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Abstract

The purpose of this paper is to propose a symmetric two player general contest model in order to study

the relationship between equilibria and crucial structural parameters of the model. In particular, given a

general specification of the players’ set of possible entries, of the agents’ utility functions, and of the rules

that presides over outcomes, we aim to analyze the characteristics of the set of equilibria as a function of

structural characteristics of the contest technology and of the outcome function. Focusing on three main

cases, we study the effect of introducing spillover in the marginal productivity of agents’ efforts and in

the polarization between agents’ goals. Firstly, we show that without spillover the equilibrium efforts’

intensity is uniquely connected to the ratio between marginal productivity of effort and polarization.

Secondly, we are able to connect existence of multiple symmetric and asymmetric equilibria to the intensity

of spillover effects into outcomes. Finally, we show that spillover in contest technology can imply the non

existence of equilibria.
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1 Introduction

Many interesting economic, social or political situations can be analyzed as games where players expend costly,

non refundable resources trying to affect the probability of getting a desired result. These games are called

contests and they model any situation where agents submit entries that influence the probability of reaching

a desired outcome which bears some costs for the action; entries might be bids, efforts, commitments of non

refundable resources. Contests are games with strong mutual externalities: a contestant expands efforts to

increase the likelihood of getting the desired outcome, but at the same time this implies a reduced probability

of getting the desired outcome by the other contestants. Other type of externalities might indeed emerge,

e.g. when agents can directly sabotage or when the desired outcomes are directly affected by bids, however

the externality effect on probabilities is the fundamental force at work in contests. The prevalence of contests

in economic, social and political life is immediate: costly marketing and advertising competitions to get a

bigger share of the market, tournaments or more general reward/punishment mechanisms in organizations,

entertaining competitions (sports, talent shows etc.), rent-seeking situations, military, social and political

conflicts, all-pay auctions, litigations, predation activities, political competition, R & D competition, are

all possible examples of application of contest theory. These seemingly different situations share a common

content: they are different ways of conflicting to increase the likelihood to reach a desired outcome. In

this general sense, conflicts are ubiquitous in social and political environments and are a significant part

of human history, whether they take the form of wars, disputes, strikes, litigations, lobbying, competitions,

tournaments, demonstrations, insurrections, terrorism. In this paper we will consider conflicts in this general

sense as the paradigm of a contest.

Contests can be distinguished referring to several characteristics concerning their structure and the agents’

possible choices. For instance, we can classify them depending on whether agents’ choices are sequential or

simultaneous, entry is endogenous or fixed, cost are exogenous or endogenous, and, more generally, specifying

the set of possible choices, the utilities and the rules governing outcomes. The literature on contests is vast

and we make no attempt to cover it in details, the interest reader should consult Corchon 2007, Konrad 2006

and Nitzan 1994. After the seminal contributions by Tullock 1967 and 1980 and Krueger 1974, a general

analysis of rent-seeking games has been provided by Pérez-Castrillo 1992 and by Riaz et al. 1995, while

Corchon 2007 and Konrad 2009 provide formal models for contests and review the main possible applications

and generalizations.

We think the standard contest models suffer from two shortcomings. First, standard models have a

unique interior fully stable equilibrium, as shown in Szidarovszky and Okuguchi 1997. This is unsatisfactory

because the above phenomena modelled as contests, in reality often present characteristics that are not

compatible with a unique interior equilibrium. For example, we might have contests with no bids or, vice

versa, with maximum efforts. Again, we might have symmetric contests with asymmetric efforts. And also

multiple symmetric equilibria might be interesting. We believe it is important to understand whether we

might explain this heterogeneity in behavior as equilibrium phenomena. Second, even when we have multiple

symmetric or asymmetric equilibria as in Chowdhury and Sheremeta 2011a and 2011b or in Cornes and

Hartley 2012, the connection between the structural characteristics of the contest and the properties of the

players’ equilibrium behavior is obscure. And, again, zero effort equilibria are ruled out by assuming the

Tullock contest success technology.

In this paper we present a unified framework to analyze the set of pure strategy Nash equilibria in two

players, simultaneous move, symmetric general contest model where we specify several essential elements

characterizing a contest, such as the players’ set of possible entries, the agents’ utility functions, and the

rules that presides over outcomes. In particular, the crucial differences of the present model with respect to
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the previous modelling approaches concern the contest technology and the players’ utility functions. Then,

on the basis of such assumptions we examine some particular examples in order to investigate the properties

of the set of equilibria, studying the relationship between equilibria and crucial structural parameters. In

particular, we focus on the marginal productivity of agents’ efforts (which concerns the contest technology),

and the polarization between agents’ goals, (which concerns the players’ utility), with and without spillover.

The most innovative part of our model is actually the combination of contest technology and of players’ utility

functions to get a simple but effective model that allows investigating the resulting equilibria configuration

for general contests. We focus on three main examples, which exhibit interesting equilibria configurations

and comparative statics and that make the role of some crucial contest parameters explicit. First, we show

that, without spillover, the equilibrium efforts’ intensity is uniquely connected to the ratio between marginal

productivity of effort and polarization, and it can be zero, intermediate or maximum. Second, we are able to

connect the existence of multiple symmetric and asymmetric equilibria to the intensity of spillover effects into

outcomes. Finally, we show that spillover in contest technology might imply non existence of an equilibrium.

Through these examples, we are able to better understand under what conditions we have unique or multiple

or no equilibria, and the properties of these equilibria in terms of structural parameters.

The works that bear most resemblance with our contribution are the papers by Chowdhury and Sheremeta

2011a and 2011b, where the authors construct a generalized Tullock contest to analyze under what conditions

their generalized contest has either a unique symmetric or multiple asymmetric equilibria. However, even

if the research aims and the spillover effects are similar, the models and the results are quite different.

Actually, we not only derive conditions such that we get multiple symmetric (and asymmetric) equilibria,

but our modelling approach also allows connecting such equilibrium properties to structural parameters that

have an immediate relation with the underlying characteristics of the contest.

From a methodological point of view, the properties of contests can be analyzed in two different and

complementary ways: either using comparative statics showing how equilibria change as parameters change,

or with out-of equilibrium dynamics to emphasize the complex and cyclic players’ behavior. This paper

belongs to a research strand in which we are pursuing both aspects. In this paper we analyze the structural

conditions that generate one, zero or multiple symmetric and asymmetric equilibria, and their properties as

a function of the structural parameters, while in the companion paper Cavalli et al. 2016 we focus on the

best reply dynamics. Preliminary investigations show that the modelling approach we adopted allows for the

occurrence of non trivial and complex dynamics.

The remainder of the paper is organized as follows. In Section 2 we present a general contest model

and we introduce assumptions to specify several characteristics of the contest model we aim to investigate.

Section 3 reports our main results, while proofs are in Appendix. Section 4 concludes.

2 Modelling Contests

In this section we propose a micro founded contest model starting from a general perspective. In the

subsequent sections, we will introduce specific assumptions on these basic elements. This allows connecting

the characteristics of the set of equilibria with the properties of these basic elements on the basis of transparent

micro assumptions.

In contests, two or more contenders use available resources to try to hamper, disable and destroy the rival

in order to reach their own aim. Hence, in any contest situation there are at least two agents, which from now

on will be identified by part i and j, who aim to achieve a particular goal. As a starting point, we will limit

ourself just to two players. As discussed in Hirshleifer 1995a and 1995b, we agree that the incompatibility

between agents’ goals is the root of any contests: each part tries to reach the best possible approximation
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to its goal, and to do this, takes part in a conflict, trying to influence the probability of getting an outcome

through a suitable effort. The distance between the goals represents the polarization of the contest situation,

and we will show that it plays a crucial role. Each agent’s effort can have several consequences. First, one

must consider the effectivity of efforts, which encompasses and represents the different technological and

institutional characteristics of each part. To model the possibility that a part can directly hamper or disable

opponent’s capability, we suppose that each agent’s effectivity function might depend on both the amount

of effort of i and j. Moreover, the agents’ efforts can affect its own and the opponents’ goal too, so that,

depending on the respective efforts, we can have that the goals can change. More generally, the outcome of

the contest might depend on both agents’ effort.

These considerations lead us to propose the following definition of a two agent contest model.

Definition 1. A two agent Contest Model (CM) can be described by a sextuple (X,S,C, ζ,P,U), in

which each component is a vector of two elements such that

1. X = (X1, X2) is the set of agents’ efforts (xi, xj) such that

xi ∈ Xi ⊆ R
+, i ∈ {1, 2} ;

2. S = (S1, S2) is a couple of functions Si (xi, xj)

Si : Xi ×Xj → R
+, i ∈ {1, 2} ,

which represent the effectivity of agents’ efforts, i.e. it measures the impact of i′s effort on the likelihood

of getting a specific outcome. Note that it might be affected by opponent’s effort too;

3. C = (C1, C2), is a couple of functions Ci (xi)

Ci : Xi → R
+, i ∈ {1, 2}

which represents the agents’ cost function;1

4. ζ = (ζ1, ζ2) is a couple of functions ζi (si, sj)

ζi : R
+ × R

+ → R

which represents i′s outcome function, describing the result of the contest for agent i as a function of

both agents’ efforts’ effectivity (si, sj) ;

5. P = (P1, P2), is a couple of conditional probability measures Pi(s1, s2)

Pi : R
+ × R

+ → ∆(R) 2

representing the contest success technology (CST) connecting agents’ effectivity of the efforts (s1, s2)

to the probability of getting an outcome zi ∈
[
g1, g2

]
;

6. W = (W1,W2) is a couple of functions Wi (z̃i)

Wi : Z̃i → R, i ∈ {1, 2}

which represents the agents’ utility function evaluating random outcomes z̃i distributed according to

Pi(s1, s2). As usual Wi is supposed to satisfy expected utility representation, so that there exists a

Ui : R → R such that

Wi (z̃i) =

∫
Ui (zi) dPi(zi|s1, s2).

1We checked that spillover in the cost function would not add any interesting insights on equilibrium properties.
2As usual ∆ (·) denotes the set of all probability measure on the set ·.
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The model presented in Definition 1 is very general and can be applied to any contest situation. Although

apparently differs from the basic model used in contest theory3, it is quite immediate to show that the model

we propose falls within the general definition of contest. Usually a contest is defined by the following

elements.

1. A finite set of agents, the contenders

N = {1, ..., n} ;

2. A set of possible actions taken by the agents before a prize is allocated

ai ∈ Ai;

3. A prize that may depend on agents’ actions

Vi : A1 × ...×An → Ωi ⊆ R;

4. A contest success function relating agents’ actions to the agent’s probability of obtaining the prize

pi : A1 × ...×An → ∆(Ωi) ;

5. A utility function evaluating each agent prize

Ui : Ωi → R;

6. A cost function relating agents’ actions to the cost of the actions

Ci : Ai → R.

Then it is immediate that a CM is just a specific contest.

Remark 1. Any CM is a contest.

This remark might suggest that our definition is redundant. However, we consider more effective to

start from the elements introduced by Definition 1. The reason is that we believe that our model allows a

more neat analysis, allowing a better match with real situations and a more immediate interpretation and

understanding of the theoretic results. More generally, our model allows a discussion of the micro foundations

of the peculiar functional forms we consider for our concepts, a discussion that is not immediate for many

standard contest models, often a sort of reduced form model.

Before providing assumptions to focus on a particular class of CM, we recall that the agent’s effort is

its choice variable, that affects the probability of reaching an outcome once transformed by function Si,

representing the effectivity of the effort. The role of this function is to separate the agents’ effort effectivity,

which is part of i’s characteristics, from the probability of getting a specific outcome, the standard contest

success technology. In particular, our formulation allows for introducing and studying the effect of spillover

in any constitutive element of a contest, in particular in effectivity and outcomes. This will be the main goal

of Sections 3.2 and 3.3, in which we will show the consequences of such possible spillover on existence and

multiplicity of equilibria. We will show that spillover in different components of a CM have different effects

on the set of equilibria. Hence the characteristics of the set of equilibria are connected to the structural

properties of the CM, i.e. on the specific historical, institutional and geographical conditions. Finally, note

that if the agents’ outcomes ζi do not depend on the players’ efforts, then the model belongs to the class of

rent seeking models, while in the models of production and conflict the value of the goals is endogenously

determined by the agents’ choices on how much time is used to conflict and consequently on production.4

3See for example Corchon 2007 or Konrad 2009.
4See e.g. Garfinkel and Skaperdas 2007, Hausken 2005, Konrad 2009, Neary 1997.
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2.1 Restriction on the Contest Model

In this section, we introduce, and then discuss, a set of assumptions on the CM to generate a family of

contests sufficiently general to describe a suitably wide range of situations, but, at the same time, suitably

specialized to allow deriving significant results. Introducing progressive restrictive assumptions also allows

us to better understand the role and the relation between the structural characteristics of the elements of a

CM and the properties of the set of equilibria of the associated game.

Assumption 1. GENERAL ASSUMPTIONS ON THE CONTEST MODEL:

1. SYMMETRIC CONTEST MODEL: all the components of a CM are symmetric

Xi = Xj , Si (xi, xj) = Sj (xj , xi) , Ci (xi, xj) = Cj (xj , xi) ,

ζi (si, sj) = −ζj (sj , si) , Pi (si, sj) = Pj (sj , si) , Ui = Uj .

2. UPPER BOUND FOR EFFORT: the set of each agent’s effort Xi ⊆ R
+ is compact. Hence,

because of assumption 1, w.l.g. we pose

Xi = [0, 1] .

3. SMOOTH CONTEST MODEL: all the functions involved in a CM, Si (xi, xj) , gi (xi, xj) , Ci (xi) ,

ζi (si, sj) , Pi (si, sj) , Ui (ζi) are twice continuously differentiable.

4. POSSIBLE OUTCOMES: for each player, the interaction might end in two ways, either reaching

its goal gi (xi, xj) or its defeat outcome di (xi, xj) :

∀ (si, sj) ∈ R
+ × R

+ ζi (si, sj) ∈ {gi (xi, xj) , di (xi, xj)} ⊆
[
g1, g2

]
,

where

gi : Xi ×Xj →
[
gi, gi

]
⊆ R, di : Xi ×Xj →

[
g1, g2

]
⊆ R :

without loss of generality, we denote by gi and gi, respectively, the inferior and the upper bounds of i’s

outcomes, so that gi ≤ gi and g1 ≤ 0 ≤ g2;

5. RATIO CONTEST SUCCESS TECHNOLOGY: the CST Pi(si, sj) has a ratio form.5 Hence,

given previous assumption 4, we get

Pi(zi|Si (xi, xj) , Sj (xj , xi)) =






Si(xi,xj)
Si(xi,xj)+Sj(xj,xi)

if zi = gi (xi, xj) ,
Sj(xj ,xi)

Si(xi,xj)+Sj(xj,xi)
if zi = di (xi, xj) ,

0 otherwise.

6. AGENTS’ UTILITY FUNCTIONS: each agent’s utility function Ui is decreasing in the distance

|zi − gi (xi, xj)| between i’s outcome and its goal.

7. POSSIBLE SPILLOVER: the model allows for possible specific spillover in the components of a

CM
∂Si (xi, xj)

∂xj
≤ 0,

∂g1
∂x1

≤ 0,
∂g1
∂x2

≤ 0,
∂d1
∂x2

≥ 0,
∂d1
∂x1

≥ 0,

∂g2
∂x2

≥ 0,
∂g2
∂x1

≥ 0,
∂d2
∂x1

≤ 0,
∂d2
∂x2

≤ 0.

In the next paragraphs we detail and explain each point of Assumption 1.

5This is the terminology used by Hirshleifer 1989, an alternative is to call this contest success technology logit.
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2.1.1 Symmetry

The reason for the symmetry assumption is trivially that in the present paper we aim to study a symmetric

contest. In this way we assure that the results we find about equilibria characteristics only depend on

structural parameters and not on players’ asymmetry. Moreover, it is interesting to understand whether

and when asymmetric equilibria can arise in symmetric contests, clarifying the structural assumptions that

generate such a situation. Finally, notice that symmetry implies

gi (xi, xj) = −gj (xj , xi) and di (xi, xj) = −dj (xj , xi) .

2.1.2 The Efforts set

We assume that contestants are exogenously constrained regarding the amount of effort they can choose. The

reasons for this assumption are two. First, we believe it is hardly realistic to consider an unbounded amount

of effort, secondly, this assumption allows interpreting agents’ bids as intensity, i.e. as the percentage of the

stock of the available resources used for the contest game. This assumption is crucially important to allow

for the occurrence of corner equilibria, which have obvious significant interpretations: once we interpret bids

as intensity of effort, then the results on interior or corner equilibria have a more clear counterpart in actual

contest situations as null or intermediate or maximum effort.

2.1.3 The Possible Outcomes

We restrict the set of i’s possible outcomes to just two possibilities: either i reaches its goal gi or it get a

defeat outcome di. This simplified framework is sufficient to derive our main results and allows identifying

specific parameters and functions that plays a crucial role for our results and that have clear counterparts

in real situations. Note that even if in Assumption 1 we allow for any kind of direct effect of players’ bids

on players’ goal and defeat outcomes, in the next subsection we restrict the analysis to particular, significant

spillover.

2.1.4 Smoothness and Contest Technology

The smoothness requirement, which might seem a neutral technical assumption, actually has substantial

implications, for example in the choice of the possible contest success technology. The first consequence is

that it excludes the common Tullock contest technology6 which is not continuously differentiable in (0, 0) .

Consider the assumptions of continuous differentiable functions ratio CT with respect to the classic ratio

technology as axiomatized in Skaperdas 1996. Since our technology is a ratio CST, it satisfies Skaperda’s

axioms 1 to 5 that characterize such functional form. However, it does not satisfy the homogeneity axiom

A6
S (λxi, λxj)

S (λxi, λxj) + Sj (λxj , λxi)
=

S (xi, xj)

S (xi, xj) + S (xj , xi)
,

which implies

S (xi, xj)

S (xi, xj) + S (xj , xi)
=

{
1
2 for xi = xj ∈ [0, 1] ,

1 for xi ∈ (0, 1] , xj = 0.

This means that a CST satisfying the homogeneity axiom can’t be continuous in (0, 0) . Indeed, this axiom is

motivated by the idea that the probability of reaching the goal should be independent of units of measurement.

However, because of the assumption of compactness of the effort sets and thus of the interpretation of bids

6Tullock 1967 and 1980.
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as intensity of effort, axiom A6 is no more relevant. The homogeneity axiom, together with axioms 1 to 5,

has the effect to restrict the set of possible CST to the following generalization of Tullock technology7

T (xi, xj) =





xβ
i

xβ
i +xβ

j

if (xi, xj) 6= (0, 0) ,

1
2 if (xi, xj) = (0, 0) .

Noticing that

lim
xi→0,xj→0

T (xi, xj) =






1
2 if xi

xj →
xi→0,xj→0

1,

0 if xi

xj →
xi→0,xj→0

0,

1 if
xj

xi
→

xi→0,xj→0
0

6= T (gi|0, 0) =
1

2
,

and that

lim
xi→0,xj→0

∂T (xi, xj)

∂xi
=






∞ if xi

xj
→

xi→0,xj→0
1,

∞ if
xj

xi
→

xi→0,xj→0
0,

∞ if xi

xj
→

xi→0,xj→0
0 & β ≤ 1,

0 if xi

xj
→

xi→0,xj→0
0 & β > 1,

which means that a marginal increment in i’s effort has a huge effect on the marginal probability of getting

zi. Such discontinuities have the unpleasant consequence of preventing the occurrence of zero equilibria.

