 = b2 = (1− p)π.

3. As point 3 in Proof of Proposition 1.

4. Points 1 to 3 have shown that both players randomize continuously on the
support [0, (1−p)π]. Now, we compute the equilibrium mixed strategy profile.
As any bid in the support should provide the same expected utility, we impose
that for i = 1, 2, j 6= i:

Ui(b, Fj(·)) = Ui(0, Fj(·)) ⇐⇒ (1− p)Fj(b)π + pπ − b = pπ

Hence, for every j = 1, 2, Fj(b) = b
(1−p)π . Notice that the probability of a tie

is zero for any bid in the support. �

Proof of Proposition 4. To prove this result, we can use the arguments contained
in the previous proofs. In particular, to prove that lower bounds must be the same
and are equal to zero, we can replicate points 1 and 3 of the proof of Proposition
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3. The expected utility in an adjudication error setting is indeed equal to (1 −
2p)F (b)π+pπ−b, while in an inclusion error setting is equal to (1−p)F (b)π+pπ−b.
Similarly, the same argument for upper bounds used in the proof of Proposition 3
applies here. However, now the upper bounds coincide with (1−2p)π as for any bid
above this threshold bidders would get less than what they get from bidding zero
(i.e., pπ). As any bid in the support [0, (1− 2p)π] should provide the same expected
utility, we impose that for i = 1, 2, j 6= i:

Ui(b, Fj(·)) = Ui(0, Fj(·)) ⇐⇒ (1− 2p)Fj(b)π + pπ − b = pπ

Hence, for every i, Fi(b) = b
(1−2p)π . �

Proof of Proposition 5. Denote b
E

and b
I

the upper bounds of the support of
FE(·) and F I(·) respectively. As b takes only positive values, we derive the expected
bids in the two settings from the survival function and obtain:

EE(b) =

∫ b
E

0

[1− FE(b)] db ≤
∫ b

I

0

[1− F I(b)] db = EI(b). (A.11)

It holds true that

FE(b) =
u(w)− u(w − b)

(1− p)[u(w + π − b)− u(w − b)]
≥

(1− p)[u(w)− u(w − b)] + p[u(w + π)− u(w + π − b)]
(1− p)[u(w + π − b)− u(w − b)]

= F I(b) (A.12)

since

u(w)− u(w − b) ≥ u(w + π)− u(w + π − b)
due to concavity of u(·).
To show that b

E
< b

I
we first consider that b

E
solves:

(1− p)u(w + π − bE) + pu(w − bE) = u(w) (A.13)

where the left hand side is the expected utility from bidding exactly b
E

and thus
winning, while the right hand side is the expected utility from bidding 0 and losing.

Similarly, b
I

solves the indifference condition:

u(w + π − bI) = pu(w + π) + (1− p)u(w). (A.14)

It is enough to find some bid b in the support of F I(·) such that condition A.13
evaluated in b becomes:

(1− p)u(w + π − b) + pu(w − b) < u(w)

Consider b = (1−p)π. Observe that b
I
> (1−p)π. Suppose not, that is, suppose

that b
I ≤ (1−p)π. We can exclude that b

I
= (1−p)π -as it does not satisfy condition

A.14. Then, bidding (1− p)π should make bidders worse off than bidding 0, that is
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u(w + π − (1− p)π) < pu(w + π) + (1− p)u(w)

so that

u(w + pπ) < pu(w + π) + (1− p)u(w).

By definition of risk aversion

pu(w + π) + (1− p)u(w) ≤ u(p(w + π) + (1− p)w) = u(w + pπ)

which leads to a contradiction. Thus, it must be the case that b
I
> (1− p)π.

Secondly, we observe that b
E ≤ (1− p)π which implies that:

(1− p)u(w + π − (1− p)π) + pu(w − (1− p)π) ≤ u(w).

