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Abstract

A new class of preference-aggregation rules is proposed, weak-veto

rules. Weak-veto rules are applicable in settings characterized by strong

pre-existing views on the desirability of different outcomes, whose rec-

ommendations should be modified only in the presence of strenuous op-

position. They are characterized by strategy-proofness, strong efficiency,

and unanimity-basedness. When non-manipulability requirements are

strengthened to K-strategy-proofness, the positive results are weakened,

except for the case of three alternatives and a sub-class of weak-veto

rules based on Kemeny distances. This demonstrates the compatibility

of stronger efficiency and non-manipulability properties for the three-

alternative model.
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1 Introduction

Consider the standard Arrovian framework in which agents submit strict linear

orderings over a set of alternatives (Arrow [2]). An aggregation rule (or simply

a rule) is a function synthesizing the group’s preferences into a single such

ordering. In contrast to the rich literature on choice rules, where the objective

is to pick a single winning alternative (Barbera [5]), the strategic properties of

aggregation rules had not been the object of much study until the recent work

of Bossert and Sprumont [6].

This was so primarily because comparing orderings of alternatives is not

as straightforward as comparing single alternatives. With a few sporadic ex-

ceptions (e.g., Bossert and Storcken [7]), researchers had not addressed this

issue until Bossert and Sprumont [6] broke important new ground by employ-

ing a betweeness relation originally due to Grandmont [8] to compare order-

ings. Bossert and Sprumont’s insight naturally lead to a non-manipulability

criterion referred to as strategy-proofness. In their framework, a rule fails

strategy-proofness if by manipulating one’s preferences it is possible to obtain

an outcome that unambiguously dominates the one obtained under truthful-

ness. Bossert and Sprumont went on to analyze three classes of rules (mono-

tonic majority alteration, status-quo, and Condorcet-Kemeny) on the basis of

their efficiency and strategy-proofness properties.

Following up on Bossert and Sprumont’s work, Harless [9] studied a gen-

eralization of status-quo rules and characterized these rules with novel solidar-

ity axioms. Sato [15] showed that a continuity property known as bounded

response combined with strategy-proofness leads to dictatorial rules and im-

possibility results. Athanasoglou [3] introduced stronger efficiency and non-

manipulability criteria based on Kemeny distances, K-strategy-proofness and

K-efficiency, and demonstrated that (with the exception of Condorcet-Kemeny

rules and K-efficiency) none of the rules proposed by Bossert and Sprumont

satisfy them. Along similar lines, in earlier work Bossert and Storcken [7]
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had established impossibility results regarding the much stronger, coalitional

version of K-strategy-proofness.1

Contribution. The present paper contributes to this growing literature by

introducing and axiomatizing a new class of rules, weak-veto rules. These

rules use an exogenous ordering over orderings and select the highest-ranked

element on this list which, when considering any binary comparison of alter-

natives, does not result in a violation of unanimous agreement.2 The name

“weak veto” is due to the fact that a single agent, by promoting or preventing

unanimous agreement, may conceivably alter the outcome of the rule (though

not necessarily - hence the qualifier “weak”).

We show that weak-veto rules are characterized by strategy-proofness,

strong efficiency and unanimity-basedness, a property imposing that the rule be

robust to changes in preferences that do not alter the structure of unanimous

agreement in the electorate. This characterization is tight. As a result of their

dependence on patterns of unanimous consent, weak-veto rules are primarily

applicable in settings characterized by strong pre-existing views on the desir-

ability of different outcomes, whose recommendations should be modified only

if met by strenuous opposition. We argue that this characteristic resonates in

1Other recent papers (suggestive of the attention this problem is receiving in the litera-

ture) focusing on non-strategic aspects of preference aggregation include Baldiga [4], Muto

and Sato [13] and Laine, Ozkes and Sanver [11].
2In fairness, it should be noted that a sub-class of weak-veto rules (which I call K-weak-

veto rules in Section 4) were mentioned once previously in the literature, in the concluding

section of Bossert and Storcken [7], where the authors briefly discuss the tightness of their im-

possibility results. In an example, the authors claimed that these rules satisfy K-coalitional

strategy-proofness when the number of alternatives is restricted to three, but no subsequent

analysis was done to verify this statement. Though familiar with the Bossert-Storcken paper,

I became aware of this fact only after having identified weak-veto rules myself via extensive

numerical simulations. These simulations were based on a linear-programming formulation

of the existence problem for the case of three alternatives and three/four agents (write-up

and Matlab programs available upon request).
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several real-life examples of group decision-making, both legal and political.

Weak-veto rules do not in general satisfy the stronger non-manipulability

criterion of K-strategy-proofness. However, when the number of alternatives

is three, we show that a sub-class of weak-veto rules, namely K-weak-veto

rules, is K-strategy-proof. This settles in the affirmative a question posed

by Athanasoglou [3] regarding the compatibility of non-dictatoriality, strong

efficiency and K-strategy-proofness. Since we also show that in the three-

alternative model strong efficiency is equivalent to K-efficiency, a corollary of

this analysis is a possibility result regarding non-dictatoriality, K-efficiency

and K-strategy-proofness for the three-alternative model.

The paper is organized as follows. Section 2 introduces the formal model

and defines weak-veto rules. Section 3 presents and proves the characterization

of weak-veto rules, the paper’s main result. It also provides a critical discussion

of weak-veto rules, commenting on their practical applicability and axiomatic

underpinnings relative to other well-known classes of rules. Section 3 ends

with an inquiry into the implications of K-strategy-proofness in this setting.

Section 4 provides concluding remarks. The Appendix collects all proofs.

2 Model description

Let A = {a1, a2, ..., am} denote a finite set of m ≥ 3 alternatives and N =

{1, 2, ..., n} a finite set of n ≥ 2 agents.

Agents in N submit strict linear orderings3 over alternatives in A (i.e.,

complete, transitive, and antisymmetric binary relations) and the set of such

orderings is denoted by R. Given an ordering R and a pair of alternatives

(a, b), we use the notation a R b or (a, b) ∈ R to indicate that a is at least

as good as b according to R. A preference profile RN = (R1, R2, ..., Rn) is

an n-tuple of orderings, representing the preferences of all agents in N (here,

Ri denotes the preferences of agent i ∈ N). The set of possible preference

3From now on simply referred to as “orderings”.
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profiles is given by RN . An aggregation rule (or simply a rule) is a function

f : RN 7→ R, assigning to each preference profile an ordering.