Instead, we assume continuously differentiable functions, so that our CST has a symmetric and intuitive

behavior of the marginal probability of getting zi in a neighborhood of zero effort too. This allows zero effort

equilibria for a suitable combination of structural parameters.

Finally, notice that even if the logistic CST

L (xi, xj) =
eβxi

eβxi + eβxj

is a smooth function, it has however the uncomfortable property of admitting either no pure strategy equilibria

or zero effort equilibria.8 Moreover, the structural parameters that induce such kind of equilibria have no

clear micro founded meaning.

In Section 3, we will propose and use a different smooth ratio CT and our results will show that, together

with the other assumptions, it avoids these unpleasant equilibrium properties.

2.1.5 The Utility Function

We explicitly introduce a utility function defined on the set of possible outcomes in order to have a micro

founded contest model that clarifies the links between equilibrium properties and structural characteristics.

We remark that even if the specific form of utility function we consider is quite common in the political

economy literature,9 its use in contest theory is new and has important implications. In particular, it allows

the introduction of auxiliary concepts that help to interpret our results. Note that these preferences are

single peaked and

argmaxUi (zi) = gi (xi, xj)

i.e. i’s goal is its bliss point, which reinforces our interpretation of gi (xi, xj). Using this property, it is

natural to define a contest polarization as the distance between agents’ bliss points.

7See e.g. Corchon 2007 and Konrad 2009.
8See Baik 1988.
9See for example Persson - Tabellini 2000.
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Definition 2. The measure of contest polarization is defined through the function ρ : R+ ×R
+ → R

+ given

by

ρ (x1, x2) := g2 (x2, x1)− g1 (x1, x2) .

The reason to use the distance between agents’ goals as a measure of polarization is the obvious intuition

that the more the agents’ goals diverge, the higher they become involved in the contest, as argued in Hirshleifer

1991, 1995a, 1995b and in Hirshleifer and Osborne 2001. In particular, note that agents’ goal incompatibility

is equivalent to strictly positive polarization. We will show that the way the polarization behaves is one of

the crucial elements to understand equilibrium behavior in contests: since by construction the agents’ goals

are incompatible, i.e.

g2 ≥ g1 ⇔ ρ (x1, x2) > 0 ∀ (xi, xj) ,

the attempt to reach the best possible outcome leads to compete. This is where the source of the conflicting

behavior is encompassed in our contest model. The utility function we use leads to a payoff function that

depends on both the polarization ρ (x1, x2) and the defeat outcome di (xi, xj)

Ui (zi) = fi (|zi − gi (xi, xj)|)

=
Si (xi, xj)

Si (xi, xj) + Sj (xj , xi)
fi (0) +

Sj (xj , xi)

Si (xi, xj) + Sj (xj , xi)
fi (|di (xi, xj)− gi (xi, xj)|)

=
Sj (xj , xi)

Si (xi, xj) + Sj (xj , xi)
fi (ρ (x1, x2)− |gj (xi, xj)− di (xi, xj)|) .

2.1.6 The Possible Spillover

Our CM allows for direct spillover from the counterpart’s choices in the basic functions of the model, the effec-

tivity and the outcomes. Now we introduce and discuss three possible assumptions about the characteristics

of these spillover, assumptions that we will explore in the following sections.

Assumption 2. THE POLARIZATION ASSUMPTION: the greater each player’s effort is, the greater

the polarization becomes, while opponent’s effort has no effect on goals:

∂g1
∂x1

< 0,
∂g1
∂x2

= 0,
∂g2
∂x2

> 0,
∂g2
∂x1

= 0

Then, from now on we will write

g1 (x1) := g1 (x1, x2) and g2 (x2) := g2 (x2, x1)

The idea behind this assumption is that an agent’s own effort’s intensity push its own goal away from

the opponent’s one. In particular the polarization assumption has the crucial implication that the contest

polarization increases with both agents’ intensity of efforts: since

ρ (x1, x2) = g2 (x2)− g1 (x1)

then
∂ρ (x1, x2)

∂x1
= −∂g1 (x1)

∂x1
> 0 and

∂ρ (x1, x2)

∂x2
=

∂g2 (x2)

∂x2
> 0.

We believe that this is common to many settings where the intensity of contestants’ behavior increases the

distance between players’ goals.

Assumption 3. THE RADICALIZATION ASSUMPTION: the greater each player’s effort is, the

worse the opponent’s defeat outcome:

∂d2
∂x1

< 0,
∂d2
∂x2

= 0,
∂d1
∂x2

> 0,
∂d1
∂x1

= 0.
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Then, from now on we will write

d1 (x2) := d1 (x1, x2) and d2 (x1) := d2 (x2, x1)

The idea behind this assumption is that an agent’s effort affects the counterpart’s defeat outcome, i.e. the

greater the intensity of effort, the worse the defeat conditions. In particular the radicalization assumption

implies that the counterpart’s effort intensity push the defeat outcome away from a player’s bliss point, so

that
∂ [d1 (x2)− g1 (x1)]

∂x2
=

∂d1 (x2)

∂x2
> 0 and

∂ [g2 (x2)− d2 (x1)]

∂x1
= −∂d2 (x2)

∂x2
> 0.

Again, we believe that this case where an increase of a contestant’s effort induces a worse outcome for the

loser is quite common and characterizes situations where the confrontation between counterparts lead to a

more radical standing towards the loser of the contest.

Assumption 4. THE DIRECT DESTRUCTIVE ASSUMPTION: the greater each player effort is,

the lower the effectivity of the counterpart’s effort becomes, i.e.

∂Si (xi, xj)

∂xj
< 0.

The idea behind this assumption is that an agent’s effort can directly reduce the effectivity of the coun-

terpart’s effort, for physical, economic or institutional reasons. Note that the expected effects on the CST

are reinforced by the direct destructive assumption:

1. The probability of getting its goal is increasing in an agent effort

∂Pi(gi|Si, Sj)

∂xi
=

∂Si(xi,xj)
∂xi

Sj (xj , xi)− ∂Sj(xi,xj)
∂xi

Si (xi, xj)

[Si (xi, xj) + Sj (xj , xi)]
2 > 0;

2. the probability of getting the defeat outcome is increasing in the opponent’s effort

∂Pi(di|Si, Sj)

∂xj
=

∂Sj(xi,xj)
∂xj

Si (xj , xi)− ∂Si(xi,xj)
∂xj

Sj (xi, xj)

[Si (xi, xj) + Sj (xj , xi)]
2 > 0.

The results of the next sections will show that these different possible assumptions play a different role

generating different characteristics of the equilibrium sets.

2.2 The Associated Game

From the definition of CM it is easy to derive a payoff function πi : Xi ×Xj → R as

πi(xi, xj) =

∫ g2

g
1

Ui (zi) dPi (zi|Si (xi, xj) , Sj (xi, xj))− Ci (xi)

=
Sj (xj , xi)

Si (xi, xj) + Sj (xj , xi)
fi (|di (xj)− gi (xi)|)− Ci (xi)

=
Sj (xj , xi)

Si (xi, xj) + Sj (xj , xi)
fi (ρ (x1, x2)− |gj (xj)− di (xj)|)− Ci (xi)

and thus we obtain the class of associated strategic form game ΓCM =
{
Γ =

(
{1, 2} , [0, 1]2 , πi(xi, xj)

)}
.

We recall the definition of symmetric game.
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Definition 3. A two players strategic form game

Γ = ({1, 2} , X1 ×X2, π1(x1, x2), π2(x2, x1)) .

is symmetric if and only if

π1(x1, x2) = π2(x1, x2), ∀xi ∈ Xi, i = 1, 2.

Remarks

1. The strategic form game associated to a symmetric CM is symmetric;

2. The best reply correspondences

BRi (xj) := argmax
xi∈Xi

πi(xi, xj)

of a two players symmetric strategic form game are symmetric, i.e.

BRi (xj) := BRj (xi) .

3 The Results

In this section we aim at studying different possible sets of equilibria arising in the symmetric contest

model defined by Assumption 1. To this end, to better understand the role of each assumption on the

characterization of the equilibria set and to keep each case analytically tractable, we simplify as much as

possible the expression of each involved function, so that each parameter has a clear interpretation. After

specifying the family of CM we aim to investigate, we focus on three different scenarios, characterized by

specific spillover effects. In particular, we are interested in studying the cases in which there is

• no spillover;

• spillover on outcomes, stressing the different role of the polarization and of the radicalization assump-

tion;

• spillover in contest success technology (direct destructive assumption).

For each scenario we provide the expressions of the best response correspondences and the possible sets of

Nash equilibria. In particular, we classify best response correspondences with respect to their monotonicity.

To this end, we remark that a strictly non-increasing (respectively non-decreasing) function is a non-increasing

(respectively non-decreasing) but non-constant function, while a hump-shaped function on an interval [x1, x2]

is strictly non-decreasing on [x1, c] and strictly non-increasing on [c, x2], where c ∈ (x1, x2).

We assume that all the functional forms in the elements defining a CM are linear. We notice that, despite

the simplification, linear functions can be seen as a local approximation of smooth functions.10

Assumption 5. LINEAR CONTEST MODEL

1. BILINEAR EFFECTIVITY FUNCTIONS:

Si(xi, xj) = βxi (1− αxj) + 1,

where β > 0 and α ∈ [0, 1], so that Si is linear in xi and the marginal productivity of i’s effort is

linearly decreasing in xj . We notice that when the direct destructive assumption holds, we have α > 0,

otherwise α = 0.
10Dasgupta and Nti 1998 provide an alternative justification to focus on linear functions in contest models.
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2. LINEAR OUTCOMES:

g1 (x1) = −θ − δx1, d1 (x2) = γx2, g2 (x2) = θ + δx2, d2 (x1) = −γx1,

where θ > 0 and δ and γ are both non negative constants. We notice that when the radicalization

assumption holds, we have δ > 0 and γ > 0, otherwise δ = γ = 0.

3. LINEAR UTILITY FUNCTION:

U1 (z) = − (z − g1(x1)) , U2 (z) = − (g2(x2)− z) ,

where w.l.g. we normalize each linear function.

4. LINEAR COST FUNCTIONS WITHOUT SPILLOVER:

Ci(xi) = xi,

where w.l.g. we assume unitary marginal cost.

The previous assumptions imply the following CST function

Pi(zi|Si (xi, xj) , Sj (xj , xi)) =





βxi (1− αxj) + 1

βxi (1− αxj) + βxj (1− αxi) + 2
if zi = gi (xi) ,

βxj (1− αxi) + 1

βxi (1− αxj) + βxj (1− αxi) + 2
if zi = di (xj) ,

0 otherwise,

(1)

so that the resulting payoff functions of the strategic form game associated to the linear CM are

πi(xi, xj) = − βxj (1− αxi) + 1

βxi (1− αxj) + βxj (1− αxi) + 2
[θ + δxi + γxj ]− xi. (2)

In this way, we obtain the class of strategic form game ΓL, where πi are defined by (2). Notice that the

constant term “+1” in the expression of the effectivity function, thanks to the CST function, is absolutely

general. In fact, the case of Si(xi, xj) = βxi (1− αxj) + k with k > 0 can be easily rephrased in the present

one by rescaling β, so that we obtain a correspondent CST function of the form (1).

Let now discuss the meaning of parameters and functions and their role in the linear CM.

Firstly, we focus on the CST. Apart from continuity, the CST we consider has two important characteris-

tics. First, as with Tullock’s CST, there is equiprobability of both outcomes when both agents bid the same

intensity of effort

xj = xi = x∗ ⇔ Pi(zi|Si, Sj) =






βx∗ (1− αx∗) + 1

βx∗ (1− αx∗) + βx∗ (1− αx∗) + 2
= 1

2 if zi = gi,

βx∗ (1− αx∗) + 1

βx∗ (1− αx∗) + βx∗ (1− αx∗) + 2
= 1

2 if zi = di,

0 otherwise.

However, differently from Tullock’s CST, the present CST does never reach probability 1 even when there is

full asymmetry of efforts

Pi(zi|Si (1, 0) , Sj (0, 1)) =





β + 1

β + 2
if zi = gi (1) ,

1

β + 2
if zi = di (0) ,

0 otherwise,

12



Figure 1: Probability of achieving goal depending players’ efforts.

i.e. it is as if there is an implicit noise such that no player can win with certainty even if it deploys the

maximum intensity against null counterpart’s intensity. Nevertheless, as β increases, the probability of

success converges toward 1, as well as that of defeat vanishes. The situation is illustrated in Figure 1.

Counter-intuitive consequences of the use of the generalized Tullock CST are not restricted to the oc-

currence of discontinuities, also the interpretation of β as a measure of the marginal impact of an increase

in an agent’s effort is debatable. Actually while the derivative of the effectivity function xβ
i is increasing or

decreasing in x according to β ≷ 1 and it is not monotone with respect to β, in our case β is trivially the

marginal productivity of i’s effort on its effectivity function and has the intuitive properties we expect from

marginal productivity. Since
∂Si (xi, xj)

∂xi
= β (1− αxj)

is obviously constant in xi, decreasing with respect to the counterpart’s effort xj when there are spillover

and monotonically increasing in β, then β is an obvious measure of the marginal productivity of effort on

effectivity. To the best of our knowledge, the functional form for the agents’ effectivity function we use here

first appears in Dasgupta and Nti 1998. However, they approach the contest problem from a completely

different point of view, since their aim is to support specific contest success functions, such the one used in

this paper, from a mechanism design perspective. However, their results provide an independent justification

for the use of this effectivity functional form.

Second, we remark that an obvious effect of the assumption on outcomes is that polarization now is

linearly increasing in both agents’ efforts

ρ (x1, x2) = 2θ + δ (x1 + x2) . (3)

Moreover, also the defeat outcomes are pushed toward a worse outcome by the counterpart’s effort when

there are spillover. Both these effects negatively affect i’s expected outcome in the associated game’s payoffs.

The parameters of this linear version of the CM are crucial for our results, hence to help the reader and

the interpretation we report their meaning in the following table
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Parameters Meaning

α ∈ [0, 1] destructiveness of effort

β ∈ (0,+∞) productivity of effort

γ ∈ [0,+∞) endogenous radicalization

δ ∈ [0,+∞) endogenous polarization

θ ∈ (0,+∞) ex ante polarization

Table 1: the structural parameters of the CM and their meaning

In the remainder of this section we are going to consider three families of games belonging to the class

of strategic form game ΓL, obtained when no spillover effects are taken into account, ΓLNS , when there are

spillover on outcomes, ΓLSO, and when spillover affects effectivity function, ΓLSO.

3.1 The case of no spillover

This first example we consider is the simplest situation in which we have no spillover, which means setting

α = γ = δ = 0, so that ΠNS = βθ and ∆NS = 0. The players’ payoff functions then result

πi(xi, xj) = − βxj + 1

βxi + βxj + 2
θ − xj , (4)

from which we have the class of strategic form games ΓLNS =
{
Γ = ({1, 2} , [0, 1]2, π)

}
with π(xi, xj) =

π1(x1, x2) × π2(x2, x1), where πi are defined by (8). Firstly we characterize the best response functions for

this class of games.

Proposition 1. The best response functions related to games Γ ∈ ΓLNS are continuous, piecewise smooth

functions given by

BRi(xj) = max

{
min

{
−xj −

2

β
+

1

β

√
βθ (βxj + 1), 1

}
, 0

}
, (5)

which satisfies BR′
i(xj) = 0 for those xj for which BRi(xj) = xj . Note that the best response function can

be either constantly equal to 0, constantly equal to 1, strictly non-decreasing or hump-shaped.

The dependency of the possible best response function shapes from the parameter configurations is re-

ported in Figure 2. We notice that by means of monotonicity of the best response functions we can actually

classify corresponding games Γ ∈ ΓLNS. In fact, when functions BRi are constantly equal to either 0 or 1,

we can say that game Γ is characterized by strategic dominance, while when BRi is strictly non-decreasing,

game Γ is characterized by strategic complementarity.

Concerning the possible resulting equilibria, a key role is played by the continuity of best response

functions and by their flatness at fixed points. The former aspect guarantees the existence of the Nash

equilibrium while the latter one, together with continuity, provides uniqueness. We have the following

Proposition.

Proposition 2. When the best response function (5) for games Γ ∈ ΓLNS is

• strictly non-decreasing, then the unique Nash equilibrium is a symmetric corner equilibrium;

• hump-shaped, then the unique Nash equilibrium is internal and symmetric;

• constant, then the unique Nash equilibrium is a symmetric corner equilibrium.

For any parameter configuration, no asymmetric equilibria occur.
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Figure 2: Possible best response functions of games Γ ∈ ΓLNS with respect to θ and β. Blue (respectively

cyan) region represents parameters’ combinations for which the best response is constantly equal to 1 (re-

spectively to 0). Green (respectively white) region represents parameters’ combinations for which the best

response function is strictly non-decreasing (respectively hump-shaped). Darker shades of each color are used

for region boundaries.
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Figure 3: Combinations between the possible shapes of the best rest response functions and the resulting

Nash equilibria for games Γ ∈ ΓLNS .

The results of the previous Proposition are graphically sketched in Figure 3.

Let define

xNE
IS =

βθ − 4

4β
, (6)

then we can prove the next result.

Corollary 1. For games Γ ∈ ΓLNS, for any parameter configuration, there exists one and just one symmetric

Nash equilibrium (xNE , xNE) which can be either an internal or a corner equilibrium and is defined by

xNE =





0 if β ∈
(
0, 4θ

]
∨ θ = 0,

xNE
IS if





β ∈

(
4
θ ,

4
θ−4

)
∧ θ > 4,

β ∈
(
4
θ ,∞

)
∧ θ ∈ (0, 4] ,

1 if β ∈
[

4
θ−4 ,∞

)
∧ θ > 4.

(7)
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Figure 4: Possible equilibria of games Γ ∈ ΓLNS with respect to θ and β. Darker shades of each color are

used for region boundaries.

In Figure 4 we graphically represent the dependency of the contest equilibrium on β and θ.

Remark 2. The results of Propositions 1 and 2 have been obtained in the particular case of linear effectiveness

and cost functions. However, such results still hold in general. The related Propositions can be found in

Appendix.

From 1 it is immediate to derive the following result on the effects of structural parameters on the intensity

of the effort at the Nash equilibrium.

Corollary 2. For games Γ ∈ ΓLNS

1. The intensity of the effort in equilibrium xNE
i is weakly increasing in the marginal productivity of the

effort β and in the agents’ polarization;

2. an increase in ex ante polarization θ has the effect of reducing the interval
[
0, 4θ

]
of β for which there

is zero conflict, while it increases all the other intervals.

The first result of Corollary 2 is intuitive and all structural parameters affect as expected the intensity

of conflict at the equilibrium. The second result is particularly interesting to interpret real contests, because

it says that when there are no spillover and polarization is high, then a small increment in the marginal

productivity of effort dramatically changes the equilibrium regime from no conflict to intermediate or even

maximum conflict. In other words, when ex ante polarization is big, small institutional or technological

changes may have a huge effect on the equilibrium behavior, which explains why the ex ante distance between

counterparts’ goals often is the object to monitor to minimize the risk of hugely disruptive conflicts.

