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Abstract

The computational study of games is receiving increasing attention both in game theory
and computer science. The challenge is distinguishing computationally tractable prob-
lems (also said easy), admitting polynomial–time algorithms, from the intractable ones
(also said hard). In this paper, we focus on extensive form games, as the computational
problems defined on such games are largely unexplored. We study the problem (aka ver-
ification problem) of certifying that a solution given in input is an equilibrium according
to different refinements for extensive form games as the input change. We show that,
when the input is a realization plan strategy profile (i.e., strategies for the sequence form
representation), deciding whether the input is a Subgame Perfect Equilibrium or is a part
of a Sequential Equilibrium is NP-hard even in two-player games (we conjecture the same
holds also for Quasi Perfect Equilibrium). This means that there is no polynomial–time
algorithm unless P = NP, but it is commonly believed that P ≠ NP. Subsequently, we
show that in two–player games, when the input is a behavioral strategy profile, there
is a polynomial–time algorithm deciding whether the input is a Quasi–Perfect Equilib-
rium, and a simple variation of the algorithm decides whether the input is part of some
Sequential Equilibrium (in games with three or more players, the problem is known to
be NP–hard for both Quasi–Perfect Equilibrium and Sequential Equilibrium). Finally,
we show that, when the input is an assessment, there is a polynomial–time algorithm
deciding whether the input is a Sequential Equilibrium regardless the number of players.

Key words: Efficient algorithms, extensive–form refinements

1. Introduction

The computational analysis of strategic interaction is receiving increasing attention
both in computer science and in game theory, as witnessed by Papadimitriou (2015). The
reasons underlying this approach towards game theory are various, however two are par-
ticularly relevant for this paper. First, the search for autonomous software agents able to
act optimally, with a specific focus on formal methods to theoretically guarantee behavior
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optimality. Well–known successful applications based on these methods are, e.g., in phys-
ical security by Basilico et al. (2010) and Korzhyk et al. (2011), in poker by Gilpin et al.
(2007) and billiard games by Archibald and Shoham (2009), and in economic transac-
tions by Sandholm (2007) and Jordan et al. (2010). Second, the theory of computational
complexity is well suited to study the inherent complexity of calculating or of verifying a
strategic equilibrium. While standard game theory provides mathematical tools to model
strategic interaction situations and characterize the appropriate solution concepts, how-
ever, it does not provide computational tools to find solutions. This problem, commonly
called equilibrium computation, is instead central in computer science, whose aim includes
assessing the complexity of finding an exact or approximate solution, designing exact or
approximate algorithms, and evaluating the application of the algorithms in practical
settings, see, e.g., Shoham and Leyton-Brown (2008). In particular, for anyone to play
according to a specific equilibrium concept, it must be verifiable whether a strategy pro-
file is an equilibrium of the game. The study of the verification problem is important,
because it is necessary to certify that a software agent is playing or not an optimal strat-
egy. In the case where the verification problem is computationally intractable1, we can
neither confirm or deny that the behavior of a player is optimal, making the adoption of
autonomous players critical and pushing one to resort to new approximate solution con-
cepts whose verification problem is tractable. Some computational results are known for
Nash Equilibria (NE), in particular finding an NE of a given finite strategic–form game
is hard, while to verify whether a given strategy profile is NE is not. However, while
the verification of an NE is easy, few results are known about the verification problem of
equilibrium refinements for extensive–form games and they are mostly negative as shown
by Hansen et al. (2010).

The main contribution of this paper is to provide new positive computational results
on solution concepts for extensive form games.2 We focus on the problem of verifying
whether a solution given in input is a Quasi Perfect Equilibrium (QPE) or a Sequential
Equilibrium (SE), and we investigate how the specification of the input, according to the
different representations of extensive–form games, affects the hardness of the problem.
More precisely, we focus on the extensive–form by Kreps and Wilson (1982) and the
sequence form by von Stengel (1996) representations, while we do not consider the normal
form since its size is exponential in the size of the game tree, and therefore no efficient
algorithm can exist. Actually, when only the behavioral strategy profile is given in input,
it is known that the verification problem is hard with three or more players for SE and
QPE by Hansen et al. (2010), but no result is known with two players. Furthermore,

1In computer science, a problem is said tractable or easy if there is a polynomial–time algorithm that
solves it and intractable otherwise. Furthermore, an algorithm is said efficient if it requires polynomial
time.

2A survey on Nash equilibrium refinements for extensive–form games can be found in Kohlberg and
Mertens (1986). See also van Damme (2002) and Hillas and Kohlberg (2002).
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when an assessment is given in input, to verify whether it is an SE, only an algorithm
that is exponential in the worst case is known, see Kohlberg and Reny (1997), but no
complexity results are available. This seems to suggest that the verification properties of
NE for strategic form games are not shared by refinements based on the extensive form.
Contrary to this view, in this paper,3 we show that some problems are easy when the
input is specified in behavioral strategies. More precisely, we prove:

• when the input is a realization plan strategy profile (i.e., strategies for the sequence
form), then it is unlikely that there is a polynomial–time algorithm able to decide
whether the input is part of some Subgame Perfect Equilibrium (SPE) even for a
two–player game (technically speaking, we show that such a problem is NP–hard);
the result extends to SE, while we conjecture that it holds also for QPE;

• when the input is a behavioral strategy profile, then there is an efficient algorithm
certifying whether the strategy profile is a QPE for two–player games;

• when the input is a behavioral strategy profile, then there is an efficient algorithm
certifying whether the strategy profile is part of some SE for two–player games;
furthermore, in the case it is part of some SE, there is an efficient algorithm finding
the players’ consistent beliefs from the strategies;

• when the input is an assessment, then there is an efficient algorithm certifying
whether the assessment is an SE with an arbitrary number of players.

We believe these results are not only important in themselves, they also show the
importance of the input representation, in particular whether we consider behavioral
strategies or realization plans, and once more the crucial relevance of beliefs to verify
extensive form refinements.

The rest of the paper is structured as follows. Next section provides a quick review of
the concepts used in the paper and of the main results proved by the algorithmic approach
to game theory. In Section 3, we review the main concepts of extensive form and sequence
form games, and the equilibrium refinements used, to make the paper self-contained. In
Section 4, we show that, when the input is specified in terms of strategies defined over
the sequence form, the verification problem for SPE and SE is NP–hard. In Section 5, we
use the sequence form to study the verification problem for QPE and SE with two players
when the input is a behavioral strategy profile. In Section 6, we study the verification
problem for SE when the input is an assessment. Section 7 concludes the paper. In
Appendix, we report part of the proofs of section 6.

3A preliminary version of some of the results presented in this paper appears in Gatti and Panozzo
(2012).
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2. Brief Review and Related Work4

This section provides a quick review of the most basic concept of computational theory
just to make the paper self–contained and to explain its contribution. The basic game
theoretic model instead is presented in Section 3.

Computational problems are situations where we are given some input data, e.g. games
or strategy profiles, and we want to return a solution meeting certain criteria and we ask
for an algorithm to provide the answer, see Arora and Barak (2009). An algorithm is
an unambiguous sequence of elementary steps that applied on any input of the problem
eventually stops with the correct solution of the problem. We consider a computational
problem solved satisfactory when there exists a good algorithm, but what are good algo-
rithms for solving a problem? We want the algorithm to always return a correct solution,
but we are especially interested in how fast the algorithm returns a solution vis a vis the
size of the input. An algorithm is considered computational efficient if its running time
is at most a polynomial function of the size of the input. Of course, the same computa-
tional problem may admit both efficient and inefficient algorithms, however the theory of
computational complexity aims to analyze the inherent complexity of the problem itself:
how fast is the fastest correct algorithm for a given problem? P denotes the class of
decision problems (problems that require a “yes” or “no” answer) that admit at least one
efficient (polynomial–time) algorithm. Clearly to prove that a decision problem is in P
is enough to explicitly provide an algorithm proving a bound on its running time, as we
do in this paper referring to the class of linear mathematical programming problems. On
the other hand, it is extremely rare to prove that a problem is not in P, because it would
require to refer to any possible algorithms. Thus, usually to prove that a problem is hard,
computer scientists use an indirect way proving results of the form: “If this problem can
be solved efficiently, then so can every member of the class X” and the problem is said
to be X–hard and X–complete if, additionally, the problem has also been shown to lie in
X. The strength of such a hardness result depends on the class used. The class for which
problems are most often shown to be hard is NP, i.e. the class of all decision problems
such that, if the answer to a problem input is “yes”, then there exists an algorithm that,
given a “yes” certificate, can be used to check soundness of the certificate in polynomial
time. Hence NP contains P, and it is generally considered unlikely that P = NP, actually
complexity theory is based on this conjecture. Most decision problems of interest turn
out to be either in P or NP–hard. According to the previous definition, NP–complete
problems are the hardest among the NP problems. There are other classes of problems
different from NP. For instance, while problems in NP usually ask whether a solution
exists, their functional versions, whose class is denoted by FNP, ask not only if it exists
but what its value is if it does. The subclass TFNP of FNP contains all the total functional
problems (i.e., problems where a solution is guaranteed to exist), see Meggido and Pa-

4This review section is based on Papadimitriou (2015) and Conitzer and Sandholm (2008).
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padimitriou (1989). A complexity class that received a lot of attention in game theory is
PPAD and has been introduced in Papadimitriou (1994). It is a subclass of TFNP based
on total functions that can be shown to be total by a parity argument. Examples of
PPAD–complete problems include, among the others, finding NE, fixed points in Brouwer
functions, and Arrow–Debreu equilibria in markets.

The problem of verifying whether a given solution is an equilibrium according to some
solution concept is a decision problem in which the input is composed of a game and a
solution. The crucial question is therefore whether a verification problem belongs to P
or to NP–hard. Tab. 1 summarizes the main computational complexity results on the
problem of verifying whether a given solution is an equilibrium according to some NE
refinement solution concepts for extensive form games.

Solution concept Input Number of players
2 ≥ 3

NE realization–plan strategies P P
SPE behavioral strategies P P

realization–plan strategies NP–hard (*) NP–hard (*)
SE assessment P (*) P (*)

behavioral strategies P (*) NP–hard (Hansen et al. (2010))
realization–plan strategies NP–hard (*) NP–hard (Hansen et al. (2010))

NFPE behavioral strategies P NP–hard (Hansen et al. (2010))
QPE behavioral strategies P (*) NP–hard (Hansen et al. (2010))
EFPE behavioral strategies NP–hard (Hansen et al. (2010))
–PE behavioral strategies and perturbation P P
NFPrE behavioral strategies NP–hard (Hansen et al. (2010))
EFPrE behavioral strategies NP–hard (Hansen et al. (2010))
–PrE behavioral strategies and perturbation P P

Table 1: Computational complexity results for equilibrium verification; the results with ‘(*)’ are originally
provided in the present paper.

Nash Equilibria and Subgame Perfect Equilibria. The verification problem for NE is
known to be easy, even when the input is given in sequence form, just requiring the
verification that a finite number of constraints are satisfied. The verification problem for
SPE is easy when the input is completely specified with behavioral strategies, while in the
present paper we show that the problem is NP–hard when the input is given in sequence
form.

Perfection based equilibria. The verification problem for Normal Form Perfect Equi-
librium (NFPE) is in P with two players and can be accomplished by checking whether
or not the actions played with strictly positive probability are weakly dominated. In the
former case, the solution is not a NFPE. With more than two players it is shown to be
NP–hard in Hansen et al. (2010). The verification problem for Quasi Perfect Equilibria
(QPE) is NP–hard with three or more players, see Hansen et al. (2010). In the present
paper, we show instead that with two players there is an efficient algorithm. The verifi-
cation problem for Extensive Form Perfect Equilibria (EFPE) is open with two players.
With three or more players the problem is shown to be NP–hard in Hansen et al. (2010).
The problem of verifying whether a strategy profile is a Perfect Equilibrium for a given
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perturbation is easy for all the Perfect Equilibrium solution concepts (i.e., NFPE, QPE,
EFPE). Indeed, it requires one only to check whether a finite number of constraints are
satisfied.

Sequential Equilibria. The only known result on the verification for SE when the
input is specified as assessment can be found in Kohlberg and Reny (1997). The authors
provided a finite–step algorithm to verify whether an assessment is an SE, but, as they
state it, the algorithm is exponential in the worst case. In the present paper, we show
that there is an efficient algorithm for an arbitrary number of players. Furthermore, it is
known that, when the input is partially specified, the verification problem for an SE can
be harder. More precisely, Hansen et al. (2010) show that with three or more players,
verifying whether there is an SE with a given strategy is NP–hard. In the present paper,
we show instead that with two players there is an efficient algorithm for the verification
problem. Furthermore, we show that when the input is specified in realization plan
strategies the verification problem is NP–hard.

Properness based equilibria. The computational complexity of verifying a Normal Form
Proper Equilibrium (NFPrE) with two players is open and the only available algorithm
can be found Belhaiza et al. (2012) that solves a number of mixed quadratic programs,
while with three or more players the problem is shown to be NP–hard in Hansen et al.
(2010). The recent result presented in Sørensen (2012), showing that computing a NFPrE
with two players is PPAD–complete and can be performed by using Lemke’s algorithm
after a specific transformation, could represent an interesting tool to assess the complexity
of verifying a NFPrE with two players. Also the problem of verifying an Extensive Form
Proper Equilibrium (EFPrE) with two players is open. The problem of verifying whether
a strategy profile is a Proper Equilibrium for a given perturbation is easy for all the proper
equilibrium solution concepts (i.e., NFPrE, EFPrE). Indeed, it requires one only to check
whether a finite number of constraints are satisfied. Note that recent results show that
searching for a QPE with two players given a specific perturbation is PPAD–complete,
see Miltersen and Sørensen (2010), and therefore the corresponding verification problem is
in P. Nevertheless, the problem of searching for a QPE without any given perturbation is
open and therefore we have no insight on the complexity of the corresponding verification
problem.