Consistent with Grandmont [8], for any R,R′, R′′ ∈ R, we say that R′′ is

between R and R′, and write R′′ ∈ [R,R′], if and only if R∩R′ ⊆ R′′. That is,

ordering R′′ agrees with both R and R′ whenever the latter two agree. Bossert

and Sprumont [6] define the prudent extension of an ordering R ∈ R as the

binary relation R over orderings given by

R′′ R R′ ⇔ R′′ ∈ [R,R′], for all R′′, R′ ∈ R.

Hence, for an agent holding preferences R, R′′ is at least as good as R′ if and

only if R′′ is between R and R′, and it is strictly better if also R′′ 6= R′. Since

not all pairs of orderings are comparable in this way, the relation R is a partial

order (i.e., a reflexive, transitive, and anti-symmetric binary relation) on R

that is not complete. Indeed, the relation R ranks one ordering over another

if and only if the former unambiguously dominates the latter. As such, it can

be thought of as the most conservative (hence the moniker “prudent”) relation

over orderings that is consistent with an agent having preferences R.

Bossert and Sprumont [6] used the above prudent relation to propose the

following two concepts of efficiency and non-manipulability.

Efficiency. There do not exist RN ∈ RN , and R′ ∈ R such that R′ ∈

[Ri, f(RN)] for all i ∈ N and R′ 6= f(RN).

Thus, a rule satisfies efficiency if it produces an ordering such that there

exists no other ordering that all agents unambiguously prefer to it. In this

sense, it uses the aforementioned prudent extension of orderings to provide

an analogue of Pareto efficiency for the economic environment at hand (see

Bossert and Sprumont [6] for further discussion of this point).

Before defining strategy-proofness we need to introduce some further no-

tation. Given a profile RN ∈ RN and i ∈ N , let R−i denote the orderings

of all agents in N except i. Subsequently, given R′i ∈ R, define the profile4

4Assume that the obvious adjustments are made if i = 1 or i = n.
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(R′i, R−i) ≡ (R1, R2, ..., Ri−1, R
′
i, Ri+1, ..., Rn).

Strategy-proofness. There do not exist RN ∈ RN , i ∈ N and R′i ∈ R such

that f(R′i, R−i) ∈ [Ri, f(RN)] and f(R′i, R−i) 6= f(RN).

Thus, strategy-proofness ensures that by misreporting one’s preferences it

is not possible to obtain an ordering that unambiguously dominates that under

truthfulness. As such, it imposes a minimal standard of non-manipulability.

An additional property that Bossert and Sprumont discuss is strong effi-

ciency (they refer to it as “local unanimity” – I adopt the arguably better-

suited name used by Harless [9]). Well-known since the seminal work of Ar-

row [2], strong efficiency applies to preference profiles in which there is unan-

imous agreement over individual binary comparisons. When such unanimous

agreement is present, strong efficiency requires that the rule must also respect

its wishes.

Strong efficiency. For all RN ∈ RN we have
⋂
i∈N

Ri ⊆ f(RN).

Note that strong efficiency implies efficiency (see footnote 11 in Harless [9]).5

The reverse direction can be easily seen not to hold. For instance, status-quo

rules satisfy efficiency but fail strong efficiency [6, 3].

Given a profile RN ∈ RN and a complete, reflexive and anti-symmetric

relation � on A (used to break ties if the number of agents is even and there

is a 50-50 split), define the majority relation M�(RN) on A by

M�(RN) ≡
{

(a, b) ∈ A× A : |i ∈ N : aRib| > |i ∈ N : bRia|

or |i ∈ N : aRib| = |i ∈ N : bRia| and a � b

}
. (1)

The relation M� is complete and reflexive, and it is anti-symmetric if n is odd.

We are now ready to define majority-basedness, a property ascribing primary

significance to the majority relation when deriving the social ordering.

5Note that Bossert and Sprumont [6] contains a typo in this regard, as it claims the two

properties are independent.
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Majority-basedness. For all RN , R̃N ∈ RN ,

M�(RN) = M�(R̃N)⇒ f(RN) = f(R̃N). (2)

Majority-based rules thus only retain information regarding the results of

majority comparisons between alternatives. There is a plethora of such rules

including the all-important class of tournament solutions (Laslier [12], Bossert

and Sprumont [6]). Among a multitude of features, they have the important

characteristic of coinciding with the majority relation whenever the latter is

transitive.

We now introduce a property that is, in a technical sense, similar to

majority-basedness. Given a profile RN ∈ RN , define the unanimity relation

U(RN) on A by

U(RN) ≡
⋂
i∈N

Ri = {(a, b) ∈ A× A : |i ∈ N : aRib| = n}. (3)

For any profile RN , the relation U(RN) is a partial order (i.e., a reflexive, anti-

symmetric and transitive binary relation) on A. By definition, all strongly

efficient orderings are supersets of U(RN); furthermore, for any pair of al-

ternatives (a, b) ∈ A × A inclusion in U(RN) obviously implies inclusion in

M�(RN), i.e., aU(RN)b⇒ aM�(RN)b.

Unanimity-basedness. For all RN , R̃N ∈ RN ,

U(RN) = U(R̃N)⇒ f(RN) = f(R̃N). (4)

Unanimity-basedness stipulates that a rule should be invariant to changes

in agent preferences that do not alter the underlying unanimity relation of

the electorate. As such, it implies that the rule can be recast as a function

from U to R, where U is the set of partial orders on A. It is straightforward

to check that unanimity-basedness implies Bossert and Storcken’s [7] extrema

independence axiom, and thus also precludes dictatoriality. From a practical

standpoint, in Section 3.2 we argue that unanimity-based rules can be found in

a number of real-life settings of group decision-making, both legal and political.
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Unanimity-basedness is clearly a strong requirement. It is thus natural to

wonder which known rules are able to meet it. Among the strategy-proof rules

examined by Bossert and Sprumont [6], status-quo rules are the only ones that

are unanimity-based. This can be readily from their definition in Bossert and

Sprumont, and also from their reformulation in Eq. (6) of Athanasoglou [3].6

Proposition 1 All status quo rules are unanimity-based.