3.2 Best response functions and equilibria with spillover in outcomes

In this section we investigate the consequences of introducing spillover in outcomes, which is obtained taking

γ > 0 and δ > 0, while keeping α = 0. We notice that, in the present case, spillover has effect on the

polarization, too. The resulting payoff functions are then

πi(xi, xj) = − βxj + 1

βxi + βxj + 2
(θ + δxi + γxj)− xj , (8)
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from which we can obtain the class of strategic form games ΓLSO =
{
Γ = ({1, 2} , [0, 1]2, π)

}
with π(xi, xj) =

π1(x1, x2)× π2(x2, x1), where πi are defined by (8).

The following results possibly get a more simple expression if we use the following two synthetic param-

eters,

∆ (γ, δ) ≡ γ − δ and Λ (β, θ, δ) ≡ βθ − 2δ,

Let consider the interpretation of ∆ and Λ. Under Assumption 4.2 we have

• ∆(γ, δ) = ∂d1

∂x2
+ ∂g1

∂x1
= −

(
∂d2

∂x1
+ ∂g2

∂x2

)
= − ∂

∂xi
[(g2 − g1) + (d2 − d1)] , hence ∆ is a measure of how

both players’ efforts affect the divergence between goal and defeat outcomes, i.e. a measure of the how

an agent’s effort affects both polarization and radicalization. In particular

γ ↑⇒ ∆ ↑⇒ γ ↑ ∨δ ↓ and δ ↓⇒ ∆ ↑⇒ γ ↑ ∨δ ↓

which means that an increment in ∆ reduces the effects of i′s effort on polarization (δ ↓) and/or makes

worse the effects of j’s effort on i’s defeat outcome, i.e. the effects of radicalization (γ ↑). In particular

∆ ≥ 0 ⇔ γ ≥ δ

i.e. ∆ is positive if and only if radicalization prevails on polarization. Hence, we expect that an

increment in a positive ∆ would increase the equilibrium efforts.

• Λ (β, θ, δ) = θ
∂Si (α = 0)

∂xi
− 2

∣∣∣∣
∂gi
∂xi

∣∣∣∣ , hence Λ is a measure of the combination between ex ante polar-

ization and the productivity of i’s effort net of the polarization effect. In particular

β ↑ ∨θ ↑⇒ Λ ↑⇒ β ↑ ∨θ ↑ ∨δ ↓ and δ ↓⇒ Λ ↑⇒ β ↑ ∨θ ↑ ∨δ ↓

which means that an increment in Λ reduces the effects of i′s effort on endogenous polarization (δ ↓)
and/or increases the marginal productivity of effort (β ↑) and/or increases the ex ante polarization

(θ ↑). In particular

Λ (β, θ, δ) ≥ 0 ⇔ βθ ≥ 2δ

i.e. Λ is positive if and only if the combination between ex ante polarization and the productivity of

i’s effort prevails on the polarization effect. Hence, we expect that an increment in a positive Λ would

increase the equilibrium efforts.

Now, we characterize the best response relation for this class of games.

Proposition 3. The best response functions related to games Γ ∈ ΓLSO are continuous, piecewise smooth

functions given by

BRi(xj) =





0 if β∆xj + Λ < 0,

min

{
max

{
−xj −

2

β
+

1

β

√
(β∆xj + Λ) (βxj + 1), 0

}
, 1

}
if β∆xj + Λ ≥ 0.

(9)

Note that with the radicalization assumption, the best response function can be either constantly equal to 0,

constantly equal to 1, strictly non-increasing, strictly non-decreasing or hump-shaped.

Notice that the continuity of the best response function guarantees the existence of the Nash equilibrium.

The main difference with the result of Proposition 1, despite the possibility of having strictly non-increasing

best response functions, lies in its behavior at fixed points x̄. In the case of no spillover, best response

functions must be flat at x̄, which guarantees the equilibrium uniqueness. Such property no more holds when
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Figure 5: Possible best response functions of games Γ ∈ ΓLSO with respect to βθ − 2δ and γ − δ. Blue

(respectively cyan) region represents parameters’ combinations for which the best response is constantly

equal to 1 (respectively to 0). Green (respectively yellow) region represents parameters’ combinations for

which the best response function is strictly non-decreasing (respectively strictly non-decreasing). Darker

shades of each color are used for region boundaries and corners.

there are spillover in polarization and in outcomes. This is the root of the next Proposition. However, first

let consider the specific case ∆ = Λ = 4 : then it is immediate to see that best response function (9) reduces

to BRi(xj) = xj . This means that in this very peculiar case any strategy xi ∈ [0, 1] is a Nash equilibrium.

We avoid to further deal with this case, so in the remainder of this section we assume that at least one of

the two synthetic parameters ∆ = γ − δ and Λ = βθ − 2δ is different from 4.

Proposition 4. When the best response function for a game Γ ∈ ΓLSO is

• strictly non-decreasing, then we can have

– a unique symmetric corner Nash equilibrium;
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– three symmetric Nash equilibria, which correspond to an internal equilibrium and the two corner

equilibria. For some parameter configurations, the internal equilibrium can coincide with one of

the corner equilibria;

• hump-shaped, then we can have

– one symmetric internal Nash equilibrium;

– one symmetric internal Nash equilibrium, together with two asymmetric internal Nash equilibria;

– one symmetric internal Nash equilibrium together with two asymmetric boundary Nash equilibria;

• strictly non-decreasing, then we can have

– one symmetric internal Nash equilibrium;

– one symmetric internal Nash equilibrium together with two asymmetric boundary Nash equilibria;

– one symmetric internal Nash equilibrium together with the two corner asymmetric Nash equilibria

(1, 0) and (0, 1);

• constant, then the unique Nash equilibrium is a symmetric corner equilibrium.

In Figure 6 we represent the various scenarios resulting from Proposition 4, avoiding to report the trivial

case of constant best response functions.

Let us introduce

xNE
IS = −

(
1

β

)[
Λ− 4

∆− 4

]
=

(βθ − 2δ)− 4

β [4− (γ − δ)]
, (10)

and

xNE
1,AS = −

(
1

β

)


∆
(√

∆+ 4 +
√
∆
)
− Λ

(√
∆+ 4−

√
∆
)

2∆
√
∆



 =

=
[(βθ − 2δ)− (γ − δ)]

√
(γ−δ)+4
(γ−δ) − [(βθ − 2δ) + (γ − δ)]

2β (γ − δ)

xNE
2,AS = −

(
1

β

)


∆
(√

∆+ 4 +
√
∆
)
+ Λ

(√
∆+ 4−

√
∆
)

2∆
√
∆



 =

= −

[
(βθ − 2δ)−

(
γ − δ

√
(γ−δ)+4
(γ−δ)

)]
− [(βθ − 2δ) + (γ − δ)]

2β (γ − δ)

(11)

and

xNE
0,B = −

(
1

β

)(
2−

√
Λ
)
=

√
βθ − 2δ − 2

β
,

xNE
1,B = −

(
1

β

)(
2 + β −

√
(β + 1) (β∆+Λ)

)
=

√
(β + 1) [(βθ − 2δ) + β (γ − δ)]

β
.

(12)

We can then summarize the set of possible Nash equilibria in the following Corollary.

Corollary 3. For any game Γ ∈ ΓLSO and for any parameter configuration, there exist up to three Nash

equilibria, which can be all symmetric or one symmetric and two asymmetric. In particular,

1. when the internal symmetric equilibrium exists it is given by (xNE
IS , xNE

IS ),
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Figure 6: Combinations between the possible shapes of the best response functions and the resulting Nash

equilibria for games Γ ∈ ΓLSO. In the first row we report the cases corresponding to strictly non-decreasing

functions, in the second row those corresponding to hump-shaped functions, in the third row those corre-

sponding to strictly non-increasing functions.

2. when the internal asymmetric equilibria exist they are given by (xNE
1,AS , x

NE
2,AS) and (xNE

2,AS , x
NE
1,AS)

3. when the boundary equilibria exist they are given by either (xNE
0,B , 0), (0, xNE

0,B ) or (xNE
1,B , 1), (1, xNE

1,B )

Corner equilibria can be either symmetric or asymmetric.

Hence, we might conclude with the following corollary.

Corollary 4. For any game Γ ∈ ΓLSO there exist

• multiple symmetric Nash equilibria if and only if

{
β (4−∆) + 4 ≤ Λ ≤ 4,

∆ ≥ 4;
(13)

• asymmetric Nash equilibria if and only if

{
4 < Λ < β(4 −∆) + 4,

∆ < −4;
(14)
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• a unique symmetric equilibrium if and only if




Λ ≤ 4,

∆ < 4(β+1)−Λ
β ,

∪




Λ > 4,

∆ ≥ 4(β+1)−Λ
β ,

∪





∆ ≥ 4,

Λ > 4,

∆ < 4(β+1)−Λ
β .

(15)

We remark that if condition (13) is fulfilled with a strict inequality, then we have three distinct equilibria,

while when the equality occurs the internal equilibrium coincides with either (0, 0) and (1, 1), and we actually

have the two symmetric corner equilibria. In what follows we focus on the case of three distinct equilibria.

We notice that multiplicity of symmetric equilibria, i.e. condition (13), necessarily requires ∆ > 4, as well

as multiplicity of asymmetric equilibria, i.e. condition (14), necessarily requires ∆ < −4. This is in agreement

with the case of no spillover, in which ∆ = 0 and no multiplicity of equilibria is possible. Moreover, if the

divergence between goal and defeat outcomes is suitably small (|∆| < 4,) the possible arising scenarios are

the same of the case with no spillover, and only a unique symmetric equilibrium is possible. This means that

the measure of how both players’ efforts affect the divergence between goal and defeat outcomes should be

big enough or small enough to get multiple equilibria, while for intermediate values we get uniqueness as if

there are no outcome spillover. Similarly, multiplicity of symmetric equilibria, i.e. condition (13), necessarily

requires β (4−∆)+4 < Λ < 4, as well as multiplicity of asymmetric equilibria, i.e. condition (14), necessarily

requires 4 < Λ < β(4−∆)+4. This means that the measure of the combination between ex ante polarization

and the productivity of i’s effort net of the polarization effect should be upper intermediate to get multiple

asymmetric equilibria, while for low intermediate values we might get multiple symmetric equilibria. More

generally, if endogenous radicalization is sufficiently large with respect to endogenous polarization, multiple

symmetric equilibria can arise, for intermediate values of Λ. On the other hand, if endogenous radicalization is

sufficiently small with respect to endogenous polarization, multiple asymmetric equilibria can arise, again for

intermediate values of Λ. Since ∆ is a measure of how both players’ efforts affect the divergence between goal

and defeat outcomes, i.e. a measure of the how an agent’s effort affects both polarization and radicalization

these means that the existence of multiple symmetric equilibria requires a huge endogenous effect of effort

on radicalization net of polarization, while the existence of multiple asymmetric equilibria requires a huge

endogenous effect of effort on polarization net of radicalization.

Let now consider all our four parameters, i.e. productivity of effort β, endogenous radicalization γ,

endogenous polarization δ and ex ante polarization θ. The fact that in our model there are four parameters

means that it is impossible to have a full picture of the relative behavior of these parameters. However its

is interesting to consider the necessary and sufficient conditions w.r.t β and θ, for given γ and δ, and, vice

versa, the necessary and sufficient conditions w.r.t δ and γ, for given β and θ.

Let consider δ and γ, for given β and θ. The necessary and sufficient conditions for multiple symmetric

equilibria can be written as

{
β (4−∆) + 4 < Λ < 4

∆ > 4
⇔ βθ − 4

2
< δ < min

{
γ − 4;

β (γ + θ)− 4 (β + 1)

β + 2

}

which means that endogenous polarization should be bounded below by the interaction between productivity

of effort and ex ante polarization and above by a measure of endogenous radicalization. This means that,

as the following picture shows, both endogenous polarization and endogenous radicalization should be big

enough, even if endogenous polarization can’t grow to quickly.

On the other hand, the necessary and sufficient conditions for multiple asymmetric equilibria can be
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Figure 7: (δ, γ) regions where there are multiple symmetric, asymmetric or unique NE. Boundaries are

represented by darker colors with respect to the region to which they belong.

written as
{

4 < Λ < β(4 −∆) + 4

∆ < −4
⇔ max

{
γ + 4;

β (γ + θ)− 4 (β + 1)

β + 2

}
< δ <

βθ − 4

2

which means that endogenous polarization should be bounded above by the interaction between productivity

of effort and ex ante polarization and below by a measure of endogenous radicalization. This means that, as

the following picture shows, both endogenous polarization and endogenous radicalization should be significant

but they are restricted in their values, while a crucial role is played by the interaction between productivity

of effort and ex ante polarization that should be big enough.

It is also interesting to consider the necessary and sufficient conditions w.r.t β and θ, for given δ and γ.

The necessary and sufficient conditions for multiple symmetric equilibria can be written as

{
β (4−∆) + 4 < Λ < 4

∆ > 4
⇔





4 + 2δ

θ + (∆− 4)
< β <

4 + 2δ

θ

∆ > 4

which means that the productivity of effort should be bounded below and above by two values that are

decreasing in ex ante polarization but increasing in endogenous polarization. On the other hand, the necessary

and sufficient conditions for multiple asymmetric equilibria can be written as

{
4 < Λ < β(4 −∆) + 4

∆ < −4
⇔





4 + 2δ

θ
< β <

4 + 2δ

θ + (∆− 4)

∆ < −4 ∧ θ > 4−∆
∨





4 + 2δ

θ
< β

∆ < −4 ∧ θ < ∆− 4

which means that the range of possible values for the productivity of effort depends on the value of ex ante

polarization. These cases are sketched in Figure 8, in which we also report how thresholds vary depending on

δ and γ, when the dependence is uniform with respect to the other parameters. These figures shows that the

regions for different et of equilibria in the (θ, β) space have a similar behavior w.r.t. the case of no spillover,

where for big value of ex ante polarization, a small increase in the productivity of effort is sufficient to shift

from a region with no effort to an intermediate situation, possibly with multiple symmetric or asymmetric

equilibria, to a region with maximum effort only.

22



Figure 8: (θ, β) regions where there are multiple symmetric, asymmetric or unique NE. Boundaries are

represented by darker colors with respect to the region to which they belong.

Finally, the correspondence between parameters βθ−2δ, γ−δ and β and the possible sets of Nash equilibria

are reported in Figure 9, for some fixed values of productivity of effort.

In the following Corollaries we collect several results concerning the effects of the parameters on the

equilibria, also focusing on their role on the occurrence of multiple and asymmetric equilibria. We start

studying how the intensity of effort at the various Nash equilibria varies depending on β, δ, γ and θ. We

assume that the parameters’ perturbation is such that it does not affect the existence of the particular

equilibrium. In this sense, the results of Corollaries 5,6 and 7 are local. In the first Corollary we focus on

the internal symmetric equilibrium.

Corollary 5. 1. Let βθ − 2δ > 4 (or equivalently γ − δ < 4). Then there is a unique equilibrium and an

increase of β, γ or θ leads to an increase of xNE
IS , while an increase of δ leads to a decrease of xNE

IS .

2. Conversely, let βθ − 2δ < 4 (or equivalently γ − δ > 4). Then there are multiple symmetric equilibria

and an increase of β, γ or θ leads to a decrease of xNE
IS , while an increase of δ leads to an increase of
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Figure 9: Possible equilibria of games Γ ∈ ΓLSO with respect to γ − δ and βθ − 2δ, for various values of β.

Darker shades of each color are used for region boundaries and corners.

xNE
IS .

Now consider the internal asymmetric equilibrium. We remark that, from the definitions of xNE
1,AS and

xNE
2,AS , we have that internal asymmetric equilibria are (xNE

1,AS , x
NE
2,AS) and (xNE

2,AS , x
NE
1,AS) where x

NE
1,AS > xNE

2,AS

provided that γ − δ < −4.

Corollary 6. Increasing β, γ or θ leads to an increase of xNE
1,AS , while increasing δ leads to a decrease of

xNE
1,AS .

Increasing β or θ leads to an increase of xNE
2,AS . If β is sufficiently small, then increasing γ or decreasing

δ decreases xNE
2,AS . If β is sufficiently large and βθ − 2δ is sufficiently small, increasing γ or decreasing δ

decreases xNE
2,AS , while if β is sufficiently large and βθ − 2δ is sufficiently large, increasing γ or decreasing δ

increases xNE
2,AS .

Finally, the case of asymmetric equilibria on the boundaries.

Corollary 7. The intensity of effort xNE
0,B increases with β and θ, while it decreases as δ increases.

The intensity of effort xNE
1,B increases with β, θ and γ, while it decreases as δ increases.
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These results on local comparative statics require some comments, considering the different possible

scenarios:

1. when there is a unique equilibrium, then the equilibrium effort in equilibrium is increasing in the

marginal productivity of effort, in endogenous radicalization and in the ex ante polarization but, may

be surprisingly, it is decreasing in the endogenous polarization. The point is that with a bigger δ, an

increment in effort has two effects: on one hand it increase the likelihood of winning the contest, on the

other hand it pushes further away the two players goals, while an increase in γ makes a default worse,

incentivizing more effort;

2. the results are more complex, however qualitatively similar when there are multiple asymmetric equi-

libria

3. when there are multiple symmetric equilibria, surprisingly the effects of the parameters are completely

reversed: the equilibrium effort in equilibrium is decreasing in the marginal productivity of effort,

in endogenous radicalization and in the ex ante polarization but it is increasing in the endogenous

polarization. However it should be emphasized that in this case, an increase in endogenous polarization

increases the regions with zero effort equilibria while an increase in endogenous radicalization increase

the regions of maximum effort equilibria.

We believe these results shows the importance of distinguishing endogenous polarization and radical-

ization, because of the different role played on equilibrium effort.

3.3 Best response functions and Nash equilibria with spillover in effectivity

function

In this section we investigate the consequences of introducing spillover in CST, in particular on effectivity

functions. In this case we assume α > 0, γ = δ = 0, i.e. a positive direct destructiveness effect.

Then, the resulting payoff functions are

πi(xi, xj) = −a
βxj (1− αxi) + 1

βxi (1− αxj) + βxj (1− αxi) + 2
θ − xi + b, (16)

from which we obtain the class of strategic form game ΓLSE =
{
Γ = ({1, 2} , [0, 1]2, π)

}
with π(xi, xj) =

π1(x1, x2)× π2(x2, x1), where πi are defined by (16)

Let us introduce

x̃j =
4α− β + βθ − 4 +

√
(4α+ β)(4α + β − 4θ − 2βθ + βθ2)

2β(1− 2α+ αθ
. (17)

Firstly we characterize the best response functions for this class of games.

Proposition 5. Let us consider games Γ ∈ ΓLSE . Then

• if α < 1/2, the best response function of player i is the continuous, piecewise smooth function

BRi(xj) = max

{
min

{
β −

√
β(4α+ β − αβθ)

2αβ
, 1

}
, 0

}
, (18)

for which if BRi(xj) = xj , then BR′
i(xj) = 0

• if α ≥ 1/2 and βθ < 4 + β/α, the best response function of player i is the continuous, piecewise smooth

function

BRi(xj) =





max

{
min

{
β−

√
β(4α+β−αβθ)

2αβ , 1

}
, 0

}
if 0 ≤ xj <

1
2α ,

0 if 1
2α ≤ xj ≤ 1,

(19)
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for which if BRi(xj) = xj , then BR′
i(xj) = 0

• If α ≥ 1/2 and βθ = 4 + β/α, the best response correspondence of player i is the upper-hemicontinuous

correspondence

BRi(xj) =





max

{
min

{
β−

√
β(4α+β−αβθ)

2αβ , 1

}
, 0

}
if 0 ≤ xj <

1
2α ,

[0, 1] if xj =
1
2α ,

0 if 1
2α < xj ≤ 1,

(20)

whose restriction to {xj 6= 1/2α} is a continuous function;

• if α ≥ 1/2 and βθ > 4 + β/α, the best response correspondence of player i is the upper-hemicontinuous

correspondence

BRi(xj) =





max

{
min

{
β−

√
β(4α+β−αβθ)

2αβ , 1

}
, 0

}
if 0 ≤ xj <

1
2α ,

1 if 1
2α ≤ xj < x̃j ,

{0, 1} if xj = x̃j ,

0 if x̃j < xj ≤ 1,

(21)

whose restriction to {xj 6= x̃j} is a continuous function.