3. Extensive and sequence form games, and solution concepts

Within the non-cooperative approach, most game theoretic models fall into one of three
general mathematical formulations or some natural extension of them. These formulations
are called the normal form, the extensive form and the sequence form, each based on
a specific representation of the space of the players’ strategies. Extensive form games
provide a richer representation than normal form games, and extensive form equilibrium
refinements exploit the sequential structure of decision making being described explicitly.
In the following subsections we review notations and definitions first for extensive form
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then for sequence form games. Finally, we review the equilibrium concepts we use in this
paper, Quasi Perfect and Sequential Equilibria.

3.1. Extensive form game definition

The notation and terminology in this section is due to Kreps and Wilson (1982) and
to McKelvey and McLennan (1996). The reader should refer to these papers if the current
presentation seems excessively terse.

The collection
{T,≺;A,α;H; I, ι}

defines a finite extensive form. These objects have the following characteristics:

1. The set of nodes is T , a finite set, strictly partially ordered by a relation ≺ that repre-
sents precedence. The pair (T,≺) must be an arborescence: if P (t) = {x ∈ T ∣x ≺ t} is
the set of predecessors of t, P (t) is completely ordered by ≺ for all t, so each node is
reached in only one way. The set of initial nodes is W = {w ∈ T ∣P (w) = ∅}. For non–
initial nodes t we define the immediate predecessor of t to be p1(t) = maxP (t), and,
proceeding inductively, we define the nth predecessor of t to be pn(t) = p1(pn−1(t))
for those nodes with pn−1(t) ∉ W . We adopt the convention that p0(t) = t for all
t ∈ T . The number of predecessors of t is the integer l(t) such that pl(t)(t) ∈W . The
set of immediate successors of t is S(t) = p−1

j (t) = {t′ ∈ T ∣p1(t′) = t}, the set of termi-
nal nodes is Z = {z ∈ T ∣S(z) = ∅}, and the set of non–terminal nodes is X = T Ó Z.
For each x ∈X the set of terminal successors of x is Z(x) = {z ∈ Z ∣x ≺ Z}.

2. The set of actions is A, a finite set, and the function α ∶ T ∖W → A labels each
non–initial node with the last action taken to reach it.

3. The set of information sets is H, a partition of X, the idea being that the player
choosing an action at h ∈ H does not know which node in h has occurred. For
non–terminal x and t, t′ ∈ S(x) we require that α(t) ≠ α(t′), and for x′ ∈ H(x) we
require that α (S (x′)) = α (S (x)), i.e., the set of available actions is the same at
all nodes in H(x). Thus we can write A(h) to denote α (S (x)), x ∈ h, the set of
actions available at h. For notational convenience we assume that {A(h)∣h ∈H} is
a partition of A.

4. The set of players is I, a finite set, and the function ι ∶ H → I indicates the player
responsible for choosing an action at each information set. For each player i let
H i = ι−1(i), and let Ai = ∪h∈HiA(h). By defining ι(x) = ι(H(x)) one can regard ι as
a function on X.

To obtain an extensive form game we add to the extensive form a specification of
the players’ utilities assigned to the terminal nodes and the probabilities assigned to the
initial nodes.

5. For each player i, the payoff function ui ∶ Z → R assigns a real–valued von Neumann–
Morgenstern utility to each outcome. We denote a specification of the payoffs by
u = (ui (z)) ∈ R#(I)×#(Z), where # (⋅) denotes the number of elements in a set ⋅.
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Figure 1: Example of two–player perfect–information extensive–form game (we denote by i.j the j–th
information set of player i, while L1,R1,L2,R2 are actions available to player 1 and l1, r1 are actions
available to player 2).

6. Player i’s initial assessment ρ is a probability measure on the set W of initial nodes
with ρ(w) > 0 for all w ∈W.

We report an example of extensive form game in Fig. 1.
A pure strategy for player i is an assignment si ∶H i → A such that si(h) ∈ A(h). This

specifies what action player i will take each time it is her turn to choose, based on the
information that he possesses. The set of player i’s pure strategies is denoted by Si. One
defines a mixed strategy σi for player i as a probability distribution over the set of her
pure strategies: σi ∈ Σi = ∆ (Si) where ∆ (⋅) denotes the set of all probability measure
on the set ⋅. A behavioral strategy for player i is a function πi ∶ Ai → [0,1] satisfying
the requirement that ∑a∈A(h) π

i (a) = 1 for all h ∈ H i, i.e., πi is a collection of probability
measures on the sets of available actions at the information sets controlled by i. The
set of behavioral strategies for i is Πi, and Π = ×i∈IΠi is the set of behavioral strategy
profiles. Since {Ai∣i ∈ I} is a partition of A, a behavioral strategy profile π ∈ Π can be
regarded as a function from A to [0,1] satisfying ∑a∈A(h) π

i (a) = 1 for all h ∈ H, and πi

is said to be strictly positive if πi (a) > 0 for all a ∈ Ai. Let Πi,0 be the set of i strictly
positive behavioral strategies. Given a behavioral strategy profile π, the probability that

node t occurs is Pπ (t) = ρ (pl(t) (t))
l(t−1)

∏
l=0

π (α (pl (t))) ; for each h ∈ H we can also define

“conditional” probability Pπ (⋅∣h) over Z:

Pπ (z∣h) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{0} if z ∉ Z (h)

{ Pπ(pn(z))

∑x′∈h Pπ(x′)

n−1

∏
l=0

π (α (pl (l)))} if ∑x′∈H(x) Pπ (x′) > 0, z ∈ Z (h) & pn (z) ∈ h

[0,1] otherwise

.

When convenient, we will use Pπ (h′∣h) as a shorthand for Pπ (Z (h′) ∣h) . Then, given a
behavioral strategy profile π the expected utility for ι (h), conditional on h being reached,
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is now defined, naturally, to be

Eπ [uι(h) (z) ∣h] = ∑
z∈Z

uι(h) (z)Pπ (z∣h) .

We focus on games with perfect recall, see Fudenberg and Tirole (1991), where each
player recalls all her own previous actions and all her previous information. Perfect recall
places non–trivial constraints over the structure the extensive form. We omit the formal
definition description here,5 not being necessary for our work. A useful implication of
perfect recall is that it implies that there is no path between nodes of the same information
set. The most important implication of perfect recall is Kuhn Theorem,6 which states that
under perfect recall, mixed and behavioral strategies are outcome equivalent, i.e. that for
any mixed strategy profile there exists a behavioral strategy profile that generates the
same probability distribution on final nodes.7 Therefore, in extensive form games with
perfect recall, behavioral strategies are commonly used.

Table 2 summarizes the notation on extensive form games introduced so far.

3.2. Sequence form

The terminology in this section is due to von Stengel (1996), the notation is however
adapted to the previous section. The reader should refer to von Stengel (1996) if the
current presentation seems excessively terse.

The extensive form with nodes, information sets, moves, chance probabilities and pay-
offs gives a complete picture of the strategic situation that is modeled, however strategic
behavior as usually modeled might be huge in size and difficult to analyze, hence quite
inefficient. In strategic form, strategies are fully specified as functions from each possible
information set to actions, while in reduced strategic form, pure strategies are only par-
tially specified, by omitting actions at information sets that cannot be reached because of
previous own choices. The sequence form, introduced in von Stengel (1996), goes further
because strategies are replaced by sequences that specifies a player’s choice only along a
path of the tree. More precisely, a i′s sequence is a set of i′s moves on the unique path
from the root to a i′s node. Hence a sequence form is a compact and computational
efficient representation for extensive form contexts. The starting point to introduce this
new model is exactly the fact that in practice to describe a behavioral strategy in the
original game tree it is required an enormous increase in the number of necessary parame-
ters.8 By definition, a pure strategy specifies a move for any information set of the player,
so the number of pure strategies is often exponential in the size of the extensive game.

5A formal definition is also in Kreps and Wilson (1982).
6 Kuhn (1953)
7The vice versa is trivial and does not require perfect recall.
8Remember we are assuming perfect recall so that according to Kuhn Theorem mixed and behavioral

strategy are outcome equivalent.
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Object Definition Description
T set of nodes
≺ “precedes”

P (t) {x ∈ T ∣x ≺ t} predecessors of t
W {w ∈ T ∣P (w) = ∅} initial nodes

p1 (t) maxP (t) immediate predecessor of t
pn (t) p1 (pn−1 (t)) nth predecessor of t
l (t) pl(t) (t) ∈W number of predecessor of t

S (t) p−11 (t) immediate successor of t
Z {z ∈ T ∣S (z) = ∅} terminal nodes or outcomes
X T Ó Z non–terminal nodes
A actions
α (t) actions preceding t
H information sets h

H(x) information set of x
A (h) α (S (x)) , x ∈ h actions available at h ∈ H
I players

ι (h) player in control at h

Hi ι−1 (i) information sets of i

Ai ∪h∈HiA (h) player i’s actions

ui ui ∶ Z → R player i’s utility function

si ∈ Si si ∶ Hi → A s.t. si(h) ∈ A(h) player i’s pure strategy

σi σi ∈ ∆ (Si) player i’s mixed strategy

πi ∈ Πi πi ∶ Ai → [0,1] s. t. ∑a∈A(h) π
i (a) = 1, ∀h ∈ Hi player i’s behavioral strategy

Z (h) ∀x ∈ h {z ∈ Z∣x ≺ z} terminal successors of h
h ⪯ k Z (h) ⊆ Z (k) , h, k ∈ H h precedes k

Pπ (t) ρ (pl(t) (t))
l(t−1)
∏
l=0

π (α (pl (t))) probability that node t ∈ T occurs

Pπ (z∣h)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 z ∉ Z (h)

Pπ(pn(z))
∑x′∈h Pπ(x′)

n−1
∏
l=0

π (α (pl (l))) ∑x′∈H(x) Pπ (x′) > 0, z ∈ Z (h) ,pn (z) ∈ h

[0,1] otherwise

conditional probability over Z given h

Eπ [uι(h) (z) ∣h] ∑
z∈Z

uι(h) (z)Pπ (z∣h) ι (h) expected utility, conditional on h

Table 2: Notation on extensive form games.
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Formally, the set of pure strategy is Si = ×h∈HiA (h) so that # (Si) = ×h∈Hi# (A (h)) ,
i.e. the number of pure strategies is exponential in the number of information sets. This
implies that a player’s expected payoff when a behavioral strategy profile π is played is

U i (π) ∶= ∑
z∈Z

ui (z)ρ (pl(z) (z))
l(z−1)

∏
l=0

π (α (pl (z))) , i.e. it involves products of probabilities,

hence the resulting polynomials for computing equilibria is theoretically and practically
difficult, while the expected payoff using the sequence form is multilinear.

The sequence form is a matrix scheme similar to normal form games where strategies
are described as sequences of consecutive moves. Rather than planning a move for each
information set, a sequence is a succession of actions that can lead to terminal nodes or
not. Formally

Definition 3.1. For each node t ∈ T, a sequence q (t) ∈ Qi of player i = ι (t) is a set of
consecutive actions a ∈ Ai on the path from the root w to t.

Note that a sequence is defined as a set. Let Q = ×i∈IQi be the set of all sequences.
A sequence can be terminal (e.g., q = L1 in Fig. 1), if, combined with some sequence of
the opponents, it leads to a terminal node, or non–terminal (e.g., q = R1 in Fig. 1), if
it cannot lead to any terminal node for each opponents’ sequence. Each player has a
fictitious initial sequence, denoted by ∅ and called empty sequence. Furthermore, note
that by perfect recall, every node in an information set h defines the same sequence of
actions for that player. Then, the following definition is well posed.

Definition 3.2. Given a sequence q (h) ∈ Qi leading to some information set h ∈ H, we
say that sequence q′ extends q (h) (and we denote it by q′ = q (h)a) if the last action of q′

is some action a ∈ A(h).

Thus, the set Qi of sequences of player i can be represented as

Qi = {∅} ∪ {q (h)a∣h ∈H i, a ∈ A (h)} ,

hence # (Qi) = 1+∑h∈Hi # (A (h)) , i.e. the size of the set of sequences is linear in the size
of the game tree. Since in this paper we frequently exploit the correspondence between
actions a ∈ A and sequences q ∈ Q, we denote by a(q) the last action of sequence q.
Moreover, in this model, behavioral strategies are replaced by realization probabilities of
sequences according to the following definition:

Definition 3.3. A function ri ∶ Qi → R+ is a realization plan for player i ∈ I if and only
if it satisfies the following linear restrictions:

ri (∅) = 1
−ri (q (h)) +∑a∈A(h) r

i (q (h)a) = 0 for h ∈H i.
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We denote a realization plan profile by r = [r1 , . . . , r#(I)], then the constraints on
realization plans can be conveniently described as F i ⋅ ri = f i, where F i is an opportune
matrix with entries in {−1,0,1} and f i is an opportune vector with ‘1’ in the first entry
and ‘0’ in all the other entries.

Then, we define the payoff for the sequence model.

