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Abstract

This paper proposes a three-step estimation strategy for dynamic conditional cor-
relation models. In the first step, conditional variances for individual and aggregate
series are estimated by means of QML equation by equation. In the second step,
conditional covariances are estimated by means of the polarization identity, and
conditional correlations are estimated by their usual normalization. In the third
step, the two-step conditional covariance and correlation matrices are regularized
by means of a new non-linear shrinkage procedure and used as starting value for the
maximization of the joint likelihood of the model. This yields the final, third step
smoothed estimate of the conditional covariance and correlation matrices. Due to
its scant computational burden, the proposed strategy allows to estimate high di-
mensional conditional covariance and correlation matrices. An application to global
minimum variance portfolio is also provided, confirming that SP-DCC is a simple
and viable alternative to existing DCC models.
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1 Introduction

Since the seminal contribution of Engle (2002), the literature on Dynamic Conditional
Correlation (DCC) models has rapidly developed, providing alternative models and im-
provements upon the original formulation.! The DCC model is a generalization of the
Constant Conditional Correlation model of Bollerslev (1990, CCC), which assumes time
invariant, but pairwise specific correlations, and posits the correlation matrix to be a
transformation of a latent matrix, which is a function of past devolatilized innovations.
It is grounded on a two-step estimation procedure, that, in principle, allows implemen-
tation in high dimensional frameworks, particularly in its Dynamic Conditional Equi-
Correlation (DECO) form (Engle and Kelly, 2008); in the latter framework, however,
the time varying correlations are constrained to be equal across series. Similar to CCC,
DECO therefore relies on assumptions on conditional correlation dynamics which are
unlikely to be supported by the data. An asymmetric DCC specification has also been
introduced by Cappiello et al. (2006). While a rigorous asymptotic theory for DCC,
as well as for multivariate GARCH models in general, is still missing, the two-step esti-
mation strategy is conjectured to yield consistent and asymptotically normal estimation
(Engle and Sheppard, 2001; Engle and Kelly, 2008)?.

However, estimating the DCC model in high dimensional frameworks is challenging.
Firstly, as recognized in Engle and Sheppard (2001), the parameters of the latent process
driving correlation dynamics tend to be severely downward biased, resulting in correla-
tion trajectories which are increasingly smooth and eventually flat. Secondly, as shown
by Aielli (2009), the sample covariance matrix estimator of the long-run covariance tar-
get is asymptotically distorted. A similar problem also affects the alternative Varying
Conditional Correlation model of Tse and Tsui (2002), where the correlation matrix is
modelled directly as a function of past correlations of devolatilized innovations. Aielli
(2009) fixes the consistency problem in the DCC model by correcting the correlation la-
tent process in such a way that it has martingale difference innovations (¢cDCC). Thirdly,
the inversion of the correlation matrix might become problematic, due to ill-conditioning.
In this respect, Patel et al. (2014) use the Aielli (2009) cDCC specification and propose a
composite likelihood estimator, based on the averaging of the quasi-likelihood functions
constructed from bivariate marginal densities of observations. The approach shows some
similarities with the MacGyver strategy of Engle (2009) and the Flexible Multivariate
GARCH model of Ledoit et al. (2003), where, however, the bivariate log-likelihoods are
separately maximized. The common advantage of the latter approaches is that they avoid
the inversion of high dimensional conditional correlation matrices. Patel et al. (2014) also
find that the composite likelihood cDCC model is not any longer affected by downward
biased parameters estimation.

However, as shown by Hafner and and Reznikova (2012), long-run targeting of the co-
variance matrix using the sample covariance matrix estimator might still be problematic
and exposed to distortions also in the composite likelihood cDCC framework, particularly
as the concentration ratio N/T', i.e. the ratio of the cross-sectional (N) to the temporal
(T') dimensions, gets close or larger than one. In this context, ill-conditioning manifests
the well-known impossibility of estimating O(N?) parameters from O(N?) noisy obser-

!See for instance the survey accounts of Bauwens et al. (2006), Silvennoinen and Terasvirta (2009),
Engle (2009). See also Caporin and McAleer (2013).

2See McAleer et al al. (2008) for advances in this respect. See also Paolella and Polak (2015) for
alternative formulations of the CCC model in the non-Gaussian setting.



vations. As a solution, they suggest to shrink the sample covariance estimator using the
linear shrinkage approach of Ledoit and Wolf (2004). Relative to Patel et al. (2014),
the shrunk DCC (DCC-L) would also show superior efficiency properties, since it does
not ignore the joint likelihood. The same dimensional limitations of standard DCC es-
timation however apply for the implementation of DCC-L. Engle et al. (2017) build on
Hafner and Reznikova (2012) and Patel et al. (2014), and combine the composite like-
lihood ¢cDCC model with the nonlinear shrinkage approach of Ledoit and Wolf (2012).
Their DCC-NL model is in principle free from the various shortcomings affecting DCC
estimation, granting consistent yet not efficient estimation.

In this paper we address the issue of consistent estimation of time-varying conditional
correlations in high dimensional settings, within the context of the Semiparametric DCC
model proposed by Morana (2015). While sharing a similar sequential approach to DCC,
SP-DCC has the advantage of not requiring the direct parameterization of the conditional
covariance or correlation processes, therefore also avoiding any assumption on their long-
run target. It can be implemented in a high dimensional context, without being exposed
to the downward bias estimation issue, since it only requires univariate QML GARCH
estimation for individual and pairwise aggregated series in the first step; conditional
covariances are then estimated in the second step by means of the polarization identity,
and conditional correlations are estimated by their usual scaling. SP-DCC also allows
for straightforward estimation of cross-covariance and correlations of any order, opening
up interesting new scenarios for time-varying parameter modeling (see Morana, 2017).
Monte Carlo results, reported in Morana and Sbrana (2017), yield support to SP-DCC
estimation, also in relation to exact ML and DCC, in various parametric settings of
empirical interests for financial applications.

Relative to the two-step SP-DCC model, this paper contributes an additional, third
step, which entails ex-post regularization of the conditional covariance and correlation
matrices and an efficiency gain. In this respect, a new regression-based non-linear shrink-
age approach is proposed, which ensures accurate estimation and safe inversion of the
conditional covariance and correlation matrices also in high dimensional cases. Moreover,
optimal smoothing of the conditional correlation and covariance matrices, grounded on
the maximization of the joint likelihood of the model, is performed. Therefore, relative to
SP-DCC, the new regularized SP-DCC (RSP-DCC) yields also an efficiency improvement,
since the joint likelihood of the model is explicitly considered in estimation.

Relative to available DCC approaches, including DCC-NL, RSP-DCC is likely to yield
improvements not only in terms of efficiency, but also in terms of estimation accuracy of
second conditional moments. In fact, RSP-DCC allows for more flexible modelling than
competing DCC approaches, which, by assuming a diagonal VECH structure, neglect
spillover effects without any testing. In this respect, the implied conditional covariance
parameterization of RSP-DCC is more general than the one assumed under the usual
DVECH-GARCH(1,1) model -including the latter as special case-, accounting for spillover
effects of past conditional variances and innovations on the conditional covariances.

We apply the proposed approach to a set of 50 assets, i.e. the Fama-French market
return and the 49 industry sector portfolios and compare their estimated dynamic condi-
tional correlations with the market return and their dynamic market betas, using various
SP-DCC specifications and Engle (2002) DCC. We also estimate a global minimum vari-
ance portfolio (GMV) using the fifty assets in the sample. Overall, the empirical results
are strongly encouraging, and confirm that SP-DCC is a simple and viable alternative to
existing DCC models for any application of interest.



2 The econometric model

The semiparametric dynamic conditional correlation model (SP-DCC; Morana, 2015) is
defined by the following equations

ye = () + & (1)
€ = Htl/z(‘s)zt (2)

where y; is the N x 1 column vector of the variables of interest, p,(d) is the N x 1
conditional mean vector E (y;|I;_1), d is a vector of parameters, I; ; is the sigma field,
z; is an 4.i.d. random vector of dimension N x 1, with first two moments E (z;) = 0 and
Var(z;) = Iy, Hy(d) is the N x N conditional variance-covariance matrix Var (y;|I;_1).

The conditional mean process We assume that the mean process is linear in the
parameters and covariance stationary. For instance, it could be specified in terms of N
univariate AR(p) processes or as a N-variate VAR(p) process

m(8) =" Ty, 3)

where all the roots of the polynomial matrix in the lag operator Iy — ?:1 ;L7 are
outside the unit circle.

The conditional variance-covariance process We assume that the elements
along the main diagonal of H,;(d), i.e. the conditional variances Var (y;¢|l;—1) = hiz,
i=1,...,N, follow a univariate GARCH(1,1) process; hence

Df = diag (w;) + diag(a;) o &1, 1 + diag(3;) o Df_l, (4)

where diag (-) denotes an N x N diagonal matrix and o denotes element by element
(Adamart) multiplication. The generic ith equation is then

hiy = w; + 0415?,t—1 + Bihii—1, (5)

subject to the usual restrictions to ensure that the conditional variances are positive
almost surely at any point in time.

The off-diagonal elements of Hy, i.e. the conditional covariances Cov(y;+, yj+|li—1) =
hijt, 1,7 = 1,..., N 1 # j, are defined according to the polarization identity of the
covariance operator®

1 —
hij 1 [Var(y; | Li—1) = Var(y;,[1i-1))
1 - ; N . .
= Z [h;g,t - hij,t} ,7=1,...,. N 17, (6)
where also the conditional variances for the aggregate variables yl‘;t = y;s + y; and

Yiji = Yie — Ui, 1-e Var(y,[Ii1) = b, and Var(yg; | Ii-1) = hy;,, are assumed to follow

a univariate GARCH(1,1) specification. The generic ijth elements are therefore
hi

4+ +_+2 +1+
g = Wi T QGERS Bijhij,t—l (7)

3For any two random variables A and B, one has Cov(A, B) = % [Var(A + B) — Var(A — B)], since
Var(A+ B) =Var(A) + Var(B) £ 2Cov(A, B).



- = - 9 —y =
hi];t =Wyt Q€ 1t ijhij7t—1 (8)

with €%, = €y + 50 and e, = ;4 — &

The conditional correlation matrix R; is then defined as
Rt - D;lHtD;l (9)

where D, = diag (h}f, e h]lﬁ)

2.1 The implied conditional covariance process

As shown in the Appendix, the implied parametric structure for the generic condi-
tional covariance process can be worked out using the ARMA(1,1) representation of the
GARCH(1,1) process for the aggregated series and the polarization identity.

This yields

hij: = wij 4 015 (5?,1571 + 532‘,,%1) +0s5€it-1€j1-1+ 0145 (Rig—1 + hj1—1) + d245hij1—1 (10)

R N I R —
for the generic 7, j processes, where w;; = ; (%’j wij), 0157 = 5 (%j aij), 02 =

3 (@ ), uiy = 3(65 = By), 025 = 5(B55 + 5y).

Equation (10) then shows that the implied conditional covariance parameterization
is more general than the one assumed under the usual DVECH-GARCH(1,1) model,
implicitly accounting for some spillover effects in conditional covariance.

SP-DCC for the generic i, j processes can then be seen as a halfway model between
the bivariate VECH-GARCH(1,1) and DVECH-GARCH(1,1) models. Similar to the
DVECH-GARCH(1,1), it assumes a univariate GARCH(1,1) structure for the conditional
variance of the individual series; similar to the non-diagonal VECH-GARCH(1,1) model,
it allows for some spillovers effects of past conditional variances and innovations on the
conditional covariance for the involved individual series. Conditional to the validity of
the GARCH(1,1) specification for the individual and aggregated series (which can be
assessed empirically), SP-DCC should then grant more flexible and accurate modelling
of second conditional moments than competing DCC approaches, which, by assuming a
diagonal VECH structure, neglect spillover effects without any testing.

The standard DVECH-GARCH(1,1) parameterization for the conditional covariance
can then be obtained from (10) by imposing the restrictions
;; = ai_j = Q4

;; = 5;]':513‘7 (11)

yielding, after simplification and rearranging,

«

hije = wij + QGj€ip—1€j4-1 + ﬁz‘jhij,tfk (12)

As shown in the Appendix, the restrictions in (11) have implications also for the
parameters of the GARCH(1,1) process for the individual series, implying

Qi = O = Oy Z,j = 1,...,N

i.e. common scalar innovation and persistence parameters across all N individual and
N(N — 1) aggregate GARCH(1,1) process. Under the latter restrictions, (4) and (12)
then yield a constrained DVECH-GARCH(1,1) process.

4Notice that 5;?t stands for (5;7‘702 = (g5t — sjvt)Q and Ejj?t stands for (E;Lj,t)2 = (gt + €j7t)2.

)



2.1.1 Relation with the DVECH-GARCH(1,1) process

The above results are consistent with available evidence on the aggregation properties of
the bivariate DVECH-GARCH(1,1) process (Nijman and Sentana, 1996; Sbrana, 2012;
Morana and Sbrana, 2017). For instance, Morana and Sbrana (2017) show that, for the
bivariate DVECH-GARCH(1,1) model, the aggregates y;%, = yi:+y;: and 55, = yis — 5
also have an ARMA(1,1) representation under the root cancellation condition

(i + B;) = (a5 + 51‘;’) = (o + 5;’) =7 (14)
le.,
(1—~L)e; z]t =wii+ (1 =B L)n, + (1- 5ijL) 205+ (1- 5]'1/) M)t (15)
where w;; = w; + 2w;; + w;, and

(1- ”VL) =w;; + (1-5,L) Mt — ( - 51‘]'[/) 2771‘]’,15 + (1 - ﬁjL) Nt (16)

where wy; = wi — 2wij + wj.

The root cancellation condition is therefore the condition under which the SP-DCC
model is consistent with a DVECH-GARCH(1,1,) model, concerning the order of the
ARMA process describing the aggregates (ARMA(1,1)).

However, the ARMA(1,1) representation for the aggregates assumed by SP-DCC
show, in general, a different parameterization from DVECH-GARCH(1,1,) model in (15)
and (16), i.e.

(1 — ’YUL) zyt = Wjj + (1 - 53}1/) (77z,t + 2, + Uj,t) (17)

and

(1= 75L) ege = wig + (1= ByL) (mig — 20350 +154) - (18)
allowing the aggregates to show different persistence and innovation parameters, i.e. B;; #+
fB;; and a . # «a,;, in the unconstrained case. Hence, the SP-DCC model is equivalent
to the DVECH GARCH(I,l,) model only in the constrained case, where common scalar
innovation and persistence parameters hold for the conditional variances of individual
and aggregated series, as well as for the conditional covariances.