Indeed, by definition of risk aversion the following relation holds

(1− p)u(w + pπ) + pu(w − (1− p)π)

≤ u((1− p)(w + pπ) + p(w − (1− p)π)) = u(w)

Thus, since b
I
> (1 − p)π and b

E ≤ (1 − p)π it must be the case that b
I
> b

E
,

which together with condition A.12 implies that EE(b) ≤ EI(b). �

Proof of Proposition 10. To prove this result, we examine the relation between
the equilibrium cdf in the exclusion and inclusion error scenarios with loss averse
bidders. In particular, FE(b) ≥ F I(b) if, and only if

λu(b) ≥ (1− p)λu(b) + p[u(π)− u(π − b)]
The last inequality holds true both with linear and concave u(·). Notice that

when u(·) is linear, u(b) = u(π) − u(π − b). Thus, for any λ ≥ 1, such that
λu(b) ≥ u(b), the inequality holds true. With concave u(·), it holds that λu(b) ≥
u(b) ≥ u(π) − u(π − b), whereby the last relation is satisfied due to diminishing
marginal utility (with strict inequality for strict concavity).28

We need to show now that b
E
< b

I
. Notice that under loss aversion b

E
solves

(1− p)u(π − bE) = λpu(b
E

) (A.15)

while b
I

solves

u(π − bI) = pu(π) (A.16)

If we evaluate condition (A.15) in b
I

it must be the case that

(1− p)u(π − bI) < λpu(b
I
)

28Notice that when u(·) is convex the relation between average bids under exclusion and
inclusion errors depends both on λ and on the curvature of u(·).
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Notice that due to condition (A.16) and to concavity the last condition becomes

(1− p)u(π − bI) = (1− p)pu(π) ≤ pu((1− p)π) < λpu(b
I
).

To show that the last relation holds true it is enough to show that b
I
> (1− p)π

by arguing that it cannot be otherwise. Indeed (1 − p)π does not satisfy condition
(A.16). Moreover, due to concavity λu(π − (1 − p)π = λu(pπ) > u(pπ) > pu(π).

Thus, b
E
< b

I
. This result together with FE(b) ≥ F I(b) implies that EE(b) < EI(b).

�

Proof of Proposition 11. We need to show that∫ b
I

0

[1−GI(b)] db ≤
∫ b

E

0

[1−GE(b)] db (A.17)

that is, the average equilibrium bid under inclusion errors is smaller or equal to
the average equilibrium bid under exclusion errors.

It is immediate to show that GI(b) ≥ GE(b) for every b. Indeed, the following
relation

GI(b) =
(1− p)[u(π + b)− u(π)] + pu(b)

(1− p)[u(π + b)− u(b)]
≥

u(π + b)− u(π)

(1− p)[u(π + b)− u(b)]
= GE(b) (A.18)

holds true, since when u(x) is linear

(1− p)[u(π + b)− u(π)] + pu(b) = u(π + b)− u(π)

while when u(x) is concave

u(b) > u(π + b)− u(π)

that implies

(1− p)[u(π + b)− u(π)] + pu(b) > u(π + b)− u(π).

To complete the proof, we also need to show that b
I ≤ b

E
. It is immediate to

show that the two upper bounds coincide under linearity of u(·). Suppose that u(·)
is concave. We show that b

I
< b

E
. Notice that under loss aversion b

E
solves

(1− p)u(b
E

) + pu(π + b
E

) = u(π) (A.19)

while b
I

solves

u(b
I
) = (1− p)u(π). (A.20)

We can show that condition (A.19) evaluated in b
I

that solves (A.20) delivers

(1− p)u(b
I
) + pu(π + b

I
) = (1− p)2u(π) + pu(π + b

I
) > u(π)

38



as p > 1
2

by assumption. Thus, it must be the case that b
I
< b

E
. This result

together with condition (A.18) implies that condition (A.17) holds true. Thus,
EE(b) ≥ EI(b) that holds with equality with linear u(·). �

Appendix B: Experimental Instructions

Instructions for the Prize framing

[translated from Italian]

Welcome and thank you for participating in this experiment. By closely following
our instructions you will have the chance to earn an amount of money that you
will receive in cash at the end of the experiment. You are not allowed to talk or
communicate with other participants. If you have any questions, raise your hand
and one of the assistants will come and give you an answer. The following rules
apply to all participants.

General instructions

• The experiment consists of 40 periods.

• In each period:

– You will be assigned to a group of 2 participants, randomly and anony-
mously paired, and, given your choices and the choices of the other par-
ticipant, you will have the chance to earn an amount in ECU (100 ECU
= 1 EURO).

– Every participant has a monetary endowment of 1000 ECU (10 euro)
and will participate in a contest where, without observing the choices of
the other participant, he/she has to decide how many tickets to buy from
a minimum of 0 to a maximum of 1000, at the cost of 1 ECU per ticket.