Proof. See Appendix.

Weak-veto rules. Let us now formally introduce weak-veto rules. Given an

ordering o = R1 � R2 � .... � Rm! on R, the weak-veto rule V o is defined as

the output of the following algorithm:

Input: profile RN = (R1, R2, ..., Rn)

for k = 1 : m!

if Rk ⊇ U(RN)

then V o(RN) = Rk. STOP, exit loop.

end

end

Figure 1: Defining weak-veto rule V o for o = R1 � R2 � .... � Rm!.

Thus, for each profile RN weak-veto rule V o assigns to it the highest-ranked

ordering in o satisfying strong efficiency. Since by definition Rj ⊇ U(RN) for

all j ∈ N , the above algorithm is well-defined and guaranteed to terminate.

Weak-veto rules can be interpreted in the following way. Suppose order-

ing o represents a pre-existing consensus view on the relative desirability of

different outcomes (in our case, orderings). Moreover, assume the recommen-

dations of ordering o should always be heeded, unless they result in unanimous

6That monotonic majority alteration rules and Condorcet-Kemeny rules are not

unanimity-based is obvious.
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opposition on the part of the agents. As we are dealing with orderings, such op-

position takes the form of unanimous disagreement regarding individual binary

comparisons. Thus, the decision-maker should go down ordering o and pick

its highest-ranked element that does not meet such resistance. Section 3.2

offers a more in-depth discussion and interpretation of weak-veto rules and

their axiomatic underpinnings, while Section 3.3 compares them to monotonic

majority alteration rules and status-quo rules.

3 The characterization

3.1 The main result

The proof of the main result frequently invokes the following Lemma.

Lemma 1 Suppose rule f satisfies unanimity-basedness and strategy-proofness.

Then, for all R1
N , R

2
N ∈ RN we have

U(R1
N) ⊆ U(R2

N) ⊆ f(R1
N) ⇒ f(R1

N) = f(R2
N).

Proof. See Appendix.

Lemma 1 is reminiscent of Arrow’s choice axiom (Arrow [1]). It implies

that if an ordering R is selected from a set of strongly efficient orderings, then R

must also be picked when considering any subset of this set for which it does

not violate strong efficiency. For example, if A = {a, b, c} and rule f picks

ordering R = abc7 when there is no unanimous agreement among agents with

respect to any pair of alternatives, then it should also pick R when unanimous

agreement among agents is confined to everyone ranking a over b.

We are now ready to state the paper’s main result.

Theorem 1 A rule satisfies strong efficiency, unanimity-basedness, and strategy-

proofness if and only if it is a weak-veto rule.

7Where we are using the shorthand notation R = a1a2a3 for R =

{(a1, a1), (a2, a2), (a3, a3), (a1, a2), (a1, a3), (a2, a3)}.
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Proof. See Appendix.

Remark 1. The above characterization is tight since (a) Condorcet-Kemeny

rules satisfy strong efficiency and strategy-proofness but not unanimity-basedness,

(b) status-quo rules satisfy unanimity-basedness and strategy-proofness but

not strong efficiency, and (c) we can construct rules satisfying unanimity-

basedness and strong efficiency that violate strategy-proofness. The latter

can be done by taking a function f : RN 7→ R that respects unanimity-

basedness (meaning that it can be recast as f : U 7→ R) and strong efficiency,

but violates Lemma 1 and thus also strategy-proofness. For example, sup-

pose A = {a, b, c}, f is unanimity-based and strongly efficient and satisfies

f({(a, a), (b, b), (c, c)}) = abc and f({(a, a), (b, b), (c, c), (a, b)}) = cab.8 As-

sume, further, that profile RN is such that U(RN) = {(a, a), (b, b), (c, c), (a, b)}

so that f(RN) = cab. Suppose now that agent i has preferences Ri = abc. If

this agent misreports his preferences submittingR′i = bac, we have U(R′i, R−i) =

{(a, a), (b, b), (c, c)}, so that f(R′i, R−i) = abc and strategy-proofness is vio-

lated.

3.2 Discussion

It is legitimate to wonder about the relevance, theoretical as well as practical,

of the above findings. In addressing this issue one must grapple with two inter-

related questions: (i) Are weak-veto rules a desirable way of dealing with the

preference aggregation problem? and; (ii) Are their axiomatic underpinnings

compelling?

Let us first discuss point (i). It is fair to say that weak-veto rules, with

their strong emphasis on unanimity, are not suitable for all settings. For in-

stance, it would be ludicrous to use them as a way of ranking and selecting

regular elected representatives, when majority-based rules would be far more

8Note that U(RN ) = {(a, a), (b, b), (c, c)} means that in profile RN there is no unanimous

agreement beyond the generic one due to the Ri’s reflexivity.
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appropriate. Instead, weak-veto rules are appealing in environments charac-

terized by a strong pre-existing understanding of socially desirable outcomes.

In such settings, an exogenously-given ordering over outcomes (in our mod-

eling environment, an ordering of orderings) should be consulted closely and

its recommendations rejected only if met by extreme resistance. Indeed, the

decision-maker should pick the first element on this list that does not, in any

way, go against the unanimous wishes of the agents. In this sense, a high bar

must be passed before changes are made to pre-existing arrangements, which

in turn serves to encourage stability.

An additional motivation for the use of weak-veto rules can be found in

their small informational requirements. All that is needed to apply them is

information on the unanimity relation on alternatives. In cases like those just

mentioned, where there is a strong a priori understanding on the desirability

of different outcomes, such simplicity would seem to be in order.

In addressing point (ii), one primarily needs to justify the desirability of

unanimity-basedness as an axiom.9 While admittedly a very strong property,

unanimity-basedness is not without practical relevance. Most famously, crim-

inal law jury trials in the United States and other parts of the world require

unanimous agreement to issue a verdict. If such consensus is not reached then

a mistrial is declared, with some default outcome typically being implemented.