3 Two-step estimation of the (Gaussian SP-DCC model

Consistent and asymptotically Normal estimation is obtained by QM L, following a two-
step procedure. Consider the Gaussian log-likelihood for the model in (1) and (2),

T
1
=3 Z Nlog (27) + log |Hy| + €/H, 'e;) . (19)
Following Engle (2002), the latter can be written as

T
1
L(6) = -3 Z (Nlog (27) + 2log |Dy| + €,D;'D; e;) + (—2z; + log |Ry| + z;Rt_lzt)

t=1

(20)



where D? is defined as in (4) and z; = D; '¢; is the devolatilized disturbance vector.
The log-likelihood function in (20) is then the sum of a volatility part

T

1
Ly(6) = -3 > " (Nlog (27) + 2log [Dy| + /D, 'D; 'er) (21)
t=1
and a correlation part
1 Z
Le(0.¢) = —5 > (~zz +log|Re| + ZR; 'z) . (22)

t=1
Estimation is performed in the following steps. Firstly, the mean equation model in
(1) is estimated equation by equation by QM L, i.e. the misspecified likelihood

— _—ZZIOg (27) +log o} + —2 (23)

t=1 i=1

is maximized by separately maximizing each term.

Then, using the estimated conditional mean residuals &;, the volatility part of the
likelihood (21) is maximized with respect to the conditional variance parameters; since
(21) is the sum of individual GARCH likelihoods, i.e.

1
Ly( :-5221% (27) + log h;, h (24)

t=1 i=1
the volatility part is maximized by separately maximizing each term.

Finally, rather than maximizing the correlation part in (22), conditional to the es-
timated mean residuals and conditional variances delivered by the former two steps,
SP — DCC maximizes the sum of individual GARCH likelihoods for the aggregate series

+ — .
Yije and g4, 1.e.

T N N 2
Lsp(D.¢) = => Y > <log (2m) +log hi, + h’f)

t=1 1=1 5>t ig,t

T N N -2

ZZZ <log (2m) +loghy;, + hm> (25)

t=1 i=1 j>1 ig,t

which is jointly maximized by separately maximizing each term. Hence, the conditional
variances for the aggregates hm, hijp 0,5 = 1,...,N, @ # j, are estimated equation by
equation by means of QM L, using the aggregates of the conditional mean residuals ;" =
Eirté&jpand &y = &y — Ejy

The conditional covariances are then estimated by means of the polarization identity,
i.e. the off-diagonal elements of Hy, h;j, 4,7 =1,..., N, i # j, are computed as

- 1rs s _ o S
hije = 4 [h:;,t - hij,t} Lj=1,...N i#] (26)

The conditional correlation matrix R; is finally estimated as

Rt - D;lﬂt]f)t_l (27)

7



where

D, = diag (ﬁ}/f, s ﬁ%?) . (28)
Hence, the proposed approach to maximize the log-likelihood function is to find
9 = argmax { L,,, (9)} (29)
0 = arg max {LU <1§, c) } (30)
¢ = arg max {LSP (19, ¢> } (31)

and then use these values to evaluate L (d) in (20), provided R, is positive definite at
each point in time. As the latter property is not granted by construction, in this paper
we propose a new ex-post shrinkage procedure, which allows for effective regularization
of the conditional covariance and correlation matrices.

3.1 The non-Gaussian SP-DCC model

By assuming a conditional multivariate Student’s ¢-distribution, with v degrees of freedom
(v > 2), in the place of the multivariate Gaussian distribution, the log-likelihood function
for the model is then written as

I (“5) 1 v+ N eH; e
1 2 — Zlog |H,| — log |14+ttt 2
(og[[m_ 5 logl | — 5 log |1+ B2 ) (a2)

or, equivalently,

r (M) 1 v+ N e DR, D, e,
L= log 2 — ~log |Ry| — log |D,| — 1og[1+ b =t } :

(33)

since R, = D; 'H,D; '

Maximization of the log-likelihood in (33) can be performed as for the Gaussian case,
following a multi-step approach. In particular, steps 1 and 2 can be carried out using the
Student-t version of the volatility likelihoods

N T 52
2 (%) 1 v+1 &2,
Ly,(9,¢) = log : — —logh;; — log |1+ =
ZZX_; mw-2)”r ()] 2 2 hig(v —2)
(34)
and
T N N r 7 - 12
I (4 1 v+1 g2
Lsp(d,¢) = (10g : — - logh, — log |1+ Y
22 2\ o) 2 )




where &;4, ¢ = 1,..., N, are the estimated conditional mean residuals for the individual
series, é;-;t = &ix t & and &, = &y — &5t , 4,J = 1,..., N, i # j are their aggregates.
Conditional covariances can then be computed by means of the polarization identity in
(26).

Alternatively, by relying on the QM L principle and following the current practice,
steps 1 and 2 can be performed using the conditional Gaussian log-likelihoods in (24)
and (25); this avoids the potential conflict concerning the estimated degrees of freedom
for the marginal and the joint likelihood.

3.2 Constrained SP-DCC estimation

As already discussed above, constrained SP-DCC is equivalent to the constrained DVECH-
GARCH(1,1) model

vech (Hy) = vech(2) + avech (g,-1€;_,) + Bvech (H;_y), (36)

where conditional variance-covariance matrices are uniformly positive definite if €2 is
positive definite and « and ( are non-negative (Engle and Shephard, 2007). Under
covariance stationarity, {2 can be concentrated out of the evolution of H; and replaced
with a consistent estimate, (¢et/ — & — 3) ® H, where ¢ is a N x 1 unitary vector and H
is the unconditional sample variance-covariance matrix. Conditional covariances will be
positive definite if H is positive definite, @ > 0, 5 > 0 and & + 3 < 1. Similarly positive
definite are the Risk-Metrics covariances, obtained from (36) by omitting the intercept
matrix € and setting « = 1— f and 0 < 8 < 1. See Engle and Shephard (2007) for
additional details.
Constrained SP-DCC estimation can then be implemented as follows.

e Maximize the log-likelihood function in (21), in order to obtain estimates of the
scalar innovation («;) and smoothing ((,) parameters for the individual N series in
the sample, imposing stationarity and non-negativity constraints. Then, compute

N . N
average (or median) values across series, i.e. § = % > By o= % > Q.
i=1 i=1

e Filter the individual and aggregate series using a GARCH(1,1) model, using the
estimated mean (or median) parameters and a consistent estimate of the intercept
parameter, i.e. compute

iL’L’,t - 6_22 (1 - — 7) + 6&5?7t_1 + Bhi,tfl
hhe = 05t (1—a—B) +a&fi_ +Bhf,
hiw = 67 (1 —a—p)+at;a,+PBhi, (37)

T T T
where 67 = Y &, i=1,.,N; 652 =23 &% 6,7 =%> &4 4,j=1,..,N.
=1

e Estimate the conditional variance and correlation matrices as in (26) and (27). The

above implementation relies on the positive definiteness of H, which can be checked

ex-post; if required, as for instance when the concentration ratio N/T gets close

or larger than one, positive definiteness of the conditional variance and covariance

matrices at any point in time can be imposed ex-post, as for the unconstrained
estimation case.



3.3 Asymptotic properties of QML estimation of the SP-DCC
model

While a rigorous asymptotic theory for multivariate GARCH processes is still missing, a
conjecture on the consistency and asymptotic Normality of the QM L two-step estimator
is provided in Engle (2002), Engle and Kelly (2012) and Patel et al. (2014) for the
standard DCC and its composite likelihood formulations. In this respect, despite the
proposed SP-DCC two-step procedure does not ensure the maximization of the joint
log-likelihood in (20), consistent and asymptotically Normal QM L estimation can also
be conjectured, under the usual standard assumptions, and grounded on the consistency
and asymptotic Normality of QM L univariate estimation of the GARCH(1,1) conditional
variance model for the individual and aggregated series. For the latter model the optimal
QM L properties have been shown to hold not only for the stationary case, but also for
the integrated and the (mildly) explosive ones, also when the devolatilized innovation is
non Gaussian and non i.i.d., provided its fourth moment is bounded. See Lee and Hansen
(1994) and Francq and Zakoian (2009).

Hence, for the individual series : = 1, ..., N, under standard regularity conditions, it
follows

T2 (8i=050) ™ N{0, A(8:0) ' B(0:0)A(3:0) '},

where 6, is the true value of the vector of parameters in the GARCH equations for the
aggregates; A(d;o) and B(d,) are the Hessian and the outer product gradient matrices,
evaluated at the true parameter values.

Moreover, as shown in equation (10), the (implied) parameters of the conditional
covariance equation for the generic 7, j processes ¢,; are linear combinations of the scalar
innovation and smoothing parameters of the GARCH(1,1) models for the aggregated
series, i.e.

57
.. = v
¢ =R| 3| 39
where ¢;; = (wy 01 02 01 62 ), 8% = (w) of BF) andd; = (w; oy By )
00 - 0 0
010 0 -1 0
andR=[0 5 0 0 3 0
00% 0 0 —3
003 0 0 3

Hence, under standard regularity conditions, it also follows

A+ as — -
77 (85-83,) " N{0, A(650) B35 AGS,)

17,0

T2 (8,-050) ™ N{O, A(67,0) " B(87,0)A(850) '}, (39)

where 5;0 and §;;, are true value of the vector of parameters in the GARCH equations

for the aggregates; A(d;;,) and A(d;;,) the Hessian matrices, B(d}; ) and B(d;; ) the

outer product gradient matrices, evaluated at the true parameter values.
From (38) and (39) it then also follows

T2 (&= ¢y) ¥ N{0, A(Co) ' BICo)A(C) ], (40)

10



~+ +
where ( = R [ g” , 6o =R l 6@0 } is the true value of the vector of parameters,
i i,0
A5 ,) 0 ] . . B(6;,) 0
A =R 0,0 _ R’ is the Hessian and B =R 07,0 _ R’
(CO) { 0 A(éij,O) (CO) 0 B((sijp)

is the outer product gradient evaluated at the true parameter values.

Support for the above conjecture is provided by the Monte Carlo results in Morana
and Sbrana (2017), which show that the two-step SP-DCC estimator fares very well, also
in relation to the exact ML estimator and the two-step Engle (2002) DCC estimator, in
various parametric cases of interest for real data applications. See Morana and Sbrana
(2017) for details.

4 Third step QML estimation: regularization and
smoothing

The two-step SP-DCC approach does not grant the maximization of the correlation part
and therefore of the Gaussian log-likelihood for the model in (20). Unless constrained
(and for N sufficiently smaller than T'), it does not also grants, in general, that the 2-
step covariance and correlation matrices are positive definite at each point in time. Both
drawbacks can however be fixed through the implementation of a third step, which con-
sists of a regularization part, imposing positive definiteness of the conditional correlation
and covariance matrix ex post at each point in time; a mazimization/smoothing part,
determining the optimal smoothing intensity to be applied to the conditional covariance
and correlation matrix, using the sequence of consistent two-step estimates to initialize
the maximization of the joint likelihood. The latter step might be expected to improve
the properties of the estimates, by removing noisiness and increasing efficiency.

4.1 Regularization step

In the case of violation of the condition of positive definiteness, some of the eigenvalues
of the conditional covariance matrix are non-positive. The proposed shrinkage procedure
then replaces the non-positive eigenvalues with predicted strictly positive values, obtained
by OLS estimation of the decay pattern of the positive eigenvalue sequence, using a
quadratic specification.” The latter procedure is then implemented at any point in time.
Hence, the shrinkage procedure works as follows:

e Firstly, the spectral decomposition of the correlation matrix R; is performed at
each point in time; for the generic time period ¢, this yields

R, = B, V., (41)

where V, is the N x N diagonal matrix containing the ordered (descending) eigenvalues
along the main diagonal and E; is the N x N matrix containing the associated orthogonal
eigenvectors.

5 Assuming a quadratic law of decay for the eigenvalues is loosely related to the seminal contribution
of Marcenko and Pastur (1967), concerning the asymptotic linkage between population and sample
eigenvalues of random positive definite matrices. See Ledoit and Wolf (2012) for regularization methods
based on Marcenko and Pastur (1967) results.
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e Assuming s non-positive eigenvalues, the following OLS regression of the N — s
positive eigenvalues is then run

<1/2

At :XtTt+Vt t = 1,...,T, (42)

where 5\2/2 is the N — s x 1 vector of (square root-transformed) positive eigenvalues,
X, = [ t o dy; ... dy_oy } is the N — s x k design matrix (k < N —s), ¢t is a
N — s x 1 identity vector, o = [ 1 2 ... N—s }/ is a N — s x 1 index vector, and
d;; i = 1,...,k — 2 are impulse dummies included to account for (outlying) positive
eigenvalues observations.’ If required, also a quadratic component o? could be included
in the specification, i.e. X; = [ t o o dy; ... dpoy }

Predicted values for the missing s eigenvalues are then computed as

A= x5, (43)

where X, = [ ¢, o, [(orX,=[¢, 0, 0} ]),o,=[N—-s54+1 N—s+2 .. N],,
and ¢, is a s x 1 unity vector. 7

e Then, by then denoting \A/';" the N x N diagonal matrix containing the ordered

~

original N — s positive eigenvalues (A;) and the s shrunk/predicted eigenvalues

(M)

V* = diag (S\t, S\*t> , (44)
the new estimate of the conditional correlation matrix can be computed as
{ = E/V/E; (45)

which, by construction, is positive definite at each point in time. Since the elements along
the main diagonal of f{;f might slightly deviate from unity, a normalization is required,
i.e., every column and every row of the f{f matrix has to be divided by the square root
of the corresponding diagonal entry, i.e.

Ry =D, 'R;D,; (46)

where D rt is the N x NN diagonal matrix containing the elements on the main diagonal
of the matrix R;.

. . R N—s (X bN — N—s
6For instance, beyond 3 x &;, where 6; = (Z iji[t—SaL) and A\; = Z ) %7 i.e. the
=

sample stadard deviation and the sample mean of the p051t1ve eigenvalues for time period t, respectwely

"Notice that the predlcted positive eigenvalues are still required to be in descending order ()\* N—s+1,t >
5\* Nest+2,t > oo > /\* ~,t) and of a sufficient magnitude to avoid ill-conditioning and related numerical
issues with the inversion of the conditional correlation and covariance matrices. To this purpose, a
lower bound for the smallest predicted eigenvalue can be set such that one might loose up to x digits of
accuracy (on top of what would be lost to the numerical method due to loss of precision from arithmetic

methods). For instance, one can set ;\SRW,t =10""% x 5\5R,1,t, ie. p(k) = ;\\SR—“ 10%. In the case the
SR,N,t

lower bound were hit, any positive eigenvalue below the threshold value would then be set equal to the
107" X Agp,1,+ cut-off value. Setting a lower bound threshold value is similar to the regularized estimator
of Won et al. (2013), which has the extreme eigenvalues winsorized at given constants and the other
eigenvalues left unchanged at their sample values.
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The implied, well-behaved conditional covariance process at time period ¢ is then

obtained as A o
HI* - DtR:*Dt, (47)

which is also positive definite by construction.®

The proposed regression procedure also allows to shrink the largest eigenvalues if
reC}uired. In the latter case, predicted eigenvalues are computed for all the entries of the
A2

/" vector, l.e.
<1/2

P o (48)
WhereX*:[L 0*] (orX*:[L 0. 02}),0*:[1 2 .. N}/isaleindex

vector, and ¢ is a N x 1 identity vector. This might become particularly desirable when the
dimension N gets close to the sample size T', or when N > T', i.e. when the concentration
ratio N/T gets close or larger than unity.?