Depending on α, β and θ, if x̃j 6∈ [0, 1] then the best response function can be either constantly equal to

0, constantly equal to 1, strictly non-decreasing or hump-shaped. Conversely, if x̃j ∈ [0, 1], the best response

correspondence is non-decreasing for xj < x̃j and constantly equal to 0 for xj > x̃j .

In Figure 10 we report the resulting shapes of the best response depending on parameters α and θ for

different values of β, distinguishing in particular when it is a function or a correspondence.

The main difference between the case with spillover on effectivity function and those without spillover

or spillover in the outcome is that in the present case the best response can be a correspondence and not

a function. In particular, we can have that the best response correspondence is not convex-valued, hence

the existence of the Nash equilibrium is not guaranteed anymore. The situation is studied in the following

Proposition.

Proposition 6. When the best response for games Γ ∈ ΓLSE is a function and is

• strictly non-decreasing, then the unique Nash equilibrium is a corner equilibrium;

• hump-shaped, then the unique Nash equilibrium is internal and symmetric;

• constant, then the unique Nash equilibrium is a symmetric corner equilibrium;

When the best response for games Γ ∈ ΓLSE is not a function, then we can either have a symmetric

internal equilibrium (which can eventually become a corner equilibrium) or no equilibria.

For any parameter configuration, no asymmetric equilibria occur.

In Figure 11 we report the various scenarios resulting from the previous Proposition, neglecting the trivial

case of constant best response functions. The previous results can be summarized in the following Corollary,

in which we use

xNE
IS =

1

2α
−

√
β(4α+ β − αβθ)

2αβ
. (22)

Corollary 8. For game ΓLSE, we can have either a unique symmetric equilibrium or no equilibrium.
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Figure 10: Possible shapes of best response functions/correspondences for games Γ ∈ ΓLSE with respect to θ

and α, for different values of β. Blue (respectively cyan) region represents parameters’ combinations for which

the best response is constantly equal to 1 (respectively to 0). Green (respectively white) region represents

parameters’ combinations for which the best response function is strictly non-decreasing (respectively hump-

shaped). Pink region represents parameters’ combinations for which the best response is a correspondence.

Darker shades of each color are used for region boundaries and corners.

As for the case with spillover on outcomes, we investigate the effects of the parameters on the equilibrium,

also focusing on its existence or not. Also in this case the proof is omitted.

Corollary 9. The intensity of effort xNE
IS increases as β, θ and α increase.

We have no equilibria if and only if 



α ≥ 1/2,

4
β ≤ θ ≤ 4α+β

αβ .

Let note that we have the usual effects of the marginal productivity of effort and of ex ante polarization

on the equilibrium effort as well as of the direct destructiveness parameter, however when these effects are
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Figure 11: Combinations between the possible shapes of the best response functions/correspondences and the

resulting Nash equilibria for a game Γ ∈ ΓLSE . In the first row we report the cases in which the best response

is a function, in the second row we report the cases in which the best response is only a correspondence.

big enough, then they destroy (pure strategy) equilibrium existence because of the discontinuity in the best

reply functions.

4 Conclusion

To the best of our knowledge, the results of this paper are quite innovative, because no contest model is

able to generate all these results, connecting the characteristics of the set of equilibria to fundamental micro

properties of the contest model. In particular Chowdhury and Sheremeta 2011a construct a generalized

Tullock contest and characterize the unique symmetric equilibrium, while Szidarovszky and Okuguchi 1997

analyze existence and uniqueness for general but standard models, however we think that our basic parameters

have more neat and useful interpretations making applications more immediate, as we have shown in previous

corollaries. Moreover Chowdhury and Sheremeta 2011b use their generalized contest model to derive the

conditions that imply the existence of multiple asymmetric equilibria, however in our model we find not only

multiple asymmetric equilibria, but also multiple symmetric equilibria that can easily be Pareto ordered.

Again, the conditions implying these kind of equilibria have a neat strategic interpretation. In particular

our results provides clues to interpret real contests’ situations stressing the role of contest success technology

(β) and of polarization (θ), of endogenous polarization and radicalization (γ, δ) and the consequences of
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Figure 12: Possible equilibria of games Γ ∈ ΓLSE with respect to α and θ, for various values of β. Darker

shades of each color are used for region boundaries and corners.

destructive possibilities (α) for the properties of the set of Nash equilibria, to induce uniqueness or multiplicity,

symmetry and asymmetry.

Our future work will focus on out of equilibrium dynamics, which is analyzed in the companion paper

Cavalli et al. 2016, on the ways of modelling players’ multiple goals and multiple contest tools with different

effects, e.g. defensive versus offensive efforts, which would mean different effectivity and cost functions.
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5 Appendix

This Section collects the proofs of the Propositions and Corollaries of Sections 3.1, 3.2 and 3.3, respectively

concerning the family of games ΓNS ,ΓLSO and ΓLSE .

We remark that, thanks the symmetry of the considered games, we have that BRi(z) = BRj(z) for any

z ∈ [0, 1], so in what follows we can focus on just the best response function BRi(xj) of player i with respect

to the strategy xj of player j.

5.1 Proofs of section 3.1

We start noticing that, from (4), we have

∂xi
πi(xi, xj) =

β (θ + βθxj)

(βxi + βxj + 2)
2 − 1, ∂2

xi
πi(xi, xj) = − 2β2 (θ + βθxj)

(βxi + βxj + 2)
3 ,

∂2
xixj

πi(xi, xj) =
β3θ (xi − xj)

(βxi + βxj + 2)
3 .

(23)

Since ∂2
xi
πi(xi, xj) < 0, the payoff function is strictly concave for any parameters’ configuration.

Let us introduce function x+ : [−1/β,+∞) → R defined by

x+(z) = −z − 2

β
+

√(
z +

1

β

)
θ, (24)

which will be used for the characterization of the best response function. The properties of x+ are investigated

in the following Lemma, whose proof is omitted as straightforward.

Lemma 1. Function x+ is a strictly concave function for which

x+(zm) = zm ⇔ zm =
βθ − 4

4β
, (25)

where zm is the unique maximum point of x+. It is strictly increasing (respectively decreasing) in [−1/β, zm)

(respectively in (zm,+∞)), in which x+(z) > z (respectively x+(z) < z).

In the next Lemma we compute the best response function.

Lemma 2. The best response function BRi : [0, 1] → [0, 1] is given by

BRi(xj) = min {max {x+(xj), 0} , 1} , (26)

where x+ is defined by (24).

Proof. We start solving xi = argmaxz∈[0,1] πi(z, xj) for a fixed xj ∈ [0, 1]. From (23), we have that ∂xi
πi(xi, xj) ≥

0 leads to

−β2x2
i +

(
−2xjβ

2 − 4β
)
xi −

(
β2x2

j − θβ2xj + 4βxj − θβ + 4
)
≥ 0. (27)

Assuming that xj > −1/β, inequality (27) is solved x−(xj) ≤ xi ≤ x+(xj), where

x±(xj) = −xj −
2

β
±
√(

xj +
1

β

)
θ,

are real values for any positive β and θ. Noticing that x−(xj) < 0, for a fixed xj , we have three cases

• x+(xj) ≤ 0 : the marginal payoff is negative for any xi ∈ [0, 1], so the payoff function πi(xi, xj) is strictly

decreasing any xi ∈ [0, 1] and attains its maximum for xi = 0. In this case we have BRi(xj) = 0.
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• x+(xj) ∈ (0, 1) : the marginal payoff is positive for any xi ∈ [0, x+(xj)) and negative for any xi ∈
(x+(xj), 1], so the payoff function πi(xi, xj) is strictly increasing for xi ∈ [0, x+(xj)) and strictly

decreasing for xi ∈ (x+(xj), 1], and attains its maximum for xi = x+(xj). Then, we have BRi(xj) =

x+(xj).

• x+(xj) ≥ 1 : the marginal payoff is positive for any xi ∈ [0, 1], so the payoff function πi(xi, xj) is strictly

increasing for any xi ∈ [0, 1] and attains its maximum for xi = 1. We then have BRi(xj) = 1.

This allows concluding.

In the next two Lemmas we prove two properties of the best response function.

Lemma 3. If BRi(x̃j) = 0 for some x̃j ∈ [0, 1], then BRi(xj) = 0 for any xj > x̃j . If BRi(x̃j) = 1 for some

x̃j ∈ [0, 1], then BRi(xj) = 1 for any xj > x̃j .

Proof. If BRi(x̃j) = 0, then x+(x̃j) ≤ 0 < x̃j and, from Lemma 1, we have x′
+(x̃j) < 0. Since x+ is concave,

it decreases for any xj > x̃j , and then, again from Lemma 1, we have x+(x̃j) < 0, i.e. BRi(xj) = 0.

For the second part, if BRi(x̃j) = 1 for some x̃j < 1, we have that BRi(x̃j) = x+(x̃j) > x̃j . From Lemma

1, this means that x+ is increasing for any xj ∈ (x̃j , zm). Since zm = x+(zm) > x+(x̃j) = 1, this means that

x+ is increasing, and hence larger than 1, for any xj > x̃j . This concludes the proof.

Lemma 4. If BRi(xj) = xj for some xj ∈ [0, 1], then BR′
i(xj) = 0.

Proof. If BRi(0) = 0, from Lemma 3 we have that the best response is null for any xj ∈ [0, 1], so we trivially

have BR′
i(0) = 0.

If BRi(1) = 1, from Lemma 2 we have that x+(1) ≥ 1. If x+(1) > 1, since x+ is a continuous function,

there exists a suitable interval (xj , 1) such that x+(xj) > 1, and in which hence BRi(xj) = 1. In this case

we trivially have BR′
i(1) = 0. Conversely, if x+(1) = 1, from Lemma 2 we have that 1 is the maximum point

of x+ and so BRi ≡ x+ is a suitable left neighborhood (1− ǫ, 1] of 1, which provides BR′
i(1) = x′

+(1) = 0.

If BRi(xj) = xj for some xj ∈ (0, 1), we can conclude by noticing that BRi ≡ x+ in a suitable neighbor-

hood (xj − ǫ, xj + ǫ) of xj , which provides BR′
i(xj) = x′

+(xj) = 0.

The previous Lemmas allow proving Propositions and Corollaries of Section 3.1.

Proof of Propositions 1 and 2. From Lemmas 1 and 2 we have that BRi is a piecewise smooth and continuous

function, while from Lemma 4 we have that BR′
i(xj) vanishes if BRi(xj) = xj .

The classification of best responses of games Γ ∈ ΓLNS then follows from the possible behaviors of zm,

considering the properties of x+ shown in Lemma 1 and the expression of BRi provided by Lemma 2.

If zm ≤ 0, then we have that x+(xj) ≤ 0 = BRi(xj) for any xj ∈ [0, 1]. The unique possible Nash

equilibrium is indeed (0, 0).

We notice that if zm > 0, we have x+(0) > 0, as otherwise, by intermediate value theorem, equation

x+(z) = z would have two positive solutions, which is not possible from Lemma 1.

Then, if 0 < zm < 1, there exists b ≤ 1 (with b = 1 if and only if x+(1) > 0) such that BRi(xj) =

x+(xj) for xj ∈ [0, b] and BRi(xj) = 0 for xj ∈ (b, 1]. The best response function is then increasing for

xj ∈ [0, zm), decreasing for xj ∈ (zm, b] and null for xj ∈ (b, 1] (where this last interval can be empty). Since

BRi(zm) = zm, we have that (zm, zm) is indeed a Nash equilibrium. Moreover, from (25) we can not have

further solutions of BRi(x) = x, and is the unique symmetric Nash equilibrium.

If zm ≥ 1 and BRi(0) < 1, there exists b ≤ 1 ≤ zm (with β = 1 if and only if zm = 1) such that

BRi(xj) = x+(xj) for xj ∈ [0, b] and BRi(xj) = 1 for xj ∈ (b, 1]. The best response function is then

increasing for xj ∈ [0, b), and constant for xj ∈ (b, 1] (where this last interval can be empty).
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Finally, if zm ≥ 1 and BRi(0) ≥ 1, since x+ is increasing up to zm > 1, we have BRi(xj) = 1. The unique

possible Nash equilibrium is indeed (0, 0).

We stress that, since the previous conditions are mutually excluding, they are also necessary conditions

for the occurrence of each scenario.

Due to the shape of x+, we can not have asymmetric equilibria, since the graphs of the best response

functions y = BRi(x) and x = BRi(y) are subsets of regions which have in common only the set of symmetric

points {P ∈ [0, 1]2 : P = (x, x), x ∈ [0, 1]}. In fact, recalling also the previous considerations, we have that

if the best response function is strictly non-decreasing, the graph of y = BRi(x) lies above the bisector of

plane (x, y), while the graph of x = BRi(y) lies below the bisector of plane (x, y). Similarly, in the case of

hump-shaped best response functions, we have that

• the graph of y = BRi(x) lies above the bisector of plane (x, y) for x ∈ [0, zm], while the graph of

x = BRi(y) lies below the bisector of plane (x, y) for y ∈ [0, zm];

• the graph of y = BRi(x) lies below the bisector of plane (x, y) for x ∈ [zm, 1], while the graph of

x = BRi(y) lies above the bisector of plane (x, y) for y ∈ [zm, 1].

In the next two propositions we provide the analytic description of the regions reported in Figure 2 and

4, namely the characterization of best responses of games Γ ∈ ΓLNS and the occurrence of either internal or

corner equilibria with respect to β and θ

Proposition 7. We have that the best response functions of games Γ ∈ ΓLNS are

a) constantly equal to 0 if and only if βθ ≤ 4, which corresponds to the blue region of Figure 2;

b) hump-shaped if and only 4 < βθ < 4β + 4, which corresponds to the white region of Figure 2;

c) strictly non-decreasing if and only 4β + 4 ≤ βθ < (2 + β)2, which corresponds to the green region of

Figure 2;

d) constantly equal to 1 if and only if βθ ≥ (2 + β)2, which corresponds to the cyan region of Figure 2.

Proof. The previous regions are obtained by simply solving zm ≤ 0 (when BRi ≡ 0), 0 < zm < 1 (for

hump-shaped best response functions), zm ≥ 1 with x+(0) < 1 (for the strictly non-decreasing case) and

x+(0) ≥ 1 (when BRi ≡ 1).

Proposition 8. We have

a) the corner equilibrium (0, 0) if and only if βθ ≤ 4, which corresponds to the cyan region of Figure 4;

b) the internal equilibrium if and only 4 < βθ < 4β+4, which corresponds to the green region of Figure 4;

c) the corner equilibrium (1, 1) if and only if βθ ≥ 4β + 4, which corresponds to the blue region of Figure

4.

Proof. Case a) is obtained from zm ≤ 0; case b) from 0 < zm < 1; case c) from zm ≥ 1.
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Proof of Corollaries 1 and 2. We start rewriting conditions provided by Proposition 8 in terms of β. If θ > 4

we have

xNE
IS =






0 if β ≤ 4
θ ,

∈ (0, 1) if 4
θ < β < 4

θ−4 ,

1 if β ≥ 4
θ−4 .

while if θ ≤ 4 we have

xNE
IS =





0 if β ≤ 4

θ ,

∈ (0, 1) if β > 4
θ .

We obtained (7). This means that, increasing β from 0 to +∞, the Nash equilibrium is initially the cor-

ner equilibrium (0, 0), it subsequently becomes the internal equilibrium (xNE
IS , xNE

IS ) and then it (possibly)

becomes the corner equilibrium (1, 1). Notice that xNE
IS is increasing in β.

Rewriting conditions provided by Proposition 8 in terms of θ

xNE
IS =






0 if θ ≥ 4
β ,

∈ (0, 1) if 4
β < θ < 4(β+1)

β ,

1 if θ ≤ 4(β+1)
β .

we have that θ from 0 to +∞ the Nash equilibrium is initially the corner equilibrium (0, 0), it subsequently

becomes the internal equilibrium (xNE
IS , xNE

IS ) and then it (possibly) becomes the corner equilibrium (1, 1).

Notice that xNE
IS is increasing in θ. The last result is straightforward and concludes the proof.

The next Proposition is devoted to the generalization of the previous results.

Proposition 9. Let us assume that there is no spillover in the agents’ effectiveness of the efforts, the contest

polarization is constant with respect to the efforts and there is no spillover in the cost function. Then, the

following scenarios are the only that can occur:

Best replies Nash equilibrium

(I) BRi (xj) is a positive function

with unimodal shape in [0, 1]

(
xNE
i , xNE

j

)
∈ (0, 1)× (0, 1)

(II) BRi (xj) is a positive function

with unimodal shape in [0, xa] and

null in [xa, 1]

(
xNE
i , xNE

j

)
∈ (0, 1)× (0, 1)

(III) BRi (xj) is a positive function in-

creasing in [0, xa] and equal to 1 in

[xa, 1]

(
xNE
i , xNE

j

)
= (1, 1)

(IV) BRi (xj) is constantly null
(
xNE
i , xNE

j

)
= (0, 0)

(V) BRi (xj) is constantly equal to 1
(
xNE
i , xNE

j

)
= (1, 1)

where xa ∈ (0, 1] In all the situations we have that BR′(xNE) = 0 and that the equilibrium is unique.

Proof. Thanks to the symmetry, we can focus only on player 1. Under the previous assumptions, we have

that effort and cost functions are actually one dimensional, and, for the sake of notation, we will again denote

with S and C. The payoff function becomes

π1(x1, x2) = − S(x2)

S(x1) + S(x2)
θ − C(x1)
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with marginal payoff

∂x1
π1(x1, x2) = S(x2)S

′(x1)
(S(x1)+S(x2))2

θ − C′(x1)

and

∂2
x1
π1(x1, x2) =

S(x2)(S(x1)+S(x2))∂
2
x1

S(x1)−2S(x2)(∂x1
S(x1))

2

(S(x1)+S(x2))3
θ − C′′(x1)

∂2
x1x2

π1(x1, x2) =
(S(x1)+S(x2))

2∂x2
S(x2)∂x1

S(x1)−2(S(x1)+S(x2))S(x2)∂x1
S(x1)∂x2

S(x2)

(S(x1)+S(x2))4
θ

=
(S(x1)+S(x2))∂x2

S(x2)∂x1
S(x1)−2S(x2)∂x1

S(x1)∂x2
S(x2)

(S(x1)+S(x2))3
θ

= (S(x1)− S(x2))
∂x2

S(x2)∂x1
S(x1)

(S(x1)+S(x2))3
θ

From now on, we fix x2 and we study the properties of π1(x1, x2), ∂x1
π1(x1, x2), ∂

2
x1
π1(x1, x2) and ∂2

x1x2
π1(x1, x2)

as functions of x1 only.