Conversely, in the political sphere, a number of prominent political bodies are

known to use unanimity-based methods in their decision-making processes. For

example, the five permanent members of the United Nations Security Council

(United States, Russia, China, France, United Kingdom) have veto power in

the approval of all “substantive” (as opposed to “draft”) resolutions. These

countries can also use their veto power in the selection of the United Nations’

Secretary General. Another pertinent example of unanimity-basedness in po-

litical decision-making can be observed in the European Council’s deliberative

procedures. There, unanimous agreement is needed for decisions to be reached

9By contrast, strong efficiency and especially strategy-proofness are easier to accept.
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in many important areas including EU membership, taxation, foreign policy,

common security, justice and home affairs, and many others.

To be sure, the correspondence of these real-life examples to unanimity-

based preference aggregation, as discussed in this paper, is not one-to-one.

Still, I would argue that it is not too much of a stretch to claim that a relevant

connection between theory and practice, worthy of mention, exists.

3.3 Comparison with other rules

It is interesting to compare weak-veto rules to two strategy-proof classes of rules

discussed by Bossert and Sprumont, namely monotonic majority-alteration

rules and status-quo rules.

Monotonic majority alteration rules. Let us begin with monotonic ma-

jority alteration rules. These rules are majority-based and satisfy an additional

requirement. They take the majority relation and eliminate its possible intran-

sitivities by using a so-called monotonic alteration. For clarity, we provide a

brief formal description. Denote by T the set of tournaments, i.e., the set of

complete, reflexive, and anti-symmetric binary relations, on A. A monotonic

alteration φ is a function from T to R such that for any two distinct tourna-

ments T1 and T2 we have T2 ∈ [R, T1] ⇒ φ(T1) 6∈ [R, φ(T2)]. In words, if a

tournament T2 is between ordering R and tournament T1, then a monotonic

alteration cannot reverse this betweenness comparison. Bossert and Sprumont

characterized monotonic majority alteration rules with majority-basedness,

unanimity (a minimal efficiency requirement imposing that if all agents have

the same orderings, then the rule must also pick this ordering), and strategy-

proofness. Among others, the well-known Slater rule can be classified as a

monotonic majority alteration rule.

The relation between the axiomatic foundations of monotonic majority al-

teration rules and weak-veto rules is worth commenting on. The first thing

to note is that the characterization of weak-veto rules significantly strength-
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ens the efficiency requirement from unanimity to strong efficiency. This is

not surprising, as Bossert and Sprumont show that some monotonic major-

ity alteration rules fail strong efficiency. Second, in passing from monotonic

majority alteration rules to weak-veto rules, majority-basedness is dropped in

favor of unanimity-basedness. These two properties are similar in a technical

sense, in that they both involve very summary informational requirements,

but unanimity-basedness is clearly the more controversial of the two. It is not

appropriate in many of the settings that would call for majority-based rules.

Rather, as discussed earlier, unanimity-basedness is applicable in decision-

making contexts where primary emphasis is placed on unanimous consent.

Status-quo rules. Let us now address status-quo rules, arguably the closest

relative of weak-veto rules. These rules are similar to weak-veto rules in that

they, too, consider exogenous preferences when deriving the social ordering.

The key difference lies in the fact that they take into account an exogenous

ordering, representing a status-quo outcome to be improved upon, as opposed

to an exogenous ordering on orderings. Formally, given R0 ∈ R and its pru-

dent extension R0, the status-quo rule associated with R0 assigns to each

profile RN the unique minimal common upper bound of the set of orderings

{R0, R1, R2, ..., Rn}.10 That is, it selects the unique ordering R satisfying (i)

R ⊇ R0 ∩
⋃n

i=1Ri and; (ii) R′ ⊇ R0 ∩
⋃n

i=1Ri ⇒ R′ ∈ [R0, R] for all R′ ∈ R

such that R′ 6= R. Athanasoglou [3] showed that this is equivalent to pick-

ing the ordering that subsumes R0 ∩
⋃n

i=1Ri that is simultaneously closest in

Kemeny distance11 from all the Ri’s.

Weak-veto and status-quo rules thus improve on differents sorts of a pri-

ori arrangements. The former consider a status-quo ordering of orderings and

follow its recommendations to the extent that they do not conflict with strong

efficiency -that is, they pick its highest-ranked element to satisfy strong effi-

10Status-quo rules are reminiscent of the well-known class of median rules in single-peaked

social choice (Moulin [14]).
11More on Kemeny distances in the following sub-section.

13



ciency. Conversely, the latter consider a status-quo ordering and seek to im-

prove upon it by taking its minimal common upper bound with the preferences

of the agents. This improvement produces an ordering that is simultaneously

“closest” to the preferences of all agents, subject to restriction that it sub-

sume the intersection of the status-quo ordering with the union of all agent

orderings.

Thus, weak-veto and status-quo rules improve upon exogenously-given rec-

ommendations in different ways. How do these differences translate on the

axiomatic plane? Clearly, status-quo rules are unanimity-based and they are

also efficient. They are not, however, strongly efficient. Instead, they satisfy

a property known as population monotonicity which, together with efficiency,

characterizes them (Bossert and Sprumont [6], Harless [9]). This property stip-

ulates that the departure of any subset of agents results in a social ordering

that all remaining agents find at least as good as the original (according to the

prudent relation of their preferences). Furthermore, in a version of the model

with a fixed population, Harless [9] showed that status-quo rules are charac-

terized by efficiency and a related solidarity axiom known as adjacent welfare

dominance.12 An immediate corollary of these results is that weak-veto rules

do not, in general, satisfy either population monotonicity or adjacent welfare

dominance.

3.4 Kemeny-based concepts of efficiency and strategy-

proofness

In this section we address the ability of weak-veto rules to satisfy stronger non-

manipulability and efficiency criteria introduced by Athanasoglou [3], namely

12This is an alternative, more technical, solidarity criterion focusing on the rule’s impli-

cations when a single agent changes his preferences. It implies that, when this change in

preferences is “small” (i.e., the new ordering is adjacent to the original one), then either all

other agents find the new ordering at least as good as the original one, or they all find the

original one at least as good as the new one.
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K-strategy-proofness and K-efficiency (the prefix K is meant to suggest “Ke-

meny”).

Given two orderings R,R′ ∈ R, define the set D(R,R′) = (R\R′)∪(R′\R),

which includes all pairs of alternatives on which R and R′ disagree. The

Kemeny distance [10] between R and R′, denoted by δ(R,R′), is given by

δ(R,R′) = |D(R,R′)|. We now formally define K-strategy-proofness.