– The participant who buys most tickets wins the contest and obtains a
prize of 1000 ECU (10 euro) given some rules that are illustrated below.

– Earnings are determined in the following way: PROFIT = ENDOW-
MENT - TICKET EXPENDITURE + PRIZE (IF ANY)

Notice that the ticket expenditure will be subtracted to your
final earnings independently of whether you obtain the prize or
not

• At the end of the experiment the computer will randomly draw one period.

• Earnings obtained in the selected period, plus 2 euro for filling a questionnaire
at the end of the experiment, will be paid in cash.
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Periods 1 - 10

• The participant in the pair who buys most tickets wins the contest (in case of
a tie, the winner is randomly drawn by the computer with probability 1

2
).

• The winner obtains the prize, the loser does not obtain the prize.

Example
You buy a tickets and the other participant buys b, where a > b. Hence,

you won the contest. Therefore:

• you obtain the prize and earn:

1000 (endowment)
− a (tickets expenditure)
+1000 (prize)
= 2000− a (period earnings in ECU)

• the other participant does not obtain the prize and earns:

1000 (endowment)
−b (tickets expenditure)
= 1000− b (period earnings in ECU)

Periods 11 - 20

• The participant in the pair who buys most tickets wins the contest (in case of
a tie, the winner is randomly drawn by the computer with probability 1

2
).

• An error in the prize assignment may occur: with probability 1
4

the winner
does not obtain the prize. Thus:

– if no error occurs (with probability 3
4
), the winner obtain the prize and

the loser does not obtain it.

– if the error occurs (with probability 1
4
), the winner does not obtain

the prize and the loser does not obtain the prize (that is none obtains
the prize).

• The computer will determine whether the error occurs depending on the real-
ization of two coin tosses that will be shown on the sceen as illustrated in the
figure. If the realization is (head, head), an error occurs; if the realization is
not (head, head), no error occurs.
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ERROR 

OCCURS

(prob. 1/4)

NO ERROR 

OCCURS

(prob. 3/4)

None obtains

the prize

The winner 

obtains 

the prize

Example: You buy a tickets and the other participant buys b, where a > b.
Hence, you won the contest.

• If no error occurs you obtain the prize and earn:

1000 (endowment)
−a (tickets expenditure)
+1000 (prize)
= 2000− a (period earnings in ECU)

• If an error occurs you do not receive the prize and earn:

1000 (endowment)
−a (ticket expenditures)
= 1000− a (period earnings in ECU)

• Whatever the realization of the coin tosses, the other participant, who lost the
contest, does not obtain the prize and earns:

1000 (endowment)
−b (tickets expenditure)
= 1000− b (periods earnings in ECU)

Periods 21 - 30

• The participant in the pair who buys most tickets wins the contest (in case of
a tie, the winner is randomly drawn by the computer with probability 1

2
).

• An error in the prize assignment may occur: with probability 1
4

the loser
obtains the prize. Thus:

– if no error occurs (with probability 3
4
)), the winner obtains the prize and

the loser does not obtain the prize.
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– if an error occurs (with probability 1
4
), the winner obtains the prize and

chi the loser obtains the prize (that is both obtain the prize).

• The computer will determine whether the error occurs depending on the real-
ization of two coin tosses that will be shown on the sceen as illustrated in the
figure. If the realization is (head, head), an error occurs; if the realization is
not (head, head), no error occurs.

ERROR 

OCCURS

(prob. 1/4)

NO ERROR 

OCCURS

(prob. 3/4)

Both obtain the 

prize

Only the winner 

obtains the prize

Example: You buy a tickets and the other participant buys b, where a > b.
Hence, you won the contest.

• Whatever the realization of the coin tosses, you obtain the prize and earni:

1000 (endowment)
−a (tickets expenditure)
+1000 (prize)
= 2000− a (period earnings in ECU)

• If no error occurs the other participant, who lost the contest, does not obtain
the prize and earns:

1000 (endowment
−b (tickets expenditure)
= 1000− b (periods earnings in ECU)

• If an error occurs also the other participants obtains the prize and earns:

1000 (endowment)
−b (tickets expenditure)
+1000 (prize)
= 2000− b (period earnings in ECU)
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Periods 31 - 40

• The participant in the pair who buys most tickets wins the contest (in case of
a tie, the winner is randomly drawn by the computer with probability 1

2
).