Definition 3.4. The payoff function associated to a sequence profile is defined as follows

∀q ∈ ×i∈IQi v (q) =
⎧⎪⎪⎨⎪⎪⎩

u (z) if q leads to z

0 otherwise.

Note that the payoff function associated to a sequence profile is well defined because
with perfect recall in a game tree to each node, including final nodes, is associated a
unique path q ∈ ×i∈IQi. The expected payoff vector v (r) ∈ R#(I) is defined as v (r) =
∑q∈Q v (q)∏

i∈I
ri (qi) or, in a compact way, as v (r) = (ri)TV ir−i, where player i’s payoff

is represented by a sparse multi–dimensional matrix V i, specifying the value associated
to every combination of players terminal sequences leading to an outcome, and rj is the
vector of j′s realization plans. Since there are at most as many sequences as nodes in the
game tree, the number of the sequences is linear in the size of the game tree, while the
number of pure strategies can be exponential. Exactly, excluded the empty sequence, we
have one sequence q ∈ Qi per action a ∈ Ai. So the size of the payoff matrix is also linear
if it represented sparsely, while the payoff matrix of a normal form is usually full.

Finally, we are able to define the sequence form.

Definition 3.5. The sequence form of an extensive game is given by the sets of sequences
Qi, the payoff functions vi ∶ ×i∈IQi → R and the constraints F i ⋅ ri = f i, i.e. the collection

{Qi; vi;F i ⋅ ri = f i∣i ∈ I} .

Thus, the sequence form is an abstraction like the normal form, however it has the
advantage of a size linear in the size of the game tree, and the disadvantage of a less
intuitive selection of sequences by realization plans, finitely described by the matrix con-
straints. In the next section, we will review how from the realization probabilities for the
sequences one can reconstruct a behavior strategy and vice versa.

Table 3 summarizes the notation on sequence form introduced so far. To conclude, we
provide an example of sequence form representation.

Example 3.6. Consider the game depicted in Fig. 1, the sequence form utility bimatrix
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Object Definition Description

q (t) set of consecutive actions a ∈ Ai on the path from the root w to t

q′ = q (h)a {x ∈ T ∣P (x) = ∅} extension of q (h) ∈ Qi with a ∈ A(h)

Qi {∅} ∪ {q (h)a∣h ∈ Hi, a ∈ A (h)} set of sequences of player i

ri ∶ Qi → R+ realization plan of player i

F i ⋅ ri = f i
⎧⎪⎪
⎨
⎪⎪⎩

ri (∅) = 1

−ri (q (h)) +∑a∈A(h) r
i (q (h)a) = 0, h ∈ Hi linear restriction on realization plans

vi ∶ ×i∈IQi → R v (q) =

⎧⎪⎪
⎨
⎪⎪⎩

u (z) if q leads to z

0 otherwise.
player i’s payoff function

Table 3: Notation on sequence form games.

and an example of strategies are:

player 2
∅ l1 r1

player 1

∅

L1 1,1
R1

R1L2 1,1
R1R2 1,1 0,0

r1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r2 =
⎡⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎦

the constraints F 1 ⋅ r1 = f1 and F 2 ⋅ r2 = f2 are:

F 1 =
⎡⎢⎢⎢⎢⎣

−1 0 −0 0 0
−1 1 −1 0 0
0 0 −1 1 1

⎤⎥⎥⎥⎥⎦
, f1 =

⎡⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎦
, F 2 = [ −1 0 0

−1 1 1
] , f2 = [ 1

0
]

3.3. Relationships between the representations

We briefly describe the relationships among behavioral strategies and realization plans.
Given a sequence form strategy, a behavioral strategy can be derived as follows9:

∀a ∈ A (h) πi(a) =
⎧⎪⎪⎨⎪⎪⎩

ri(q(h)a)
ri(q(h))

if ri (q (h)) > 0

πi(a) ≥ 0 s.t. ∑a∈A(h) π
i(a) if ri (q (h)) = 0

vice versa, given a behavioral strategy, a sequence q is played with probability

ri (q) =∏
a∈q

πi (a) .

This construction is similar to the Kuhn Theorem stating that in a game with perfect
recall, any mixed strategy can be replaced by an outcome equivalent behavior strategy.
Then, more than one behavior strategy πi may define the same realization plan ri: this

9See Proposition 3.4 in von Stengel (1996).
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is the case if the information set h ∈ H i cannot be reached when πi is played, that is, if
ri (q (h)) = 0. In particular, more than one pure strategy may define the same realization
plan, even if there is an intuitive correspondence between realization plans with integral
values zero or one and pure strategies in the reduced normal form of the extensive game,
as in the reduced normal form, any two pure strategies that differ only in choices at
irrelevant information sets are identified.

A player can play the game optimally by appropriately choosing the realization prob-
abilities for her sequences, and the expected payoff is linear in these variables. This is
their key advantage over behavior strategies: the latter are also small in number and
can be characterized by linear equations (as any probabilities), but the expected payoff
usually involves products of behavior strategies. Therefore, using the resulting polyno-
mials for computing equilibria is theoretically and practically much more difficult than
using sequence form and realization plans. On the other hand, mixed and behavioral
strategies have different degrees of expressiveness w.r.t. realization plan , e.g., sequence
form strategies, differently from behavioral and normal form strategies, do not specify the
actions a player would play at the information sets that are reached with a probability
of zero, and mixed strategies, differently from behavioral strategies, correlate the actions
a single player would play at every information set. As we show below, these differences
in expressiveness play an important role in the definition of the solution concepts and in
their verification.

3.4. Equilibrium refinements for extensive form games

It is well known that the concept of NE is not satisfactory with extensive form games,
allowing players to play non–plausible actions. The reason for such apparent implausibil-
ity of some actions of an NE π̂ is that these actions are implemented if and only there
is a deviation from the equilibrium path, i.e. these actions are implemented in informa-
tion sets H (x) such that ∑x′∈H(x) Pπ̂ (x′) = 0, hence the ex ante maximization of an NE
does not restrict players’ behavior at these information sets. The common approach to
these problem, pioneered by Selten (1975) and that leads to a huge part of the refine-
ment literature, is to assume trembles over behavioral strategies so that there are no are
H (x) such that ∑x′∈H(x) Pπ̂ (x′) = 0, i.e. the attempt is to eliminate unsatisfactory equi-
libria assuming that players make mistakes with small vanishing probability, restricting
attention to the limits of the corresponding equilibria. Trembles are usually captured by
perturbations. Call εi(a, h) > 0 the perturbation (in terms of probability) over action
a ∈ A (h) at information set h ∈ H i, such that lim εi(a, h) = 0. We denote by Ei the
perturbation over all the player i’s actions. A perturbed behavioral strategy profile π(ε)
of π is a vector of behavioral strategies where πi(a∣h, ε) ≥ εi(a, h) for all h ∈H i, a ∈ A (h)
and lim

n→∞
π(ε) = π. Selten assumes each of these probabilities πi(h, ε) and εi(h) to be

independent of each other and also to be independent of the corresponding probabili-
ties of the other players. Thus, if a player i intends to play the behavior strategy πi,
she will actually play the behavior strategy πi(ε) such that for any h ∈H i and a ∈ A (h),
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πi(a∣h, ε) = (1 − ε (a, h))πi (a∣h)+ε (a, h)πi,0 (a∣h), with πi,0 ∈ Πi,0. Obviously, given these
mistakes all information sets are reached with positive probability. Now, we can provide
the definition of Perfect and of Quasi Perfect Equilibrium.

Definition 3.7. A strategy profile π (ε) is an ε–Perfect Equilibrium if and only if

1. π (ε) ∈ Π0, i.e. each action is taken with strictly positive probability,

2. if E(a,π(ε)−ι(h)) [uι(h) (z) ∣h] < E(a′,π(ε)−ι(h)) [uι(h) (z) ∣h] then πι(h) (a∣h, ε) ≤ ε (a, h)
for all h ∈H, a ∈ A (h) , ι (h) ∈ I.

Definition 3.8. A strategy profile π is a Perfect Equilibrium if and only if there exists
a sequence {ε (a, h)}n∈N such that π (ε) is an ε–Perfect Equilibrium and π (ε) →

n→∞
π.

The underlying idea is that players try to maximize whenever they have to move,
but each time they make a mistake with vanishing probability. Note that for π to be
a Perfect Equilibrium (PE), it is sufficient that π can be rationalized by some sequence
of vanishing trembles, it is not necessary that π be robust against all possible trembles.
Motivated by the consideration that a player may be more concerned with mistakes of
others than with her own, van Damme (1984) introduces the concept of a Quasi Perfect
Equilibrium (QPE). Here each player follows a strategy that at each node specifies an
action that is optimal against mistakes of other players, keeping the player’s own strategy
fixed throughout the game. Mertens (1992) has argued that this concept of QPE is to be
preferred to PE. In Lemma 1 of van Damme (1984), the author provides an alternative
equivalent definition of PE that facilitates comparison with the notion of QPE.

Definition 3.9. A strategy profile π is a Perfect Equilibrium if and only if there exists a

sequence {πn ∈ Π0}n∈N →
n→∞

π such that πι(h) (h) ∈ arg maxE(π̃ι(h),π−ι(h)n ) [uι(h) (z) ∣h] for

all n ∈ N, h ∈H, ι (h) ∈ I.

A QPE is defined as a behavior strategy profile that prescribes at every information set
a choice that is optimal against mistakes of the other players. Before the formal definition,

we need a further notation: (πi (h) , π̂i (k)) =
⎧⎪⎪⎨⎪⎪⎩

π̂i k ⪰ h
πi otherwise

so that (πi (h) , π̂i (k) , π−i)

is a well defined strategy profile.

Definition 3.10. A strategy profile π is a Quasi Perfect Equilibrium if and only if there
exists a sequence {πn ∈ Π0}n∈N →

n→∞
π such that for all n ∈ N, h, k ∈H, ι (h) ∈ I:

(πι(h) (h) , πι(h) (k)) ∈ arg maxE((πι(h)(h),π̂ι(h)(k)),π−ι(h)n ) [uι(h) (z) ∣h] .
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Basically, a strategy profile is perfect when it is optimal even when there are perturba-
tions. The common interpretation of the perturbations is based on the idea that players
do not perfectly play a strategy, but they can tremble with a very small probability. In a
QPE every player takes into account the opponents’ trembles, but not own. Every game
admits at least one QPE and for every combination of Ei there is a potentially different
QPE.

Kreps and Wilson (1982) propose to eliminate irrational behavior at unreached infor-
mation sets in a somewhat different way than Selten does. They propose to extend the
applicability of rationality at out–of–equilibrium information sets by explicitly specifying
beliefs (i.e. conditional probabilities) at each information set so that posterior expected
payoffs can always be computed. Of course, players’ beliefs should be consistent with
the strategies actually played (i.e. beliefs should be computed from Bayes’ rule whenever
possible) and they should respect the structure of the game. Kreps and Wilson ensure
that these conditions are satisfied by deriving the beliefs from a sequence of completely
mixed strategies that converges to the strategy profile in question.

Consider the following basic definitions required for defining our equilibrium refine-
ments for extensive form games.

Definition 3.11. A system of beliefs is defined as a function µ ∶ X → [0,1] such that

∑x∈h µ (x) = 1 for all h ∈H.

Interpret µ (x) as the conditional probability assigned by ι(h) to x ∈ h if h is reached.

Definition 3.12. An assessment is a pair (µ,π) consisting of a behavioral strategy profile
π and a system of beliefs µ.

Given an assessment (µ,π), for each h ∈ H we can define “conditional” probability
Pµ,π (⋅∣h) over Z in the obvious fashion:

Pµ,π (z∣h) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if z ∉ Z (h)

µ (pn (z))
n−1

∏
l=0

π (α (pl (l))) if z ∈ Z (h) ∧ pn (z) ∈ h
.

When convenient, we will use Pµ,π (h′∣h) as a shorthand for Pµ,π (Z (h′) ∣h) .

Definition 3.13. The system of beliefs generated by π is the function

µ (x) =
⎧⎪⎪⎨⎪⎪⎩

Pπ(x)

∑x′∈H(x) Pπ(x′) if∑x′∈H(x) Pπ (x′) > 0

µ ∈ [0,1] otherwise
.

Note that ∑x∈h µ (x) = 1 for all h ∈H, and in general beliefs are conditional probabil-
ities on the elements x ∈ H (x) given the information set H (x) , calculated using Bayes
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rule and a behavioral strategy profile π. Moreover, if π is strictly positive then Pπ (t) > 0
for all t, since ρ is also strictly positive, so the system of beliefs generated by π is uniquely
characterized by the function

µ ∶X → [0,1] such that µ (x) = Pπ (x)
∑x′∈H(x) Pπ (x′) .

Definition 3.14. The set of consistent assessments is Ψ = cl (Ψ0) , where Ψ0 is the set
of pairs (µ,π) where π ∈ Π0 and µ is generated by π.

Therefore, (µ,π) is a consistent assessment if and only if there is a sequence {(µn,πn)}
converging to (µ,π), where πn ∈ Π0 and µn is generated by πn for each n. The definition
of consistency then resorts to perturbed strategies.

Given an assessment (µ,π) the expected utility for ι (h), conditional on h being
reached, is now defined, naturally, to be

Eµ,π [uι(h) (z) ∣h] = ∑
z∈Z

uι(h) (z)Pµ,π (z∣h) .

Definition 3.15. The set of sequentially rational assessments is the set of pairs (µ,π)
such that for all h and all π such that πj = πj for j ≠ ι (h) ,

Eµ,π [uι(h) (z) ∣h] ≥ Eµ,π [uι(h) (z) ∣h] .