Firstly, we notice that ∂2
x1
π1(x1, x2) < 0, so ∂x1

π1(x1, x2) is strictly decreasing, which means that

π1(x1, x2) is strictly concave. Regarding the monotonicity of π1, since ∂x1
π1(x1, x2) is strictly decreasing, we

can have that

1. ∀x1 ∈ [0, 1)∂x1
π1(x1, x2) > 0, so π1(x1, x2) is strictly increasing

2. there exists xM ∈ (0, 1) such that ∂x1
π1(x1, x2) > 0 for x1 ∈ [0, xM ) and ∂x1

π1(x1, x2) < 0 for

x1 ∈ (xM , 1], so π1(x1, x2) is a unimodal and concave function and xM is the global maximum

3. ∀x1 ∈ (0, 1]∂x1
π1(x1, x2) < 0, so π1(x1, x2) is strictly decreasing

In the first case we have that the best response to x2 is indeed 1, while in the third case it is 0. In the

second case we have that 0 < xM < 1 is the best response to x2.

Now we prove that if the best response becomes null for some opponent’s effort, it will be null for any

larger effort. If the best response is null for some x̂2,we are in the third case. This implies that we also have

∂x1
π1(x1, x2) < 0 for x2 > x̂2. In fact we have that

∂x1
π1(0, x2) < ∂x1

π1(0, x̂2) ≤ 0, withx2 > x̂2

is equivalent to
S(x2)∂x1

S(0)

(S(0)+S(x2))2
θ − C′(x1) <

S(x̂2)∂x1
S(0)

(S(0)+S(x̂2))2
θ − C′(x1)

S(x2)∂x1
S(0)

(1+S(x2))2
<

S(x̂2)∂x1
S(0)

(1+S(x̂2))2

S(x2)
(1+S(x2))2

< S(x̂2)
(1+S(x̂2))2

which is true since x/(1 + x)2 is decreasing for x ≥ 1. Since ∂x1
π1(0, x2) < 0 and ∂2

x1
π1(x1, x2) < 0 we can

conclude that ∂x1
π1(x1, x2) < 0 for x2 > x̂2 and hence the best response is null

Similarly, we have that if the best response becomes 1 for some opponent’s effort, it will be 1 for any

larger effort. The proof is similar to the previous case. If the best response is 1, then we are in the first case

and we can show that ∂x1
π1(x1, x2) > 0 for x2 > x̂2. In fact we have that

∂x1
π1(1, x2) > ∂x1

π1(1, x̂2) ≥ 0, forx2 > x̂2

is equivalent to
S(x2)∂x1

S(1)

(S(1)+S(x2))2
θ − C′(x1) >

S(x̂2)∂x1
S(1)

(S(1)+S(x̂2))2
θ − C′(x1)

S(x2)∂x1
S(1)

(S(1)+S(x2))2
>

S(x̂2)∂x1
S(1)

(S(1)+S(x̂2))2

S(x2)
(S(1)+S(x2))2

> S(x̂2)
(S(1)+S(x̂2))2

which is true since x/(B + x)2 is an increasing function for x ≤ B.
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The previous considerations show that if BR(0) = 0 (respectively BR(0) = 1), then BR ≡ 0 (respectively

BR ≡ 0), namely we have (IV) (respectively (V)).

Let us consider the remaining cases BR(0) 6= 0 and BR(0) 6= 1. Since we proved that if there exists

x̂ ∈ (0, 1] such that BR(x̂) = 0 (resp. BR(x̂) = 1), then BR(x) = 0 (resp. BR(x) = 1) for x ∈ [x̂, 1], we can

have three possibilities

• BR(x2) ∈ (0, 1) for each x2 ∈ I = [0, 1] and BR(1) ∈ (0, 1), which gives the best response of (I)

• there exists a xa ∈ (0, 1] for which BR(x2) ∈ (0, 1) for each x2 ∈ I = [0, xa) and BR(xa) = 0, which

gives the best response of (II)

• there exists a xa ∈ (0, 1] for which BR(x2) ∈ (0, 1) for each x2 ∈ I = [0, xa) and BR(xa) = 1,which

gives the best response of (III)

We notice that the three situations are identified by the behavior of BR for x2 = 1.

Now we study the remaining properties of BR and the corresponding Nash equilibria in (I),(II) and (III).

In all cases, the best response to each x2 ∈ I is the (unique) f(x2) ∈ (0, 1) which solves ∂x1
π1(f(x2), x2) = 0.

This allows defining function f : I → (0, 1), which, recalling the regularity properties of S and C, thanks to

the implicit function theorem, satisfies f ∈ C2(I) and

f ′(x2) = −∂2
x1x2

π1(f(x2), x2)

∂2
x1
π1(f(x2), x2)

= −(S(f(x2))− S(x2))
∂x2

S(x2)∂x1
S(f(x2))[

S(x2)(S(f(x2)) + S(x2))∂2
x1
S(f(x2))− 2S(x2)(∂x1

S(f(x2)))2
]
θ − C′′(f(x2))

(28)

Recalling that ∂x2
S(x2)∂x1

S(f(x2)) > 0 and ∂2
x1
π1(f(x2), x2) < 0 and we have that f ′(x2) > 0 if and only

if S(f(x2)) − S(x2) > 0. Then f is increasing if and only if S(f(x2)) > S(x2), namely if f(x2) > x2 and is

decreasing if f(x2) < x2. Hence, if we are in case (III), we have that f is strictly increasing in I and indeed

(xNE , xNE) = (1, 1).

In the remaining cases we have that that there exists a xNE ∈ (0, 1) such that function BR is strictly

increasing (resp. decreasing) in [0, xNE) (resp. (xNE , 1]) and f ′(xNE) = 0, which gives the unimodal property

of f in (I) and (II). Moreover, we have that (xNE , xNE) is a symmetric equilibrium for both (I) and (II). Such

equilibrium is also the only symmetric one, because from (28) we have that in (internal) symmetric equilibria

we need f ′ = 0. If more than a symmetric equilibrium existed, because of the regularity of involved functions,

we would have that between two symmetric equilibria there would exist another symmetric equilibrium with

BR′ 6= 0. Indeed, in (I) and (II) we can not have boundary symmetric equilibria.

We only have to prove that we do not have asymmetric equilibria. This is indeed true in cases (III),(IV)

and (V). In the remaining cases, let us suppose that (xNE
1 , xNE

2 ) is an asymmetric equilibria, namely we have

xNE
1 = BR(xNE

2 ) and xNE
2 = BR(xNE

1 ) and with xNE
1 6= xNE

2 . Without loss of generality, let us consider

xNE
1 > xNE

2 . Then BR(xNE
2 ) = xNE

1 > xNE
2 which implies BR′(xNE

2 ) > 0 and hence xNE
2 < xNE . Since for

x < xNE we have that BR is an increasing function, we also have BR(xNE
2 ) < BR(xNE) = xNE and hence

xNE
1 < xNE . However, this implies that BR′(xNE

1 ) < 0. But when BR′(xNE
1 ) < 0 we need xNE

2 > xNE and

this is a contradiction.
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5.2 Proofs of Section 3.2

We start noticing that, from (8), we have

∂xi
πi(xi, xj) =

β (βxj + 1) (θ + δxi + γxj)

(βxi + βxj + 2)
2 − δ (βxj + 1)

βxi + βxj + 2
− 1,

∂2
xi
πi(xi, xj) =

2β (βxj + 1) (2δ − βθ + βδxj − βγxj)

(βxi + βxj + 2)
3 .

(29)

As we shall see, all the following results can be represented, in addition to β, through the two synthetic

parameters

Λ = βθ − 2δ, ∆ = γ − δ.

In what follows, the results are presented in terms of Λ,∆ and β, but can be easily rephrased in terms of θ, δ

and γ, in order to obtain the formulations reported in Section 3.2.

Moreover, we set

∆(xj) = (βxj + 1)(Λ + β∆xj), (30)

and we introduce function x+ : D → R, defined on the set D = {xj ∈ [0, 1] : ∆(xj) ≥ 0}, given by

x+(xj) = − 2

β
− x2 +

√
∆(xj)

β
. (31)

We remark that set D depends on the parameters’ configuration.

Lemma 5. For Λ 6= ∆ function x+ is strictly concave, while for Λ = ∆ it becomes

x+(xj) = −xj

(
1−

√
Λ
)
+

√
Λ− 2

β
. (32)

In the next Lemma, we compute the best response function.

Lemma 6. The best response function BRi : [0, 1] → [0, 1] is given by

BRi(xj) =





0 if ∆(xj) < 0,

min{max{x+(xj), 0}, 1} otherwise,
(33)

where function x+ is defined by (31).

Proof. Noticing that ∆(xj) < 0 is equivalent to a1 + a2βxj < 0, we have from (29) that payoff function

πi(xi, xj) is strictly convex with respect to xi, so its global maximum is attained at xi = 0 and/or xi = 1.

Through simple algebraic manipulations, we have that

πi(0, xj)− πi(1, xj) > 0 ⇔ ω = β2(1− a2)x
2
j + β(4− a2 − a1 + β)xj + 4 + 2β − a1 > 0.

Using −a1 ≥ βa2xj , we have

ω > β2x2
j + β(4 + β)xj + 4 + 2β > 0,

where the last inequality is indeed true. This means that BRi(xj) = 0.

If ∆(xj) = 0, which means xj = −a1/βa2, we can write

πi

(
xi,−

a1
βa2

)
= −δ

a2 − a1
βa1

− xi,

which is a decreasing function and again provides BRi(xj) = 0. Since when ∆(xj) = 0 we have x+(xj) < 0,

we can indeed write BRi(xj) = min{max{x+(xj), 0}, 1} = 0.
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Now we consider any xj ∈ [0, 1] for which ∆(xj) > 0. To find xi = argmaxz∈[0,1] πi(z, xj), we start

noticing that, from (29), imposing ∂xi
πi(xi, xj) ≥ 0 we obtain

− β2x2
i +−2β (βxj + 2)xi + βθ − 2δ − 4βxj − β2xj

2

+ β2θxj − β2δxj
2 + β2γxj

2 − 3βδxj + βγxj − 4 ≥ 0. (34)

Since ∆(xj) > 0, the previous inequality is solved by x−(xj) ≤ xi ≤ x+(xj), where

x±(xj) = − 2

β
− x2 ±

√
(βx2 + 1)(a1 + βa2xj)

β
,

which are both real and satisfy x−(xj) < −1/β < x+(xj). Proceeding as in the last part of the proof of

Lemma 2, we easily obtain BRi(xj) = min{max{x+(xj), 0}, 1}.
If ∆(xj) > 0 for any xj ∈ [0, 1], then BRi(xj) is indeed continuous, as well as if ∆(xj) ≤ 0 for any

xj ∈ [0, 1]. Conversely, if x̄j = −a1/(βa2) belongs to (0, 1), we need to check the continuity of BRi at

xj = x̄j . If a2 > 0, we have that BRi(xj) = 0 for xj ≤ x̄j and since

lim
xj→x̄+

j

x+(xj) =
1

β

(
a1
a2

− 2

)
< 0,

we have limxj→x̄+

j
BRi(xj) = 0, so the best response function is continuous. Similarly, if a2 < 0, we have

that BRi(xj) = 0 for xj ≥ x̄j and since

lim
xj→x̄−

j

x+(xj) =
1

β

(
a1
a2

− 2

)
< 0,

we have limxj→x̄−

j
BRi(xj) = 0, so the best response function is again continuous.

Using the previous Lemma we can prove Proposition 3.

Proof of Proposition 3. Lemma 6 guarantees that when BRi(xj) ∈ (0, 1), then BRi(xj) = x+(xj). From

Lemma 5, function x+, is strictly concave for a1 6= a2, and then it is either strictly increasing, strictly

decreasing or unimodal in its domainD. If a1 = a2, from (32) we have that x+ can be either strictly increasing,

strictly decreasing or constant (identically equal to −1/β if and only if a1 = a2 = 1). The classification of

the possible behaviors of BRi then follows from Lemma 6, essentially depending, on the values of x+ and x′
+

at the ending points of D∩ [0, 1]. Then BRi can be either strictly increasing, strictly decreasing or unimodal

in those intervals in which x+(xj) ∈ (0, 1), constantly equal to 0 when either x+(xj) < 0 or ∆(xj) < 0 for

each xj ∈ [0, 1] and constantly equal to 1 when x+(xj) ≥ 1 for each xj ∈ [0, 1]. The previous considerations

together with Figure 6, which shows that each case is actually possible, allow concluding.

In Section 3.2, we reported in Figure 5 diagrams of the occurrence of each scenario of Proposition 3 for

some fixed values of β as βθ− 2δ and γ − δ vary. In the following results we analytically specify each region

shown in Figure 5. Most results are determined looking at the values of x+(xj) and of its derivative at

xj = 0, 1 (provided that x+ is defined for such values). In Lemmas 7-10 we then study x+(0), x+(1), x+(0)
′

and x+(1)
′ on varying Λ,∆ and β. The proofs of Lemmas 7-9 are straightforward and are omitted.

Lemma 7. We have
Λ < 0 ⇒ ∆(0) < 0,

0 ≤ Λ < 4 ⇒ x+(0) < 0,

Λ = 4 ⇒ x+(0) = 0,

4 < Λ < (β + 2)2 ⇒ x+(0) ∈ (0, 1),

Λ = (β + 2)2 ⇒ x+(0) = 1,

Λ > (β + 2)2 ⇒ x+(0) > 1.
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Lemma 8. We have
∆ < −Λ

β ⇒ ∆(1) < 0,

−Λ
β ≤ ∆ < (β+2)2

β(β+1) − Λ
β ⇒ x+(1) < 0,

∆ = (β+2)2

β(β+1) − Λ
β ⇒ x+(1) = 0,

(β+2)2

β(β+1) − Λ
β < ∆ < 4(β+1)

β − Λ
β ⇒ x+(1) ∈ (0, 1),

∆ = 4(β+1)
β − Λ

β ⇒ x+(1) = 1,

∆ > 4(β+1)
β − Λ

β ⇒ x+(1) > 1.

Lemma 9. Let ∆(0) = Λ ≥ 0. Then we have

∆ < 2
√
Λ− Λ ⇒ x′

+(0) < 0,

∆ = 2
√
Λ− Λ ⇒ x′

+(0) = 0,

∆ > 2
√
Λ− Λ ⇒ x′

+(0) > 0.

Lemma 10. Let ∆(1) = Λ +∆β ≥ 0 and β2 + 2Λβ + Λ ≥ 0. Then we have

∆ <
2β+2β2−Λ−2Λβ+2(β+1)

√
β2+2Λβ+Λ

(2β+1)2 ⇒ x′
+(1) < 0,

∆ =
2β+2β2−Λ−2Λβ+2(β+1)

√
β2+2Λβ+Λ

(2β+1)2 ⇒ x′
+(1) = 0,

∆ >
2β+2β2−Λ−2Λβ+2(β+1)

√
β2+2Λβ+Λ

(2β+1)2 ⇒ x′
+(1) > 0.

If Λ +∆β ≥ 0 and β2 + 2Λβ + Λ < 0 then x′
+(1) > 0.

Proof. We have

x′
+(1) =

a1 + a2 + 2a2β − 2
√
(β + 1)(a1 + a2β)

2
√
(β + 1)(a1 + a2β)

,

which, thanks to the assumptions, is well-defined. To have x′
+(1) > 0 we need

a1 + a2 + 2a2β − 2
√
(β + 1)(a1 + a2β) > 0, (35)

which necessarily requires that a1 + a2 + 2a2β > 0. If this is valid, then we can rewrite (35) as

(2β + 1)2a22 + 2(a1(2β + 1)− 2β(β + 1))a2 + a21 − 4a1(β + 1) > 0. (36)

If β2 + 2a1β + a1 ≥ 0, inequality (36) is solved by a2 < s− ∨ a2 > s+, where

s± =
2β + 2β2 − a1 − 2a1β ± 2(β + 1)

√
β2 + 2a1β + a1

(2β + 1)2
.

Conversely, if β2 + 2a1β + a1 < 0, we have that (36) is always fulfilled (notice that β2 + 2a1β + a1 < 0 and

a1 + βa2 imply a1 + a2 + 2a2β > 0). This provides the last claim of the Lemma.

Conversely, if

β2 + 2a1β + a1 ≥ 0, (37)

we have that a2 < s− is not possible. In fact, if a1 ≥ 0, imposing both a1 + a2 + 2a2β > 0 and a2 < s− we

would need

− a1
2β + 1

< a2 <
2β + 2β2 − a1 − 2a1β − 2(β + 1)

√
β2 + 2a1β + a1

(2β + 1)2
,

which requires

β(β + 1)− (β + 1)
√
β2 + 2a1β + a1 > 0. (38)
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But (β+1)
√
β2 + 2a1β + a1 ≥ β(β+1), so (38) is not possible. If a1 < 0, from (37) we need (β+2)2

β+1 < a1+βa2,

and imposing a2 < s− we obtain

(β + 2)2

β(β + 1)
− a1

β
< a2 <

2β + 2β2 − a1 − 2a1β − 2(β + 1)
√
β2 + 2a1β + a1

(2β + 1)2
,

which requires

20β + 2β3 + 31β2 + 16β3 + 2β4 + 4 + 2(β3 + 4β2 + β)
√

β2 + 2a1β + a1 − (2β3 + 5β2 + 4β + 1)a1 < 0,

which is not possible since a1 < 0. Conversely, it is easy to see that

− a1
2β + 1

<
2β + 2β2 − a1 − 2a1β + 2(β + 1)

√
β2 + 2a1β + a1

(2β + 1)2
,

which allows concluding the part related to x′
+(1) > 0. The proof of cases x′

+(1) = 0 and x′
+(1) < 0 can be

similarly handled.

Lemma 11. Let Λ < 4. Then we have that there exists xM ∈ (0, 1] such that x+(xM ) > 0 if and only if




Λ > 3β2+8β+4

(β+1)2 ,

∆ > Λ− 4 + 2
√
4− Λ,

∪




Λ < 3β2+8β+4

(β+1)2 ,

∆ > (β+2)2

β(β+1) − Λ
β .

(39)

Proof. If a1 < 3β2+8β+4
(β+1)2 and a2 > (β+2)2

β(β+1) −
a1

β , from Lemma 8 we have that x+(1) > 0, and then we can

choose xM = 1. If a1 > 3β2+8β+4
(β+1)2 and a2 > a1− 4+ 2

√
4− a1, we distinguish two cases. If a2 > (β+2)2

β(β+1) − a1

β

(notice that (β+2)2

β(β+1) −
a1

β > a1 − 4 + 2
√
4− a1 for a1 > 3β2+8β+4

(β+1)2 ), we can again choose xM = 1 thanks to

Lemma 8. Conversely, if a1 − 4 + 2
√
4− a1 < a2 ≤ (β+2)2

β(β+1) − a1

β we can choose

xM =
−(a1 + a2)(1− a2) + (a1 − a2)

√
1− a2

2a2β(1− a2)
,

which is well defined since for a1 > 3β2+8β+4
(β+1)2 we have

(β + 2)2

β(β + 1)
− a1

β
< 1.

Noticing that for a1 > 3β2+8β+4
(β+1)2 we have a2 > a1, we obtain

x+(xM ) =
−(a1 − a2)(1 − a2) + (a1 − 3a2)

√
1− a2

2a2β
√
1− a2

.

A direct check shows that under the previous conditions we have x+(xM ) > 0.

The converse can be proved by contradiction, considering each case obtained by negating (39) and showing

that for each of them supx∈(0,1]∩{xj:∆(xj)≥0} x+ < 0. It is a simple but very long check, so we do not provide

details.