K-strategy-proofness. There do not exist RN ∈ RN , i ∈ N and R′i ∈ R

such that δ(f(R′i, R−i), Ri) < δ(f(RN), Ri).

Similarly to the the three classes of strategy-proof rules analyzed by Bossert

and Sprumont [6], weak-veto rules do not in general satisfy this strong non-

manipulability requirement (see following Remarks 3 and 4). Nevertheless,

when the number of alternatives is limited to three, a certain sub-class of

weak-veto rules based on Kemeny distances, K-weak-veto rules, does. We

proceed to define them.

K-weak-veto rules are defined as the sub-class of weak-veto rules V o for

which the ordering o satisfies:

(i) There exists R̃ ∈ R such that for all Ri, Rj ∈ R, the following holds:

δ(R̃, Ri) < δ(R̃, Rj)⇒ Ri o Rj.

In words, o assigns highest priority to some R̃ ∈ R, and orders the remaining

orderings in decreasing Kemeny distance to R̃. For each choice of R̃ this

operation gives rise to a distinct partial order, which can be subsequently

extended to a total order in a number of ways.

Proposition 2 Suppose m = 3. All K-weak-veto rules satisfy K-strategy-

proofness.

Proof. See Appendix.

We now address efficiency. To this end, Athanasoglou [3] used similar

Kemeny-based concepts to propose a stronger efficiency property than strong

efficiency, K-efficiency.
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K-efficiency. There do not exist RN ∈ RN , and R′ ∈ R such that δ(R′, Ri) ≤

δ(f(RN), Ri) for all i ∈ N and there exists j ∈ N such that δ(R′, Rj) <

δ(f(RN), Rj).

It is easy to see that K-efficiency implies strong efficiency (e.g., Proposition

2 in [3]), whereas the opposite direction does not in general hold. Nonetheless,

when the number of alternatives is limited to three, it turns out that it does

and the two concepts are equivalent.

Proposition 3 When m = 3, a rule f is strongly efficient if and only if it is

K-efficient.

Proof. See Appendix.

A corollary of Theorem 1 and Propositions 2 and 3 is that K-weak-veto

rules are both K-efficient and K-strategy-proof for the three-alternative model.

Corollary 1 Suppose m = 3. All K-weak-veto rules are K-efficient and K-

strategy-proof.

Remark 2. From previous work we know that when m = 3, all Condorcet-

Kemeny rules (which are by definition K-efficient) satisfy K-strategy-proofness

on a large profile subdomain, while status-quo rules are K-strategy-proof

but fail strong efficiency and thus also K-efficiency (see Theorems 1 and 2

in [3]). Corollary 1 further extends our understanding of the three-alternative

case, demonstrating that there exists a non-dictatorial rule satisfying both K-

efficiency and K-strategy-proofness. This result establishes the compatibility

of these three properties for the restricted model, thereby settling a question

posed by Athanasoglou [3]. In fact, one may also use the proof of Theorem

1 in Athanasoglou [3] to establish that, when m = 3, all Condorcet-Kemeny

rules whose orderings follow the structure of o in the definition of K-weak-veto

rules, satisfy K-strategy-proofness on the full domain.

Remark 3. Note that Proposition 2 does not necessarily hold for non-K-

weak-veto rules. For instance, suppose R1 = abc, R2 = acb, R3 = cab, and
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o : bac � cab � .... Since U(RN) = {(a, a), (b, b), (c, c), (a, b)}, we will have

f(RN) = cab yielding δ(R1, f(RN)) = 2. Now suppose R′1 = bac. Then, since

U(R′1, R−1) = {(a, a), (b, b), (c, c)}, we will have f(R′1, R−1) = bac, yielding

δ(R1, f(R′1, R−1)) = 1 and thus violating K-strategy-proofness.

Remark 4. Note, further, that Proposition 2 does not necessarily hold for

m > 3. For instance, suppose R1 = cadb, R2 = badc, R3 = dabc, and

suppose f is K-weak-veto rule such that (i) dcba is ranked first, and (ii)

adcb is ranked first among orderings having Kemeny distance 3 from dcba.

Since U(RN) = {(a, a), (b, b), (c, c), (d, d)}, we have f(RN) = dcba, so that

δ(R3, f(RN)) = 3. Now suppose R′3 = badc. Then, since U(R′3, R−3) =

{(a, a), (b, b), (c, c), (d, d), (a, d)}, and all orderings R such that (a, d) ∈ R have

Kemeny distance three or more from dcba, we must have f(R′3, R−3) = adcb.

This in turn implies that δ(R3, f(R′3, R−3) = 2, thereby violating K-strategy-

proofness.

Since we can relatively easily find K-weak veto rules that fail K-strategy-

proofness, we suspect that no weak-veto rules are K-strategy-proof. If this is

in fact true then, combined with Theorem 1, it would establish an impossibility

result for the m > 3 case regarding strong efficiency, unanimity-basedness, and

K-strategy-proofness. It would also suggest that the existence of nontrivial K-

strategy-proof rules for the general case remains unresolved.

Remark 5. Finally, note that the efficiency component of Corollary 1 is not

true for m > 3 since it is possible to construct K-weak-veto rules that violate

K-efficiency (one may use the example following Proposition 2 in [3] to this

effect).

4 Conclusion

This paper has been concerned with preference aggregation in the classical

Arrovian framework. It proposed a new class of rules, weak-veto rules, and

showed that they are the only strategy-proof and strongly efficient rules that
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satisfy an additional invariance property, unanimity-basedness. This charac-

terization is tight. Weak-veto rules are primarily applicable in contexts in

which there exists a strong pre-existing view on the desirability of different

outcomes that should be revised only if met with strenuous opposition. This

feature resonates in several real-life instances of group decision-making, legal

as well as political.

When non-manipulability requirements are strengthened to K-strategy-

proofness the positive results are weakened, except for the case of three alter-

natives and a sub-class of weak-veto rules in which priorities are determined on

the basis of Kemeny distances. This possibility result (coupled with the equiv-

alence of strong efficiency and K-efficiency for the three-alternative model)

demonstrates that when the number of alternatives is limited to three, K-

strategy-proofness is compatible with a strong efficiency requirement such as

K-efficiency without needing to resort to dictatorial rules.