In words, taking the beliefs as fixed, no player prefers at any point to change her part
of the behavioral strategy profile π. Now, we are able to define a Sequential Equilibrium
(SE).

Definition 3.16. A Sequential Equilibrium is an assessment (µ,π) that is

1. sequentially rational,

2. consistent.

A SE, roughly speaking, is a consistent sequentially rational assessment (µ,π); the
set of SE is denoted by Φ ⊆ Ψ × Π. Consistency of (µ,π) requires that there exists a
fully mixed perturbed strategy profile π(ε) of π such that, letting µ(ε) to be the beliefs
derived from π(ε), then lim

ε→0
µ(ε) = µ.

Hence, the difference between PE and SE is that the former concept requires ex post
optimality approaching the limit, while the latter requires this only at the limit. Roughly
speaking, perfectness amounts to sequentiality plus the request that the prescribed actions
are not locally dominated. Hence, if π is perfect, then there exists some µ such that
(µ,π) is an SE, but the converse does not hold. The difference between the concepts is
only marginal: for almost all games the concepts yield the same outcomes. The main
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innovation of the concept of SE is the explicit incorporation of the system of beliefs
sustaining the strategies as part of the definition of equilibrium. In this, it provides
a language for discussing the relative plausibility of various systems of beliefs and the
associated equilibria sustained by them. Making explicit the construction of beliefs off
the equilibrium path enables discussion of which beliefs are “plausible” and which are not.
And such comparisons can often help one to choose among sequential/perfect equilibria.
Also, the definition of QPE is largely the same as the definition of PE. It differs only
in that, instead of the limit strategy π being optimal at each information set against
behavior given by πn at all other information sets, it is required that π be optimal at
all information sets against behavior at other information sets given by π for information
sets that are owned by the same player who owns the information set in question, and
by πn for other information sets. That is, the player does not take account of his own
“mistakes”, except to the extent that they may make one of his information sets reached
that otherwise would not be. This change in the definition leads to some attractive
properties. Like PE, QPE are SE strategies. But, unlike PE, QPE are always Normal
Form Perfect, and thus admissible. Mertens (1995) argues that QPE is precisely the right
mixture of admissibility and backward induction.

4. Verification for Subgame Perfect Equilibria when a realization plan strategy
profile is given

We focus on the verification problem for Subgame Perfect Equilibria (SPE) when
the input is partially specified, and, precisely, it is given in sequence form. Initially, we
introduce the following corollary that we use below to prove our result.

Definition 4.1 (NE–MIN–PAYOFF). The NE–MIN–PAYOFF is defined as:

• INPUT: a normal form game Γ, a player i, a real value k;

• OUTPUT: YES if there is at least a Nash Equilibrium of Γ in which player i’s
expected utility is smaller than or equal to k, NO otherwise.

Lemma 4.2. NE–MIN–PAYOFF problem is NP–hard even in symmetric two–player games.

Proof. This problem is a variation of the problem of deciding whether there is a Nash
Equilibrium (NE) providing a player with a utility larger than or equal to a value given
as input. This last problem is known to be NP–hard in Conitzer and Sandholm (2008)
and Gilboa and Zemel (1989). The proof of the corollary is a simple variation of the proof
used in Conitzer and Sandholm (2008), in which the authors reduce from SAT problem.
More precisely, in Conitzer and Sandholm (2008), given any SAT instance, the authors
provide a symmetric two–player game instance with the following properties:
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• there is always a pure–strategy NE in which both players play their last action,
denoted by f , providing a payoff of ρ to both players for any ρ > 0;

• there are mixed–strategy NE in which both players randomize over some subset of
actions not containing action f , providing a payoff of n − 1 to both players, if and
only if the SAT instance admits a solution.

In order to prove the corollary above, it is sufficient to set ρ = n. Indeed, in this way,
there is an NE with a utility smaller than or equal to n−1 if and only if the SAT instance
admits a solution. 2

Now, we are able to provide the main result of this section.

Theorem 4.3. Given a realization plan strategy profile (r1, r2), the problems of certifying
that it is part of an SPE or part of an SE are NP–hard.

Proof. We initially focus on the verification for SPE. We reduce from NE–MIN–
PAYOFF. The reduction is based on the game tree depicted in Fig. 2 where the subgame
starting with information set with label 1.2 and including information set with label 2.2
is an arbitrary general–sum normal form game Γ with two players. Consider the following
sequence form strategies: r1 prescribes that sequence L1 is played with a probability of
one, and r2 prescribes that sequence l1 is played with a probability of one. By definition
of sequence form, for all the other sequences, profile (r1, r2) prescribes a probability of
zero. Profile (r1, r2) constitutes a SPE if and only if the subgame starting at information
set with label 1.2 admits an NE that provides player 2 with an expected utility smaller
than or equal to 1 (notice that Γ could admit multiple NE, we are interested in one NE
with a specific property). Since profile (r1, r2) prescribes a probability of zero for all the
sequences in Γ, it does not pose additional constraints over the problem of searching for
an NE of Γ providing player 2 with no more than 1. Hence, our problem reduces from
the problem of deciding whether there is an NE providing a player with a utility no larger
than 1 that, as showed above, it is NP–hard.

Now, we focus on the verification for SE. Every SPE of the above extensive form game
is also part of an SE in which the belief over each node x of the information set with
label 2.2 is equal to the probability with which player 1 plays the action at information
set with label 1.2 leading to x. On the other hand, we recall that every SE is also an
SPE and therefore in the above extensive form game the sets of SPEs and SEs are the
same set. From this observation, it trivially follows that certifying that a realization plan
strategy profile (r1, r2) is part of an SE is NP–hard. 2

Let us observe that the proof of the above theorem does not apply directly to the
verification for QPE. The reason is that the set of QPEs may be a strict subset of the
set of SPEs. Furthermore, in the game instances considered in Conitzer and Sandholm
(2008), and also in our variation introduced in Lemma 4.2, only the pure–strategy NE
is perfect, while the mixed NEs are not - in these latter equilibria the actions in the
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Figure 2: Game used in the proof of Theorem 4.3.

supports are weakly dominated, see Conitzer and Sandholm (2008). This pushes for
considering new reductions when studying the verification problem for QPE. Nevertheless,
we conjecture that the verification problem keeps to be NP–hard also for QPE and this
is due to sequential rationality and to the fact that realization plan strategies partially
specify the players’ behavior on the game tree, leaving the behavior unspecified in a
number of information sets. Therefore, having the input in behavioral strategies is a
necessary condition to have tractable verification algorithms. In the next sections, we use
inputs only in behavioral strategies.

Furthermore, we can state the following corollary, whose proof is straightforward given
Theorem 4.3 (e.g., in Fig. 2 the path is composed only of L1).

Corollary 4.4. Given the strategies only on the equilibrium path, certifying that they are
part of an SPE or part of an SE is a NP–hard problem.

5. Verification with two players when the behavioral strategy profile is given

In the following sections, we show that there exists an efficient algorithm for the verifi-
cation problem of Quasi Perfect Equilibrium (QPE) with two players and subsequently we
show that a simple variation of the algorithm can be employed for the verification of Se-
quential Equilibrium (SE) with two players. Note that even if a QPE is a SE in strategies,
the verification problem of a QPE cannot be trivially reduced to the verification problem
of a SE. Indeed, differently from the concept of SE, the concept of QPE is defined only
on strategies and not on beliefs and requires that the best response constraints hold even
in presence of perturbations over the strategies.

5.1. Quasi Perfect Equilibrium verification in two–player games

In order to verify whether a strategy profile π = (π1, π2) is a QPE, we need to search
for (if they exist):
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• a fully mixed π1
n such that lim

n→∞
π1
n = π1 and (π2 (h) , π2 (k)) ∈ arg maxE((π2(h),π̂2(k)),π1

n) [u2 (z) ∣h]
for all h ∈H2,

• a fully mixed π2
n such that lim

n→∞
π2
n = π2 and (π1 (h) , π1 (k)) ∈ arg maxE((π1(h),π̂1(k)),π2

n) [u1 (z) ∣h]
for all h ∈H1.

Instead of searching directly for perturbed behavioral strategies πin whose formulation
of the best–response constraints is highly non–linear, we can work with perturbed sequence
form strategies rin—similarly to Miltersen and Sørensen (2010)—whose formulation of the
best–response constraints is instead linear. More precisely, our goal is to search for a pair
of fully mixed rin with the property that the fully mixed πin derived from rin converges to
the input πi as n goes to infinity.

Furthermore, although in principle the perturbation of rin can be any function, we can
safely limit our search to polynomial symbolic perturbations in ε ∈ (0,1) and deal with
them lexicographically, see Blum et al. (1991) and Govindan and Klumpp (2003). We
provide the details.

Definition 5.1 (Polynomially perturbed sequence–form strategy). A sequence form
strategy ri (ε) with polynomial symbolic perturbation in ε is defined as ri (ε) = ∑k rik (ε) ⋅εk
where rik (ε) is the vector of coefficients of εk.

A sequence form strategy ri (ε) with symbolic polynomial perturbation can be con-
veniently represented as a matrix whose column vectors are the coefficients rik (ε) from
k = 0 on as:

ri (ε) = [ ri0 (ε) ri1 (ε) ri2 (ε) . . . ]
The condition ri (ε) ≥ 0 as ε goes to zero can be expressed by resorting to the relation
≥lex, i.e. ‘lexicographically larger than or equal to’, defined as follows.

Definition 5.2 (≥lex). Given a vector y, we have y ≥lex 0 if the first (in lexicographic
order) non–zero element of y is positive.

We can state the condition for the positiveness of a strategy and the condition to have
a fully mixed strategy as discussed in Miltersen and Sørensen (2010).

Definition 5.3 (Perturbed strategy positiveness). A sequence form strategy ri (ε)
with symbolic polynomial perturbation is positive as ε goes to zero when ri (ε) ≥lex 0.

Definition 5.4 (Fully mixed strategy). A sequence form strategy ri (ε) with symbolic
polynomial perturbation is fully mixed as ε goes to zero when ri(q, ε) >lex 0 for every q ∈ Q.

Now we can formulate the conditions such that a given π = (π1, π2) is a QPE in
terms of fully mixed r1 (ε) and r2 (ε). Initially, we provide the following (non–linear)
mathematical program where wi and ri are variables, while πi is a parameter given in
input.
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Program 5.5.

F i ⋅ ri(ε) = f i (1)

ri(ε) >lex 0 (2)

(F −i)T ⋅w−i(ε) − (V −i)T ⋅ ri(ε) ≥lex 0 (3)

((F −i)T ⋅w−i(ε) − (V −i)T ⋅ ri(ε))qa = 0 ∀qa ∈ Q−i ∶ π−i(a) > 0 (4)

lim
ε→0

ri(qa, ε)
ri(q, ε) = πi(a) ∀a ∈ Ai, q ∈ Qi ∶ qa ∈ Qi, ri(q, ε) >lex 0 (5)

Proposition 5.6 (QPE conditions in sequence form). Given strategy profile π = (π1, π2)
in input, (π1, π2) is a QPE if and only if, for every i ∈ I, the Program 5.5 admits a solu-
tion.

Proof. The proof follows from the definitions of sequence form and QPE. However, we
provide the details because we exploit them in the subsequent propositions. The above
program captures the definition of QPE with two players since:

• ri (ε) is a well–defined perturbed sequence form strategy due to constraints (1)—
these constraints apply the definition of sequence form (see Section 3.2);

• ri (ε) is fully mixed due to constraints (2)—these constraints apply the definition of
strict lexico positiveness (see Proposition 5.4);

• π−i is a best response to ri (ε) even for ε > 0 due to constraints (3) and con-
straints (4)—more precisely, constraints (3) are the dual best–response constraints
derived as in Miltersen and Sørensen (2010), forcing the value associated with an
information set to be at least the value given by the best action player −i can play
at such information set, and constraints (3) force that sequences q are the best
sequences player −i can play;

• ri (ε) and πi are the same strategy as ε goes to zero due to constraints (5) and
constraints (2)-indeed, constraints (5) force the two strategies to be same as ε → 0
for every strictly positive ri (q) and constraints (2) force all the ri (q) to be strictly
positive.

Hence, if Program 5.5 admits a solution, then there exists a well–defined fully mixed
ri (ε) from which we can derive a fully mixed πin such that lim

n→∞
πin = πi and π−i is best

response to πin. Thus, if Program 5.5 admits a solution for all i ∈ I, (π1, π2) is a QPE.
The “only if” is trivial and follows from the fact that, if there is perturbed behavioral
strategy πin with lim

n→
πin such that πin is best response to π−i, then we can always derive a
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realization–equivalent realization plan rin that is a polynomial in ε and that satisfies the
constraints of the above program. This completes the proof. 2

We introduce a sufficient condition to have equivalence between perturbed strategies,
whose proof is omitted being straightforward-we point the interested reader to van Damme
(1991)—; we use this condition in the following.

Proposition 5.7 (Equivalent perturbed strategies). Given two perturbed strategies
ri (ε) and r̂i (ε), a sufficient condition such that ri (ε) and r̂i (ε) are equivalent is: for all
k it holds that rik (q) = α ⋅ r̂ik (q) with α > 0 for every q ∈ Q.

Obviously, given two equivalent perturbed strategies ri (ε) and r̂i (ε), if ri (ε) satisfies
Program 5.5, then also r̂i (ε) does and vice versa.