In the latter cases, the eigenvalue regression in (42) might also be run using only
a subset of the positive eigenvalues, obtained by trimming out the smallest and largest
figures, i.e. only considering positive eigenvalues within the o and (1 — «) percentiles.

All this various possibilities are explored in the Monte Carlo analysis.

4.1.1 Monte Carlo evidence

We consider two profiles. In the first profile the generated data are independent and
multivariate Gaussian, i.e. y; ~ N (0,Xy), where Xy is generated each time. In the
second profile the data are independent and multivariate Sudent-t with 5 degrees of
freedom, i.e. y; = Xyz;, where the z; vector contains independent standardized ts
random variables. Concerning the generation of ¥y, we consider the case of a non
diagonal covariance matrix; in order to achieve generality, we use the average of a Toeplitz
and a Hub structure (see Hardin, 2013).

For each profile, we use various sample sizes (7' = 200, 400, 800, 1600, 3200), dimen-
sions (N = 10, 25, 50, 100, 200, 400, 800), condition numbers p(x) = 10 with k = 1, ..., 5,
and 500 replications. The investigated concentration ratio N/T' then ranges between
0.003 (T = 3200; N = 10) and 4 (T = 200; N = 800).

Moreover, covariance estimation risk is assessed using two loss functions, i.e. the
entropy loss function

Lent (2 2) — tr (2—12) “In (2—12) _ N, (49)
and the quadratic loss function
L, (22) - Hz—li—INHi, (50)
where 3 is the shrunk sample covariance matrix.

Finally, the fit of the eigenvalues regression function is assessed by means of its coef-
ficient of determination.

8Notice that the shrinkage procedure can also be directly applied to the conditional variance-
covariance matrix, following a similar procedure to the one detailed above.

9For instance, a single very large eigenvalue might be indicative of a common factor driving the
temporal evolution of the various processes. Concerning stock returns, this would be consistent with
asset pricing theories such as CAPM. In the latter case, correcting the largest eigenvalues would not
appear to be desirable.
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Selected results are reported in Figures 1-2. In particular, consistent with the results
discussed below, we report the results for the linear and quadratic regressions for the
Gaussian model (Figure 1) and for the trimmed linear and quadratic regressions for the
Student-t case (Figure 2). In both cases the conditioning number is p(k) = 10 with
rk = 1. A full set of results is reported in the Online Appendix to the paper.

As shown in the plots, ERS performance is highly satisfactory in both the Gaussian
and Student-t frameworks, depending, as it can be expected, on the concentration ratio
N/T, as well as on N and T themselves. In particular, ERS yields uniformly better results
for the Gaussian than the Student-t case according to both loss functions; moreover,
for both cases, the performance of FRS improves as the concentration ratio decreases,
independently of the value of N, i.e. as the sample size T increases for any given dimension
N. The very satisfactory EFRS performance is also documented by the coefficient of
determination of the eigenvalues regressions, in general taking values larger than 0.9
(0.8) for the quadratic (linear) specifications.

ERS performance also appears to be relatively more stable when evaluated in terms
of L,. In fact, according to the latter metric, holding 7" constant, FRS performance
appears to be independent of N starting from a concentration ratio value N/T as low
as 0.125 (N = 25; T = 200). On the other hand, the L.,; metric points to N/T = 1
as threshold value for the performance of the shrinkage regression; this is due to the

term In (E_lf]) in the loss function, which inflates the value of the statistic in the most

challenging scenarios, i.e. when N/T > 1.

Moreover, by comparing the performance across specifications (not reported), it ap-
pears that non trimmed specifications performs best for the Gaussian case, while trimmed
specifications for the Student-t case. In this respect, according to the quadratic loss func-
tion, for the Gaussian case a quadratic (non trimmed) specification appears to work best
for N/T < 0.5, while a linear (non trimmed) specification for N/7" > 0.5. Similar results
hold for the the Student-t case, albeit the threshold value for selecting the quadratic
trimmed specification is lower, i.e. N/T < 0.125.

On the other hand, for the entropy loss functions the findings are less uniform. For
instance, for the Gaussian model the quadratic (non trimmed specification) is preferred to
the linear (non trimmed) specification only for N/T" < 1 and the case x = 1; moreover, for
the Student-t case the threshold value for selecting the quadratic trimmed specification
is N/T < 0.25 for k = 1. For both models, for k > 2 the (non trimmed) quadratic
specification always yields the best performance.

4.2 Maximization/smoothing step

The maximization part of the third-step is carried out by suitably parameterizing the
joint likelihood in (19) as

L(3:0) = —5 > (N log (2m) + log[H(o) | + &H(p); ) (51)

t=1

where 6 = (9,¢’,¢)" and ¢ is a smoothing parameter.
The maximization problem is then

»= arg max {L <<p|'[9, <, g?)) } , (52)

14



where, by assuming exponential smoothing, one has

H t=1

I_'Ism _ - .
t { (1—@)H" +Hm t>1 ] 3)

with generic elements

; e t=1
he = { *

N . for:=1.....N
(1= )bz phem, t>1] 00T

R t=1

hsm = A fori,j=1,...,Nandi#j.  (54)
o { (L= @)hij, + ohii, t>1

The joint likelihood in (51) can then be maximized with respect to ¢, conditional on
“ - . \T
¥, ¢ and ¢, using the sequence of shrunk conditional covariance matrices H;‘*} to
t=1
initialize the grid search procedure, i.e. setting ¢ = 0 as starting value in the grid search
procedure, where 0 < ¢ < 1.
Once ¢y;;, i.e. Hpsr 4, is determined, the smoothed conditional correlation process is

. conerme, - e Proe
then computed as Rasp, = Dy H Dyl . where Dyp, = diag (hi’j; b ).10

4.2.1 Non Gaussian extension

The procedure can be similarly implemented also for the non Gaussian case, by parame-
terizing the likelihood in (32) as

o (o [ TEE ) a ey T ) e
LW’)_;<lg[[w<v—2ﬂmr(%)] R D

(55)
~ ~ ~ !
where § = (19/,6', (,25/) and ¢ is the exponential smoothing parameter. The joint like-

lihood in (55) is then maximized with respect to ¢ and v, conditional to f?, ¢ and (Aﬁ,
. \T
using the sequence of shrunk conditional covariance matrices {Hf*} , le. o =0,

and a suitable value for the degrees of freedom parameter v, to initialize the grid search
procedure.

5 Empirical application

SP-DCC estimation is implemented using the Fama-French 49 industry portfolios plus
the market factor excess returns.!! The sample frequency is daily and the time span is
from 1980:01:02 through 2017:10:31, for a total of 9543 observations.

Univariate analysis is based on AR(1)-GARCH(1,1) models, where excess returns,
previous to conditional variance analysis, are linearly filtered.

10 Alternatively, smoothing can be applied to the conditional correlations, yielding Ry L,t, and then
Hyr: = DRy ¢ Dy

HThe data are available from the French’s data library, at
http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/data_library.html.
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In Figure 3 we report box-plots for selected estimated coefficients and the coefficient
of determination of the shrinkage regressions. As reported in the top plots, the estimated
GARCH parameters for the individual and aggregate series show very similar mean values
and dispersion. For instance, the mean (standard deviation) value for the coefficient on
the lagged conditional variance is 0.907 (0.020) for the 50 individual series and 0.925
(0.030) for the 2450 distinct aggregated series; the interquartile range (IQR) is [0.894 —
0.920] and [0.899 — 0.952], for the individual and aggregated series, respectively. Figures
for the coeflicient on the lagged squared innovation are 0.080 (0.016) and 0.064 (0.024),
[0.070 — 0.088] and [0.042 — 0.085], for the individual and aggregated series, respectively.
The latter results then naturally invite also the implementation of the constrained version
of the SP-DCC model, imposing the same scalar («;) and smoothing (3;) parameters
across all the individual and aggregated series.

As shown in the bottom plots, the fit of the shrinkage regressions, implemented using
a quadratic specification and condition number p(x) = 103, is also very satisfactory. For
instance, for the unconstrained estimation case, the mean (standard deviation) value of
the coefficient of determination of the shrinkage regressions (using raw covariances) is
0.949 (0.029; IQR = [0.932 — 0.972]); similar figures hold for all the other cases.

Coherently, by comparing raw and shrunk estimated conditional correlations, it ap-
pears that the adjustment required to impose positive definiteness at any point in time
is almost negligible. In fact, the mean (standard deviation) Theil’s U coefficient (com-
puted for the N(N — 1)/2 = 1225 distinct raw and regularized estimates) is only 0.016
(0.005; IQR = [0.012, 0.018]), with maximum (minimum) value of 0.043 (0.005), yielding
therefore strong support to SP-DCC estimation (not reported).

The various models can be easily ranked according to the value attained by the mean
log-likelihood function. We find that the log-likelihood function raises from a value of
L = —206.661, as yield by 2-step SP-DCC (raw), to L = —90.213, as delivered by
regularized 3-step SP-DCC (only regularization implemented), and L = —64.014, as
yield by regularized-smoothed 3-step SP-DCC (the estimated smoothing parameter ¢ is
0.98), therefore providing strong empirical support to the 3-step SP-DCC approach.

On the other hand, less sizable is the improvement in the log-likelihood function value
yield by the implementation of the third step for the restricted estimation case. In fact,
for the latter case, the log-likelihood function raises from a value of L = —75.670 for
2-step SP-DCC, to L = —73.116 for regularized 3-step SP-DCC, and to L = —71.686
for regularized-smoothed 3-step SP-DCC (the estimated smoothing parameter ¢ is 0.96).
The latter finding is not surprising, given that regularization is likely to be redundant for
the constrained estimation case, as in the current application the temporal dimension 7T’
is much larger than the N dimension (N/7 = 0.005).

Due to computational issues, Engle (2002) DCC estimation has been performed in
the simplified scalar framework, where the correlation driving process is driven by com-
mon scalar innovation (a) and smoothing (b) parameters. This yields point estimates
of 0.003 for the innovation parameter a and 0.995 for the smoothing parameter b, and
therefore fairly smooth conditional correlations. Not surprisingly, the latter model yields
the highest value for the mean log-likelihood function, i.e. L = —54.691, given that the
parameters of the latent correlation process are estimated by directly maximizing the
joint log-likelihood function.

Due to the well-known bias problem in high dimensional frameworks, we repeated the
estimation of the DCC model in a restricted framework, i.e. we have estimated the distinct
N(N —1)/2 (1225) bivariate DCC model first and then used the median estimates for the

16



innovation and smoothing parameters to filter the latent correlation process for the 50
assets model. The estimated median innovation parameter a is 0.022, with interquartile
range [QR = [0.017—0.027], while the estimated median smoothing parameter [ is 0.972,
with interquartile range IQR = [0.965 — 0.979]. Finally, the value of the log-likelihood
function is slightly higher than for the unconstrained case, i.e. L = —58.306.

A detailed comparison of estimates across models is reported in the Online Appendix;
for expository purposes, in Figures 4 and 5 we report selected results for the banking
sector. Plots refer to the last ten years of data for graphical convenience. As shown
in Figure 4, the estimated conditional correlations show very similar patterns and lev-
els across models. The most noticeable feature is the lower dispersion shown by the
regularized-smoothed 3-step SP-DCC estimates relative to all the other models, apart
from the (multivariate) DCC model. Moreover, as shown in Figure 5, for the case at
hand, constrained estimation appears to hardly affect 2-step and regularized 3-step SP-
DCC conditional correlations; more noticeable is the impact on the regularized-smoothed
3-step SP-DCC estimates, which, however, is likely to depend on the different smoothing
coefficient selected for the constrained (¢ = 0.96) and unconstrained estimates (¢ = 0.98).
Interestingly, constrained 3-step regularized-smoothed SP-DCC (c-sm) and constrained
DCC (e-DCC) estimates are closest among all the series considered in the comparison.
As shown in the Appendix, this finding is not peculiar to the banking sector, but holds
on average for the 49 sectors assessed. In fact, the average correlation coefficient for the
c-sm and ¢-DCC series is 0.91; moreover, the average level and dispersion discrepancy is
negligible (see Table A7 in the online Appendix). Similar findings hold for the estimated
i,mk;t
hmk,t
the properties of the dynamic conditional correlations and market-3 coefficients for the
Fama-French industry portfolios is beyond the scope of the current paper, the findings
are surely interesting and invite further explorations using the SP-DCC model within
this framework. This is also in the light of the evidence that conditional correlations
and betas appears to show time varying properties for all the industry sectors, also when
assessed using regularized-smoothed 3-step SP-DCC estimates, which are the least dis-
persed across all models (Figure 6).

market-$3 coefficients (3; .1, = , 1 =1,...,49). While an in-depth assessment of

5.1 Optimal portfolio allocation

We finally consider the issue of estimating the global minimum variance portfolio (GMV).
In the absence of short-sale constraints, the problem is formulated as

minw H,w (56)

st.wl=1 (57)

where H; is the time period ¢ conditional variance-covariance matrix, w is the vector of
optimal weights and 1 denotes a unitary vector. Its solution yields

H'1

= ) 58
1'H;1 (58)
The vector of optimal weights can then be estimated as
H,'1
W=—"— (59)
1'H,;1
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where in our application H, is the estimated conditional variance-covariance matrix de-
livered by regularized and regularized-smoothed 3-step SP-DCC, for the case of both
constrained and unconstrained estimation, and by the Engle (2002) DCC model. The
out of sample period ranges from 25/10/1995 through 02/10/2017, yielding a total of 263
months (each defined by 21 consecutive working days) or a total of 5523 observations.
Optimal weights are updated monthly, holding the weights fixed from one day to the
next during each month. At each investment date s = 1, ..., 263, a conditional covariance
matrix is estimated using the most recent 4,000 daily observations.
We then consider the following five portfolios.

e EW: the equally weighted portfolio (1/N; N = 50), which is a standard benchmark.

e SP-sk: portfolio (59), where H; is obtained from unconstrained regularized SP-

DCC.

e SP-sm: portfolio (59), where H, is obtained from unconstrained regularized-smoothed
SP-DCC.

e ¢-SP-sk: portfolio (59), where H, is obtained from constrained regularized SP-DCC.

e ¢-SP-sm: portfolio (59), where H, is obtained from constrained regularized-smoothed

SP-DCC.
e DCC: portfolio (59), where H; is obtained from Engle (2002) DCC.