In each of the following proposition we provide sufficient conditions on the parameters for the occurrence

of each best response shape. We remark that since such scenarios are mutually exclusive by definition and

since the conditions used in Propositions 10-14 provide a partition of (Λ,∆, β) space, such conditions are

actually necessary, too.
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Proposition 10. Best response functions of games Γ ∈ ΓLSO are strictly non-increasing if




4 < Λ < (β + 2)2,

∆ ≤ 2
√
Λ− Λ,

or





Λ ≥ (β + 2)2,

∆ < 4(β+1)−Λ
β ,

which corresponds to the yellow regions in Figure 5.

Proof. Let us consider the former couple of inequalities. We have that

a) 4 < a1 < (β + 2)2 ⇒ x+(0) ∈ (0, 1) (Lemma 7);

b) a2 ≤ 2
√
a1 − a1 ⇒ x′

+(0) ≤ 0 (Lemma 9; notice that, from a), we have a1 > 4 > 0, and then this

condition is well-defined).

Then we have BRi(0) ∈ (0, 1) and BR′
i(0) ≤ 0. This means that there exists b ∈ (0, 1] such that

BRi(xj) = x+(xj) for xj ∈ [0, b] and BRi(xj) = 0 for xj ∈ (b, 1], where this latter interval may be empty.

Since x+ is strictly concave, x′
+(0) = BR′

i(0) ≤ 0 means that x′
+(xj) = BR′

i(xj) < 0 for xj ∈ [0, b). Moreover,

we indeed have BR′
i(xj) = 0 for xj ∈ (b, 1].

Now we consider the latter couple of inequalities. We have that

a) a1 ≥ (β + 2)2 ⇒ x+(0) ≥ 1 (Lemma 7);

b) a2 < 4(β+1)−a1

β ⇒ either x+(1) < 1 or ∆(1) < 0 (Lemma 8).

Then we have BRi(0) = 1 and BRi(1) ∈ [0, 1). This means that exist 0 ≤ b < c ≤ 1 such that

BRi(xj) = 1 for xj ∈ [0, b], BRi(xj) = x+(xj) for xj ∈ (b, c] and BRi(xj) = 0 for xj ∈ (c, 1]. Notice that

this latter interval is empty if BRi(1) > 0. Moreover, we must have BR′
i(xj)=x′

+(xj) < 0 for xj ∈ (b, c),

BR′
i(xj) = 0 for xj ∈ [0, b) ∪ (c, 1].

Proposition 11. Best response functions of games Γ ∈ ΓLSO are constantly equal to 1 if



Λ ≥ (β + 2)2,

∆ ≥ 4(β+1)−Λ
β ,

which defines the cyan region of Figure 5.

Proof. We have that

a) a1 ≥ (β + 2)2 ⇒ x+(0) ≥ 1 (Lemma 7);

b) a2 ≥ 4(β+1)−a1

β ⇒ x+(1) ≥ 1 (Lemma 8).

Then we have BRi(0) = BRi(1) = 1. Since BRi is strictly concave, we can not have BRi(xj) < 1 for

any xj ∈ (0, 1). Then BRi ≡ 1, which allows concluding.

Proposition 12. Best response functions of games Γ ∈ ΓLSO are strictly non-decreasing if




4 ≤ Λ < (β + 2)2,

∆ ≥ min

{
2β+2β2−Λ−2Λβ+2(β+1)

√
β2+2Λβ+Λ

(2β+1)2 , 4(β+1)−Λ
β

}
,

or 



3β2+8β+4
(β+1)2 < Λ < 4,

∆ ≥ 2β+2β2−Λ−2Λβ+2(β+1)
√

β2+2Λβ+Λ

(2β+1)2 ,
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or 



Λ < 3β2+8β+4

(β+1)2 ,

∆ > (β+2)2

β(β+1) − Λ
β ,

which define the green region of Figure 5.

Proof. Let us consider the first couple of inequalities and suppose that

2β + 2β2 − a1 − 2a1β + 2(β + 1)
√
β2 + 2a1β + a1

(2β + 1)2
≤ 4(β + 1)− a1

β
. (40)

We have that

a) 4 ≤ a1 < (β + 2)2 ⇒ x+(0) ∈ [0, 1) (Lemma 7);

b) a2 ≥ 2β+2β2−a1−2a1β+2(β+1)
√

β2+2a1β+a1

(2β+1)2 ⇒ x′
+(1) ≥ 0 (Lemma 10; notice that, from a), we have that

β2 + 2a1β + a1 > 0).

Then we have BRi(0) ∈ [0, 1) and BR′
i(1) ≥ 0. If BRi(0) ∈ (0, 1) and BR′

i(1) ≥ 0, we have that x+ is

well-defined for each xj ∈ [0, 1] and, by concavity, that x′
+(xj) > 0 for any xj ∈ (0, 1). Then, there exists

0 < b ≤ 1 such that BRi(xj) = x+(xj) for xj ∈ [0, b] and BRi(xj) = 1 for xj ∈ (b, 1]. Notice that (b, 1] may

be empty. This means that we have BR′
i(xj) = x′

+(xj) > 0 for xj ∈ [0, b) and indeed we have BR′
i(xj) = 0

for xj ∈ (b, 1].

Notice that for a1 = 4 (for which BRi(0) = x+(0) = 0) inequality (40) becomes

(2β + 2)
√
β2 + 8β + 4 + 2β2 − 6β − 4

(2β + 1)2
< 4,

which is true since a simple computation allows showing that its l.h.s. belongs to (0, 1) for β > 0.

Since x+(0)
′ = a2/4 = BR′

i(0), this guarantees that we are not in the case of constantly null best response

function. Recalling BR′
i(1) ≥ 0, this allows concluding.

Conversely, if (40) is false, we have that

a) 4 ≤ a1 < (β + 2)2 ⇒ x+(0) ∈ [0, 1) (Lemma 7);

b) a2 ≥ 4(β+1)−a1

β ⇒ x+(1) ≥ 1 (Lemma 8).

This means that x+ is well-defined for each [0, 1] and, thanks to the concavity of x+, that there exists

0 < b < 1 such that BRi(xj) = x+(xj) for xj ∈ [0, b] and BRi(xj) = 1 for xj ∈ (b, 1]. By concavity, we must

also have BR′
i(xj) = x′

+(xj) > 0 for xj ∈ [0, b), and we indeed have BR′
i(xj) = 0 for xj ∈ (b, 1].

Let us consider the second couple of inequalities. We have that

a) a1 < 4 ⇒ either x+(0) < 0 or ∆(0) < 0 (Lemma 7);

b) a2 ≥ 2β+2β2−a1−2a1β+2(β+1)
√

β2+2a1β+a1

(2β+1)2 ⇒ x′
+(1) ≥ 0 (Lemma 10; notice that, from (3β2 + 8β +

4)/(β + 1)2 < a1, we have that β2 + 2a1β + a1 > 0.).

Moreover, a simple check shows that if 3β2+8β+4
(β+1)2 < a1 we have

(β + 2)2

β(β + 1)
− a1

β
<

2β + 2β2 − a1 − 2a1β + 2(β + 1)
√
β2 + 2a1β + a1

(2β + 1)2
,

and so, from Lemma 8, we also have that x+(1) > 0.
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We then have BRi(0) = 0 and BRi(1) > 0. Moreover, by the concavity of x+, from x′
+(1) > 0 we

have BR′
i(xj) ≥ 0. This means that there exist 0 < b < c ≤ 1 such that BRi(xj) = 0 for xj ∈ [0, b) and

BRi(xj) = x+(xj) for xj ∈ (b, c] and BRi(xj) = 1 for xj ∈ (c, 1]. Notice that (c, 1] can be empty. Then we

have that BR′
i(xj) = 0 for xj ∈ [0, b) ∪ (c, 1] and BR′

i(xj) = x′
+(xj) > 0 for xj ∈ (b, c).

Let us consider the last couple of inequalities. We have that

a) a1 < 3β2+8β+4
(β+1)2 < 4 ⇒ either x+(0) < 0 or ∆(0) < 0 (Lemma 7);

b) a2 > (β+2)2

β(β+1) − a1

β ⇒ x+(1) > 0 (Lemma 8).

A simple check shows that if a2 > (β+2)2

β(β+1) −
a1

β then a1 + a2β ≥ 0. If which, Lemma 10, guarantees that

x′
+(1) ≥ 0. If β2+2a1β+a1 < 0, then, from Lemma 10, we have x′

+(1) > 0. Conversely, if β2+2a1β+a1 ≥ 0,

since fro 3β2+8β+4
(β+1)2 > a1 we have

(β + 2)2

β(β + 1)
− a1

β
>

2β + 2β2 − a1 − 2a1β + 2(β + 1)
√
β2 + 2a1β + a1

(2β + 1)2
,

from Lemma 10 we have x′
+(1) ≥ 0. Proceeding as for the second couple of inequalities we can conclude.

Proposition 13. Best response functions of games Γ ∈ ΓLSO are hump-shaped if





4 ≤ Λ < (β + 2)2,

2
√
Λ− Λ < ∆ < min

{
2β+2β2−Λ−2Λβ+2(β+1)

√
β2+2Λβ+Λ

(2β+1)2 , 4(β+1)−Λ
β

}
,

or 



3β2+8β+4
(β+1)2 < Λ < 4,

Λ− 4 + 2
√
4− Λ < ∆ <

2β+2β2−Λ−2Λβ+2(β+1)
√

β2+2Λβ+Λ

(2β+1)2 ,

which define the white region of Figure 5.

Proof. Let us consider the former couple of inequalities. We have that

a) 4 ≤ a1 < (β + 2)2 ⇒ x+(0) ∈ [0, 1) (Lemma 7);

b) 2
√
a1 − a1 < a2 ⇒ x′

+(0) > 0 (Lemma 9; notice that, from a), we have a1 ≥ 4 > 0);

c) a2 < min

{
2β+2β2−a1−2a1β+2(β+1)

√
β2+2a1β+a1

(2β+1)2 , 4(β+1)−a1

β

}
⇒




x′
+(1) < 0

x+(1) < 1
(Lemma 8 and 10; notice

that, from a), we have β2 + 2a1β + a1 > 0).

We have BRi(0) ∈ [0, 1), BR′
i(0) > 0 and BR′

i(1) ≤ 0. If BR′
i(1) < 0 we indeed have a hump-shaped best

response function, since we have at least a point (xj = 0) at which BRi is strictly increasing and at least a

point (xj = 1) at which BRi is strictly decreasing. Conversely, if BRi(1) = 0, thanks to the continuity of

BRi and the regularity of x+, we must have that BR′
i(xj) < 0 for some xj .

Let us consider the latter couple of inequalities. We have that

a) a1 < 4 ⇒ either ∆ < 0 or x+(0) < 0 (Lemma 7)

b)





a1 − 4 + 2

√
4− a1 < a2

a1 > 0
⇒ x+(xj) > 0 for some xj (Lemma 11)
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c) a2 <
2β+2β2−a1−2a1β+2(β+1)

√
β2+2a1β+a1

(2β+1)2 ⇒ x′
+(1) < 0 (Lemma 10; notice that a1 > 0 guarantees that

β2 + 2a1β + a1 > 0).

Notice that b) and c) are simultaneously possible only if

3β2 + 8β + 4

(β + 1)2
< a1.

We have that there exist 0 < b < c ≤ 1 such that BRi(xj) = 0 for xj ∈ [0, b), BRi(xj) = x+(xj) ∈ (0, 1) for

xj ∈ (b, c) and BRi(xj) = 0 for xj ∈ (c, 1]. Thanks to the continuity of BRi, it must be unimodal in (b, c).

Proposition 14. Best response functions of games Γ ∈ ΓLSO are constantly equal to 0 if





3β2+8β+4
(β+1)2 ≤ Λ ≤ 4,

∆ ≤ Λ− 4 + 2
√
4− Λ,

or 


Λ ≤ 3β2+8β+4

(β+1)2 ,

∆ ≤ (β+2)2

β(β+1) − Λ
β .

which define the blue region of Figure 5.

Proof. From Lemma 11, in both cases, x+ can not assume strictly positive values for xj ∈ (0, 1] ∩ {xj :

∆(xj) ≥ 0}. This concludes the proof.

To prove Proposition 4, Corollary 3 and to provide analytical justification of Figure 9, we need several

preliminary results. In what follows we introduce the set NE of the possible Nash equilibria, which, as the

best response function, depends on Λ,∆, β. To avoid burdening the notation, we do not explicitly write such

dependence.

Firstly we study the possible internal (i.e. belonging to (0, 1)2) equilibria of games Γ ∈ ΓLSO. We omit

the proof of the next Lemma, which can be obtained (after some long but simple computations) by solving

the system of xi = x+(xj) and xj = x+(xi).

Lemma 12. Let Λ 6= 4 and ∆ 6= 4. The only possible intersections between xi = x+(xj) and xj = x+(xi),

belonging to (0, 1) are (xi, xj) ∈ {(xNE
IS , xNE

IS ), (xNE
1,AS , x

NE
2,AS), (x

NE
2,AS , x

NE
1,AS)}, where xNE

IS , xNE
1,AS and xNE

2,AS

are defined in (10) and (11).

As a consequence of the previous Lemma, we have that the only possible elements of set NE can be

• the internal equilibria (xNE
IS , xNE

IS ), (xNE
1,AS , x

NE
2,AS), (x

NE
2,AS , x

NE
1,AS);

• the corner equilibria (0, 0), (1, 1), (0, 1), (1, 0);

• the boundary equilibria (x̄, 0), (0, x̄), (x̄, 1), (1, x̄) with x̄ ∈ (0, 1).

In what follows, when we speak of xNE
IS , xNE

1,AS and xNE
2,AS , we mean that they are really internal. In-

deed, expressions provided by (10) and (11) can assume also values not belonging to (0, 1), but in this case

(xNE
IS , xNE

IS ), (xNE
1,AS , x

NE
2,AS), (x

NE
2,AS , x

NE
1,AS) “become” boundary or corner equilibria. Moreover, when we speak

of xNE
1,AS and xNE

2,AS we mean that they are really asymmetric, i.e. that xNE
1,AS 6= xNE

2,AS . We notice that a sim-

ple computation shows that if xNE
1,AS = xNE

2,AS , then (xNE
1,AS , x

NE
2,AS) and (xNE

2,AS , x
NE
1,AS) both coincide with the

symmetric equilibrium (xNE
IS , xNE

IS ).

Proposition 4, and consequently Corollary 3, follows from the previous Propositions and Lemma by simple

geometrical considerations.

In the next Lemma we provide conditions under which each of the previous equilibria actually occurs.
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Lemma 13. We have that

a) BRi(0) = 0 if and only if Λ ≤ 4;

b) BRi(1) = 1 if and only if ∆ ≥ 4(β+1)
β − Λ

β ;

c) xIS ∈ (0, 1) if and only if





Λ < 4,

∆ > 4(β+1)
β − Λ

β ,
∪





Λ > 4,

∆ < 4(β+1)
β − Λ

β ,

d)





xNE
1,AS ∈ (0, 1),

xNE
2,AS ∈ (0, 1),

xNE
1,AS 6= xNE

2,AS ,

if and only if






−∆

√
∆+4

∆
+1

1−
√

∆+4
∆

< Λ < −∆
1+2β−

√
∆+4

∆

1+
√

∆+4
∆

,

∆ < −4,

e)




BRi(0) ∈ (0, 1),

BRj(BRi(0)) = 0,
if and only if




∆ ≤ −Λ 1+

√
Λ

Λ−1 ,

4 < Λ < (β + 2)2,

f)




BRi(0) = 1,

BRj(1) = 0,
if and only if




∆ ≤ (β+2)2

β(β+1) − Λ
β ,

Λ ≥ (β + 2)2,

g)





BRi(1) ∈ (0, 1),

BRj(BRi(1)) = 1,
if and only if






−∆
1+2β−

√
∆+4
∆

1+
√

∆+4
∆

≤ Λ < 4(β+1)
β − Λ

β ,

− (β+2)2

β+1 < ∆ < −4,
∪






(β+2)2

β(β+1) − Λ
β < Λ < 4(β+1)

β − Λ
β ,

∆ ≤ − (β+2)2

β+1 .

Proof. a,b) The proof is straightforward.

c) It is sufficient to solve 0 < xIS < 1. From

0 <
a1 − 4

β(4− a2)
< 1

we have 



a1 − 4 < 0,

4− a2 < 0,

a2 > 4(β+1)
β − a1

β ,

∪





a1 − 4 > 0,

4− a2 > 0,

a2 < 4(β+1)
β − a1

β .
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Noticing that in each system the first and the last conditions imply the second ones allows concluding.

d) To have xIAS,1 ∈ (0, 1) and xIAS,2 ∈ (0, 1) we must solve




−a1+a2+(a2−a1)
√

a2+4

a2

2a2β
> 0,

−a1+a2−(a2−a1)
√

a2+4

a2

2a2β
> 0,

−a1+a2+(a2−a1)
√

a2+4

a2

2a2β
< 1,

−a1+a2−(a2−a1)
√

a2+4

a2

2a2β
< 1,

in which we must require that either a2 ≤ −4 or a2 > 0, to guarantee the positivity of (a2 +4)/a2. However,

we must exclude a2 > 0. If in fact we assume a2 > 0, adding the first two inequalities we find

−a1 + a2
a2β

> 0,

and then a1 + a2 < 0, which, since we assumed a2 > 0, necessarily requires a1 < 0. Since
√

a2+4
a2

> 1, we

have

−(a1 + a2)− (a2 − a1)

√
a2 + 4

a2
< −(a1 + a2)− (a2 − a1) = −2a2 < 0,

and then the second inequality is always false for a2 > 0. Similarly, we must also exclude a2 = −4, as in this

case we have xIAS,1 = xIAS,2 = xIS .

We then suppose a2 < −4. The previous system can be rewritten as






a1 + a2 + (a2 − a1)
√

a2+4
a2

> 0,

a1 + a2 − (a2 − a1)
√

a2+4
a2

> 0,

a1 + a2 + (a2 − a1)
√

a2+4
a2

< −2a2β,

a1 + a2 − (a2 − a1)
√

a2+4
a2

< −2a2β.

Adding the first two inequalities we find a1+a2 > 0, which requires a1 > 4. After noticing that the second and

the third inequalities are less restrictive than, respectively, the first and the fourth ones and that
√

a2+4
a2

< 1

for a2 ≤ −4, we can easily conclude by solving the first and the fourth inequalities with respect to a1.

e) We have that BRi(0) ∈ (0, 1) if and only if x+(0) ∈ (0, 1), which immediately provides 4 < a1 < (β+2)2.

We have that BRj(BRi(0)) = 0 if and only if ∆(BRi(0)) = (
√
a1 − 1)

(
a1 + a2(

√
a1 − 2)

)
< 0 or

x+(x+(0)) =

√(√
a1 − 1

) (
a1 + a2

(√
a1 − 2

))
−√

a1

β
≤ 0.