We can show that there exists an efficient algorithm for Program 5.5.

Proposition 5.8. Given (π1, π2) in input, there is an efficient algorithm solving Pro-
gram 5.5.

Proof. We show that Algorithm 1 solves Program 5.5 in polynomial time. The basic
idea of the algorithm is the following:

• we initialize rik (q, ε) = 0 for every q and k ∈ {0, . . . , ∣Qi∣},

• the algorithm is iterative,

• at each iteration k the algorithm attempts to increase the number of strictly lexico
positive strategies w.r.t. iteration k − 1,

• at each iteration k the values of rik (ε) satisfy constraints (1), (3), (4), (5) and satisfy
ri (ε) ≥lex 0.

Thus, if at some iteration a fully mixed ri (ε) is found, such a ri (ε) satisfies constraints
of Program 5.5.

Iteration k = 0. We derive rik (ε) from πi as rik (q, ε) = ∏
a∈q
πi(a) and we verify whether

the following constraints hold:

(F −i)T ⋅w−i
0 (ε) − (V −i)T ⋅ ri0 (ε) ≥ 0 (6)

((F −i)T ⋅w−i
0 (ε) − (V −i)T ⋅ ri0 (ε))qa = 0 ∀q ∈ Q−i ∶ π−i(a) > 0 (7)

where constraints (6) and (7) correspond to constraints (3) and (4), respectively, in ab-
sence of perturbations. If the above constraints are satisfied by ri0 (ε), then π−i is a best
response to πi and the algorithm goes to the next iteration. Furthermore, if the above
constraints are satisfied by ri0 (ε), then ri0 (ε) satisfies constraints (1), (3), (4), (5) and
satisfy ri0 (ε) ≥lex 0. Otherwise, the algorithm terminates returning non–existence, π not
being neither an NE.

Iteration k ≥ 1. From k = 1 on, the algorithm solves the Program 5.9 until ri (ε) is not
strictly lexico positive.
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Algorithm 1 findPerturbedStrategy(π1,π2, i)
1: rik(q, ε) = 0 for every q ∈ Qi and k ∈ {0, . . . , ∣Qi∣}
2: ri0(q, ε) = ∏

a∈q
πi(a) for every q ∈ Qi

3: verify constraints (6)–(7) for player i
4: if constraints are not satisfied then
5: return non–existence
6: while ri(ε) is not strictly lexico positive do
7: k = k + 1
8: solve program (8)–(14) for player i
9: if objective function is 0 then

10: return non–existence
11: return ri(ε)

Program 5.9.

max ∑
∀k′<k,ri

k′(q,ε)=0

rik(q, ε) (8)

F i ⋅ rik(ε) = 0 (9)

rik(q, ε) ≥ 0 ∀q ∈ Qi ∶ rik′(q, ε) = 0,∀k′ < k (10)

rik(q, ε) ≤ 1 ∀q ∈ Qi (11)

rik(q(h)a, ε) = πi(a) ⋅ g(h)
∀h ∈H i, q(h) ∈ Qi ∶ a ∈ A(h),
∀a′ ∈ A(h), rik′(q(h)a′, ε) = 0,

∀k′ < k
(12)

g(h) ≥ 0 ∀h ∈H i (13)

((F −i)T ⋅w−i
k (ε) − (V −i)T ⋅ rik(ε))q ≥ 0

∀q ∈ Q−i ∶ ∀k′ < k,
((F −i)T ⋅w−i

k′ (ε) − (V −i)T ⋅ rik′(ε))q = 0

(14)

((F −i)T ⋅w−i
k (ε) − (V −i)T ⋅ rik(ε))qa = 0 ∀qa ∈ Q−i ∶ π−i(a) > 0 (15)

In Program 5.9:

• constraints (9) assure the perturbation of degree k to be well defined according to
the definition of sequence form, forcing ri(ε) to satisfy constraints (1);

• constraints (10) assure that ri(ε) ≥lex 0, forcing rik (q, ε) ≥ 0 for all the strategies
ri (q, ε) that are not strictly lexico positive yet (i.e. for k′ < k)—instead, the con-
straints rik (q, ε) ≥ 0 are not applied to all the strategies that are already (i.e. for
k′ < k) strictly lexico positive;
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• constraints (11) pose - without loss of generality as shown by Proposition 5.7—an
upper bound of 1 over the coefficients of εk;

• constraints (12) and (13) force ri(ε) to satisfy constraints (5); this is accomplished
forcing that if the strategy ri (qa, ε) becomes strictly lexico positive then all the
strategies ri (qa′, ε) where a and a′ are available at the same information set h must
assume values that are consistent to πi. More precisely, if the strategy ri (qa, ε)
becomes strictly lexico positive, it means that the auxiliary variable g(h) with a ∈
A(h) is strictly positive. Then, the sum of all the rik (qa, ε) with a ∈ A(h) is equal
to g(h) (since ∑

a∈A(h)
πi(a) = 1), that in turn is equal, by definition of sequence form,

to rik (q, ε) and therefore lim
ε→0

rik(qa,ε)

ri
k
(q,ε)

= πi(a);

• constraints (14) and (15) force ri(ε) to satisfy constraints (3) and (4), respectively,
and therefore that sequences qa ∈ Q−i with π−i(qa) > 0 are the best sequences
player −i can play at each information set; constraints (14) are applied only to se-
quences q that provide the maximum utility for all the previous k′ < k, because
for the other sequences q the values w(h)−i are already (i.e. for k′ < k) lexico-
graphically strictly larger than the expected utility provided by q and therefore, for
these sequences, constraints (3) are satisfied independently of the perturbation of
degree k;

• objective function (8) aims at maximizing the sum of the coefficients rik (q, ε) such
that rik′ (q, ε) = 0 for all k′ < k. In this way, if it is possible to make some ri (q, ε)
strictly lexico positive, it will be done.

Notice that the solution rik (q, ε) = 0 for every q is always a feasible solution. If at
the optimal solution of Program 5.9 the objective function has a value of zero, then the
algorithm terminates returning non–existence. The algorithm goes to the next iteration
otherwise.

We study the properties of the algorithm through three lemmas. The proof of the first
lemma is omitted being straightforward.

Lemma 5.10. If Algorithm 1 terminates returning a solution ri(ε), then ri(ε) is strictly
lexico positive.

Then, we state the following lemma.

Lemma 5.11. If Algorithm 1 terminates with non–existence, then there is no strictly
lexico–positive strategy ri(ε) such that π−i is best response to ri(ε).

Proof. If the algorithm terminates at k = 0, the proof is straightforward. We prove
the lemma for the case in which the algorithm terminates at k ≥ 1 into two steps:
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• Step 1: we prove that, given ri(ε) returned at iteration k − 1, if the algorithm
terminates at iteration k returning non–existence, then there is no perturbation
with degrees k′ ≥ k such that, once applied to ri(ε), ri(ε) satisfies constraints
of Program 5.5. If the objective function is zero, then it is not possible to in-
troduce any perturbation in ri(ε) of degree k without violating the best–response
constraints (14)–(15) of player −i and/or constraints (12) and (13). Therefore ri(ε)
cannot be made strictly lexico positive unless violating constraints (3)–(5).

• Step 2: we prove that, given ri(ε) returned at iteration k−1, if the algorithm termi-
nates at iteration k returning non–existence, then there is no other perturbed strat-
egy satisfying constraints of Program 5.5. By construction, any perturbed strategy
fulfilling Program 5.5 satisfies constraints (6)–(7) at k = 0 and constraints (9)–(14)
at k ≥ 1. Therefore, each such a perturbed strategy can be found by Algorithm 1
with an opportune objective function in place of objective function (8). However,
constraints (9)–(15) strictly relax from an iteration to the subsequent one. More
precisely, constraints (10), (12), and (14) relax, while the others keep to be the same.
Therefore, all the possible paths that Algorithm 1 can follow with any possible ob-
jective function lead to the same result in terms of existence or non–existence of a
strategy ri(ε) fulfilling constraints of Program 5.5. We notice that the perturbed
strategies found by the algorithm could be different if different paths are followed.
Among all the objective functions, objective function (8) minimizes the number
of iterations, maximizing at each iteration the number of strictly lexico–positive
strategies. Therefore, the algorithm always terminates correctly. 2

Lemma 5.12. Algorithm 1 runs in polynomial time in the size of the game.

Proof. We prove the lemma by showing that the number of iterations of the algorithm
is in the worst case linear in the size of the game. At each iteration k, either some rik (q, ε)
that is zero for every k′ < k becomes strictly positive or the algorithm stops. In the worst
case, only one sequence becomes strictly lexico positive at each iteration and therefore
the number of iterations is equal to the number of sequences ∣Qi∣. Thus, since linear
mathematical programming runs in polynomial time, the lemma is proved. 2

Hence, Lemma 5.10 and Lemma 5.11 prove that Algorithm 1 solves Program 5.5, and
Lemma 5.12 shows that the algorithm requires polynomial time. This completes the proof
of the proposition. 2

We are now in the position to prove the following theorem.

Theorem 5.13. There exists an efficient algorithm certifying that a behavioral strategy
profile π = (π1, π2) given in input is a QPE with two–player games.

Proof. By Proposition 5.6, the problem of certifying that a behavioral strategy profile
π is a QPE with two–player games can be formulated as a pair of mathematical programs
whose resolution can be achieved, by Proposition 5.8, in polynomial time. 2

We provide two examples to which we apply Algorithm 1.
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Figure 3: Behavioral strategies π are represented by using bold lines to denote actions played with
positive probability and µ is represented reporting the beliefs close to the nodes of each information set.
The strategy profile that is not a QPE, but the assessment (µ,π) where π is sequentially rational and µ
is consistent.

Example 5.14. Consider the game depicted in Fig. 3, where π = (π1(M1) = 1, π1(L2) =
1, π1(R3) = 1, π2(l1) = 1, π2(l2) = 1, π2(r3) = 1). The strategy profile is not a QPE. We show
how the Algorithm 1 works. Initially, we report the utility bimatrix in sequence form:

player 2
∅ l1 r1 l1l2 l1r2 r1l3 r1r3

player 1

∅
L1 8,0 8,6

M1 8,6
R1

M1L2 8,6 7,1 0,0 6,1
M1R2 5,8 4,5 7,1 2,0
R1L3 0,1 4,5 9,1 0,6
R1R3 3,1 5,8 6,4 1,1

For the sake of presentation, we omit matrices F1 and F2. We apply Algorithm 1 to find
r1 (ε):

• iteration 0: the strategy prescribes: r1
0 (M1,ε) = r1

0 (M1L2,ε) = 1, while the other
sequences are played with a probability of zero; the strategy satisfies constraints (6)–
(7);
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• iteration 1: in constraints (12) the only sequence with a probability of zero is L3; the
maximization is over all the sequences except M1 and M1L2; the resulting strategy
prescribes: r1

1 (L1,ε) = r1
1 (R1,ε) = r1

1 (M1R2,ε) = r1
1 (R1R3,ε) = 1 and r1

1 (M1,ε) = −2
and r1

1 (M1L2,ε) = −3, while the other sequences are played with a probability of zero;

• iteration 2: no sequence appears in constraints (12); the maximization is only over
L3; the resulting strategy prescribes: r1

2 (L3,ε) = 1 and r1
2 (R3,ε) = −1.

Summarily the resulting r1 (ε) is (∅ is omitted for simplicity):

L1 M1 R1 M1L2 M1R2 R1L3 R1R3

ε0 0 1 0 1 0 0 0
ε1 1 −2 1 −3 1 0 1
ε2 0 0 0 0 0 1 −1

Therefore, there exists a fully mixed strategy lim
ε→0

π1 (ε)→ π1 such that π2 is best response

to π1 (ε).
Now, we apply Algorithm 1 to r2 (ε). In this case, the algorithm stops with the resulting

strategy (∅ is omitted for simplicity):

l1 r1 l1l2 l1r2 r1l3 r1r3
ε0 1 0 1 0 0 0
ε1 0 0 0 0 0 0

At iteration 1, the algorithm stops because the objective function is zero. The reason is that
any possible perturbation over r2 (ε) would make the probability with which player 2 plays
l1l2 strictly smaller than one and therefore the expected utility of player 1 from playing
M1 would be strictly smaller than 8. Thus, player 1 would play L1 gaining exactly 8.
In practice, the algorithm cannot assign a strictly positive perturbation over l1r2 without
violating the constraints of best response of player 1. As a result, there is no fully mixed
π2 (ε) such that π1 is a best response and, therefore, π = (π1, π2) is not a QPE.

Example 5.15. Consider the game depicted in Fig. 4, where π = (π1(L1) = 1, π1(L2) =
1, π1(R3) = 1, π2 (l1) = 1, π2 (l2) = 1, π2 (r3) = 1). The strategy profile is a QPE. From the
application of Algorithm 1, we show that we obtain the following fully mixed r1 (ε) (∅ is
omitted for simplicity):

L1 M1 R1 M1L2 M1R2 R1L3 R1R3

ε0 1 0 0 0 0 0 0
ε1 −5

4 1 1
4 1 0 0 1

4

ε2 0 0 0 −1
2

1
2 1 −1
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Figure 4: Example of strategy profile π expressed in behavioral strategies that is a QPE (π is represented
by using bold lines to denote actions played with positive probability).

and the following fully mixed r2 (ε) (∅ is omitted for simplicity):

l1 r1 l1l2 l1r2 r1l3 r1r3
ε0 1 0 1 0 0 0
ε1 −1 1 −2 1 0 1
ε2 0 0 0 0 1 −1

therefore π is a QPE.