Moreover, we consider optimal allocations also under short-sale constraints; for the

latter case the generic element in the optimal portfolio weights vector is w;*, where
w* = wf/1'W* and
wz‘—{ 0 ifdy <0 | (60)

The above short-cut sets at the admittable lower-bound zero value the estimated
optimal negative weights, avoiding the numerical solution of the constrained optimization
problem in (56), where (57) is modified in order to allow only for non-negative portfolio
weights, i.e. w > 0 and w'l = 1. We then consider the five additional below portfolios.

e SP-sk*: SP-sk with the short-sale constraints imposed.

e SP-sm™*: SP-sm with the short-sale constraints imposed.

e c-SP-sk*: ¢-SP-sk with the short-sale constraints imposed.
e ¢-SP-sm™*: ¢-SP-sm with the short-sale constraints imposed.

e DCC*: DCC with the short-sale constraints imposed.

Portfolios are evaluated by means of the following three out of sample statistics (an-
nualized and in percentage terms).

e MR: the average of the 5523 out-of-sample daily log returns, which is then multiplied
by 252 to annualize.
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e SD: the standard deviation of the 5523 out-of-sample daily log returns, which is
then multiplied by /252 to annualize.

e IR: the annualized information ratio, computed as the MR/SD ratio.

As noticed by Engle et al. (2017), out of the three above performance measures, the
out-of-sample standard deviation SD is the most important one, as the global minimum
variance portfolio is designed to minimize the variance, rather than to maximize the ex-
pected return or the information ratio. High out-of-sample MR and IR are also desirable,
but should be held as subordinate objectives to a low out-of-sample SD when assessing a
variance-covariance matrix estimator. The results are reported in Table 1. The following
findings are noteworthy.

e Firstly, in terms of our preferred performance measure SD, all the DCC and SP-DCC
based portfolios outperform EW by a wide margin. The gain is particularly sizable
when the short-selling constraints are not imposed. In this respect, DCC and c-SP-
sk/c-SP-sm are the best performer, yielding a 37% and 34% reduction in portfolio
risk, relative to the equally weighted portfolio, respectively. The latter models still
yield a sizable improvement in risk reduction (18% and 16%, respectively) also when
the short-selling constraints are imposed (DCC* and c¢-SP-sk*/c-SP-sm™). Despite
the difference in the point figures, a one-sided F-test for the null hypothesis of
equal portfolio return variances, does not allow to reject the null hypothesis that
the DCC and Sp-DCC portfolios yield the same risk. The value of the test and
p-values are reported in Table 1, Panel C. In order to control for non-normality, p-
values have been computed by means of the bootstrap (see Ledoit and Wolf (2011)
for a similar approach). As shown in Panel C, the risk improvement yield by both
DCC and SP-DCC relative to EW are statistically significant, while the ranking
across constrained DCC and SP-DCC models is not statistically significant at the
5% level, independently of the imposition of short-selling constraints.

e Secondly, DCC and c-SP-sk*/c-SP-sm* outperform EW also according to the IR
statistics; yet, the improvement in the information ratio relative to EW is more
sizable for DCC (12%) than for the other models (3% to 5%).

e Finally, while EW is the best performing portfolio in terms of average return, con-
strained SP-DCC models, under short-selling constraints, yield figures just 12%
to 14% below the EW return; similarly for DCC. Among the SP-DCC models,
c-SP-sk* and ¢-SP-sm™* are again the best performer.

Overall, the results are strongly encouraging, showing that SP-DCC is a valuable
tool also for optimal portfolio allocation. Moreover, the superior performance shown
by constrained over unconstrained models also suggests that very large portfolios are
in principle easily tractable in the proposed framework, due to the scant computational
burden required.

In this respect, the implementation of c-SP-sk just requires the estimation of common
scalar innovation («) and smoothing (3) GARCH parameters across the N series, while c-
SP-sm requires the estimation of an additional smoothing parameter (). For both cases,
positive definiteness of the conditional variance-covariance matrix is likely to hold even
without regularization, in so far as the temporal dimension 7T’ is sufficiently larger than
the N dimension. The computational burden is surely not larger than for the scalar DCC
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model, which requires, in addition to the estimation of the parameters of the individual
GARCH equations, the estimation of the scalar innovation and smoothing parameters for
the latent process driving conditional correlation dynamics.

6 Conclusions

This paper deals with consistent estimation of time varying conditional covariance and
correlation matrices in high dimensional settings, within the context of the Semipara-
metric DCC model (Morana, 2015). Over available DCC methods, SP-DCC has the
advantage of not requiring the parameterization of the conditional covariances or correla-
tions, therefore also avoiding any assumption on their long-run target. It can be used in a
high dimensional context, without being exposed to the downward bias estimation issue,
since it only requires univariate QM L GARCH estimation for individual and pairwise ag-
gregated series in the first step; conditional covariances are then estimated in the second
step by means of the polarization identity, and conditional correlations obtained by their
usual scaling. Monte Carlo results, reported in Morana and Sbrana (2017), yield support
to SP-DCC estimation, also in relation to exact ML and DCC, in various parametric
setting of empirical interests for financial applications.

Relative to the two-step SP-DCC model, this paper contributes an additional, third
step, which entails ex-post regularization of conditional covariance and correlation matri-
ces, by means of a new regression-based shrinkage approach, and their optimal smoothing,
through the maximization of the joint likelihood of the model. Relative to SP-DCC, the
new regularized SP-DCC (RSP-DCC) yields, therefore, also an efficiency improvement,
since the joint likelihood of the model is explicitly considered in estimation. Moreover,
the non-linear shrinkage procedure ensures accurate estimation and safe inversion of the
conditional covariance and correlation matrices also in high dimensional cases, which are
easily tractable due to the scant computational burden.

Relative to available DCC approaches, including the recent DCC-NL of Engle et al.
(2017), RSP-DCC is likely to yields improvements not only in terms of efficiency, but
also in terms of estimation accuracy of second conditional moments. RSP-DCC, in fact,
allows for more flexible modelling than competing DCC approaches, which, by assuming
a diagonal VECH structure, neglect spillover effects without any testing. The implied
conditional covariance parameterization of RSP-DCC is, in fact, more general than the
one assumed under the usual DVECH-GARCH(1,1) model -including the latter as special
case-, accounting for spillover effects of past conditional variances and innovations on the
conditional covariance for the involved individual series.

We apply the proposed approach to a set of 50 assets, i.e. the Fama-French market
return and the 49 industrial sector portfolios and compare the estimated dynamic condi-
tional correlations of the industry portfolios with the market return, and their market-£,
using various SP-DCC specifications and with Engle (2002) DCC. We also provide an ap-
plication to global minimum variance portfolio (GMV) estimation. The empirical results
are strongly encouraging, and confirm that SP-DCC is a simple and viable alternative to
existing DCC models for any application of interest.
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7 Appendix 1: The implied conditional covariance
process

The implied parametric structure for the generic conditional covariance process can be
easily worked out through the ARMA representation of the GARCH(1,1) processes for
the aggregated series and the polarization identity. Detailed derivations of the below
results is contained in the Online Appendix.

Then, following Bollerslev (1986), the ARMA(1,1) representation for the GARCH(1,1)
models assumed for the aggregates ;% , = yi¢ +y;: and y;;; = yie — ;¢ in (7) and (8), i.e.

h;’]_t - UJ i + Oz;;{f;;% 1 + 52] ©J,t—1 (61)
hz_]t w —|—Oé gut 1+Bz] ij,t—1 (62)
is
(1-— (Oé;; + ﬁ;;)L) 0 5?}2 _
. (Ul Bk 11 i (63
[wij1+[<1_6ijL) 07 Hmj,t}
Wy 0 (1- BijL) Mijt ’
where
hjj_t = (hzt + th]t + h] t) = 5;;% n:}t, (64)
h’;j,t = (h 2h1jt + hj t) = Ezgt 771] £ (65)

and 77;;7“ n;;+ are zero mean and serially uncorrelated disturbances by definition, with
E [n;ﬁ], E [n;ﬂ positive, finite constants. Moreover,

5;;215 = (€7, + 2ei0850 + £54) (66)
et = (€ir — 280e8i0 + €5) (67)
77;;,1: ="+ 10+ 205, (68)
ni_jt:nit+77jt_277ijt' (69)

By denoting ﬁ; = (Oz;;+ Bi ) and y;; = (a;;+0;;), and subtracting the second equation
from the first one in (63), i.e. using the polarization identity, one then has

(1 - ﬁysz) ij,t (1 ,YZ]L) z]zt = (Ld,z zg) (1 - 6 )n;;,t - (1 - 5;[/)77;” (70)

Moreover, by substituting (66), (67), (68) and (69) into (70), and rearranging, one
then has the ARMA representation for the implied conditional covariance process

1
1— 3 (v +755) L] (€iigse) =

1 _ 1 _
1 (WZ; —wy) + 1 (v — i) L (ed +€50)
1 1 _
_Z (77115 +1;, t) [1 - 5( :; + Bij)L Nijt- (71)

By further rearranging, one then has

N 1 _ 1 _
hl‘]‘7t = Z (w;; - wij) + 5( ;; + 5”-)}1@'7,5_1 + 5 (CY;; + Oél-j) Eit—1€4t—1
1 _ 1 _
+Z< Z - 5@3) (hig—1+ hje—1) + 1 (04;; - aij) (5?,1571 + 532‘,1571) . (72)
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Equation (72) then shows that the implied conditional covariance parameterization
is more general than the one assumed under the usual DVECH-GARCH(1,1) model,
implicitly accounting for some spillover effects in conditional covariance. Yet, under the
restrictions

af = oy = ay
+ _ op
= Bij =0 (73)
equation (72) yields
hije = wij + @ij€iz—1€j0-1 + Bijhiji—1, (74)
where w;; = 1 (w); — w;;). Hence, the DVECH-GARCH(1,1) model is nested in the SP-
DCC model and obtained under the restrictions 04;9 = a;; = a;; and ﬁfj = Bi; = By

As shown below, the latter also implies that the innovation («;) and smoothing (3;)
parameters of the GARCH(1,1) equations for the individual series are common across
both individual and aggregated series, i.e.

/312/33‘:51‘;: ;;:5@'

= oy = = Ay = Qi (75)

7.1 Additional implications

In order to gauge the implications for the GARCH parameters of the individual series,
the derivation of the ARMA(1,1) representation for the conditional covariance h;;; can
be obtained also exploiting the following identity

hit

17,t

- 2hi,t + 2hj,t - hi 12. (76)

iJ,t

Then, the polarization identity can be written as

h;;i — hi_j,t = 2hz’,t + 2hj,t — 2hz_]7t (77)
Given the ARMA(1,1) representations for the squared disturbances &7, and €2,
{ (1= (e + B,)L) 0 ] { ey ] _
o -] |4 -

R R |

and for .7, as in (63), i.e.

(1= (ay; + Biy) L)eish = wig + (1= B L),
by substituting into the polarization identity in (77) and simplifying, one then has

12This follows from the identity VAR(A + B) = 2VAR(A) + 2VAR(B) — VAR(A — B), for any two
random variables A and B.
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[—(ai + Bi)L) + (o3 + B;) D) iy +

[—(aj + B))L) + (a5 + B )] 5, +

2(1 = (ay; +5 L) (gisgje) =

(wi +wj —wy;) + [=(8; = Bip)L)] mi

+ [_(53‘ - 61]) )] N+ 2(1 - BijL) (ni,tnj,t) ) (79)

which, by rearranging yields

1 _ -
hije = 5 (wi +wj — wy) + Bijhija—1 + g (8i4-184-1)
1 _ 1 _
+§(5i — B hig—1 + 5(0% —a;;)ed
1 1 _
§(ﬁ — Bi)hjt—1 + 2( - O‘ij)git—la (80)

requiring the restrictions

ﬁi = szﬁf;j:ﬁij

o = = oy = o, (81)

in order to yield the DVECH-GARCH(1,1) parameterization for the conditional covari-
ance, i.e.

1
hije = B

Notice that the same result follows by writing (76) as

(wl- + wj; — w&) + BZjhij,tfl + Oé;j (Ei’tflt’:"j’tfl) . (82)

hm 2his + 2h;, — hm, (83)
yielding
1
hije = 3 (Wi —wi —wj) + Bifhije + o (eip-185-1)
1 1
+§(5i - 5;;)hi,t—1 + 5(0%' - O‘;;)ffzz,t—1
1 1
508, = B+ 505 — al), . (34)
as well as ]
hij+ = 3 (Wi — wi —wj) + Bhhije—1 + o (€i0-18-1) | (85)
under the restrictions
_ _ ot
B; = 5j = 5@‘ _Bij
o; = O!j = Oé;; = Oéij. (86)

By comparing the two processes in (82), (85), and the two sets of restriction in (81), (86),
it then also follows

B = B
o = ag. (87)
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Finally, it is easy to check that the processes in (74) and (82) or, alternatively, in (74)
and (85), are fully coherent, since

and

- _ gt _
By = Bij =105y
oy = Ozjj = . (89)
To sum up, given a GARCH(1,1) specification for both the aggregates and individual
series, the usual DVECH-GARCH(1,1) parameterization for the conditional covariance
is obtained only for the constrained model case, where

Bizﬁjzﬁi_j:ﬁz;zﬁij

ai:aj:ai_j:a;;:aij,
i.e. the scalar innovation and smoothing parameters are common across the GARCH(1,1)
conditional variances for all the NV individual and N (/N — 1) aggregated series, as well as
for the N(N — 1)/2 implied conditional covariances. As shown, in equation (72) above,
in the unconstrained case, the implied conditional covariance parameterization is more
general than the one assumed under the usual DVECH-GARCH(1,1) model, allowing for

some spillover effects in conditional covariance.
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Table 1: Portfolio allocation analysis

Out of sample:

Panel A: Relative figures

no short-selling constraints

short-selling constraints

EW SP-sk | SP-sm | cSP-sk | ¢cSP-sm | DCC | SP-sk* | SP-sm* | cSP-sk* | cSP-sm* | DCC*
MR 9.594 4.671 5.061 5.854 5.310 6.932 8.164 8.354 8.471 8.362 8.283
SD 18.538 | 15.198 | 13.537 | 12.285 | 12.289 | 11.755 | 16.851 | 17.029 | 15.589 15.613 | 15.295
IR 0.518 0.307 0.374 0.477 0.432 0.590 0.485 0.491 0.543 0.534 0.542
Panel B: Relative figures
no short-selling constraints short-selling constraints
EW SP-sk | SP-sm | cSP-sk | ¢SP-sm | DCC | SP-sk* | SP-sm* | cSP-sk* | c¢SP-sm* | DCC*
MR 1.000 0.487 0.528 0.610 0.553 0.723 0.851 0.871 0.883 0.872 0.863
SD 1.000 0.820 0.730 0.663 0.663 0.634 0.909 0.919 0.841 0.842 0.825
IR 1.000 0.593 0.722 0.921 0.834 1.139 0.936 0.948 1.048 1.031 1.046
Panel C: Variance equality tests
no short-selling constraints short-selling constraints
EW SP-sk | SP-sm | cSP-sk | cSP-sm DCC | SP-sk* | SP-sm* | cSP-sk* | cSP-sm* | DCC*
EW 1.488 1.875 2.277 2.276 2.487 1.210 1.185 1.414 1.410 1.469
SP-sk 0.001 1.261 1.531 1.530 1.672 1.229 1.255 1.052 1.055 1.013
SP-sm 0.001 0.001 1.214 1.214 1.326 1.550 1.583 1.326 1.330 1.277
cSP-sk 0.001 0.001 0.001 1.001 1.092 1.881 1.922 1.610 1.615 1.550
cSP-sm 0.001 0.001 0.001 0.897 1.093 1.880 1.920 1.609 1.614 1.549
DCC 0.001 0.001 0.001 0.095 0.101 2.055 2.099 1.759 1.764 1.693
SP-sk* 0.001 0.058 0.001 0.001 0.001 0.001 1.021 1.168 1.165 1.214
SP-sm* 0.001 0.111 0.001 0.001 0.001 0.001 0.730 1.193 1.190 1.240
cSP-sk* | 0.001 | 0.923 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 1.003 1.039
c¢SP-sm* | 0.001 | 0.920 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 0.149 1.042
DCC* 0.001 | 0.969 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 0.196 0.171