• An error in the prize assignment may occur: with probability 1
4

the winner
does not obtain the prize and the loser obtains the prize. Thus:

– if no error occurs (with probability 3
4
), the winner obtains the prize and

the loser does not obtain the prize.

– if an error occurs (with probability 1
4
), the winner does not obtain

the prize e the loser obtains the prize.

• The computer will determine whether the error occurs depending on the real-
ization of two coin tosses that will be shown on the sceen as illustrated in the
figure. If the realization is (head, head), an error occurs; if the realization is
not (head, head), no error occurs.

ERROR 

OCCURS

(prob. 1/4)

ERROR DOES 

NOT OCCUR

(prob. 3/4)

The loser and not 

the winner 

obtains the prize 

The winner 

obtains the 

prize

Example: You buy a tickets and the other participant buys b, where a > b.
Hence, you won the contest. If no error occurs:

• you obtain the prize and earn:

1000 (endowment)
−a (tickets expenditure)
+1000 (prize)
= 2000− a (period earnings in ECU)

• the other participant does not obtain the prize and earns:

1000 (endowment)
−b (tickets expenditure)
= 1000− b(period earnings in ECU)

If an error occurs:
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• you do not obtain the prize and earn:

1000 (endowment)
−a (tickets expenditure)
= 1000− a (period earnings in ECU)

• the other participant obtains the prize and earns:

1000 (endowment)
−b (tickets expenditure)
+1000 (prize)
= 2000− b (period earnings in ECU)

Instructions for the Penalty framing

[translated from Italian]

Welcome and thank you for participating in this experiment. By closely following
our instructions you will have the chance to earn an amount of money that you
will receive in cash at the end of the experiment. You are not allowed to talk or
communicate with other participants. If you have any questions, raise your hand
and one of the assistants will come and give you an answer. The following rules
apply to all participants.

General instructions

• The experiment consists of 40 periods.

• In each period:

– You will be assigned to a group of 2 participants, randomly and anony-
mously paired, and, given your choices and the choices of the other par-
ticipant, you will have the chance to earn an amount in ECU (100 ECU
= 1 EURO).

– Every participant has a monetary endowment of 2000 ECU (20 euro)
and participates in a contest where, without observing the choices of the
other participant, he/she has to decide how many tickets to buy from a
minimum of 0 to a maximum of 1000, at the cost of 1 ECU per ticket.

– The participant who buys most tickets wins the contest and obtains a
prize of 1000 ECU (10 euro) given some rules that are illustrated below.

– The participant who buys least tickets loses the contest and obtains a
penaly of Chi 1000 ECU (10 euro) given some rules that are illustrated
below.

– Earnings are determined in the following way: PROFIT = ENDOW-
MENT - TICKETS EXPENDITURE - PENALTY (IF ANY)

Notice that the ticket expenditure will be subtracted to your
final earnings independently of whether you obtain the penalty
or not.
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• At the end of the experiment the computer will randomly draw one period.

• Earnings obtained in the selected period, plus 2 euro for filling a questionnaire
at the end of the experiment, will be paid in cash.

Periods 1 - 10

• The participant who buys least tickets loses the contest (in case of a tie, the
loser is randomly drawn by the computer with probability 1

2
).

• The loser obtains a penalty, the winner does not obtain a penalty.

Example
You buy a tickets and the other participant buys b, where a > b. Hence,

you won the contest. Therefore:

• you do not obtain the penalty and earn:

2000 (endowment)
-a (tickets expenditure)
= 2000 - a (period earnings in ECU)

• the other participant obtains the penalty and earns:

2000 (endowment)
-b (tickets expenditure)
-1000 (penalty)
= 1000 - b (period earnings in ECU)

Periods 11 - 20

• The participant who buys least tickets loses the contest (in case of a tie, the
loser is randomly drawn by the computer with probability 1

2
).

• An error in the penalty assignment may occur: with probability 1
4

the winner
obtains the penalty. Thus:

– if no error occurs (with probability 3
4
), the loser obtains the penalty and

the winner does not obtain the penalty.

– if an error occurs (with probability 1
4
), the loser obtains the penalty and

the winner obtains the penalty (that is both obtain the penalty).