Condition ∆(BRi(0)) < 0 is fulfilled for a2 < −a1/(
√
a1 − 2) while x+(x+(0)) ≤ 0 leads to −a1/(

√
a1 − 2) ≤

a2 ≤ −a1/(
√
a1 − 1). Noticing that this last inequality is always satisfied by some a2, we can conclude that

we need a2 ≤ −a1/(
√
a1 − 1) = −a1

(√
a1 + 1

)
/(a1 − 1).

f) BRi(0) = 1 is equivalent to x+(1) ≥ 0, i.e. a1 ≥ (β +2)2. BRj(1) = 0 is equivalent to either ∆(1) < 0

(i.e. a1 + βa2 < 0) or

x+(1) ≤ 0 ⇔





a1 + βa2 ≥ 0

−β − 2 +
√
(β + 1)(a1 + βa2) ≤ 0

⇔ 0 ≤ a1 + βa2 ≤ (β + 2)2

β + 1
,

which allows concluding.

g) To have BRi(1) ∈ (0, 1) we need x+(1) ∈ (0, 1). A direct computation shows that this is equivalent to

(β + 2)2

(β + 1)
− βa2 < a1 < 4(β + 1)− βa2. (41)
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Notice that if a1 ≤ 4, from point a), we would have that BRi(0) = 0. To have BRj(BRi(1)) = 1 we would

need that xj = BRi(xj) has two solutions xj ∈ (0, 1), which is not possible. Then we must have a1 > 4.

Condition BRj(BRi(1)) ≥ 1 is equivalent to x+(x+(1)) ≥ 1, i.e.





√(
a1 − a2

(
β −

√
(β + 1)(a1 + a2β) + 2

))(√
(β + 1)(a1 + a2β) − β − 1

)
−
√
(β + 1)(a1 + a2β) ≥ 0,

a1 + a2β ≥ 0.

Notice that the argument under the square root in the first inequality is positive if the inequality is satisfied,

so we do not need to add further conditions on it.

Let us rewrite introducing the linear transformation x = a1 + βa2. Elevating each member of the first

inequality to the second and rearranging terms we arrive to k1a1 + k2 ≥ 0, where

k1 =
(√

x(β + 1)− β − 1
)(

2β + 2−
√
x(β + 1)

)
,

k2 = x
(
(1 + β)(x + 2)− (3 + 2β)

√
x(β + 1)

)
.

Notice that both k1 and k2 are strictly positive for x ∈
(

(β+2)2

(β+1) , 4(β + 1)
)
. Then we have

a1 ≥ −k2
k1

= x
x− β + βx− 1 + β

√
x(β + 1)

(β + 1)(x− β − 1)
.

The last inequality can be rewritten as

a1 ≥ (a1 + βa2)
a1 + βa2 − β + β(a1 + βa2)− 1 + β

√
(a1 + βa2)(β + 1)

(β + 1)(a1 + βa2 − β − 1)
,

from which we have

−β
[
(β + 1)(a1 − a2 + a1a2 + a22β) + (a1 + a2β)

√
(β + 1)(a1 + a2β)

]

(β + 1)(a1 − β + a2β − 1)
≥ 0,

and then we need

(β + 1)(a1 − a2 + a1a2 + a22β) + (a1 + a2β)
√
(β + 1)(a1 + a2β) ≤ 0.

Recalling (41), we must have





(a1 − a2 + a1a2 + a22β) ≤ 0,

a1 > (β+2)2

(β+1) − βa2,

a1 < 4(β + 1)− βa2,

(a1 + a2β)
3 − (β + 1)(a1 − a2 + a1a2 + a22β)

2 ≤ 0.

(42)

The first inequality can be rewritten as a1(1 + a2) ≤ a2(1 − a2β). If a2 > −1, then we would need a1 ≤
a2(1 − a2β)/(1 + a2), which however is not possible, since a2(1 − a2β)/(1 + a2) < 1 and a1, as previously

noticed, must be larger then 4.

The last inequality can be rewritten as (a1−β+a2β−1)(a21−a1a
2
2β−a1a

2
2−2a1a2−a32β

2−a32β+a22) ≤ 0.

Using the second inequality, we have a1 −β+ a2β− 1 > (β+2)2

(β+1) −β− 1 = (2β+3)/(β+1) > 0, and hence we

need a21 − a1(a
2
2β − a22 − 2a2)− a22(a2β

2 − a2β + 1) ≤ 0. If its discriminant is negative, then the inequality is

never fulfilled, so we need a2(a2 +4) ≥ 0. Since we can not have a2 > −1, this reduces to a2 < −4. We have

a21 − a1(a
2
2β − a22 − 2a2)− a22(a2β

2 − a2β + 1) = (a1 − r1)(a1 − r2),
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where

r1 = a2 +
a2(β+1)

√
a2(a2+4)

2 +
a2
2β
2 +

a2
2

2 ,

r2 = a2 − a2(β+1)
√

a2(a2+4)

2 +
a2
2β
2 +

a2
2

2 .

When a2 < −4, we have r2 > 4(β + 1)− βa2. In fact, such inequality can be equivalently rewritten as

2a2 − a2
√
a2(a2 + 4) + a22 > 8,

which is true since the second term is positive and a2(2 + a2) > 8 for a2 < −4. System (42) can then be

rewritten as





a1 ≤ a2
(1−a2β)
1+a2

,

a1 > (β+2)2

(β+1) − βa2,

a1 < 4(β + 1)− βa2,

a1 ≥ a2 +
a2(β+1)

√
a2(a2+4)

2 +
a2
2β
2 +

a2
2

2 ,

a2 < −4,

a1 > 4.

A direct check shows that for a2 < −4 the first condition is less restrictive that the second and so it can

be neglected. Finally, it is easy to see that for a2 ∈ (−(β + 2)2/(β + 1),−4) the fourth condition is more

restrictive then the second one, while for a2 ≤ −(β + 2)2/(β + 1) the second condition is more restrictive

then the fourth one. Noticing that

a2 +
a2(β + 1)

√
a2(a2 + 4)

2
+

a22β

2
+

a22
2

= −a2
1 + 2β −

√
a2+4
a2√

a2+4
a2

− 1
,

allows concluding.

In the next Proposition, which can be proved simply by suitably matching cases of the previous Lemma,

we actually provide the analytical description of Figure 9.

Proposition 15. We have that

• NE = {(0, 0), (1, 1), (xNE
IS , xNE

IS )} if and only if



Λ < 4,

∆ > 4(β+1)
β − Λ

β ,

which defines the yellow region of Figure 9;

• NE = {(1, 1)} if and only if 


Λ > 4,

∆ ≥ 4(β+1)
β − Λ

β ,

which defines the blue region of Figure 9;

• NE = {(0, 0), (1, 1)} if and only if



Λ < 4,

∆ = 4(β+1)
β − Λ

β ,
∪




Λ = 4,

∆ > 4(β+1)
β − Λ

β ,

which defines the orange boundary of Figure 9;
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• NE = {(0, 0)} if and only if 


Λ ≤ 4,

∆ < 4(β+1)
β − Λ

β ,

which defines the cyan region of Figure 9;

• NE = {(xNE
IS , xNE

IS )} if and only if





4 < Λ < 8β + 4,

−4 ≤ −∆ < 4(β+1)
β − Λ

β ,

which defines the green region of Figure 9;

• NE = {(xNE
IS , xNE

IS ), (xNE
1,AS , x

NE
2,AS), (x

NE
2,AS , x

NE
1,AS} if and only if





−∆

√
∆+4

∆
+1

1−
√

∆+4

∆

< Λ < −∆
1+2β−

√
∆+4

∆√
∆+4

∆
+1

,

∆ < −4,

Λ > 4,

which defines the gray region of Figure 9;

• NE = {(xNE
IS , xNE

IS ), (x̂, 0), (0, x̂)} if and only if




∆ ≤ −Λ 1+

√
Λ

Λ−1 ,

4 < Λ < (β + 2)2,

which defines the dark blue region of Figure 9;

• NE = {(xNE
IS , xNE

IS ), (0, 1), (1, 0)} if and only if





∆ ≤ (β+2)2

β(β+1) − Λ
β ,

Λ ≥ (β + 2)2,

which defines the yellow region of Figure 9;

• NE = {(xNE
IS , xNE

IS ), (x̂, 1), (1, x̂)} if and only if





−∆
1+2β−

√
∆+4

∆

1+
√

∆+4
∆

≤ Λ < 4(β+1)
β − Λ

β ,

− (β+2)2

β+1 < ∆ < −4,
∪





(β+2)2

β(β+1) − Λ
β < Λ < 4(β+1)

β − Λ
β ,

∆ ≤ − (β+2)2

β+1 ,

which defines the orange region of Figure 9.

Proof of Corollary 4. The existence of multiple symmetric equilibria is obtained combining cases a),b) and

c) of Lemma 13. From the remaining cases we obtain the occurrence of asymmetric equilibria.

Proof of Corollary 5. Firstly we notice that if xNE
IS is actually an internal equilibrium, then, from xNE

IS > 0,

we necessarily must have either γ− δ > 4 and βθ− 2δ− 4 < 0 or γ− δ < 4 and βθ− 4 > 0. This means that

γ − δ − 4 > 0 (respectively γ − δ − 4 < 0) is equivalent to βθ − 2δ − 4 < 0 (respectively to βθ − 2δ − 4 > 0)

We have

∂xNE
IS

∂β
=

−2(δ + 2)

β2(γ − δ − 4)
,

∂xNE
IS

∂γ
=

−2δ + βθ − 4

β(γ − δ − 4)2
,

∂xNE
IS

∂θ
= − 1

γ − δ − 4
,

∂xNE
IS

∂δ
= − βθ − 2γ + 4

β(δ − γ + 4)2
,
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so we can immediately conclude that ∂xNE
IS /∂β > 0 and ∂xNE

IS /∂θ > 0 if and only if γ − δ − 4 < 0 (or

equivalently βθ − 2δ − 4 > 0). Similarly, we have ∂xNE
IS /∂γ > 0 if and only if βθ − 2δ − 4 > 0 (or

equivalentlyγ − δ − 4 < 0). Noticing that

−βθ + 2γ − 4 = (−βθ + 2δ + 4) + 2(γ − δ − 4),

where the last two addends have the same sign, we can conclude that ∂xNE
IS /∂δ > 0 if and only if γ−δ−4 > 0

(or equivalently βθ − 2δ − 4 < 0).

Proof of Corollary 6. Firstly we study the derivatives of xNE
1,AS .

We start noticing that, since γ − δ < −4, we have

√
γ − δ + 4

γ − δ
< 1, (43)

so

∂xNE
1,AS

∂β
=

γ − 3δ + (δ + γ)
√

γ−δ+4
γ−δ

2β2(γ − δ)
> 0,

since the denominator is negative and

γ − 3δ + (δ + γ)

√
γ − δ + 4

γ − δ
< γ − 3δ + (δ + γ) = 2γ − 2δ < 0.

We have

∂xNE
1,AS

∂γ
=

10δ + 2γ − 6βθ + (2δ2 − 2δγ − βδθ + βγθ)
(√

γ−δ+4
γ−δ − 1

)

2β(γ − δ)3
√

γ−δ+4
γ−δ

,

where (γ − δ)3 < 0. Setting a2 = γ − δ and a1 = βθ − 2δ, its numerator can be rephrased into

f(a1, a2) = 2a2 − 6a1 − a1a2 + a1a2

√
4

a2
+ 1.

A simple function study of f(a1, a2) on A = {(a1, a2) : a1 > 4 and a2 < −4} proves that f(a1, a2) < 0,so

∂xNE
1,AS/∂γ > 0.

We have that

∂xNE
1,AS

∂θ
=

√
γ−δ+4
γ−δ − 1

2(γ − δ)

is positive recalling (43) and since γ − δ < 0.

Finally, we have

∂xNE
1,AS

∂δ =
2δ+10γ−6βθ+(−2γ2+2δγ−βδθ+βγθ)

(√

γ−δ+4

γ−δ
−1

)

2β(δ−γ)3
√

γ−δ+4

γ−δ

=
6a1−10a2+a2(2a2−a1)

(√

a2+4

a2
−1

)

2a3
2β

√

a2+4

a2

.

The denominator is negative and

6a1 − 10a2 + a2(2a2 − a1)
(√

a2+4
a2

− 1
)

= a1 + 5a1 − 10a2 + a2(2a2 − a1)
(√

a2+4
a2

− 1
)

= a1 − 5(2a2 − a1) + a2(2a2 − a1)
(√

a2+4
a2

− 1
)

= a1 + (2a2 − a1)
[
a2

(√
a2+4
a2

− 1
)
− 5

]

> (2a2 − a1)
[
a2

(√
a2+4
a2

− 1
)
− 5

]
> 0,
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since 2a2− a1 < 0 and a simple study of function shows that, for a2 < −4, we have a2

(√
a2+4
a2

− 1
)
− 5 < 0,

too. This allows concluding that ∂xNE
1,AS/∂δ < 0.

Now we focus on the derivatives of xNE
2,AS . We have

∂xNE
2,AS

∂β
=

γ − 3δ − (δ + γ)
√

γ−δ+4
γ−δ

2β2(γ − δ)
> 0

since γ − δ < 0 and

γ − 3δ − (δ + γ)

√
γ − δ + 4

γ − δ
< γ − 3δ = γ − δ − 2δ < 0.

Similarly we have

∂xNE
2,AS

∂θ
= −

√
γ−δ+4
γ−δ + 1

2(γ − δ)
> 0.

We can rewrite

∂xNE
2,AS

∂γ
=

10δ + 2γ − 6βθ + (2δγ − 2δ2 + βδθ − βγθ)
(√

γ−δ+4
γ−δ + 1

)

2β(δ − γ)3
√

γ−δ+4
γ−δ

as

∂xNE
2,AS

∂γ
=

6a1 − 2a2 + a1a2 + a1a2

√
a2+4
a2

2a32β
√

a2+4
a2

.

We recall xNE
2,AS ∈ (0, 1) provided that

A :






−a2

√

a2+4

a2
+1

1−
√

a2+4

a2

< a1 < −a2
1+2β−

√

a2+4

a2

1+
√

a2+4

a2

a2 < −4

a1 > 4

(44)

We have that

lim
a2→−4−

∂xNE
2,AS

∂γ
= −∞

since

lim
a2→−4−

2a32β

√
a2 + 4

a2
= 0−,

and

lim
a2→−4−

6a1 − 2a2 + a1a2 + a1a2

√
a2 + 4

a2
= 2a1 + 8 > 0,

which means that there always exists a neighborhood of (a1,−4), included in A in which ∂xNE
1,AS/∂γ < 0.

Moreover,
∂xNE

2,AS

∂γ vanishes only if

a1 = z(a2) =
2a2

a2 + a2

√
a2+4
a2

+ 6
.

If z(a2) does not intersect A, thanks to the continuity of
∂xNE

2,AS

∂γ , we have that
∂xNE

2,AS

∂γ < 0 on A. A simple

computation shows that z(−4) = −4 lies below the lower boundary of A and

z(a2) = −a2

√
a2+4
a2

+ 1

1−
√

a2+4
a2
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has the unique (simple) solution a2 = −2
(√

2 + 1
)
. Since (a1, a2) ∈ A only if

−a2

√
a2+4
a2

+ 1

1−
√

a2+4
a2

< −a2
1 + 2β −

√
a2+4
a2

1 +
√

a2+4
a2

,

which is equivalent to

a2 > − (β + 2)2

β + 1
,

we need −2
(√

2 + 1
)
> − (β+2)2

β+1 ,or equivalently β >
√
2. In this case, by continuity, we have that

∂xNE
2,AS

∂γ < 0

for a1 > z(a2) and
∂xNE

2,AS

∂γ > 0 for a1 < z(a2).

Finally we have

∂xNE
2,AS

∂δ
= −

6a1 − 10a2 − 2a22 + a1a2 + (a1a2 − 2a22)
√

a2+4
a2

2a32β
√

a2+4
a2

.

We proceed as in the previous case. We have that

lim
a2→−4−

∂xNE
2,AS

∂δ
= +∞

since

lim
a2→−4−

2a32β

√
a2 + 4

a2
= 0−,

and

lim
a2→−4−

−
(
6a1 − 10a2 − 2a22 + a1a2 + (a1a2 − 2a22)

√
a2 + 4

a2

)
= −2a1 − 8 < 0,

which means that there always exists a neighborhood of (a1,−4), included in A in which ∂xNE
1,AS/∂δ > 0.

Moreover,
∂xNE

2,AS

∂δ vanishes only if

a1 = z(a2) =
10a2 + 2a22

√
a2+4
a2

+ 2a22

a2 + a2

√
a2+4
a2

+ 6
.

If z(a2) does not intersect A, thanks to the continuity of
∂xNE

2,AS

∂δ we have that
∂xNE

2,AS

∂δ > 0 on A. A simple

computation shows that z(−4) = −4 lies below the lower boundary of A and

z(a2) = −a2

√
a2+4
a2

+ 1

1−
√

a2+4
a2

has the unique (simple) solution a2 = −4
√
3− 2. Since (a1, a2) ∈ A only if

a2 > − (β + 2)2

β + 1
,

we need −4
√
3−2 > − (β+2)2

β+1 ,or equivalently β >
√
3−1. In this case, by continuity, we have that

∂xNE
2,AS

∂δ > 0

for a1 > z(a2) and
∂xNE

2,AS

∂δ < 0 for a1 < z(a2).

Proof of Corollary 7. Concerning xNE
0,B , from

xNE
0,B =

√
βθ − 2δ − 2

β
,

52



we immediately have ∂xNE
0,B/∂θ > 0 and ∂xNE

0,B/∂δ < 0

∂xNE
0,B

∂β
=

4δ − βθ + 4
√
βθ − 2δ

2β2
√
βθ − 2δ

> 0,

since for βθ − 2δ > 4 we indeed have 4
√
βθ − 2δ > βθ − 2δ.

With respect to xNE
1,B , from

xNE
1,B = −β −

√
−(β + 1)(2δ + βδ − βγ − βθ) + 2

β
,

we have
∂xNE

1,B

∂θ
=

∂xNE
1,B

∂γ
=

β + 1

2
√
−(β + 1)(2δ + βδ − βγ − βθ)

> 0

and
∂xNE

1,B

∂δ
= − (β + 1)(β + 2)

2β
√
−(β + 1)(2δ + βδ − βγ − βθ)

< 0.

Moreover, we have

∂xNE
1,B

∂β
=

4δ + 3βδ − βγ − βθ + 4
√
βγ − 3βδ − 2δ + βθ − β2δ + β2γ + β2θ

2β2
√
βγ − 3βδ − 2δ + βθ − β2δ + β2γ + β2θ

.

Since to have xNE
1,B ∈ (0, 1) we necessarily need γ−δ < −4 which requires δ > 4 and βθ < 2δ−β(γ−δ)+4(β+1),

we can write
4δ + 3βδ − βγ − βθ > 4δ + 3βδ − βγ − 2δ + β(γ − δ)− 4(β + 1)

= 2δ + 2βδ − 4β − 4

= 2δ − 4 + 2β(δ − 2) > 0,

since γ − δ < −4 guarantees δ > 4. This concludes the proof.

6 Proofs of Section 3.3

We start noticing that, from (16), we have

∂xi
πi(xi, xj) =

−αβx2
j + βxj + 1

(βxi + βxj − 2αβxixj + 2)2
θβ − 1,

∂2
xi
πi(xi, xj) =

2β2θ(2αxj − 1)(−αβx2
j + βxj + 1)

(βxi + βxj − 2αβxixj + 2)3
,

∂2
xixj

πi(xi, xj) =
β2θ(4α+ β)(xi − xj)

(βxi + βxj − 2αβxixj + 2)3
.

(45)

As for the proof of the previous sections, we introduce a suitable function x+ : [0, 1/2α) → R defined by

x+(xj) = − 2

β(1− 2αxj)
− xj

(1− 2αxj)
+

√
βθ(−αβx2

j + βxj + 1)

β(1− 2αxj)
, (46)

which will be used in the definition of the best response. Function x+ is investigated in the following Lemma.