The present work suggests several fruitful avenues for future research.

An impossibility result regarding K-strategy-proofness, strong efficiency, and

unanimity-basedness (and perhaps even non-dictatoriality) seems probable. If

true, this would mean that the existence of non-trivial K-strategy-proof rules

remains an open question. Finally, a characterization of strategy-proofness

that encompasses all rules known to satisfy it (monotonic majority alteration,

status-quo, Condorcet-Kemeny, and weak-veto) would significantly deepen

our understanding of non-manipulability in preference aggregation, but seems

much harder to come by.

Appendix

A1: Proofs

Proposition 1. Consider a profile RN and status-quo ordering R0. The

status-quo rule associated with R0 assigns to each profile RN the unique or-
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dering R satisfying (i) R ∈ [R0, Ri] for all i ∈ N and; (ii)
{
R′ ∈ [R0, Ri] for all

i ∈ N
}
⇒ R′ ∈ [R0, R] for all R′ ∈ R such that R′ 6= R.

Note that the condition R ∈ [R0, Ri] for all i ∈ N is equivalent to requiring

R ⊇ R0 ∩
⋃n

i=1Ri. Now, consider two profiles RN and R′N such that U(RN) =

U(R′N) and suppose there exists a pair of alternatives (a, b) such that (a, b) ∈⋃n
i=1Ri but (a, b) 6∈

⋃n
i=1R

′
i. This implies that (b, a) ∈ U(R′N) and (b, a) 6∈

U(RN), a contradiction. Thus, we conclude that for all pairs of profiles RN

and R′N we have U(RN) = U(R′N) ⇒
⋃n

i=1Ri =
⋃n

i=1R
′
i. Combining this

fact with the definition of status-quo rules mentioned above, we conclude that

two profiles having the same unanimity relation will necessarily yield identical

outcomes under any status-quo rule.

Lemma 1. Consider any two profiles R1
N , R

2
N satisfying U(R1

N) ⊆ U(R2
N)

and f(R1
N) ⊇ U(R2

N). Let R̃1
N be a profile such that there exist two orderings

R1
1 and R1

2 such that13 for all i ∈ N we have R̃1
i ∈ {R1

1, R
1
2} and U(R̃1

N) =

R1
1 ∩ R1

2 = U(R1
N). Similarly, consider a profile R̃2

N such that for all i ∈ N we

have R̃2
i ∈ {R2

1, R
2
2} and U(R̃2

N) = R2
1∩R2

2 = U(R2
N). By Unanimity-basedness

we have that f(R1
N) = f(R̃1

N) and f(R2
N) = f(R̃2

N).

By the definition of the betweeness relation, we know that {R ∈ R : R ⊇

R1
1 ∩ R1

2} = [R1
1, R

1
2] and {R ∈ R : R ⊇ R2

1 ∩ R2
2} = [R2

1, R
2
2]. Moreover,

since U(R̃1
N) ⊆ U(R̃2

N) we have [R1
1, R

1
2] ⊇ [R2

1, R
2
2], where we suppose without

loss of generality that R1
1 ∩ R2

1 ⊇ R1
1 ∩ R2

2 so that R2
1 has more elements in

common with R1
1 than R2

2 does. Now, consider a profile R̂N where for all

i ∈ N we have R̂i ∈ [R1
1, R

2
2] and U(R̂N) = R1

1 ∩ R2
2, implying that we also

have U(R̂N) ⊇ U(R̃1
N).14 We argue that f(R̂N) = f(R̃1

N). Suppose not, so that

13This is a slight abuse of notation since R1
1 and R1

2 do not necessarily belong in profile

R1
N .
14If the reader finds this notation hard to follow, an illustrative ex-

ample would be
[
R1

1, R
1
2

]
= [cdab, bacd],

[
R2

1, R
2
2

]
= [cbda, cbad], and[

R1
1, R

2
2

]
= [cdab, cbad], so that U(R̃1

N ) = {(a, a), (b, b), (c, c), (d, d), (c, d)},

U(R̃2
N ) = {(a, a), (b, b), (c, c), (d, d), (c, d), (c, b), (c, a), (b, d), (b, a)}, and U(R̂N ) =
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f(R̂N) 6= f(R̃1
N). Distinguish now between two cases according to whether in

profile R̂N (a) there exists an agent i ∈ N having preferences R̂i = f(R̃1
N), or

(b) not. If (a) holds, suppose this agent i misreports his preferences to R′i = R1
2

so that U(R′i, R̂−i) = U(R̃1
N). By unanimity-basedness, f(R′i, R̂−i) = f(R̃1

N)

violating strategy-proofness. Thus, we must have f(R̂N) = f(R̃1
N). If case

(b) is true, so that in profile R̂N no agent i has preferences R̂i = f(R̃1
N),

then define a profile R̄1
N satisfying U(R̄1

N) = U(R̂N) in which such an agent

exists and use unanimity-basedness to deduce that f(R̂N) = f(R̄1
N). Then

consider profile R̄1
N and use the same argument as before to derive a violation

of strategy-proofness for the agent holding preferences f(R̃1
N) to conclude that

f(R̄1
N) = f(R̃1

N). This in turn implies f(R̂N) = f(R̃1
N).

We focus now on profiles R̂N and R̃2
N . Again, distinguish between two

cases according to whether in profile R̃2
N (a) there exists i ∈ N such that

R̃2
i = f(R̂N) = f(R̃1), or (b) not. If case (a) holds, suppose this agent i

misreports his preferences to R′i = R1
1 so that U(R′i, R̃

2
−i) = U(R̂N). As a

result, f(R′i, R̃
2
−i) = f(R̂N) violating strategy-proofness. Thus, we must have

f(R̂N) = f(R̃2
N). On the other hand, if case (b) holds and such an agent does

not exist, introduce a profile R̄2
N in which it does and use Unanimity-basedness

to repeat the same argument as before to conclude that f(R̂N) = f(R̄2
N) =

f(R̃2
N). Together with previously established f(R̂N) = f(R̃1

N) this implies

f(R̃1
N) = f(R̃2

N), which in turn yields f(R1
N) = f(R2

N).