We briefly discuss why Algorithm 1 cannot be trivially extended to games with three
or more players with the aim to identify the reasons why with three or more players the
verification problem is hard, as shown in Hansen et al. (2010), while with two players it is
easy. Program 5.5 can be easily extended to the case with three players by substituting
constraints (3) with, e.g.:

(F 2)T ⋅w2(ε) − (V 2)T ⋅ r1(ε) ⋅ r3(ε) ≥lex 0

and constraints (4) with, e.g.:

((F 2)T ⋅w2(ε) − (V 2)T ⋅ r1(ε) ⋅ r3(ε))qa = 0 ∀q ∈ Q2 ∶ π2(a) > 0

These constraints make the program much harder due to the following two reasons:
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• given that the constraints depend both on r1(ε) and r3(ε), it is not possible to
separate the three programs (the one in which the variables are r1(ε) and r3(ε)
from the other two in which, in the first, the variables are r1(ε) and r2(ε) and, in
the second, they are r2(ε) and r3(ε)), as instead it is possible for the case with two
players;

• each single program presents the product of two strategies.

5.2. Sequential Equilibrium verification in two–player games

Now, we show how a simple variation of Algorithm 4 can be applied to the verification
problem of SE with two players.

Initially, we define the binary relation ≥lex–weak as follows.

Definition 5.16 (≥lex–weak). Given vectors y1,y2, we have y1 ≥lex–weak y2 if and only if
y1 ≥lex y2 or, let

• k1 the minimum k such that y1,k ≠ 0 and

• k2 the minimum k such that y2,k ≠ 0,

k1 = k2 = k and y1,k = y2,k.

Notice that the above relation may be true even when y2 ≥lex y1. On the basis of the
above relation, we can formulate the verification problem for SE with two players when
only strategies are provided as a non–linear mathematical program. We denote by q → h′

that there exists some sequence of the opponent such that, combined with sequence q,
leads to information set h′. Initially, we provide the following:

Program 5.17.

Constraints (1), (2), (4), (5)

w−i(h, ε) ≥lex–weak ∑
h′∶q∈{q(h′)}

w−i(h′, ε) + ((V −i)T ⋅ ri(ε))qa
∀h ∈H−i, qa ∈ Q−i ∶

a ∈ A(h) (16)

Proposition 5.18. Strategy profile π = (π1, π2) given in input is part of an SE if and
only if Program 5.17 admits solution for every i ∈ I.
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Proof. The above program differs from Program 5.5 presenting constraints (16) in place
of constraints (3). The differences between these two groups of constraints lay only in
the use of ≥lex–weak in constraints (16) in place of ≥lex used in constraints (3). In addition,
in constraints (16) we explicitly detail all the terms instead of using the matrix–like
representation used in constraints (3) to specify the terms on the left hand of ≥lex–weak

and those on the right hand. By definition of ≥lex–weak, the above program is satisfied by
all the solutions of Program 5.5. Furthermore, the above program, thanks to ≥lex–weak,
can be satisfied by additional solutions in which the value v−i,h is equal to the expected
utility provided by the best sequences when perturbations are not present, but it may
be smaller when perturbations are present. This is exactly the condition required by SE
definition. 2

We focus on the complexity of solving the above mathematical program.

Proposition 5.19. Given (π1, π2) in input, there exists an efficient algorithm finding a
solution of Program 5.17.

Proof. Program 5.17 can be solved with a simple variation of Algorithm 1. More
precisely, constraints (14) must be substituted with the following constraints:

w−i
k (h, ε) ≥ ∑

h′∶q∈{q(h′)}

w−i
k (h′, ε) + ((V −i)T ⋅ rik (ε))q

∀h ∈H−i, q ∈ Q−i ∶ a(q) ∈ A(h),
w−i
k′ (h, ε) = ∑

h′∶q∈{q(h′)}

w−i
k′ (h′, ε)+

((V −i)T ⋅ rik′ (ε))q = 0,∀k′ < k

The above constraints relax constraints (14), requiring ≥lex–weak in place of ≥lex. Therefore,
a solution can be found in polynomial time. 2

Finally, we can prove the following theorem.

Theorem 5.20. There exists an efficient algorithm certifying that a behavioral strategy
profile π = (π1, π2) given in input is part of an SE in a two–players game.

Proof. The problem of certifying that a behavioral strategy profile π = (π1, π2) is an SE
in a two–players game can be formulated, by Proposition 5.18, as a pair of Program 5.17
and, by Proposition 5.19, these programs can be solved in polynomial time. 2

We can show how the above result can be adopted to derive consistent (in the sense
of Kreps and Wilson) beliefs when only the behavioral strategies are given. First we
introduce an efficient algorithm that given a perturbed strategy profile computes a profile
of beliefs that is consistent w.r.t. the strategy profile.

Lemma 5.21. There exists an efficient algorithm that given a perturbed strategy profile
computes a profile of beliefs that is consistent w.r.t. the strategy profile.
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Proof. Algorithm 2 computes a profile of beliefs that is consistent w.r.t. the input
strategy profile. The profile of beliefs is consistent because in Step 2 we use the Bayes
rule to compute it. The algorithm is efficient because it requires a number of iterations
linear in the size of game and the computation of Step 3 is linear in the size of game by
Proposition A.6. 2

Algorithm 2 computeBeliefs(r(ε))
1: for all i ∈ {1,2}, h ∈H i, x ∈ h do

2: µ(x, ε) = r−i(q(x))
∑
x′∈h

r−i(q(x′))
3: lim

ε→0
µ(ε) = µ

4: return µ

Proposition 5.22. Given a strategy profile π = (π1, π2) that is part of an SE, there exists
an efficient algorithm finding a profile of beliefs (µ1, µ2) such that (µ,π) is an SE.

Proof. Given π, by Algorithm 1 we can efficiently verify whether π is part of a SE
and we can efficiently compute a perturbed strategy profile in sequence form r (ε). Given
r (ε), by Algorithm 2 we can efficiently compute a profile of beliefs that is consistent
w.r.t. the strategy profile. Thus, given a strategy profile π, we can efficiently compute
an assessment (µ,π) that is a SE. 2

Example 5.23. Consider the game depicted in Fig. 4, where π = (π1(L1) = 1, π1(L2) =
1, π1(R3) = 1, π2 (l1) = 1, π2 (l2) = 1, π2 (r3) = 1). We compute the profile of beliefs such
that (µ,π) is a SE:

µ(x3) = 1, µ(x4) = 0,

µ(x5) = 1, µ(x6) = 0.

µ(x1) = 0.8, µ(x2) = 0.2,

µ(x7) = 0.8, µ(x8) = 0, µ(x11) = 0, µ(x12) = 0.2,

µ(x9) = 0.8, µ(x10) = 0, µ(x13) = 0, µ(x14) = 0.2.

6. Verification with n players when the assessment is given

In this section we focus on the problem of deciding whether or not an assessment
(µ,π) is an SE when the number of players is arbitrary. As summarized in Section 3, an
assessment (µ,π) is an SE if and only if π is sequentially rational w.r.t. µ, and µ consistent
w.r.t. π. Hence, our proof is in two steps, first we show that given an assessment (µ,π),
there is an efficient algorithm certifying that π is sequentially rational given µ, then that µ



33

is consistent given π. The first step is simple since it is just an algorithmic reformulation of
backward induction w.r.t. µ, while the second step is more involved because certificating
that µ is consistent requires to search for a perturbed behavioral strategy profile π(ε) to
derive µ(ε) by Bayes rule, then showing that lim

ε→0
µ(ε) = µ.

First we provide an efficient algorithm to verify sequential rationality given an assess-
ment.

Proposition 6.1. Given (µ,π), there exists an efficient algorithm certifying that π is
sequentially rational w.r.t. µ.

Proof. We say that a decision node x ∈ T is penultimate if S(x) ∈ Z (i.e., any immediate
successor of x is a terminal node). Sequential rationality of π can be verified by means
of a variation of the backward induction algorithm, see Fudenberg and Tirole (1991),
incorporating µ as described in Algorithm 3. Basically, Algorithm 3 verifies, at each
information set h such that all the decision nodes x ∈ h are penultimate, that πι(h) is
optimal in expectation w.r.t. beliefs µ. Then, the game is reduced considering any
penultimate x as a final node and assigning such a node with the corresponding expected
utility.

Algorithm 3 requires a number of maximizations that is linear in the size of the game,
and each single maximization is over a number of elements (i.e., actions) that is linear in
the size of the game. This completes the proof of the proposition. 2

Algorithm 3 verifySequentialRationality(µ,π)
1: for all information sets h such that all the nodes x ∈ h are penultimate do
2: if ι(h) is the nature then
3: eliminate all the nodes following x ∈ h from the game tree and consider x as

terminal nodes with utility ui (x) = Eµ,π [u (z) ∣h] for z ∈ S (x) for each player i
4: if ι(h) is not the nature then
5: if there is some action a′ such that πι(h)(a′) > 0 and a′ /∈

arg maxa∈A(h)Eµ,π [u (z) ∣h] then
6: return non–sequentially rational
7: for all x′ ∈ h do
8: eliminate all the immediate successors of x′ from the game tree and consider

x′ as terminal nodes with utility ui (x) = Eµ,π [u (z) ∣h] for z ∈ S (x) for each
player i

9: return sequentially rational

Now, we focus on the consistency of the beliefs. Verifying consistency of µ w.r.t. π
requires to find a fully mixed perturbed strategy profile π(ε) with the property that the
beliefs µ(ε) derived from π(ε) by Bayes rule converge to µ as ε goes to zero. Streufert
(2006, 2007) shows that the problem of searching for such a π(ε) can be formulated as
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the problem of searching for a b–labeling.10 In words, a b–labeling assigns zero to the
labels of actions played with strictly positive probability and requires that, if and only
if the belief over a node is strictly positive, then the sum of the labels of the actions
leading to such node from the root node is the smallest among the sums of the labels
of the actions leading to all the other nodes of the same information set. It is worth
remarking that an assessment (µ,π) may admit multiple b–labelings. In this case, all the
b–labelings lead to the same result: if, with a given b–labeling, µ(ε) derived from π(ε) by
Bayes rule converges to µ as ε→ 0, then the same happens with all the other b–labelings.
Therefore, it is sufficient to search for a (generic) b–labeling. In the Appendix, after
reporting the result proved by Kreps and Wilson as refined by Streufert, we focus on the
problem of searching for a b–labeling. Initially, we show that the problem of searching
for a (specific, i.e., minimizing the sum of the labels) b–labeling can be formulated as an
integer linear mathematical program. Although solving an integer linear mathematical
program is NP–hard in the worst case, exploiting the property of total unimodularity
provided in Ghouila-Houri (1962), we are able to show that our program can be solved
exactly in polynomial time by means of linear programming. Thus, we are in the position
to prove what follows.

Proposition 6.2. Given (µ,π), there exists an efficient algorithm verifying that µ is
consistent w.r.t. π.

Proof. Consistency can be verified by means of Algorithm 4. By Proposition A.8, a
b–labeling can be found by solving the linear integer Program A.7. Since the matrix of
constraints M of this program is totally unimodular, as shown by Proposition A.10, and
the vector of constants b is integer, all the vertices of the polytope {z∣Mz = b} with z
real–value variables are integers, see Ghouila-Houri (1962). Thus, we can find a solution
of Program A.7 by searching for a basic solution of its continuous relaxation by means
of linear mathematical programming techniques. Since a linear mathematical program
can be solved in polynomial time, Program A.7 can be solved in polynomial time. If the
program does not admit any b–labeling, then, by Theorem A.5, µ is not consistent. If the
program admits a b–labeling λ, then, by Theorem A.5, µ is consistent if and only if π(ε),
as defined in Theorem A.5, is such that µ(ε), derived from π(ε) by Bayes rule, converges
to µ as ε goes to zero. Verifying such a convergence requires polynomial time in the size
of the game, as shown by Proposition A.6. This completes the proof of the proposition.
2

We can leverage on the above results to prove the following theorem.

Theorem 6.3. There exists an efficient algorithm certifying that an assessment (µ,π)
given in input is an SE.

10The original result is in Kreps and Wilson (1982), then corrected by Streufert (2006, 2007).
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Algorithm 4 verifyConsistency(µ,π)
1: solve the continuous relaxation of Program A.7 by linear mathematical programming
2: if the program does not admit any solution λ then
3: return non–consistent
4: derive π(ε) from λ
5: derive µ(ε) from π(ε) by Bayes rule
6: if lim

ε→0
µ(ε) ≠ µ then

7: return non–consistent
8: return consistent

Proof. Algorithm 5 certificates in polynomial time that (µ,π) is an SE. Indeed, by
Proposition 6.1, we can certify whether π is sequentially rational w.r.t. µ in polynomial
time and, by Proposition 6.2, we can certify whether µ is consistent w.r.t. π in polynomial
time. This concludes the proof of the theorem. 2

Algorithm 5 SEcertifying(µ,π)
1: if verifySequentialRationality(µ,π) returns non–sequentially rational or verifyConsis-

tency(µ,π) returns non–consistent then
2: return non–SE
3: return SE

The above theorem shows that there is an efficient algorithm for the verification prob-
lem of SE with any number of players, and therefore such a problem is easier than the
verification problems for QPE, EFPE, and NFPrE that are instead NP–hard with three
or more players as shown in Hansen et al. (2010).