Notice that for xj ∈ [0, 1/2α) we have −αβx2
j + βxj + 1 > 0, so (46) is well-defined.

Lemma 14. We have that

a) x+(xj) ≤ 0 for any xj ∈ [0, 1/2α) if and only if βθ ≤ 4.
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b) If

4 < βθ < 4 +
β

α
, (47)

then x+ is unimodal and concave in [0, 1/2α), and attains its maximum for

zm =
β −

√
β(4α+ β − αβθ)

2αβ
(48)

at which x+(zm) = zm. Moreover

lim
xj→( 1

2α )
−

x+(xj) = −∞.

c) If

βθ ≥ 4 +
β

α
, (49)

then x+ is strictly increasing in [0, 1/2α). Moreover

lim
xj→( 1

2α )
−

x+(xj) =





1
2α if βθ = 4 + β/α

+∞ if βθ > 4 + β/α.

Proof. a) From

x+(0) =

√
βθ − 2

β
,

we have that x+(0) ≤ 0 if and only if βθ ≤ 4. Moreover, for βθ ≤ 4 we have

x′
+(xj) =

(4α+ β)

2β(2αxj − 1)2
√
βθ(−αβx2

j + βxj + 1)

(
βθ − 2

√
βθ(−αβx2

j + βxj + 1)
)
< 0. (50)

In fact, the first factor is positive, while the second one is negative since, noticing that −αβx2
j + βxj < 0 for

xj < 1/2α, we have

βθ − 2
√
βθ(−αβx2

j + βxj + 1) < βθ − 2
√
βθ,

and the last term is non positive for βθ ≤ 4.

b) We have

x′′
+ =

(4α+ β)
√
θ
(
16α(−αβx2

j + βxj + 1)
√
β(−αβx2

j + βxj + 1) +
√
θ(β2 − 8αβ + 12α2β2x2

j − 12αβ2xj)
)

4β(2αxj − 1)3(−αβx2
j + βxj + 1)

√
βθ(−αβx2

j + βxj + 1)
.

We notice that the denominator is negative. If (β2 − 8αβ + 12α2β2x2
j − 12αβ2xj) ≥ 0, then x′′

+(xj) < 0,

conversely, if (β2 − 8αβ + 12α2β2x2
j − 12αβ2xj) < 0, we have that the numerator is positive provided that

θ <
256α2(−αβx2

j + βxj + 1)3

β(−12βα2x2
j + 12βαxj + 8α− β)2

(51)

From (47), we have θ ≤ (4α+ β)/αβ. Moreover,

4α+ β

αβ
<

256α2(−αβx2
j + βxj + 1)3

β(−12βα2x2
j + 12βαxj + 8α− β)2

can be equivalently rewritten as

β(2αxj − 1)4(16βα2x2
j − 16βαxj − 12α+ β)

α(−12βα2x2
j + 12βαxj + 8α− β)2

< 0, (52)
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and since 16βα2x2
j −16βαxj−12α+β < β−8α+12α2βx2

j −12αβxj is equivalent to 4α(βαx2
j −βxj −1) < 0

which is true for xj ∈ [0, 1/2α), we have that (52) is fulfilled, and then (51) is satisfied. This proves that x+

is unimodal and concave.

Imposing x+(xj) = xj , after some computations we obtain

4α2β2x4
j − 8αβ2x3

j + β(4β − 8α+ θαβ)x2
j + β(8 − θβ)xj + 4− βθ = 0,

which can be rewritten as

4α2β2

(
x2
j −

1

α
xj −

1

αβ

)(
x2
j −

1

α
xj −

1

αβ
+

θ

4α

)
= 0,

whose solutions are

1

2α
+

√
β(4α+ β)

2αβ
,
β −

√
β(4α+ β)

2αβ
,

1

2α
+

√
β(4α+ β − αβθ)

2αβ
,

1

2α
−
√
β(4α+ β − αβθ)

2αβ
.

Notice that, thanks to the assumption (4α+β−αβθ) > 0, they are all real. However, the first and the third

solution are larger than 1/2α and the second one is negative. Conversely, the last one is indeed smaller than

1/2α and, since we assumed βθ ≥ 4, it is also non negative.

Finally, recalling (47), a simple computation of lim
xj→( 1

2α )
− x+(xj) allows concluding.

c) Using the expression of x′
+ computed in (50), it is easy to see that x′

+(xj) > 0 can be equivalently

rewritten as

4αβx2
j − 4βxj + βθ − 4 > 0. (53)

Noticing that the left hand side of the previous inequality is strictly decreasing for xj ∈ [0, 1/2α) and that

its limit for x → (1/2α)− is βθ− β
α − 4 ≥ 0 (thanks to (49)), we have that x′

+(xj) > 0. Finally, recalling (49)

a simple computation of lim
xj→( 1

2α )
− x+(xj) allows concluding.

As we shall see, for games Γ ∈ ΓLSE the best response relation is not always a function. To suitably study

it, we divide the investigation of BRi into two parts. In the next Lemma we consider α > 1/2, for which

BRi is a function for any xj ∈ [0, 1], and α ≤ 1/2, for which BRi(xj) is a function only for xj ∈ [0, 1/2α).

Lemma 15. Let either α > 1/2 and xj ∈ [0, 1] or α ≤ 1/2 and xj ∈ [0, 1/2α). Then we have BRi(xj) =

max{min{x+(xj), 1}, 0}.

Proof. If α > 1/2 and xj ∈ [0, 1] or α ≤ 1/2 and xj ∈ [0, 1/2α), from 45 we have ∂2
xi
πi(xi, xj) < 0 since

2αxj − 1 < 0, −αβx2
j + βxj + 1 < 0 and βxi + βxj − 2αβxixj + 2 > 0, which means that πi is concave with

respect to xi ∈ [0, 1]. The only possible solutions of ∂xi
πi(xi, xj) = 0 are

x±(xj) =
−2− βxj ±

√
βθ(−αβx2

j + βxj + 1)

β(1− 2αxj)
,

where x− is strictly negative. Proceeding as for the proofs of Lemmas 2 and 6, we can conclude that

BRi(xj) = max{min{x+(xj), 1}, 0}.

In the next Lemma we study BRi for α ≥ 1/2 and xj ∈ [1/2α, 1] (notice that for α = 1/2 such interval

reduces to {1}).

Lemma 16. Let α ≥ 1/2 and xj ∈ [1/2α, 1]. We have that

a) if βθ < 4 + β/α, then BRi(xj) = 0
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b) if βθ = 4 + β/α then BRi(xj) =




[0, 1] xj =

1
2α

0 1
2α < xj = 1

c) if 4 + β/α < βθ ≤ 2β + 4 then BRi(xj) =





1 1
2α ≤ xj < x̃j

{0, 1} xj = x̃j

0 x̃j < xj ≤ 1

d) if βθ > 2β + 4 then BRi(xj) = 1

Proof. We divide the proof into two cases.

Firstly, we study xj = 1/2α. In this case, we can take α ≥ 1/2 and we have

πi

(
xi,

1

2α

)
=

−xi(4α+ β − αβθ) − 2αθ − βθ

4α+ β
. (54)

This means that if 4α+ β − αβθ > 0, then BRi(1/2α) = 0, if 4α+ β − αβθ < 0 then BRi(1/2α) = 1 and if

4α+ β − αβθ = 0 then BRi(1/2α) = [0, 1]. In particular

a) if 4α+ β − αβθ > 0, then (54) is strictly decreasing and BRi(1/2α) = 0;

b) if 4α+ β − αβθ = 0, then (54) is constant and BRi(1/2α) = [0, 1];

c,d) if 4α+ β − αβθ < 0, then (54) is strictly increasing and BRi(1/2α) = 1.

Now we consider xj ∈ (1/2α, 1]. In this case, to have a non-empty interval, we must take α > 1/2. We

start studying the sign of f(xj) = πi(0, xj)− πi(1, xj), given by

f(xj) = β2(1− 2α+ αθ)x2
j + β(4 − 4α+ β − βθ)xj + 4 + 2β − βθ.

A simple computation shows that

f

(
1

2α

)
=

(4α+ β)(4α + β − αβθ)

4α2
,

f(1) = (2β − βθ + 4)(β − αβ + 1),

f ′(xj) = 2β2(1− 2α+ αθ)xj − β(4α− β + βθ − 4).

a) If βθ < 4 + β/α, then both f(1/2α) > 0 and f(1) > 0. Moreover, we have that if (1 − 2α+ αθ) = 0,

then f(xj) = ((4α+ β)(βx2(1− α) + 1))/α > 0, and then BRi(xj) = 0 for any xj ∈ (1/2α, 1].

Conversely, if (1−2α+αθ) < 0, since f is concave and both f(1/2α) > 0 and f(1) > 0, then BRi(xj) = 0

for any xj ∈ (1/2α, 1].

Finally, if (1 − 2α + αθ) > 0, f is convex but f ′(1/2α) = β(4α + β)(1 − α)/α > 0, which, together with

f(1/2α) > 0, guarantees that BRi(xj) = 0 for any xj ∈ (1/2α, 1].

b) If βθ = 4 + β/α, we have (1 − 2α + αθ) = 2 − 2α + 4α/β > 0, so f is strictly convex and, as just

seen, increasing. Since f(1/2α) = 0 and f(1) > 0, we have that f(xj) > 0 (i.e. BRi(xj) = 0) for each

xj ∈ (1/2α, 1].

c) If 4+β/α < βθ < 2β+4, we have f(1/2α) < 0, f(1) > 0 and f ′(xj) > 0. By continuity and increasing

monotonicity of f , we have exactly one solution of f(xj) = 0 belonging to (1/2α, 1), given by (17). Recalling

that for βθ > 4 + β/α, x+ is strictly convex, we have

• xj < x̃j we have f(xj) = πi(0, xj)− πi(1, xj) < 0 and then BRi(xj) = 1;

• xj = x̃j we have f(xj) = πi(0, xj)− πi(1, xj) = 0 and then BRi(xj) = {0, 1};

• xj > x̃j we have f(xj) = πi(0, xj)− πi(1, xj) > 0 and then BRi(xj) = 0.
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Noticing that for βθ = 2β+4 we have both f(1) = 0, which means that BRi(1) = {0, 1}, and x̃j = 1, we

can conclude.

d) If βθ > 2β + 4, we have f(1/2α) < 0, f(1) < 0 and f ′(xj) > 0, which means that f(xj) < 0 (i.e.

BRi(xj) = 1) for each xj ∈ (1/2α, 1].

Lemma 17. Let α > 1/2. If BRi(x̃j) = 0 for some x̃j ∈ [0, 1], then BRi(xj) = 0 for any xj ∈ [x̃j , 1].

If BRi(x̃j) = 1 for some x̃j ∈ [0, 1], then BRi(xj) = 1 for any xj ∈ [x̃j , 1].

Proof of Proposition 5. Combining Lemmas 15 and 16 we immediately obtain the four possible expressions

and characterizations (18),(19),(20) and (21) of the best response relation. In particular, we stress that

upper-hemicontinuity for the cases in which BRi is a correspondence is a consequence of the closed-graph

theorem, since it is easy to see that in such cases correspondence BRi is closed and indeed has both compact

domain and range.

If α > 1/2, the same arguments used for the proof of Proposition 1 are still valid and provide either

strictly non-increasing, hump-shaped or constantly equal to 0, 1 best response functions.

If α ≥ 1/2 and βθ < 4 + β
α , the best response function is hump-shaped. If α ≥ 1/2 and βθ = 4 + β

α , we

have that BRi ≡ x+ is strictly increasing in [0, 1/2α), while BRi ≡ 0 on (1/2α, 1]. If α ≥ 1/2 and βθ > 4+ β
α ,

we have that BRi is non-decreasing in [0, 1/2α) with BRi(0) < 1 and BRi(xj) = 1 for xj ∈ [1/2α, x̃j). Then

BRi(xj) = 0 for xj ∈ (x̃j , 1].

The analytical characterization of the best response function shape with respect to the parameters, which

is graphically reported in Figure 5, is investigated in the next Proposition.

Proposition 16. Best response functions of games Γ ∈ ΓLSE are

a) constantly equal to 0 if and only if βθ ≤ 4, which defines the blue region in Figure 10.

b) hump-shaped if and only if





α < 1

2

4 < βθ < 4(β + 1− αβ)
∪





α ≥ 1

2

4 < βθ < 4 + β
α

which defines the white region in Figure 10.

c) strictly non-decreasing and then null if and only if




α ≥ 1

2

4 + β
α ≤ βθ ≤ 2β + 4

which defines the pink region in Figure 10.

d) strictly non-decreasing if and only if




α < 1

2

4(β + 1− αβ) ≤ βθ < (β + 2)2
∪




α ≥ 1

2

2β + 4 < βθ < (β + 2)2

which defines the green region in Figure 10.

e) BRi ≡ 1 if and only if βθ ≥ (β + 2)2, which defines the cyan region in Figure 10.
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Proof. a) If βθ ≤ 4,from Lemmas 14, 15 and 16, we have that x+(xj) ≤ 0 for xj ∈ [0, 1/2α) ∩ [0, 1] and

BRi(xj) = 0 for xj ∈ [1/2α, 1].

b) If α < 1/2 and 4 < βθ < 4(β + 1− αβ) < 4 + β/α we have that, from Lemmas 14 and 15, BRi(xj) =

x+(xj) for any xj ∈ [0, 1]. Moreover, it is easy to see, from (48), that 0 < zm < 1 is equivalent to

4 < βθ < 4(β + 1− αβ). If α ≥ 1/2, from the previous considerations, applying Lemmas 14, 15 and 16 and

noticing that in this case 4(β + 1− αβ) ≥ 4 + β/α, we can conclude.

c) Since βθ ≥ 4+ β
α , we have that x+ is strictly increasing in [0, 1/2α). Since βθ > 4, we have x+(0) > 0.

If βθ = 4 + β/α we have that limxj→(1/2α)− x+(xj) < 1, and then, since BRi(xj) = x+(xj) we have the the

best response function is strictly non-increasing for xj ∈ [0, 1/2α) and, from Lemma 16, BRi(xj) = 0 for

xj ∈ (1/2α, 1]. Conversely, if βθ > 4 + β/α, since limxj→(1/2α)− x+(xj) = +∞, we have that there exists

b ∈ (0, 1/2α) such that BRi(xj) = x+(xj) for xj ∈ [0, b], BRi(xj) = 1 for xj ∈ [b, 1/2α). From Lemma 16

we also have that BRi(xj) = 1 for xj ∈ [1/2α, x̃j), which guarantees a strictly non-decreasing best response

function for xj ∈ [0, x̃j). Finally, again from Lemma 16 we have BRi(xj) = 0 for xj ∈ (x̃j , 1].

d) For 4(β + 1 − αβ) ≤ βθ < (β + 2)2, it is easy to see that x+(0) ∈ (0, 1). For α < 1/2, since zm > 1,

x+ is increasing in [0, 1]. This means that there exists b ∈ (0, 1) such that BRi(xj) = x+(xj) for xj ∈ [0, b],

BRi(xj) = 1 for xj ∈ [b, 1]. If α ≥ 1/2, since 2β+4 > 4+β/α, from Lemma 14, x+ is increasing in [0, 1/2α).

Since limxj→(1/2α)− x+(xj) = +∞, we have that there exists b ∈ (0, 1/2α) such that BRi(xj) = x+(xj) for

xj ∈ [0, b], BRi(xj) = 1 for xj ∈ [b, 1/2α). A simple computation shows that for βθ > 2β+4 we have x̃j > 1,

which from Lemma 16, means that BRi(xj) = 1 for xj ∈ [1/2α, 1].

e) For βθ ≥ (β + 2)2 we have x+(0) ≥ 1. Since, from Lemma 14, we have that, for both α < 1/2 and

α ≥ 1/2, x+(xj) is strictly increasing for xj ∈ [0, 1/2α), we have BRi(xj) = 1 for xj ∈ [0, 1/2α) ∩ [0, 1].

If α ≥ 1/2, from Lemma 16, since a simple computation show that x̃j > 1, we have that BRi(xj) = 1 for

xj ∈ [1/2α, 1].

Since the previous inequalities provide a partition of the parameters’ space, we have that all the previous

sufficient conditions are also necessary.

Now we prove Proposition 6.

Proof of Proposition 6. The cases of hump-shaped, strictly non-decreasing and constant best response func-

tions can be handled proceeding exactly as in the proof of Proposition 2, since the best response functions of

both games ΓLNS and ΓLSE share the same characteristics. In the last remaining case the best response is

a correspondence whose expression is given by either (20) or (21). In the former case, using βθ = 4+β/α, it

is easy to see that BRi(xj) > xj for xj ∈ [0, 1/2α), while it is and null for xj ∈ (1/2α, 1]. So we do not have

any equilibria for xj 6= 1/2α. Since BRi(1/2α) = [0, 1], the unique Nash equilibrium is (1/2α, 1/2α), which

is internal for α < 1 and becomes the corner equilibrium (1, 1) for α = 1. Noticing that xNE
IS = 1/2α for

βθ = 4+β/α allows concluding the first part of the proof. Conversely, if βθ > 4+β/α, we have BRi(xj) > xj

for xj ∈ [0, 1/2α), BRi(xj) = 1 for xj ∈ [1/2α, x̃j) and BRi(xj) = 0 for xj ∈ (x̃j , 1]. So we can not have

equilibria for xj 6= x̃j . For xj = x̃j we have BRi(x̃j) = {0, 1}, which means that we may have an equilibrium

if and only if either x̃j = 0 (which is not possible since x̃j > 1/2α) or x̃j = 1, Imposing x̃j = 1, we find

θ = (2β+4)/β, which is compatible with βθ > 4+β/α for α > 1/2. Then, when α > 1/2 and θ = (2β+4)/β

and βθ > 4 + β/α, we have the unique corner equilibrium (1, 1).

Using Proposition 16 and the proof of Proposition 6, we obtain the analytical description of regions

depicted in Figure 12, which is reported in the following Proposition.

Proposition 17. We have that

a) (0, 0) is the unique equilibrium if and only if βθ ≤ 4, which defines the cyan region in Figure 12.
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b) (xNE
IS , xNE

IS ) is the unique equilibrium if and only if




α ≤ 1

2

4 < βθ < 4(β + 1− αβ)
∪




α > 1

2

4 < βθ ≤ 4 + β
α

which defines the green region in Figure 12.

c) there is no equilibrium if and only if




α > 1

2

4 + β
α < βθ < 2β + 4

which defines the pink region in Figure 12.

d) (1, 1) is the unique equilibrium if and only if




α < 1

2

βθ ≥ 4(β + 1− αβ)
∪




α ≥ 1

2

βθ ≥ 2β + 4

which defines the blue region in Figure 12.

Proof. Since in Proposition 17 we showed that the equilibrium is unique, if we prove the sufficiency of the

previous conditions, which provide a partition of the (β, α, θ) space, we automatically have that they are

necessary too.

a) It is sufficient to notice that from βθ ≤ 4 we have that BRi(0) = 0 (Lemma 14 ).

b) We start considering the couple of inequalities given by case c) of Proposition 16. Under such assumption,

we have hump-shaped best response functions, which, recalling Proposition 6, provide the unique internal

symmetric equilibrium.

We only have to consider α > 1
2 and βθ = 4 + β

α . In the proof of Proposition 6, we showed that in this

case (1/2α, 1/2α) is the internal symmetric equilibrium. This concludes the proof of case b).

c) The result is obtained in the proof of Proposition 6.

d) The result is a consequence of cases d) and e) of Proposition 16 and of the proof of Proposition 6.
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