The table reports the results of the portfolio allocation analysis. Actual figures are reported in Panel A, while relative
figures, using the equally weighted portfolio as benchmark, are reported in Panel B. Three performance measures
are considered, i.e. the annualized average (MR) and standard deviation (SD) of the 5523 out-of-sample daily log
returns and the annualized information ratio (IR=MR/SD). The out of sample period ranges from 25/10/1995
through 02/10/2017, yielding a total of 263 months (each defined by 21 consecutive working days). The assessed
portfolios are the equally weighted portfolio (EW) and portfolios constructed using conditional covariance matrix
estimates obtained by Engle (2002) DCC (DCC) and SP-DCC, with and without imposing short-selling constraints. The
assessed SP-DCC models are the constrained and unconstrained regularized SP-DCC (c-SP-sk; SP-sk); the constrained
and unconstrained regularized-smoothed SP-DCC (c-SP-sm; SP-sm). Starred variables refer to the case in which
short-selling constraints are imposed. Finally, Panel C reports the one-sided F-test for variance homogeneity (upper

triangular matrix), with p-values computed by means of bootstrap simulation (lower triangular matrix).
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Figure 1: Average risks (normalized by the dimension N) measured by the entropy and quadratic loss functions (top and center plots). Average
coefficient of determination of the (positive) eigenvalues regression (bottom plots), including a linear term only (LHS plots) and a linear and
quadratic term (RHS plots). Simulations refer the multivariate Normal case, with nondiagonal covariance matrix. The condition number is
Vel (K‘) =10" with x=1 and the number of Monte Carlo replications is 500. Note: the figure for the N=800, T=200 for the quadratic regression

and entropy loss case is from the trimmed sample linear regression model.




Entropy loss: Student-t, trimmed linear reg. Entropy loss: Student-t, trimmed quad.reg

N=800 N=800

N=400 N=400

N=200 N=200

N=100 N=100

M
L

N=50 N=50
N=25 N=25
N=10 N=10
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
mT=3200 WT=1600 ®T=800 MT=400 M T=200 mT=3200 mT=1600 ®T=800 WT=400 ®T=200
Quadratic loss: Student-t trimmed linear reg. Quadratic loss: Student-t trimmed quad. reg.
N=800 -— N=800 ‘_
N=200 -_ N=200 -_
0 0.1 0.2 0.3 0 0.1 0.2 0.3
mT=3200 WT=1600 ®T=800 MT=400 M T=200 mT=3200 mT=1600 ®mT=800 WT=400 ®T=200
R-squared: Student-t, diagonal R-squared: Student-t, nondiagonal
covariance; trimmed sample covariance; trimmed sample
N800 e —— =800
=200 N ———
ve100 N0 ——
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
mT=3200 mT=1600 mT=800 mMT=400 mT=200 mT=3200 mT=1600 mT=800 WT=400 mT=200

Figure 2: Average risks (normalized by the dimension N) measured by the entropy and quadratic loss functions (top and center plots). Average
coefficient of determination of the trimmed (positive) eigenvalues regression (bottom plots), including a linear term only (LHS plots) and a linear
and quadratic term (RHS plots). The trimming depends on the dimension N, i.e. 10%-90% for N<20; 5%-95% for 20<N<100; 1%-99% for N>100.
Simulations refer to the multivariate Student-t (5 degrees of freedom) case, with nondiagonal covariance matrix. The condition number is

P (/c)=10’( with x=1 and the number of Monte Carlo replications is 500. Note: the figure for the N=800, T=200 for the quadratic regression and

entropy loss case is from the trimmed sample linear regression model.
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Figure 3: Box-plots of estimated GARCH(1,1) parameters (top plots) and coefficient of determination of shrinkage regressions (bottom plots).
Beta is the coefficient of the lagged conditional variance and alpha is the coefficient of the squared lagged disturbance for the individual
series; starred variables refer to the aggregated series. R2 is the coefficient of determination for the shrinkage regression. Then, R2srk and
R2srk_c refer to the regularized case for the unconstrained and constrained models, respectively; R2srk_smo and R2srk_smo_c refer to the
regularized-smoothed case for the unconstrained and constrained models, respectively.
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Figure 4: Estimated conditional correlation for the banking industry index return with the market factor return (rows 1-2) and market factor-
beta of the banking industry (rows 3-4). SP-DCC, SP-DCC-sk and SP-DCC-sm denote raw (2-step), regularized and regularized-smoothed (3-
step) SP-DCC estimates, respectively; DCC denotes Engle (2002) DCC estimates and DCC-biv denotes bivariate Engle (2002) DCC estimates.
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Figure 5: Estimated conditional correlation for the banking industry index return with the market factor return (left-hand side plots) and
market factor-beta for the banking industry (right-hand side plots): constrained (solid) versus unconstrained (dashed) estimates. SP-DCC, SP-
DCC-sk and SP-DCC-sm denote unconstrained raw (2-step), regularized and regularized-smoothed (3-step) SP-DCC estimates, respectively;
DCC denotes Engle (2002) estimates. c-SP-DCC, c-SP-DCC-sk, c-SP-DCC-sm and c-DCC denote the corresponding constrained estimates.
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Figure 6: Conditional correlations with the market factor (top plot) and conditional market factor-betas (bottom plot) for the 49 Fama-French

industries. Estimates are obtained from the regularized-smoothed (3-step) SP-DCC estimator.
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1 The implied conditional covariance process

The implied parametric structure for the generic conditional covariance process can be
easily worked out through the ARMA representation of the GARCH(1,1) processes for
the aggregated series and the polarization identity.

Following Bollerslev (1986), the ARMA(1,1) representation for the GARCH(1,1) mod-
els assumed for the aggregates y;;,t = Yir + Yje and Y = Yir — Yje L

h;;t_w;;—i_ai 7,]t 1""5@3 ig,t—1 (1)
hije = wiy + oy ‘%t 1 Bihij et (2)
is
{ (1—(a; + B5)L) 0 ] aszt } _
0 (1= (a;; +B;)L) | | €5 )
EIR G
Wij 0 (1- 51’;'[/) Mije |
where
hie = (hig + 2hije + hys) = €53 — i, (4)
hije = (hig = 2hije + hjs) = 5zgt Mijt> (5)

and 77;;7“ n;;. are zero mean and serially uncorrelated disturbances by definition, with
E [n;ﬁ], E [n;ﬂ positive, finite constants. Moreover,

e = (Eis + 2eagia + £5,) (6)
eija = (el — 2eueia +25) (7)

77;;775 = (512,15 - hz’,t) + (532',15 - hj,t) +2 (5i,t€j,t - hij,t)
Nig TN T 2771’3‘,167 (8)

W;j,t = (gf,t - hz’,t) =+ (E?,t - hj,t) -2 <5i,t€j,t — hij,t)
= Myt Nt — 277ij,t' 9)

By denoting v;; = (o + 57;) and v;; = (o, + ;;), and subtracting the second from
the first equation in (3), i.e. using the polarization identity, one then has

Moreover, by substituting (6), (7), (8) and (9) into (10), and rearranging, one then

has the ARMA representation for the implied conditional covariance process

1
411 — 5 (’)/:; + ’}/;]) L (gi,tgj,t)
= (i —wy) + (i =) Lete + (0 = ) Ll

_ _ 1 _
—( Z - 51‘3‘)1”7:‘7:: —( j; - ﬁz’j)Lnj,t +4 11— Z + 51’3‘)[/ Nijt: (11)
2

By noting that



i 1 B 1 _
411— B} (’7;; + %’j) L} (€itcje) — 4 {1 - 5( ;; + 51‘;‘)[/] Nijt
I 1,0 _ 1, . B 1, .. _
= 41— 5( i+ Bi5) L — 5 (af +ag;) L (eigje) —4 |1 — 5( i T Bi)L| Mgy
- 1 - B
= 41— 5( ; + ﬁij)Ll hije — 2 (ajj + %) L (eiejr) (12)
and
(7:; - ’YZ_J) ngz,t — ( ;; - Bz‘_j)Lm,t
= [(5; - BE)L + (O‘z—‘; - ai_j) L] 5?,t - ( Z - ij)Lm,t
(B — B)Lhiy + (o — a3;) LeZ,, (13)
(v = i) Leje — (B35 — By Ly,
= [(Bf = Bi)L + (af — ag;) L] &5, — (B, = Bi;) Ly,
= ( j; - ﬁi_j)th,t + (a;; - ozi_j) szz,t, (14)
one then has
1, . _ L, _ 1, . _
hije = 1 (wij - Wz‘j) + 5( i T 5ij)hij,t—1 + 2 (aij + aij) Cit—1&5t-1
1 _ 1 _
“‘Z( ;; - 51‘]‘) (hit—1 + hj,tfl) + 1 (O‘;E - aij) (512,1:—1 + 5]2',t—1) . (15)

Equation (15) then shows that the implied conditional covariance parameterization
is more general than the one assumed under the usual DVECH-GARCH(1,1) model,
implicitly accounting for some spillover effects in conditional covariance.

Moreover, under the restrictions

+

;= a;j = Qj
+ _ o5
y = B =08y (16)
after rearranging, (15) yields,
hije = wij + aij€iz1€50-1 + Bijhije—1, (17)

where w;; = i (w;; — wz_j) Hence, the DVECH-GARCH(1,1) specification is nested in the

SP-DCC model, and is obtained under the restrictions a;; = a;; = a;; and ﬁ;; = B85 = Bij
given the GARCH(1,1) specification for the individual and aggregated series. As is shown
below, this also implies that the innovation («;) and smoothing (3;) parameters of the
GARCH(1,1) equations for the individual series are common across both individual and
aggregated series, i.e.

51253‘:55’:@;:5@'

Q; = Oéj = ai_j = Oé;; - Oéij' (18)



1.1 Additional implications

In order to gauge the implications for the GARCH parameters of the individual series,
the derivation of the ARMA(1,1) representation for the conditional covariance h;;; can
be obtained also exploiting the following identity

h;;t 2hig + 20y — hyj, L (19)
Then, the polarization identity can be written as
hii e = hijy = 2hig + 2h — 2k . (20)

Given the ARMA(1,1) representations for the squared disturbances €7, and &3,

[ (-lekol) W ", ] [ ; ] _ "

5] 0 S ]

2 asin (3), ie.

and for £, 7,

(1= (g + By)L)egy = wig + (1= By Ly,
by substituting into the polarization identity in (20) and simplifying, one then has

(1= (i +B;)L) = (L= (ag; + B5)L)] ey +

(1= (o + B))L) = (1 = (a; + B;)L)] €5, +

2(1 = (ay; + B;)L) (giseje) =

(wi +wj —wy) + [(1=6,L) = (1= B L)] s

+ [(1 - BjL) - (1 - BZ_]L)] N+ 2(1 - B;L) (m,mj,t) (22)

that is

[—(ci + 8L + (ag; + B;)L )] e +
[ (o + 5 (a'j + 5ij)L)] ?,t +
2(1 — (o +5U) ) (€igje) =

( ;Wi — l]) [_(51 - ﬁz_j)L):I Nit

+ [ (6 Bm) )} M+ 2(1— /Bz_JL) (ni7t77j,t) (23)

By noting that

[_(ai - %—j)L — (B — BZ_]>L)i| Ezz,t - [_(51 - 51_3)[/)} Nit =
5 (s = B Ly — 2oy — o)) 1, (24)

IThis follows from the identity VAR(A + B) = 2VAR(A) + 2VAR(B) — VAR(A — B), for any two
random variables A and B.



[_(O‘j - a;j)L - (63 - B;J)L)] 5?,75 - [_<5j - 5;)[/)] Njt =

1 _ _
_5(53‘ - ﬁz‘j)Lhi,t —2(a; — aij)ngz,t

(1= (o5 + B) L) (sieje) — (1= B5L) (mimy) =

= (1= 850 hijs — aj;L(€isgjt)

by substituting (24), (25) and (26) into (23), it follows

1 _ _ _
hije =3 (wi +wj —wi) + Bijhije + ag; (€ir1801)
1 _ 1 _
+§(5i — Bi)hig—1 + 5(042‘ - O‘ij)git—l
1 _ 1 _
"‘5(53' — Bihjt—1+ 5(%‘ - O‘z‘j)gitfl

which, under the restrictions

B = B;=05=20

Q; = Oy :Oé;j = 4y,

yields

1 _ _ -
hije = = (wi +w; — wij) + Bihije—1 + o (€ip-1€54-1) -

2
Notice that the same result follow by writing (19) as
hiia

- th,t —|— 2hj,t - h+

it

yielding the polarization identity in (20) written as

Wt — b, = 20t — 2y — 2Dy,
and therefore
hije = % (wi —wi —wj) + Bhhije—1 + o (€i-1850-1)
+%(5¢ — Bii)hiz—1 + %(Oéz‘ —af)el,
(8= By + 505 — 05

which, under the restrictions

51' = szﬁ;;:ﬁij

— — ~t =
o = ;= aij = 4y,
yields
hij,t =

v

1
2
5

(wf —Ww; — wj) + ﬁghij,tfl + Oé:; (€it—1€51-1) -

(26)

(28)

(29)

(33)

(34)



By comparing the two conditional covariance processes in (29), (34), and the two sets
of restriction in (28), (33), it then also follows

+ _ —
i = Pi
o = (35)

Finally, it is easy to check that the conditional covariance processes in (17) and (29)
or, alternatively, in (17) and (34), are fully coherent, since

NI RN~

and

B = B =Py
;= aof = . (37)

v v

Hence, the DVECH-GARCH(1,1) specification is nested in the SP-DCC model, and
is obtained under the restrictions

B _p—pt_
Bi=B; =By = Bij = Bi
;= oy = = oy = i, (38)

i.e. of common scalar innovation and smoothing parameters across the GARCH(1,1)
conditional variances for all the NV individual and N (N — 1) aggregated series, as well as
for the V(N — 1)/2 implied conditional covariances. As shown, in equation (15) above,
under less restrictive parameterizations, the conditional covariance process implied by
SP-DCC is more general than the one assumed under the usual DVECH-GARCH(1,1)
model, allowing for some spillover effects in conditional covariance.