Theorem 1. We begin with the easier “⇒” direction. That weak-veto rules

satisfy strong efficiency and unanimity-basedness is obvious by construction.

Let us address strategy-proofness. Suppose f is a weak-veto rule with order

R1 � R2 � ... � Rm!. Let RN ∈ RN and suppose f(RN) = Rk. By strong

efficiency this means that U(RN) ⊆ Rk. Suppose that f fails strategy-proofness

at RN . This implies that there exist i ∈ N and R′i such that f(R′i, R−i) ∈

{(a, a), (b, b), (c, c), (d, d), (c, d), (c, a), (c, b)}.
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[Ri, R
k] and f(R′i, R−i) 6= Rk. Suppose f(R′i, R−i) = Rl, where l 6= k. Thus,

we have U(R−i) ∩R′i ⊆ Rl. Let us distinguish between two cases:

(i) l < k. Hence, U(R−i) ∩ R′i ⊆ Rl and U(RN) 6⊆ Rl. Since U(RN) ⊆ Rk,

there must exist a pair of alternatives (x, y) ∈ Ri such that (x, y) ∈ Rk

and (x, y) 6∈ Rl. This contradicts Rl ∈ [Ri, R
k].

(ii) l > k. Hence, U(R−i)∩R′i ⊆ Rl and U(R−i)∩R′i 6⊆ Rk. Since U(RN) ⊆

Rk, there must exist a pair of alternatives (x, y) ∈ R′i such that (x, y) 6∈

Ri, (x, y) 6∈ Rk and (x, y) ∈ Rl. Thus, (y, x) ∈ Ri, (y, x) ∈ Rk, and

(y, x) 6∈ Rl. This contradicts Rl ∈ [Ri, R
k].

We now turn to the “⇐” direction. Recall that U denote the set of partial

orders of A. By unanimity-basedness, it is possible to recast the rule f as a

function from U to R. So, we have f : U 7→ R, where f(U) = f(RN) for

all RN ∈ RN such that U(RN) = U . Consequently, we re-write Lemma 1 to

suppress its dependence on profiles: For any two U1, U2 ∈ U , we have

U1 ⊆ U2 ⊆ f(U1) ⇒ f(U1) = f(U2). (5)

Note that rule f induces a binary relation �f on R defined as follows

R1 �f R2 ⇔ ∃U ∈ U such that R1, R2 ⊇ U and f(U) = R1. (6)

It must be stressed that �f is not necessarily complete. This means that it is

possible to have a pair of orderings such that R1 6�f R2 and R2 6�f R1 .

We use �f to define the binary relation �f∗
on R in the following way:

1. R1 �f R2 ⇒ R1 �f∗
R2, for all R1, R2 ∈ R, and

2. {R1 �f R2 and R2 �f R3} ⇒ R1 �f∗
R3, for all distinct R1, R2, R3 ∈

R.

We will show that �f∗
is a partial order (i.e., a reflexive, transitive, and anti-

symmetric binary relation) on R.
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That �f∗
is reflexive is obvious (for any ordering R ∈ R just apply U = R

to the right-hand side of Eq. (6) and impose strong efficiency on f). Let us

show it is also anti-symmetric. Suppose there exist U ∈ U and R1, R2 ∈ R

such that f(U) = R1 and R1, R2 ⊇ U . This implies that R1 �f∗
R2. Suppose,

further than there exists Ũ ∈ U such that f(Ũ) = R2 and R1, R2 ⊇ Ũ . This

implies R2 �f∗
R1. Consider the partial order R1 ∩ R2. Since R1 ⊇ U and

R2 ⊇ U , we have U ⊆ R1 ∩ R2. Similarly, we have Ũ ⊆ R1 ∩ R2. Applying

Eq. (5) to U and R1 ∩R2, we have R1 = f(U) = f(R1 ∩R2). Doing the same

for Ũ and R1 ∩R2 implies R2 = f(Ũ) = f(R1 ∩R2). Hence, R1 = R2.

We now show that �f∗
satisfies transitivity. We do this by showing that for

any three distinct orderings R1, R2, and R3 we have {R1 �f R2 and R2 �f

R3} ⇒ R3 6�f R1. Suppose otherwise. Thus, there exist U1, U2, U3 ∈ U such

that:

(a) f(U1) = R1, and R1, R2 ⊇ U1.

(b) f(U2) = R2, and R2, R3 ⊇ U2.

(c) f(U3) = R3, and R3, R1 ⊇ U3.

The anti-symmetry of relation �f∗
immediately implies that R3 6⊇ U1, R1 6⊇

U2, and R2 6⊇ U3. Moreover, by similar reasoning as before, we must have

f(R1∩R2) = R1, f(R2∩R3) = R2, and f(R3∩R1) = R3. To avoid immediate

contradictions via Eq. (5), we must have R3 6∈ [R1, R2], R1 6∈ [R2, R3] and

R2 6∈ [R1, R3].

Consider the partial order R1∩R2∩R3. We distinguish between two cases:

(i) f(R1 ∩ R2 ∩ R3) = Rk ∈ {R1, R2, R3}. Here, applying Eq. (5) to partial

orders R1∩R2∩R3 and Rk−1∩Rk (defining Rk−1 ≡ R3 when k = 1), we

obtain f(R1 ∩R2 ∩R3) = Rk = f(Rk−1 ∩Rk) = Rk−1, a contradiction.

(ii) f(R1 ∩ R2 ∩ R3) = Rl 6∈ {R1, R2, R3}. The definition of the betweeness

relation implies the following:{
R ∈ R : R ⊇ R1 ∩R2 ∩R3

}
=
{
R ∈ R : R ∈ [R1, R2] ∪ [R2, R3] ∪ [R3, R1]

}
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Thus by strong efficiency Rl = f(R1 ∩ R2 ∩ R3) ∈ [Rk−1, Rk] for some

k = 1, 2, 3 (again, defining Rk−1 ≡ R3 when k = 1), so that f(R1 ∩R2 ∩

R3) ⊇ Rk−1 ∩ Rk. Applying Eq. (5) to R1 ∩ R2 ∩ R3 and Rk−1 ∩ Rk we

obtain f(R1 ∩R2 ∩R3) = Rl = f(Rk−1 ∩Rk) = Rk−1, a contradiction.