• The computer will determine whether the error occurs depending on the real-
ization of two coin tosses that will be shown on the sceen as illustrated in the
figure. If the realization is (head, head), an error occurs; if the realization is
not (head, head), no error occurs.
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ERROR 

OCCURS

(prob. 1/4)

NO ERROR 

OCCURS

(prob. 3/4)

Both obtain the 

penalty

Only the loser 

obtains the 

penalty

Example
You buy a tickets and the other participant buys b, where a > b. Hence,

you won the contest. Therefore:

• If no error occurs you do not obtain the penalty and earn:

2000 (endowment)
-a (tickets expenditure)
= 2000 - a (period earnings in ECU)

• If an error occurs you obtain the penalty and earn:

2000 (endowment)
-a (tickets expenditure)
-1000 (penalty)
= 1000 - a (period earnings in ECU)

• Independently of the realization of the coin tosses, the other participant, who
lost the contest, obtains the penalty and earns:

2000 (endowment)
-b (tickets expenditure)
-1000 (penalty)
= 1000 - b (period earnings in ECU)

Periods 21 - 30

• The participant who buys least tickets loses the contest (in case of a tie, the
loser is randomly drawn by the computer with probability 1

2
).

• An error in the penalty assignment may occur: with probability 1
4

the loser
does not obtain the penalty. Thus:

– if no error occurs (with probability 3
4
), the loser obtains the penalty and

the winner does not obtain the penalty.

46



– if an error occurs (with probability 1
4
), the loser does not obtain

the penalty and the winner does not obtain the penalty (that is none
obtains the penalty).

• The computer will determine whether the error occurs depending on the real-
ization of two coin tosses that will be shown on the sceen as illustrated in the
figure. If the realization is (head, head), an error occurs; if the realization is
not (head, head), no error occurs.

ERROR 

OCCURS

(prob. 1/4)

NO ERROR 

OCCURS

(prob. 3/4)

None obtains 

the penalty

The loser 

obtains the 

penalty

Example
You buy a tickets and the other participant buys b, where a > b. Hence,

you won the contest. Therefore:

• Independently of the realization of the coin tosses, you do not obtain the
penalty and earn:

2000 (endowment)
-a (tickets expenditure)
= 2000 - a (period earnings in ECU)

• If no error occurs, the other participant, who lost the contest, obtains the
penalty and earns:

2000 (endowment)
-b (tickets expenditure)
- 1000 (penalty)
= 1000 - b (period earnings in ECU)

• If an error occurs, also the other participant does not obtain the penalty
and earns:

2000 (endowment)
-b (tickets expenditure)
= 2000 - b (period earnings in ECU)
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Periods 31 - 40

• The participant who buys least tickets loses the contest (in case of a tie, the
loser is randomly drawn by the computer with probability 1

2
).

• An error in the penalty assignment may occur: with probability 1
4

the loser
does not obtain the penalty and the winner obtains the penalty.
Thus:

– if no error occurs (with probability 3
4
), the loser obtains the penalty and

the winner does not obtain the penalty.

– if an error occurs (with probability 1
4
), the loser does not obtain the

penalty and the winner obtains the penalty.

• The computer will determine whether the error occurs depending on the real-
ization of two coin tosses that will be shown on the sceen as illustrated in the
figure. If the realization is (head, head), an error occurs; if the realization is
not (head, head), no error occurs.

ERROR 

OCCURS

(prob. 1/4)

NO ERROR 

OCCURS

(prob. 3/4)

The loser 

obtains the 

penalty

The loser 

obtains the 

penalty

The winner and 

not the loser 

obtains the 

penalty

You buy a tickets and the other participant buys b, where a > b. Hence,
you won the contest. If no error occurs:

• you do not obtain the penalty and earn:

2000 (endowment)
- a (tickets expenditure)
= 2000 - a (period earnings in ECU)

• the other participant obtains the penalty and earns:

2000 (endowment)
-b (tickets expenditure)
-1000 (penalty)
= 1000 - b (period earnings in ECU)

If an error occurs:
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• you obtain the penalty and ear:

2000 (endowment)
-a (tickets expenditure))
-1000 (penalty)
= 1000 - a (period earnings in ECU)

• the other participant does not obtain the penalty and earns:

2000 (endowment)
- b (tickets expenditure)
= 2000 - b (period earnings in ECU)
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