2 Monte Carlo results

We consider two profiles. In the first profile the generated data are independent and
multivariate Gaussian, i.e. y; ~ N (0,Xy), where Xy is generated each time. In the
second profile the data are independent and multivariate Sudent-t with 5 degrees of
freedom, i.e. y; = Xyz;, where the z; vector contains independent standardized ts
random variables. Concerning the generation of ¥y, we consider the case of a non
diagonal covariance matrix; in order to achieve generality, we use the average of a Toeplitz
and a Hub structure (see Hardin, 2013).

For each profile, we use various sample sizes (7' = 200, 400, 800, 1600, 3200), dimen-
sions (N = 10, 25, 50, 100, 200, 400, 800), condition numbers p(x) = 10 with k = 1, ..., 5,
and 500 replications. The investigated concentration ratio N/T' then ranges between
0.003 (T' = 3200; N = 10) and 4 (7' = 200; N = 800).
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Moreover, covariance estimation risk is assessed using two loss functions, i.e. the
entropy loss function

Lot (2 2) — tr (2—12) “In (2—12) _ N, (39)

and the quadratic loss function

L, (£3) = Hz—lfz—INH; (40)
where 3 is the shrunk sample covariance matrix.
Finally, the fit of the eigenvalues regression function is assessed by means of its coef-
ficient of determination.
In Table A1 through A5 we report detailed Monte Carlo results for the performance
of the shrinkage regression, depending on the various setting and condition numbers.

3 Comparing conditional correlations

In Tables A6-A7 we report empirical percentiles and descriptive statistics for the condi-

hz‘,mk;t .
e
i = 1,...,49), obtained by various SP-DCC models and by Engle (2002) DCC model.
Concerning the latter model, we also report figures for the conditional correlations ob-
tained from the estimation of bivariate DCC models, including the excess return on the
market and each industry portfolio at the time. In particular, results reported in Table
A6 refer to unconstraneid SP-DCC and DCC estimation, while results in Table A7 are
for the constrained estimation case. Constrained estimation of the DCC model has been
implemented by using median figures for the scalar innovation (a) and smoothing (b)
coefficients, computed across the N(N — 1)/2 (1225) estimated bivariate DCC models,
for filtering the latent correlation process at the second step.

Since we have 49 industries in the sample, and therefore 49 conditional correlations
with the market factor, and 5 different models (2-step SP-DCC (r), 3-step regularized
SP-DCC (sk), 3-step regularized-smoothed SP-DCC (sm); bivariate Engle (2002) DCC
(eb), Engle (2002) DCC (e)), there are ten different distinct cases to be considered in the
comparisons for the unconstrained estimation case, i.e. r vs. sk, sm, eb, e; sk vs. sm,
eb, e; sm vs. eb, e; eb vs. e. On the other hand, for constrained estimation we have six
cases in total, i.e., r vs. sk, sm, e; sk vs. sm, e; sm vs. e, as we do not perform any
constrained bivariate estimation.

For each pair of cases (p,q = r, sk,sm,eb,e; p # q), and each of the 49 conditional

tional correlations of the 49 industry portfolios with the market factor (p;, =

Oipyq

)
Oip0iq
A 1 T ~ — ~ — . . .
where G40 = % i1 (Pips — DPip) (Pigs — Pig) is the sample covariance of the ith con-

correlations (¢ = 1,...,49), we compute simple correlation coefficients ¢;,, =

ditional correlations for the generic p and ¢ models; p,, = %Zthl Pi.i and 0;, =

1 T N _ 2 1/2 .. .
(:T D e (pmt — pi,z) ) , are the sample mean and standard deviation of the 7th con-

ditional correlations for the generic model z, with z = p,q. In addition to comovement
of conditional correlations across models (Panel A; Tables A6-A7), we also compare their
level and dispersion (Panels B, C; Tables A6-AT7). In particular, for each industry and



pair of distinct models, we compute scaled differences for the sample means and stan-
Pip — Pig

dard deviations of the conditional correlations; this yields m;,, = ———— and
(p 4P +p i;q)
. . 2
Sipq = ——2——%-. Due to scaling, the latter statistics then yields information on rel-
(Gip + Giyg)

ative rather tQhan absolute differences in mean and dispersion values of the conditional
correlations.

Overall, the following conclusions can be drawn. Firstly, by comparing raw and shrunk
(unrestricted) SP-DCC conditional correlations, it can be noticed that regularization does
not change the correlation pattern, as in almost all cases the correlation coefficients exceed
a value of 0.99; yet, shrunk conditional correlations tend to be less volatile, -5% (0.051)
on average (/QR = [0.042 — 0.059]), with a negligible impact on the mean value (0.039;
IQR =[0.035 — 0.042]).

Secondly, depending on its intensity, smoothing might have a sizable impact on
conditional correlations. For instance, in terms of correlation patterns, regularized-
smoothed conditional correlations are still strongly positively correlated with raw and
regularized correlations, yet the correlation coefficient is only about 0.701 on average
(IQR = [0.632 — 0.778]). Moreover, while smoothing does not have any sizable im-
pact on the mean correlation level (0.008; IQR = [-0.004 — 0.022]), a large reduction in
dispersion can be noticed, i.e. -29% (0.299; IQR = [0.222 — 0.328]) and -23% (0.234;
IQR = [0.177 — 0.276]) on average, relative to 2-step SP-DCC and regularized 3-step
SP-DCC, respectively.

Thirdly, by comparing raw and regularized SP-DCC and (bivariate) Engle (2002)
DCC estimation, it can be concluded that the two methods deliver similar conditional
correlations in terms of overall pattern (the correlation coefficient is 0.887 on average;
IQR = [0.847 — 0.932]) and mean values. In this respect, the difference in means is
negligible for 2-step SP-DCC estimates, i.e. -0.006 on average (/QR = [-0.008— -0.001]),
and still very small for regularized SP-DCC estimates (-0.045 on average (IQR = |[-
0.050— -0.039). Moreover, SP-DCC delivers more volatile conditional correlations, i.e.
+21% (0.209) on average (/QR = [0.109 — 0.276]). On the other hand, the correlation
coefficient between regularized-smoothed SP-DCC and Engle (2002) DCC conditional
correlations is lower, i.e. 0.825 on average IQR = [0.776 — 0.897]). While showing
similar mean levels (the mean difference is -0.013 on average; IQR = [-0.025 — 0.005]),
regularized-smoothed SP-DCC correlations tend to be slightly less dispersed, i.e. -7.5%
(-0.075) on average (IQR = [-0.138— -0.080]) than Engle (2002) DCC correlations.

Finally, similar findings hold for the case of multivariate DCC estimation, as the
mean level of the correlations is fairly similar to the other models. In fact, the relative
differences in mean levels are -0.006, -0.045 and -0.013, for r, sk and sm, respectively
(IQR = [-0.010— 0.000]; IQR = [-0.049— 0.039]; IQR = [-0.023— 0.007]), as well
as by the bivariate DCC model (0.001; IQR = [-0.003— 0.003]). On the other hand,
multivariate DCC estimation yields much smoother conditional corrrelations than all the
other models (-40%). Coerently, correlation coefficients tend to be lower than for the other
models, i.e. about. 0.66 on average relative to r and sk (IQR = [0.595 — 0.719]); 0.84
(IQR = [0.808— 0.888]) and 0.80 (IQR = [0.749— 0.847]) for sm and eb, respectively.

As shown in Table A7, while the overall conclusions drawn for the unconstrained case
still hold, in general, also for the constrained case, some differences with the unrestricted



case are noteworthy.

Firstly, conditional correlations delivered by constrained SP-DCC estimation are more
strongly correlated across models; in this respect, the correlation coefficient is virtually
one in all cases for 2-step versus regularized 3-step SP-DCC; 0.773 (IQR = [0.724—0.819])
for 2-step/regularized 3-step versus regularized-smoothed 3-step; 0.887 (IQR = [0.867 —
0.905]) for 2-step/regularized 3-step versus Engle (2002) DCC; 0.916 (IQR = [0.900 —
0.948]) for regularized-smoothed 3-step DCC versus Engle (2002) DCC.

Secondly, differences in mean conditional correlations are even smaller across models
than for the unconstrained case; for instance, the mean difference is 2.5% (0.025; IQR =
[0.024—0.026])) for 2-step versus regularized 3-step SP-DCC; 1.7% (0.017; IQR = [0.013—
0.022])) for 2-step versus regularized-smoothed 3-step DCC; even more negligible values
can be noted for 2-step SP-DCC, 3-step regularized SP-DCC and 3-step regularized-
smoothed SP-DCC vs. Engle (2002) DCC (0.010, /QR = [-0.002 — 0.018]; -0.015, IQR =
[-0.027 — 0.006]; -0.007, IQR = [-0.023 — 0.003]).

Thirdly, similar to uncostrained estimates, 2-step and regularized 3-step SP-DCC
conditional correlations appear to be more dispersed than 3-step regularized-smoothed
SP-DCC and Engle (2002) estimates, i.e. about 20% (0.196; IQR = [0.166 — 0.222])
and 14% (0.137; IQR = [0.106 — 0.169]) on average, respectively. Slightly less dispersed
appear to be regularized-smoothed 3-step SP-DCC correlations relative to Engle (2002)
DCC estimates, i.e. -2% (-0.023) on average (IQR = [-0.043— 0.000]).



Table A1: Monte Carlo results: condition number p(l() =10 with x=1

Panel A: linear shrinkage regression

Entropy loss: Normal model

Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.070 0.058 0.056 0.045 0.053 N=10 0.231 0.205 0.193 0.180 0.170
N=25 0.081 0.052 0.038 0.030 0.025 N=25 0.292 0.240 0.202 0.180 0.171
N=50 0.113 0.069 0.046 0.034 0.025 N=50 0.394 0.295 0.228 0.194 0.180
N=100 0.166 0.101 0.062 0.040 0.028 N=100 0.495 0.394 0.292 0.231 0.196
N=200 0.243 0.154 0.095 0.058 0.038 N=200 0.869 0.592 0.438 0.306 0.227
N=400 0.379 0.238 0.149 0.091 0.057 N=400 - - - - -
N=800 0.619 0.378 0.230 0.150 0.088 N=800 - - - - -

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.130 0.112 0.104 0.090 0.096 N=10 0.288 0.263 0.251 0.237 0.226
N=25 0.096 0.074 0.060 0.051 0.044 N=25 0.220 0.193 0.168 0.152 0.145
N=50 0.085 0.064 0.050 0.042 0.034 N=50 0.197 0.159 0.132 0.115 0.108
N=100 0.078 0.058 0.043 0.033 0.027 N=100 0.177 0.142 0.113 0.095 0.083
N=200 0.075 0.054 0.040 0.029 0.023 N=200 0.180 0.135 0.106 0.082 0.066
N=400 0.075 0.052 0.037 0.027 0.021 N=400 0.222 0.148 0.103 0.074 0.058
N=800 0.078 0.053 0.036 0.026 0.019 N=800 0.283 0.187 0.124 0.086 0.060

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.767 0.753 0.727 0.757 0.716 N=10 0.830 0.780 0.695 0.758 0.806
N=25 0.846 0.847 0.839 0.829 0.840 N=25 0.917 0.910 0.916 0.909 0.891
N=50 0.859 0.842 0.823 0.801 0.806 N=50 0.926 0.928 0.930 0.927 0.918
N=100 0.875 0.851 0.837 0.829 0.816 N=100 0.922 0.929 0.934 0.935 0.930
N=200 0.895 0.876 0.850 0.843 0.820 N=200 0.911 0.924 0.931 0.936 0.938
N=400 0.917 0.897 0.880 0.868 0.846 N=400 0.907 0.912 0.924 0.932 0.937
N=800 0.944 0.919 0.907 0.881 0.865 N=800 0.902 0.906 0.913 0.924 0.933
Panel B: quadratic shrinkage regression

Entropy loss: Normal model Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.038 0.027 0.018 0.016 0.014 N=10 0.256 0.218 0.196 0.181 0.175
N=25 0.056 0.032 0.019 0.012 0.009 N=25 0.365 0.284 0.239 0.218 0.198
N=50 0.091 0.052 0.029 0.017 0.011 N=50 0.532 0.377 0.294 0.245 0.219
N=100 0.148 0.086 0.049 0.028 0.016 N=100 0.880 0.619 0.486 0.298 0.254
N=200 0.245 0.144 0.083 0.046 0.026 N=200 1.682 - 0.657 0.436 0.313
N=400 0.408 0.241 0.140 0.080 0.045 N=400 - - - - 0.479
N=800 - 0.398 0.235 0.135 0.079 N=800 - - - - -

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.105 0.085 0.065 0.058 0.052 N=10 0.337 0.292 0.262 0.244 0.235
N=25 0.086 0.063 0.047 0.036 0.030 N=25 0.278 0.224 0.194 0.177 0.162
N=50 0.080 0.058 0.043 0.032 0.024 N=50 0.256 0.197 0.161 0.138 0.124
N=100 0.077 0.055 0.039 0.029 0.022 N=100 0.250 0.194 0.157 0.114 0.099
N=200 0.076 0.053 0.038 0.027 0.020 N=200 0.271 0.205 0.139 0.105 0.082
N=400 0.078 0.053 0.037 0.026 0.019 N=400 0.320 0.209 0.144 0.105 0.077
N=800 0.080 0.054 0.037 0.026 0.018 N=800 0.395 0.261 0.177 0.121 0.083

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.933 0.919 0.931 0.925 0.927 N=10 0.927 0.938 0.939 0.938 0.940
N=25 0.960 0.961 0.962 0.958 0.958 N=25 0.955 0.948 0.950 0.941 0.940
N=50 0.961 0.958 0.952 0.948 0.948 N=50 0.959 0.955 0.951 0.947 0.938
N=100 0.967 0.964 0.956 0.950 0.945 N=100 0.966 0.961 0.957 0.953 0.948
N=200 0.975 0.970 0.960 0.956 0.948 N=200 0.970 0.966 0.964 0.958 0.955
N=400 0.981 0.976 0.969 0.964 0.961 N=400 0.968 0.970 0.967 0.963 0.959
N=800 0.984 0.982 0.976 0.969 0.965 N=800 0.965 0.968 0.971 0.967 0.964