Thus, we have showed that for any three distinct orderings R1, R2, and R3

we have {R1 �f R2 and R2 �f R3} ⇒ R3 6�f R1. As a result, the statement

{R1 �f∗
R2 and R2 �f∗

R3} ⇒ R1 �f∗
R3 results in no contradiction, and

we conclude that �f∗
is transitive.

Hence, �f∗
is a partial order on R. By the order-extension principle it

can be extended to a total order (i.e., an ordering), call it of
∗
. Now, let g

be a weak-veto rule having ordering of
∗
. We will argue that f = g. Take

any profile RN and let f(RN) = f(U(RN)) = Rl. By Eq. (6) we know that

ordering of
∗

is such that Rl is preferred to, and thus ranked first among, all

orderings in the set {R ∈ R : R ⊇ U(RN)}. As a result, we must also have

g(RN) = Rl = f(RN).

Proposition 2. Let A = {a, b, c}. Suppose g is a K-weak-veto rule with an

ordering o. Let RN ∈ RN . Suppose, without loss of generality, that Ri = abc

and that there exists R′i ∈ R such that δ(Ri, g(RN)) > δ(Ri, g(R′i, R−i)). We

distinguish between 4 cases:

(i) δ(Ri, g(RN)) = 0. Since 0 ≤ δ(Ri, R) for all R ∈ R, we immediately

reach a contradiction.

(ii) δ(Ri, g(RN)) = 1. Thus, we must have δ(Ri, g(R′i, R−i)) = 0. Hence,

Ri = g(R′i, R−i). This implies that rule g is not strategy-proof which

contradicts Theorem 1.

(iii) δ(Ri, g(RN)) = 3. Thus, we must have δ(Ri, g(R′i, R−i)) < 3. Then, it

must be the case that g(RN) = cba and g(R′i, R−i) 6= cba. This again

contradicts the strategy-proofness of g.
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(iv) δ(Ri, g(RN)) = 2. This is the only nontrivial case and we address it in

what follows.

Then δ(Ri, g(R′i, R−i)) < 2. If δ(Ri, g(R′i, R−i)) = 0, then g(R′i, R−i) = Ri

contradicting strategy-proofness. Suppose instead that δ(Ri, g(R′i, R−i)) = 1.

Then either g(RN) = cab or g(RN) = bca. Suppose without loss of generality

that g(RN) = cab (the proof for case g(RN) = bca is similar). Then, since

the rule is strategy-proof, g(R′i, R−i) = bac. We now argue how this leads to a

contradiction.

Distinguish between two cases:

(i) bac ⊇ U(RN). Then U(RN) = {(a, a), (b, b), (c, c)}, so cab must be

ranked first in o. Thus, since bac is the ordering that is farthest away

from cab and as such has lowest priority in o, unless Rj = bac for all j 6= i

and also R′i = bac, we must have g(R′i, R−i) 6= bac. But if that were true,

then by strong efficiency g(RN) ∈ {abc, bac}, contradicting g(RN) = cab.

(ii) bac 6⊇ U(RN). Then, it must be that Rj ∈ {abc, acb, cab} for all j 6= i.

This means that there must exist at least one j 6= i such that Rj = cab.

Thus, to make sure that both bac, cab ⊇ U(R′i, R−i)) it must be that

U(R′i, R−i)) = {(a, a), (b, b), (c, c)}. In which case bac must be ranked

first by o. But if that were the case, then g(RN) 6= cab because abc

is closer in Kemeny distance to bac than cab is. Again, we reach a

contradiction.

Proposition 3. Proposition 2 in Athanasoglou [3] establishes thatK-efficiency

implies strong efficiency. We now focus on the other direction. Let RN ∈ RN

and suppose rule f satisfies strong efficiency. We distinguish between 4 cases.

(a) |U(RN)| = 6. This implies that for all i ∈ N we have Ri = R for some

R. By strong efficiency, we must have f(RN) = R. Since this choice

coincides with the preferences of all agents, f satisfies K-efficiency.
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(b) |U(RN)| = 5. This implies that for all i ∈ N we have Ri ∈ {R1, R2}

for some R1, R2 such that δ(R1, R2) = 1, and there exist at least two

agents having different orderings. By strong efficiency, we must have

f(RN) ∈ {R1, R2}. Since this choice coincides with the preferences of at

least one agent, f satisfies K-efficiency.

(c) |U(RN)| = 4. This implies that for all i ∈ N we have Ri ∈ {R1, R2, R3}

for someR1, R2, R3 such that δ(R1, R2) = 1, δ(R2, R3) = 1, and δ(R1, R3) =

2, and there exist at least two agents having orderings R1 and R3, re-

spectively. By strong efficiency, we must have f(RN) ∈ {R1, R2, R3}.

If f(RN) ∈ {R1, R3}, or if f(RN) = R2 and there exists an agent with

ordering R2, then f(RN) coincides with the preferences of some agent.

Hence, the rule satisfies K-efficiency. Otherwise, if f(RN) = R2 and

no agent has ordering R2, we have δ(f(RN), Ri) = 1 for all i ∈ N .

Clearly, it is not possible to find another ordering R̃ 6= f(RN) such that

δ(Ri, R̃) ≤ δ(Ri, f(RN)) for all i ∈ N with strict inequality for at least

one i. Thus, f satisfies K-efficiency.

(d) |U(RN)| = 3. This implies that either (i) there exist i, j ∈ N such that

δ(Ri, Rj) = 3, or (ii) there is no such pair but there exist i, j, k ∈ N

such that δ(Ri, Rj) = δ(Rj, Rk) = δ(Rk, Ri) = 2 and Ri, Rj, Rk are

all distinct. In both cases, we have U(RN) = {(a, a), (b, b), (c, c)} so that

strong efficiency imposes no restrictions on the value of f(RN). However,

this is also true of K-efficiency: for any choice of f(RN), it is not possible

to find an ordering R̃ 6= f(RN) such that δ(Ri, R̃) ≤ δ(Ri, f(RN)) for

all i ∈ N with strict inequality for at least one i. Thus, K-efficiency is

generically satisfied.

We conclude that f is K-efficient.
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