We provide two examples to which we apply Algorithm 5.

Example 6.4. Consider the game depicted in Fig. 5, where π = (π1(L1) = 1, π1(L2) =
1, π1(R3) = 1, π2(l1) = 1, π2(r2) = 1, π2(l3) = 1), while beliefs µ are reported in the figure
aside the corresponding nodes. The assessment (µ,π) is not an SE and we show that the
Algorithm 5 returns non–SE. Below we instantiate constraints of Program A.7.
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Figure 5: Example of assessment (µ,π) where π is sequentially rational, but µ is not consistent (π is
represented by using bold lines to denote actions played with positive probability and µ is represented
reporting the beliefs close to the nodes of each information set).

λ(L1 = λ(L2) = λ( R3) = λ(l1) = λ(r2) = λ(l3) = 0

λ(M1) − s(M1) = λ(R1) − s(R1) = λ(R2) − s(R2) = λ(R3) − s(R3) = 1

λ(r1) − s(r1) = λ(l2) − s(l2) = λ(r3) − s(r3) = 1

γ(w) = γ(w) + λ(M1) − γ(x1) = γ(w) + λ(R1) − γ(x2) = 0

γ(x1) + λ(l1) − γ(x3) = γ(w1) + λ(r1) − γ(x4) = γ(x2) + λ(l2) − γ(x5) = γ(x2) + λ(r2) − γ(x6) = 0

γ(x3) + λ(L2) − γ(x7) = γ(x3) + λ(R2) − γ(x8) = γ(x4) + λ(L2) − γ(x9) = γ(x4) + λ(R2) − γ(x10) = 0

γ(x5) + λ(L3) − γ(x11) = γ(x5) + λ(R3) − γ(x12) = γ(x6) + λ(L3) − γ(x13) = γ(x6) + λ(R3) − γ(x14) = 0

γ(x3) − ν(1.2) = γ(x5) − ν(1.3) = γ(x1) − ν(2.1) = γ(x12) − ν(2.2) = γ(x14) − ν(2.3) = 0

γ(x4) − ν(1.2) − t(x4) = γ(x6) − ν(1.3) − t(x6) = 1

γ(x2) − ν(2.1) − t(x2) = γ(x7) − ν(2.2) − t(x7) = γ(x8) − ν(2.2) − t(x8) = γ(x11) − ν(2.2) − t(x11) = 1

γ(x9) − ν(2.3) − t(x9) = γ(x10) − ν(2.3) − t(x10) = γ(x13) − ν(2.3) − t(x13) = 1

Now we show that there is a contradiction:

(a) from γ(w) + λ(M1) − γ(x1) = 0 and γ(w) = 0, we have γ(x1) = λ(M1),

(b) from γ(w) + λ(R1) − γ(x2) = 0 and γ(w) = 0, we have γ(x2) = λ(R1),
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(c) from γ(x1) − ν(2.1) = 0 and γ(x1) = λ(M1) by (a), we have ν(2.1) = λ(M1),

(d) from γ(x2) − ν(2.1) ≥ 1, γ(x2) = λ(R1) by (b) and ν(2.1) = λ(M1) by (c), we have
λ(R1) ≥ 1 + λ(M1),

(e) from λ(L2) = λ(l1) = 0, γ(x1)+λ(l1)− γ(x3) = γ(x3)+λ(L2)− γ(x7) = 0 and γ(x1) =
λ(M1) by (a), we have γ(x7) = λ(M1),

(f) from λ(R3) = λ(l1) = 0, γ(x2) + λ(l2) − γ(x5) = γ(x5) + λ(R3) − γ(x12) = 0, γ(x12) −
ν(2.2) = 0 and γ(x2) = λ(R1) by (b), we have λ(R1) = ν(2.2),

(g) from γ(x7)−ν(2.2) ≥ 1, γ(x7) = λ(M1) by (e) and λ(R1) = ν(2.2) by (f), so we have
λ(M1) ≥ 1 + λ(R1),

(h) we have that (d) and (g) are in contradiction.

Thus, the above set of constraints does not admit any feasible assignment and therefore
the assessment given in input is not an SE.

Example 6.5. Consider the game depicted in Fig. 3, where π = (π1(M1) = 1, π1(L2) =
1, π1(R3) = 1, π2(l1) = 1, π2(l2) = 1, π2(r3) = 1), while beliefs µ are reported in the figure
aside the corresponding nodes. The assessment (µ,π) is an SE and we show that the
Algorithm 5 returns SE. Below we instantiate constraints of Program A.7.

λ(M1) = λ(L2) = λ( R3) = λ(l1) = λ(l2) = λ(r3) = 0

λ(L1) − s(L1) = λ(R1) − s(R1) = λ(R2) − s(R2) = λ(L3) − s(L3) = 1

λ(r1) − s(r1) = λ(r2) − s(r2) = λ(l3) − s(l3) = 1

γ(w) = γ(w) + λ(M1) − γ(x1) = γ(w) + λ(R1) − γ(x2) = 0

γ(x1) + λ(l1) − γ(x3) = γ(x1) + λ(r1) − γ(x4) = γ(x2) + λ(l2) − γ(x5) = γ(x2) + λ(r2) − γ(x6) = 0

γ(x3) + λ(L2) − γ(x7) = γ(x3) + λ(R2) − γ(x8) = γ(x4) + λ(L2) − γ(x9) = γ(x4) + λ(R2) − γ(x10) = 0

γ(x5) + λ(L3) − γ(x11) = γ(x5) + λ(R3) − γ(x12) = γ(x6) + λ(L3) − γ(x13) = γ(x6) + λ(R3) − γ(x14) = 0

γ(x3) − ν(1.2) = γ(x5) − ν(1.3) = γ(x1) − ν(2.1) = γ(x7) − ν(2.2) = γ(x9) − ν(2.3) = 0

γ(x4) − ν(1.2) − t(x4) = γ(x6) − ν(1.3) − t(x6) = 1

γ(x2) − ν(2.1) − t(x2) = γ(x8) − ν(2.2) − t(x8) = γ(x11) − ν(2.2) − t(x11) = 1

γ(x12) − ν(2.2) − t(x12) = γ(x14) − ν(2.3) − t(x14) = γ(x10) − ν(2.3) − t(x10) = γ(x13) − ν(2.3) − t(x13) = 1

A b–labeling is: λ(a) = 1 for all a ∈ Ai with πi(a) = 0. Therefore, the assessment given
in input is an SE.
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7. Conclusions and future works

In this paper, we focus on the verification problem, i.e., certifying that a solution given
in input is an equilibrium according to some solution concept, for Nash Equilibrium re-
finements for extensive-form games. While the verification problem for Nash Equilibrium
is trivial, with Nash Equilibrium refinements for extensive form games the problem may
be hard. The only results known so far show that the verification problem is NP–hard for
a number of cases.

We provide the following contributions. We show that, when the input is a realization
plan profile (i.e., strategies for sequence form representation), deciding whether the input
is part of a Subgame Perfect Equilibrium or part of a Sequential Equilibrium is NP–hard
even in two–player games. This means that there is no polynomial–time algorithm unless
P = NP, but it is commonly believed that P ≠ NP. Then, we show that, when the input
is a behavioral strategy profile, there is a polynomial–time algorithm deciding whether
the input is a Quasi Perfect Equilibrium in two–player games. A simple variation of this
algorithm decides whether the input is part of some Sequential Equilibrium. This result
completes the complexity of verification for Quasi Perfect Equilibrium and Sequential
Equilibrium since, with three or more players, the problem is known to NP–hard. Finally,
we show that, when the input is an assessment, there is a polynomial–time algorithm to
decide whether the input is a Sequential Equilibrium regardless the number of players.

We believe these results are not only important in themselves, they also show the role
played by inputs in extensive-form refinements. In particular, they show that beliefs are
important not only to discuss the plausibility of refinements, they are also crucial for
verification problem.

The main verification problems left open concern Extensive Form Perfect Equilibria
and Proper Equilibria with two players. We will investigate them in future work.
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A. Beliefs consistent verification when the assessment is given

This section is devoted to construct the verification algorithm for the consistency of
the beliefs. Verifying consistency of µ w.r.t. π requires to find a fully mixed perturbed
strategy profile π(ε) with the property that the beliefs µ(ε) derived from π(ε) by Bayes
rule converge to µ as ε goes to zero. Kreps and Wilson (1982), as corrected and inte-
grated by Streufert (2006, 2007), show that the problem of searching for such a π(ε) can
be formulated as the problem of searching for a b–labeling. Initially, we introduce the
following definitions taken from Kreps and Wilson (1982); Streufert (2006, 2007).

Definition A.1. A basis for the extensive form {T,≺;A,α;H; I, ι} is an index set b con-
sisting of decision nodes x ∈X and actions a ∈ A.

Definition A.2. A basis b is consistent if the set Ψb, defined as

Ψb = {(µ,π) ∈ Ψ∣µ (x) > 0⇔ x ∈ b ∧ π (a) > 0⇔ a ∈ b}

is such that Ψb ≠ ∅.

Definition A.3. A labelling for the extensive form {T,≺;A,α;H; I, ι} is a function λ ∶
A → N that assigns a label (expressed as a nonnegative integer) to all the actions a ∈ A.
For any given labelling λ, there is and associated function Jλ ∶X → N defined as follows:

Jλ (x) =
⎧⎪⎪⎨⎪⎪⎩

∑l(x)−1

k=0
λ (α (pk (x))) ∣x ∈H (x) if x ∈X ∖W

0 if x ∈W
.

In words, λ labels the branches of the game tree with nonnegative integers (in a way
that respects the informational constraints of the game) and Jλ gives for each node x the
sum of the labels on branches from the beginning of the tree to x.
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Definition A.4. A labeling λ is a b–labelling if and only if

∀h,∃a ∈ A (h) λ (a) = 0

a ∈ b⇐⇒ λ (a) = 0

x ∈ b⇐⇒ x ∈ arg min{Jλ (x′) ∣x′ ∈H (x)}

In words, a b–labeling assigns zero to the labels of actions played with strictly positive
probability and requires that, if and only if the belief over a node is strictly positive, then
the sum of the labels of the actions leading to such node from the root node is the smallest
among the sums of the labels of the actions leading to all the other nodes of the same
information set.

Theorem A.5. 11 Let

πi(a, ε) =
⎧⎪⎪⎨⎪⎪⎩

c(H (a) , ε) ⋅ πi(a) ⋅ ελ(a) if πi(a) > 0

c(H (a) , ε) ⋅ ελ(a) otherwise

where a is an action played by i at information set H (a) from which the action a can
be chosen, i.e. H (a) = A−1 (a) , and c(H (a) , ε) is the appropriate normalizing constant;
then µ is consistent w.r.t. π if and only if a b–labeling λ exists.

It is worth remarking that an assessment (µ,π) may admit multiple b–labelings. In
this case, all the b–labelings lead to the same result: if, with a given b–labeling, µ(ε)
derived from π(ε) by Bayes rule converges to µ as ε→ 0, then the same happens with all
the other b–labelings. Therefore, it is sufficient to search for a (generic) b–labeling.

Starting from the results of Kreps and Wilson (1982); Streufert (2006, 2007), we can
show the following result.

Proposition A.6. 12 Given an assessment (µ,π) and a b–labeling, there exists an effi-
cient algorithm verifying that µ(ε), derived from π(ε) by Bayes rule, converges to µ as ε
goes to zero.

Proof. define path(w,x) as the sequence of pairs (x′, a) with a ∈ A(x′) connecting the
root node w of the game tree to decision node x. Beliefs can be derived from fully mixed
strategies by Bayes rule as follows:

µ(x, ε) =
∏

(x′,a)∈path(w,x)
πι(x

′)(a, ε)

∑
x′′∈H(x)

∏
(x′,a)∈path(w,x′′)

πι(x′)(a, ε)

11The statement of this theorem is a slight reformulation of Lemma A1 of Kreps and Wilson (1982)
integrated by Theorem 2.1 of Streufert (2007).

12This result is clearly related to Theorem 2.1 on consistency and monomials of Streufert (2007).
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The derivation of µ(x, ε) requires a number of operations that is linear in the size of the
game because both ∣path(w,x)∣ and ∣A (h) ∣ are linear in the size of the game. We study
the complexity of computing lim

ε→0
µ(x, ε). The normalization constants c(H (a) , ε) are:

c(H (a) , ε) = 1

∑
a∈A(h)∶πι(h)(a)>0

πι(h)(a) ⋅ ελ(a) + ∑
a∈A(h)∶πι(h)(a)=0

ελ(a)

Then, let:

d(H (a) , ε) = 1

c(H (a) , ε)
ψx = ∏

(x′,a)∈path(w,x)

ελ(a)

φx = ∏
(x′,a)∈path(w,x)∶πι(x′)(a)>0

πι(x
′)(a)

Dx = ∏
(x′,a)∈path(w,x),x′∈H(x)

d(h, ε)

Notice that d(H (a) , ε) is a polynomial in ε. We can write µ(x, ε) as

µ(x, ε) =
ψx ⋅ φx ⋅

1

Dx

∑
x′′∈H(x)

ψx′′ ⋅ φx′′ ⋅
1

Dx′′

=
ψx ⋅ φx ⋅ ∏

x′′∈H(x),x′′≠x
Dx′′

∑
x′′∈H(x)

(ψx′′ ⋅ φx′′ ⋅ ∏
x′′′∈H(x),x′′′≠x′′

Dx′′′)

In order to compute lim
ε→0

µ(x, ε), it is sufficient to isolate, for each d(H (a) , ε), the mini-

mum degree of ε and its coefficient, discarding all the higher degrees of ε from d(H (a) , ε),
and then calculate the multiplications and the sums to obtain the form Anum⋅εBnum

Aden⋅ε
Bden

. This

requires a number of operations that is linear in the size of the game. Notice that
Bnum ≥ Bden. Indeed, the denominator of µ(x, ε) is given by the sum of some terms
and the numerator appears among these terms. Therefore, the minimum degree of ε in
the numerator cannot smaller than the minimum degree of ε in the denominator. Then,
the calculation of the limit is customary:

• if Bnum > Bden, then lim
ε→0

µ(x, ε) = 0;

• if Bnum = Bden, then lim
ε→0

µ(x, ε) = Anum

Aden
.