Table Al ctd. Panel C: linear shrinkage regression, trimmed sample

Entropy loss: Normal model

Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.067 0.054 0.053 0.049 0.050 N=10 0.230 0.210 0.205 0.194 0.192
N=25 0.100 0.072 0.056 0.052 0.049 N=25 0.260 0.222 0.203 0.189 0.183
N=50 0.149 0.097 0.067 0.055 0.049 N=50 0.325 0.272 0.227 0.203 0.194
N=100 0.233 0.156 0.099 0.071 0.055 N=100 0.432 0.365 0.298 0.253 0.230
N=200 0.305 0.234 0.154 0.099 0.066 N=200 0.479 0.429 0.363 0.293 0.249
N=400 0.373 0.306 0.236 0.154 0.094 N=400 0.591 0.477 0.426 0.359 0.293
N=800 0.383 0.375 0.308 0.238 0.153 N=800 0.489 0.588 0.476 0.424 0.360

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.112 0.094 0.089 0.082 0.080 N=10 0.298 0.274 0.263 0.249 0.246
N=25 0.087 0.071 0.059 0.054 0.050 N=25 0.207 0.186 0.171 0.158 0.152
N=50 0.078 0.061 0.049 0.042 0.037 N=50 0.169 0.151 0.133 0.120 0.114
N=100 0.074 0.058 0.045 0.037 0.031 N=100 0.148 0.129 0.113 0.100 0.092
N=200 0.066 0.052 0.040 0.032 0.025 N=200 0.114 0.103 0.091 0.079 0.070
N=400 0.065 0.046 0.036 0.028 0.022 N=400 0.104 0.080 0.072 0.063 0.056
N=800 0.049 0.046 0.033 0.025 0.020 N=800 0.065 0.073 0.056 0.051 0.045

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.820 0.801 0.771 0.764 0.751 N=10 0.830 0.809 0.780 0.787 0.773
N=25 0.891 0.874 0.864 0.836 0.819 N=25 0.885 0.878 0.861 0.848 0.836
N=50 0.916 0.891 0.874 0.847 0.833 N=50 0.891 0.878 0.875 0.871 0.843
N=100 0.914 0.898 0.878 0.849 0.832 N=100 0.878 0.879 0.871 0.864 0.847
N=200 0.934 0.922 0.907 0.877 0.865 N=200 0.882 0.884 0.881 0.874 0.867
N=400 0.894 0.937 0.929 0.908 0.892 N=400 0.858 0.885 0.886 0.885 0.877
N=800 0.610 0.906 0.940 0.930 0.912 N=800 0.627 0.861 0.887 0.887 0.883
Panel D: quadratic shrinkage regression, trimmed sample

Entropy loss: Normal model Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.043 0.033 0.026 0.022 0.023 N=10 0.214 0.185 0.173 0.166 0.160
N=25 0.075 0.046 0.032 0.027 0.024 N=25 0.255 0.212 0.185 0.172 0.164
N=50 0.130 0.072 0.045 0.031 0.024 N=50 0.332 0.254 0.211 0.184 0.173
N=100 0.220 0.136 0.076 0.045 0.030 N=100 0.459 0.361 0.274 0.222 0.195
N=200 0.291 0.221 0.135 0.075 0.045 N=200 0.556 0.453 0.353 0.270 0.223
N=400 0.374 0.294 0.221 0.136 0.073 N=400 0.776 0.555 0.449 0.354 0.270
N=800 0.562 0.375 0.295 0.224 0.135 N=800 - 1.304 0.874 0.744 0.660

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.095 0.078 0.064 0.055 0.053 N=10 0.295 0.259 0.240 0.228 0.219
N=25 0.082 0.062 0.049 0.041 0.036 N=25 0.220 0.187 0.165 0.152 0.143
N=50 0.077 0.057 0.043 0.034 0.028 N=50 0.186 0.154 0.132 0.116 0.107
N=100 0.076 0.057 0.042 0.032 0.025 N=100 0.168 0.139 0.115 0.097 0.086
N=200 0.072 0.054 0.040 0.030 0.022 N=200 0.141 0.117 0.096 0.080 0.069
N=400 0.073 0.050 0.038 0.028 0.021 N=400 0.136 0.099 0.082 0.068 0.056
N=800 0.078 0.052 0.035 0.026 0.020 N=800 0.132 0.096 0.069 0.058 0.048

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.937 0.922 0.923 0.927 0.925 N=10 0.940 0.932 0.933 0.935 0.928
N=25 0.966 0.960 0.955 0.949 0.943 N=25 0.968 0.966 0.962 0.959 0.952
N=50 0.974 0.966 0.961 0.957 0.948 N=50 0.975 0.970 0.966 0.961 0.960
N=100 0.973 0.964 0.959 0.950 0.945 N=100 0.967 0.964 0.960 0.955 0.949
N=200 0.982 0.974 0.968 0.957 0.950 N=200 0.973 0.969 0.965 0.962 0.958
N=400 0.956 0.983 0.974 0.969 0.961 N=400 0.970 0.974 0.970 0.967 0.963
N=800 0.901 0.957 0.983 0.977 0.968 N=800 0.947 0.970 0.974 0.970 0.967

Table Al: Average risks (normalized by the dimension N) measured by the entropy and quadratic loss functions and average

coefficient of determination of the (positive) eigenvalues regression, including a linear term (Panel A) and a trimmed eigenvalues

sample (Panel C); a linear and quadratic term (Panel B) and a trimmed eigenvalues sample (Panel D). The trimming depends on the
dimension N, i.e. 10%-90% for N<20; 5%-95% for 20<N<100; 1%-99% for N>100. Simulations refer the multivariate Normal (LHS
tables) and Student-t (5 degrees of freedom; RHS tables) cases. The number of Monte Carlo replications is 500 and the conditioning

number is p(/()zlo" with x=1.




Table A2: Monte Carlo results: condition number p(K) =10" with x=2

Panel A: linear shrinkage regression

Entropy loss: Normal model

Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.091 0.066 0.060 0.059 0.048 N=10 0.233 0.206 0.193 0.177 0.170
N=25 0.115 0.078 0.055 0.048 0.040 N=25 0.303 0.233 0.198 0.180 0.171
N=50 0.193 0.111 0.071 0.052 0.041 N=50 0.418 0.291 0.234 0.199 0.178
N=100 0.367 0.188 0.105 0.068 0.046 N=100 0.649 0.414 0.294 0.229 0.194
N=200 0.634 0.360 0.183 0.101 0.062 N=200 0.845 0.639 0.408 0.290 0.227
N=400 1.026 0.625 0.358 0.180 0.099 N=400 1.076 0.792 0.620 0.411 0.289
N=800 - - 0.623 0.355 0.176 N=800 - - - - 0.454

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.137 0.112 0.104 0.098 0.087 N=10 0.374 0.358 0.355 0.347 0.344
N=25 0.103 0.083 0.068 0.061 0.054 N=25 0.290 0.265 0.251 0.235 0.227
N=50 0.091 0.071 0.056 0.047 0.040 N=50 0.229 0.189 0.166 0.152 0.145
N=100 0.083 0.063 0.048 0.038 0.031 N=100 0.199 0.158 0.137 0.118 0.107
N=200 0.077 0.058 0.044 0.033 0.026 N=200 0.180 0.141 0.117 0.094 0.082
N=400 0.078 0.054 0.040 0.031 0.023 N=400 0.169 0.129 0.101 0.080 0.067
N=800 0.078 0.055 0.038 0.028 0.021 N=800 0.171 0.122 0.095 0.074 0.058

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.791 0.799 0.781 0.775 0.790 N=10 0.828 0.764 0.712 0.753 0.809
N=25 0.864 0.836 0.832 0.809 0.810 N=25 0.918 0.913 0.914 0.909 0.889
N=50 0.887 0.863 0.845 0.827 0.815 N=50 0.926 0.929 0.928 0.923 0.914
N=100 0.915 0.891 0.874 0.846 0.841 N=100 0.923 0.929 0.933 0.935 0.933
N=200 0.925 0.922 0.897 0.879 0.861 N=200 0.913 0.923 0.932 0.935 0.938
N=400 0.941 0.929 0.922 0.903 0.884 N=400 0.907 0.912 0.923 0.932 0.937
N=800 0.954 0.943 0.932 0.925 0.909 N=800 0.901 0.906 0.913 0.924 0.933
Panel B: quadratic shrinkage regression

Entropy loss: Normal model Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.040 0.026 0.018 0.014 0.012 N=10 0.231 0.201 0.183 0.172 0.166
N=25 0.079 0.045 0.027 0.020 0.015 N=25 0.311 0.246 0.208 0.187 0.176
N=50 0.150 0.077 0.043 0.027 0.019 N=50 0.424 0.305 0.242 0.209 0.188
N=100 0.316 0.147 0.077 0.041 0.025 N=100 0.645 0.421 0.302 0.243 0.204
N=200 0.663 0.315 0.146 0.074 0.042 N=200 0.900 0.643 0.414 0.304 0.236
N=400 0.778 0.655 0.313 0.145 0.074 N=400 1.025 0.863 0.638 0.413 0.298
N=800 - - 0.652 0.313 0.145 N=800 - - - - -

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.104 0.081 0.064 0.053 0.048 N=10 0.325 0.282 0.255 0.239 0.230
N=25 0.094 0.070 0.053 0.043 0.035 N=25 0.271 0.218 0.185 0.166 0.156
N=50 0.089 0.065 0.048 0.037 0.029 N=50 0.238 0.188 0.153 0.132 0.117
N=100 0.085 0.061 0.045 0.033 0.025 N=100 0.217 0.172 0.131 0.110 0.091
N=200 0.082 0.059 0.043 0.031 0.023 N=200 0.208 0.155 0.118 0.094 0.074
N=400 0.079 0.057 0.042 0.030 0.022 N=400 0.201 0.151 0.113 0.083 0.065
N=800 0.077 0.055 0.040 0.029 0.021 N=800 0.206 0.144 0.110 0.081 0.060

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.940 0.935 0.938 0.942 0.939 N=10 0.935 0.934 0.936 0.937 0.935
N=25 0.951 0.945 0.944 0.939 0.939 N=25 0.954 0.952 0.944 0.943 0.939
N=50 0.959 0.951 0.944 0.937 0.935 N=50 0.958 0.956 0.950 0.946 0.941
N=100 0.971 0.960 0.949 0.947 0.940 N=100 0.965 0.962 0.958 0.952 0.949
N=200 0.980 0.971 0.963 0.955 0.943 N=200 0.970 0.966 0.963 0.958 0.953
N=400 0.980 0.981 0.973 0.966 0.957 N=400 0.968 0.970 0.967 0.964 0.961
N=800 0.982 0.980 0.981 0.973 0.965 N=800 0.965 0.968 0.971 0.967 0.965




Table A2 ctd. Panel C: linear shrinkage regression, trimmed sample

Entropy loss: Normal model

Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.071 0.062 0.052 0.048 0.047 N=10 0.233 0.219 0.200 0.198 0.190
N=25 0.104 0.072 0.058 0.053 0.050 N=25 0.270 0.224 0.202 0.192 0.184
N=50 0.174 0.102 0.071 0.055 0.047 N=50 0.379 0.280 0.230 0.204 0.192
N=100 0.373 0.181 0.106 0.068 0.053 N=100 0.632 0.416 0.310 0.260 0.232
N=200 0.745 0.370 0.179 0.102 0.068 N=200 0.919 0.626 0.408 0.303 0.254
N=400 1.209 0.745 0.364 0.175 0.100 N=400 1.316 0.918 0.628 0.401 0.298
N=800 - - 0.746 0.361 0.175 N=800 - - 0.919 0.626 0.401

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.113 0.099 0.088 0.081 0.077 N=10 0.298 0.280 0.259 0.253 0.243
N=25 0.088 0.071 0.060 0.054 0.050 N=25 0.208 0.185 0.169 0.160 0.152
N=50 0.080 0.062 0.050 0.042 0.037 N=50 0.174 0.151 0.134 0.120 0.113
N=100 0.078 0.059 0.046 0.036 0.031 N=100 0.149 0.131 0.114 0.102 0.092
N=200 0.072 0.055 0.041 0.032 0.025 N=200 0.118 0.104 0.091 0.079 0.071
N=400 0.071 0.050 0.038 0.029 0.022 N=400 0.107 0.083 0.074 0.064 0.055
N=800 0.054 0.051 0.036 0.027 0.020 N=800 0.069 0.076 0.059 0.052 0.045

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.808 0.788 0.777 0.770 0.761 N=10 0.822 0.805 0.790 0.771 0.781
N=25 0.893 0.870 0.854 0.832 0.824 N=25 0.880 0.877 0.864 0.848 0.839
N=50 0.913 0.893 0.870 0.855 0.837 N=50 0.888 0.882 0.875 0.865 0.841
N=100 0.919 0.903 0.880 0.866 0.841 N=100 0.883 0.878 0.869 0.858 0.846
N=200 0.934 0.920 0.903 0.889 0.865 N=200 0.885 0.887 0.882 0.876 0.863
N=400 0.896 0.938 0.926 0.910 0.890 N=400 0.856 0.886 0.885 0.887 0.880
N=800 0.607 0.903 0.939 0.928 0.911 N=800 0.624 0.862 0.886 0.888 0.886
Panel D: quadratic shrinkage regression, trimmed sample

Entropy loss: Normal model Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.046 0.031 0.024 0.024 0.021 N=10 0.206 0.183 0.170 0.163 0.160
N=25 0.074 0.046 0.033 0.027 0.024 N=25 0.250 0.208 0.186 0.173 0.164
N=50 0.135 0.073 0.044 0.031 0.026 N=50 0.335 0.253 0.209 0.187 0.172
N=100 0.311 0.146 0.078 0.046 0.032 N=100 0.572 0.367 0.271 0.222 0.194
N=200 0.761 0.306 0.144 0.075 0.044 N=200 1.013 0.559 0.364 0.270 0.220
N=400 1.198 0.762 0.305 0.142 0.074 N=400 1.362 1.012 0.560 0.361 0.269
N=800 - - 0.761 0.303 0.141 N=800 - - 1.012 0.557 0.360

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.099 0.076 0.063 0.057 0.050 N=10 0.289 0.259 0.238 0.226 0.220
N=25 0.082 0.062 0.049 0.041 0.036 N=25 0.217 0.185 0.165 0.151 0.142
N=50 0.079 0.057 0.043 0.034 0.028 N=50 0.186 0.154 0.131 0.117 0.107
N=100 0.081 0.058 0.042 0.032 0.025 N=100 0.171 0.138 0.114 0.097 0.086
N=200 0.078 0.056 0.041 0.029 0.022 N=200 0.145 0.118 0.097 0.080 0.068
N=400 0.079 0.054 0.039 0.028 0.021 N=400 0.137 0.102 0.084 0.068 0.056
N=800 0.080 0.056 0.039 0.028 0.020 N=800 0.127 0.097 0.071 0.058 0.048

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.926 0.930 0.932 0.925 0.932 N=10 0.937 0.936 0.928 0.929 0.928
N=25 0.967 0.961 0.954 0.948 0.944 N=25 0.968 0.965 0.961 0.955 0.953
N=50 0.972 0.967 0.961 0.955 0.948 N=50 0.973 0.970 0.967 0.960 0.958
N=100 0.972 0.965 0.956 0.948 0.942 N=100 0.968 0.964 0.959 0.956 0.949
N=200 0.983 0.976 0.966 0.960 0.953 N=200 0.973 0.970 0.967 0.961 0.957
N=400 0.956 0.984 0.975 0.968 0.961 N=400 0.970 0.973 0.970 0.967 0.961
N=800 0.900 0.956 0.984 0.976 0.969 N=800 0.947 0.970 0.974 0.970 0.967

Table A2: Average risks (normalized by the dimension N) measured by the entropy and quadratic loss functions and average

coefficient of determination of the (positive) eigenvalues regression, including a linear term (Panel A) and a trimmed eigenvalues

sample (Panel C); a linear and quadratic term (Panel B) and a trimmed eigenvalues sample (Panel D). The trimming depends on the
dimension N, i.e. 10%-90% for N<20; 5%-95% for 20<N<100; 1%-99% for N>100. Simulations refer the multivariate Normal (LHS
tables) and Student-t (5 degrees of freedom; RHS tables) cases. The number of Monte Carlo replications is 500 and the conditioning

number is p(/():l()K with x=2.