Hence, the proof of the proposition is complete. 2

Taken together, Proposition A.6 and Theorem A.5 are a reformulation of Theorem 2.1
of Streufert (2007) focused to our aim, however it has a more general interesting content.
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Broadly speaking, the results suggests that it is useful to represent each probability with
a “monomial,” defined in Streufert (2007) to be an algebraic expression of the form cελ in
which c is a positive real number and λ is a nonnegative integer. Essentially, monomials
with zero exponents express positive probabilities and monomials with positive exponents
express different levels of zero probability (greater exponents express lesser zero probabil-
ities). It is intuitive that the definition of consistency is satisfied if a monomial c (a) ελ(a)
can be assigned to each action a in such a way that

1. action a is played with probability c(a) if the exponent λ(a) is zero and is not played
if λ(a) is strictly positive, and,

2. the beliefs at each information set are found, first by calculating the product of
the monomials along the path leading to each of the nodes in the information set,
second by placing zero probability on every node whose product’s exponent is less
than that of another node, and finally by assigning positive probability over the
remaining nodes in proportion to their products’ coefficients.

The results in Kreps and Wilson (1982); Streufert (2006, 2007) and used here to our
aim, formalize this intuition stating that consistency is equivalent to the existence of such
monomials.

Now, we focus on the problem of searching for a b–labeling. Initially, we provide
an integer linear mathematical program in Program A.7, where γ and ν are auxiliary
variables, while s and t are slack variables.

Program A.7.

min∑
a∈A

λ(a) (17)

λ(a) = 0 ∀a ∈ A ∶ πi(a) > 0, i ∈ I (18)

λ(a) − s(a) = 1 ∀a ∈ A ∶ πi(a) = 0, i ∈ I (19)

γ(w) = 0 (20)

γ(x′) + λ(a) − γ(x) = 0 ∀x,x′ ∈X,a ∈ A ∶ x ∈ S(x′), a = α(x) (21)

γ(x) − ν(h) = 0 ∀h ∈H i, x ∈ h ∶ µ(x) > 0, i ∈ I (22)

γ(x) − ν(h) − t(x) = 1 ∀h ∈H i, x ∈ h ∶ µ(x) = 0, i ∈ I (23)

λ(a) ∈ N ∀a ∈ A (24)

s(a) ≥ 0 ∀a ∈ A (25)

t(x) ≥ 0 ∀x ∈X (26)

Proposition A.8. Given (µ,π), the problem of searching for a (specific, i.e., minimizing
the sum of the labels) b–labeling can be formulated as Program A.7.
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Proof. We show that the above program captures the definition of b–labeling. Con-
straints (18) force labels of actions played with positive probability to be equal to ’0’;
constraints (19) force labels of actions played with zero probability to be larger than or
equal to ’1’; constraint (20) assigns ’0’ to auxiliary variable γ(w) associated with root
node w (auxiliary variable γ(x) expresses the sum of the labels of all the actions lead-
ing to node x from the root node); constraints (21) assign the auxiliary variable γ(x)
associated with node x a value equal to the sum of the value γ(x′) of the parent node
x′ and the label of the action connecting x′ to x; constraints (22) force the values of all
the γ(x)s associated with the nodes xs with µ(x) > 0 belonging to the same information
set to be same (i.e., H (x)); constraints (23) force the other nodes (those with µ(x) = 0)
to have a value γ strictly larger than the minimum value of the information set; con-
straints (24)–(26) fix the domains of the variables (notice that, with these domains, all
the variables have non–negative values). Objective function ∑a∈A λ(a) is lower bounded
given that labels are non–negative. Therefore, the minimization (17) always returns a
b–labeling if this exists. 2

Although solving an arbitrary integer linear mathematical program may be NP–hard
in the worst case, we can show that Program A.7 can be solved in polynomial time. A
preliminary observation is that we can find a feasible (potentially non–minimizing the
objective function) solution in polynomial time by the following procedure: we relax the
integrity constraints, we solve the continuous relaxation by linear mathematical program-
ming (that can be achieved in polynomial time) returning a rational solution if it exists,
then, if the solution is fractional, we find the least common multiple of all the denomina-
tors (that can be found in polynomial time) and finally we multiply the solution by that
number. In this way, the solution obtained is integer. Notice that such a procedure would
require the adoption arbitrary–precision arithmetic during the resolution of the linear
mathematical program, being necessary to represent exactly the denominators, and this
would make the resolution process much more expensive. However, we can show that such
a procedure can be dramatically simplified, since every basic solution of the continuous
relaxation of Program A.7 is integer and therefore any basic solution of the continuous
relaxation is also solution for the integer program. As a result, a solution can be found
by means of only linear programming without resorting to arbitrary–precision arithmetic
and without resorting to any algorithm to compute the least common multiple. To prove
it we exploit the property of total unimodularity provided in Ghouila-Houri (1962).

Given that a matrix Ξ is totally unimodular if and only if the transpose ΞT is totally
unimodular as shown by Chandrasekaran (1969), we can restate the definition of total
unimodularity provided by Ghoulia–Houri as follows.

Definition A.9 (Total unimodularity). Matrix Ξ is totally unimodular if and only if
for every subset Ξ′ of columns of Ξ it is possible to find a partition of columns {Ξ′

1,Ξ
′
2}



46

such that:

∀k
⎛
⎝ ∑j∶ξkj∈Ξ′1

ξkj − ∑
j∶ξkj∈Ξ

′
2

ξkj
⎞
⎠
∈ {−1,0,1} (27)

where ξkj a generic entry of matrix Ξ.

In order to resort to total unimodularity for Program A.7, we need to formulate
such program in standard form and isolate the matrix of constraints. More precisely,
constraints (18)–(26) can be expressed as M ⋅ y = b with y ≥ 0 and λ ∈ N∣A∣, where:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C 0 0 0 0
C ′ 0 0 −I 0
D E 0 0 0
0 G K 0 0
0 G′ K ′ 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
γ
ν
s
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

such that:

• C ⋅λ = 0 captures constraints (18),

• C ′ ⋅λ − I ⋅ s = 1 captures constraints (19),

• D ⋅λ +E ⋅ γ = 0 captures constraints (20) and (21),

• G ⋅ γ +K ⋅ ν = 0 captures constraints (22), and

• G′ ⋅ γ +K ′ ⋅ ν − I ⋅ t = 1 captures constraints (23).

Since vector b is integer, if M is totally unimodular, then any basic solution of the
continuous relaxation is integer, see Wolsey (1998). To show that M is totally unimodular
we need two lemmas, that are provided within the proof of the propositions because they
refers to concepts introduced during the proof.

Proposition A.10. Matrix M is totally unimodular.

Proof. Let us note that, usually, totally unimodular matrices have a network–flow
interpretation which makes the proof of total unimodularity straightforward Schrijver
(2003). In our case, we did not find any simple such interpretation and therefore we prove
the proposition by analyzing the structure of matrix M .

Initially, we remark that all the entries of M belongs to {−1,0,1} and that the sub-
matrices of M have the following property:

• C, C ′, G, and G′ have one ‘1’ per row and zero or one ‘1’ per column;

• D is composed of a row of ‘0’s and identity matrix I;
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• E has one ‘1’ in the first row and one ‘1’ and one ‘−1’ in all the other rows;

• K and K ′ present one ‘−1’ per row.

Let Λk the k–th block of rows of M (from the top to the bottom) and let ∆j the j–th
block of columns of M (from the left to the right), as shown below:

C 0 0 0 0 Λ1

C ′ 0 0 −I 0 Λ2

D E 0 0 0 Λ3

0 G K 0 0 Λ4

0 G′ K ′ 0 −I Λ5

∆1 ∆2 ∆3 ∆4 ∆5

Let M ′ a subset of columns of M and mkj a generic element of M . We need to show that,
for any M ′, we can find a partition of columns {M ′

1,M
′
2} such that constraints (27) are

satisfied.
At first, we notice that the total unimodularity of M is not conditioned by the blocks

of columns ∆4 and ∆5.

Lemma A.11. If matrix {∆1 ∪ ∆2 ∪ ∆3} is totally unimodular, then M is totally uni-
modular.

Proof. Assume that for every M ′ it is possible to find a partition of columns {M ′
1,M

′
2}

such that

∀k
⎛
⎝ ∑
j∶mkj∈M

′
1∩{∆1∪∆2∪∆3}

mkj − ∑
j∶mkj∈M

′
2∩{∆1∪∆2∪∆3}

mkj

⎞
⎠
∈ {−1,0,1} (28)

In words: we are requiring that constraints (27) are satisfied under the additional con-
straint mkj ∈ M ′ ∩ {∆1 ∪ ∆2 ∪ ∆3}. Now, we prove the Lemma, providing an iterative
procedure to assign each column of M ′∩{∆4∪∆5} to M1 or M2. Initially, we observe that
each column of {∆4 ∪∆5} contains one ‘−1’, while all the other entries are ‘0s’, and that
each row contains at most one ’−1’. Therefore, each column can be assigned to M1 or M2

independently from the assignment of the others. Thus, take a column r of M ′∩{∆4∪∆5}
and call k the row in which there is ‘−1’. Assign column k to M ′

1 or M ′
2 as follows:

• if the left hand of constraints (27) for k = k is equal to ‘−1’, then assign column r
to M ′

2, in this way ∑j∶m
kj
∈M ′

1
mkj −∑j∶mkj∈M ′

2
mkj = 0,

• if the left hand of constraints (27) for k = k is equal to ‘1’, then assign column r to
M ′

1, in this way ∑j∶m
kj
∈M ′

1
mkj −∑j∶mkj∈M ′

2
mkj = 0,
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• if the left hand of constraints (27) for k = k is equal to ‘0’, then assign column r to
M ′

1 or M ′
2 indifferently, in this way ∑j∶m

kj
∈M1

mkj −∑j∶mkj∈M ′
2
mkj ∈ {−1,1}.

Since all the other rows k of r contain ‘0s’, ∑j∶mkj∈M ′
1
mkj −∑j∶mkj∈M ′

2
mkj is equal to

∑j,mkj∈M ′
1∩{∆1∪∆2∪∆3}

mkj − ∑j,mkj∈M ′
2∩{∆1∪∆2∪∆3}

mkj that, by above assumption, belongs
to {−1,0,1}. This proves that, if constraints (27) are satisfied for the first three blocks of
columns, then such constraints can be satisfied also for all the blocks of columns with an
opportune assignment of the columns of the last two blocks. 2

By Lemma A.11, M is totally unimodular if matrix {∆1 ∪∆2 ∪∆3} is totally unimod-
ular. Thus, from here on, we study only the total unimodularity of {∆1 ∪∆2 ∪∆3}.

Lemma A.12. Matrix {∆1 ∪∆2 ∪∆3} is totally unimodular.

Proof. We build M ′
1 and M ′

2 as follows. Assign all the columns of M ′ ∩ {∆2 ∪ ∆3}
to M ′

1, while the columns of M ′ ∩ ∆1 will be assigned to M ′
1 or M ′

2 to satisfy the total
unimodularity condition as described below. Consider the rows belonging to Λ4 and Λ5

and sum the entries on these rows in M ′
1 independently of whether the columns of M ′∩∆1

are assigned to M ′
1 or M ′

2: given that all the columns of M ′ ∩ {∆2 ∪∆3} are assigned to
M ′

1 and all the entries of columns ∆1 are zeros, the sum belongs to {−1,0,1} (we recall,
as discussed above, that G and G′ have one ’1’ per row, while K and K ′ have one ’−1’
per row). Thus, the rows belonging to Λ4 and Λ5 satisfy constraints (27) independently
of whether the columns of M ′ ∩∆1 are assigned to M ′

1 or M ′
2. Consider the columns of

M ′
1 belonging to ∆2: the sum of the entries of the rows belonging to Λ3 can be {−1,0,1}

(we recall, as discussed above, that E has one ‘1’ in the first row and one ‘1’ and one
‘−1’ in all the other rows). It can be easily seen that, D having no more than one ‘1’
per column and per row, we can always assign the columns of ∆1 to M ′

1 or M ′
2 to make

that constraints (27) are satisfied on the rows belonging to Λ3. Finally, we observe that
constraints (27) are always satisfied on the rows belonging to Λ1 and Λ2 given that C and
C ′ have one ‘1’ per row. Therefore, matrix {∆1 ∪∆2 ∪∆3} is totally unimodular. 2

Since, by Lemma A.11, if {∆1 ∪ ∆2 ∪ ∆3} is totally unimodular, then M is totally
unimodular and, by Lemma A.12, {∆1 ∪∆2 ∪∆3} is totally unimodular, we have that M
is totally unimodular. This completes the proof of the proposition. 2