Table A3: Monte Carlo results: condition number p(K) =10" with k=3

Panel A: linear shrinkage regression

Entropy loss: Normal model

Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.091 0.071 0.059 0.053 0.050 N=10 0.328 0.279 0.247 0.254 0.233
N=25 0.117 0.077 0.055 0.049 0.043 N=25 0.366 0.297 0.267 0.237 0.229
N=50 0.195 0.110 0.071 0.052 0.043 N=50 0.490 0.357 0.285 0.252 0.234
N=100 0.390 0.185 0.104 0.068 0.048 N=100 0.777 0.477 0.351 0.282 0.245
N=200 0.998 0.379 0.180 0.099 0.062 N=200 1.285 0.770 0.471 0.343 0.276
N=400 - 0.988 0.374 0.180 0.098 N=400 2.011 1.244 0.770 0.469 0.339
N=800 - - - 0.372 0.174 N=800 - - 1.200 0.759 0.465

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.137 0.115 0.102 0.093 0.088 N=10 0.376 0.330 0.299 0.300 0.281
N=25 0.103 0.083 0.068 0.061 0.056 N=25 0.273 0.232 0.209 0.189 0.179
N=50 0.092 0.070 0.056 0.046 0.041 N=50 0.231 0.190 0.159 0.143 0.131
N=100 0.083 0.062 0.048 0.038 0.032 N=100 0.207 0.163 0.135 0.112 0.098
N=200 0.078 0.058 0.043 0.033 0.026 N=200 0.206 0.152 0.115 0.095 0.079
N=400 0.080 0.055 0.040 0.031 0.023 N=400 0.197 0.141 0.110 0.083 0.066
N=800 0.080 0.057 0.038 0.028 0.021 N=800 0.201 0.142 0.102 0.077 0.060

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.791 0.786 0.788 0.786 0.789 N=10 0.780 0.794 0.806 0.781 0.797
N=25 0.860 0.841 0.833 0.805 0.796 N=25 0.858 0.843 0.827 0.832 0.813
N=50 0.883 0.864 0.843 0.825 0.810 N=50 0.871 0.864 0.852 0.838 0.822
N=100 0.912 0.896 0.875 0.847 0.827 N=100 0.879 0.877 0.868 0.858 0.845
N=200 0.926 0.920 0.903 0.883 0.863 N=200 0.878 0.882 0.881 0.874 0.865
N=400 0.941 0.931 0.923 0.901 0.885 N=400 0.883 0.879 0.884 0.883 0.876
N=800 0.951 0.939 0.935 0.924 0.913 N=800 0.888 0.884 0.882 0.883 0.887
Panel B: quadratic shrinkage regression

Entropy loss: Normal model Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.040 0.026 0.018 0.014 0.013 N=10 0.232 0.196 0.180 0.174 0.166
N=25 0.079 0.045 0.028 0.020 0.016 N=25 0.301 0.247 0.210 0.189 0.175
N=50 0.149 0.078 0.043 0.027 0.019 N=50 0.422 0.304 0.243 0.206 0.187
N=100 0.317 0.148 0.075 0.042 0.025 N=100 0.650 0.414 0.298 0.241 0.204
N=200 0.802 0.315 0.145 0.074 0.040 N=200 1.194 0.652 0.416 0.298 0.240
N=400 1.011 0.808 0.313 0.145 0.073 N=400 1.052 1.199 0.654 0.414 0.299
N=800 - - 0.803 0.312 0.144 N=800 - 1.052 1.191 0.652 0.416

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.105 0.081 0.064 0.054 0.049 N=10 0.325 0.279 0.253 0.241 0.230
N=25 0.094 0.070 0.053 0.043 0.036 N=25 0.262 0.221 0.188 0.167 0.154
N=50 0.089 0.065 0.048 0.037 0.029 N=50 0.239 0.187 0.154 0.129 0.117
N=100 0.085 0.061 0.044 0.033 0.025 N=100 0.215 0.165 0.128 0.107 0.090
N=200 0.082 0.060 0.042 0.031 0.023 N=200 0.216 0.158 0.118 0.092 0.076
N=400 0.079 0.058 0.041 0.030 0.022 N=400 0.203 0.152 0.113 0.083 0.066
N=800 0.077 0.055 0.041 0.029 0.021 N=800 0.211 0.142 0.112 0.081 0.061

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.933 0.936 0.937 0.939 0.938 N=10 0.932 0.934 0.940 0.941 0.937
N=25 0.952 0.944 0.942 0.937 0.936 N=25 0.954 0.952 0.946 0.940 0.942
N=50 0.960 0.947 0.943 0.938 0.934 N=50 0.960 0.957 0.952 0.947 0.940
N=100 0.970 0.960 0.954 0.946 0.940 N=100 0.965 0.962 0.958 0.951 0.948
N=200 0.979 0.971 0.965 0.958 0.950 N=200 0.970 0.966 0.963 0.959 0.952
N=400 0.981 0.981 0.973 0.966 0.958 N=400 0.968 0.970 0.967 0.965 0.960
N=800 0.982 0.981 0.981 0.975 0.966 N=800 0.965 0.968 0.971 0.967 0.964




Table A3 ctd. Panel C: linear shrinkage regression, trimmed sample

Entropy loss: Normal model

Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.069 0.058 0.054 0.051 0.046 N=10 0.232 0.210 0.208 0.197 0.191
N=25 0.104 0.072 0.056 0.052 0.049 N=25 0.270 0.226 0.203 0.192 0.181
N=50 0.174 0.100 0.070 0.055 0.047 N=50 0.372 0.278 0.229 0.205 0.194
N=100 0.378 0.182 0.107 0.071 0.055 N=100 0.669 0.416 0.310 0.257 0.231
N=200 1.019 0.370 0.178 0.104 0.070 N=200 1.270 0.676 0.410 0.303 0.252
N=400 - 1.016 0.368 0.175 0.099 N=400 - 1.268 0.659 0.405 0.303
N=800 - - - 0.363 0.174 N=800 - - 1.267 0.656 0.404

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.111 0.096 0.088 0.082 0.077 N=10 0.299 0.274 0.266 0.253 0.244
N=25 0.088 0.071 0.060 0.054 0.050 N=25 0.209 0.186 0.170 0.160 0.151
N=50 0.080 0.061 0.050 0.042 0.037 N=50 0.171 0.151 0.132 0.121 0.114
N=100 0.078 0.059 0.046 0.036 0.031 N=100 0.149 0.131 0.114 0.101 0.092
N=200 0.072 0.054 0.041 0.032 0.026 N=200 0.119 0.106 0.092 0.079 0.070
N=400 0.072 0.051 0.038 0.029 0.022 N=400 0.108 0.083 0.074 0.064 0.056
N=800 0.055 0.051 0.036 0.027 0.020 N=800 0.070 0.076 0.059 0.052 0.045

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.829 0.797 0.780 0.773 0.765 N=10 0.834 0.818 0.788 0.765 0.770
N=25 0.893 0.869 0.858 0.842 0.827 N=25 0.884 0.879 0.862 0.855 0.849
N=50 0.913 0.897 0.870 0.856 0.839 N=50 0.891 0.882 0.877 0.861 0.842
N=100 0.915 0.903 0.877 0.860 0.833 N=100 0.883 0.879 0.874 0.862 0.847
N=200 0.933 0.924 0.907 0.880 0.859 N=200 0.883 0.881 0.879 0.875 0.865
N=400 0.902 0.937 0.923 0.910 0.892 N=400 0.859 0.886 0.888 0.885 0.876
N=800 0.606 0.902 0.941 0.929 0.911 N=800 0.628 0.859 0.886 0.888 0.884
Panel D: quadratic shrinkage regression, trimmed sample

Entropy loss: Normal model Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.043 0.031 0.027 0.023 0.022 N=10 0.205 0.188 0.170 0.167 0.159
N=25 0.075 0.047 0.034 0.027 0.025 N=25 0.247 0.206 0.187 0.171 0.165
N=50 0.135 0.072 0.044 0.031 0.025 N=50 0.336 0.250 0.209 0.185 0.172
N=100 0.311 0.146 0.078 0.046 0.032 N=100 0.571 0.367 0.275 0.223 0.194
N=200 0.888 0.306 0.143 0.075 0.044 N=200 1.175 0.564 0.363 0.271 0.221
N=400 - 0.883 0.304 0.142 0.074 N=400 - 1.162 0.560 0.362 0.268
N=800 - - - 0.303 0.141 N=800 - - 1.157 0.557 0.360

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.097 0.077 0.066 0.057 0.052 N=10 0.290 0.262 0.237 0.229 0.219
N=25 0.082 0.062 0.049 0.041 0.036 N=25 0.215 0.185 0.166 0.150 0.143
N=50 0.079 0.057 0.043 0.034 0.028 N=50 0.186 0.152 0.131 0.116 0.107
N=100 0.081 0.058 0.042 0.032 0.025 N=100 0.170 0.139 0.115 0.098 0.085
N=200 0.078 0.057 0.040 0.029 0.022 N=200 0.146 0.119 0.096 0.081 0.068
N=400 0.080 0.055 0.039 0.028 0.021 N=400 0.138 0.102 0.084 0.068 0.056
N=800 0.082 0.057 0.038 0.028 0.020 N=800 0.128 0.097 0.071 0.059 0.047

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.932 0.930 0.922 0.927 0.927 N=10 0.938 0.932 0.931 0.927 0.926
N=25 0.967 0.961 0.956 0.950 0.946 N=25 0.968 0.967 0.963 0.958 0.953
N=50 0.974 0.968 0.961 0.953 0.950 N=50 0.974 0.971 0.967 0.962 0.959
N=100 0.972 0.965 0.956 0.947 0.939 N=100 0.968 0.966 0.960 0.955 0.950
N=200 0.983 0.975 0.966 0.961 0.952 N=200 0.973 0.969 0.966 0.962 0.960
N=400 0.956 0.983 0.977 0.970 0.960 N=400 0.970 0.974 0.971 0.966 0.964
N=800 0.901 0.956 0.985 0.978 0.971 N=800 0.948 0.970 0.974 0.971 0.967

Table A3: Average risks (normalized by the dimension N) measured by the entropy and quadratic loss functions and average

coefficient of determination of the (positive) eigenvalues regression, including a linear term (Panel A) and a trimmed eigenvalues

sample (Panel C); a linear and quadratic term (Panel B) and a trimmed eigenvalues sample (Panel D). The trimming depends on the
dimension N, i.e. 10%-90% for N<20; 5%-95% for 20<N<100; 1%-99% for N>100. Simulations refer the multivariate Normal (LHS
tables) and Student-t (5 degrees of freedom; RHS tables) cases. The number of Monte Carlo replications is 500 and the conditioning

number is p(K):10K with x=3.




Table A4: Monte Carlo results: condition number p(l() =10" with k=4

Panel A: linear shrinkage regression

Entropy loss: Normal model

Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.086 0.072 0.061 0.055 0.052 N=10 0.323 0.286 0.264 0.254 0.245
N=25 0.115 0.077 0.058 0.046 0.043 N=25 0.365 0.295 0.265 0.244 0.229
N=50 0.194 0.110 0.071 0.052 0.044 N=50 0.492 0.363 0.287 0.255 0.229
N=100 0.391 0.184 0.104 0.066 0.047 N=100 0.804 0.481 0.349 0.283 0.245
N=200 1.251 0.381 0.181 0.101 0.066 N=200 1.660 0.795 0.470 0.347 0.274
N=400 - 1.240 0.374 0.179 0.099 N=400 - 1.621 0.783 0.472 0.340
N=800 - - - 0.373 0.176 N=800 - - - 0.777 0.471

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.134 0.117 0.103 0.094 0.090 N=10 0.370 0.336 0.311 0.301 0.290
N=25 0.103 0.083 0.069 0.059 0.055 N=25 0.270 0.229 0.207 0.192 0.180
N=50 0.091 0.070 0.056 0.046 0.041 N=50 0.233 0.195 0.161 0.143 0.129
N=100 0.083 0.062 0.048 0.038 0.031 N=100 0.210 0.167 0.134 0.113 0.098
N=200 0.078 0.058 0.043 0.033 0.027 N=200 0.199 0.150 0.115 0.095 0.078
N=400 0.080 0.055 0.040 0.031 0.023 N=400 0.205 0.144 0.108 0.082 0.066
N=800 0.080 0.056 0.038 0.028 0.021 N=800 0.200 0.141 0.100 0.076 0.059

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.803 0.785 0.782 0.783 0.778 N=10 0.791 0.791 0.790 0.780 0.781
N=25 0.864 0.837 0.822 0.817 0.801 N=25 0.857 0.847 0.833 0.822 0.820
N=50 0.885 0.867 0.846 0.825 0.805 N=50 0.872 0.864 0.852 0.836 0.833
N=100 0.912 0.899 0.876 0.851 0.836 N=100 0.877 0.880 0.868 0.859 0.847
N=200 0.929 0.918 0.901 0.880 0.849 N=200 0.878 0.879 0.882 0.870 0.866
N=400 0.941 0.931 0.923 0.902 0.883 N=400 0.882 0.881 0.883 0.881 0.875
N=800 0.952 0.941 0.934 0.923 0.908 N=800 0.887 0.884 0.882 0.885 0.881
Panel B: quadratic shrinkage regression

Entropy loss: Normal model Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.040 0.026 0.019 0.014 0.014 N=10 0.217 0.198 0.180 0.174 0.169
N=25 0.079 0.045 0.028 0.020 0.015 N=25 0.308 0.241 0.213 0.186 0.176
N=50 0.150 0.077 0.043 0.027 0.019 N=50 0.416 0.302 0.240 0.205 0.187
N=100 0.316 0.148 0.076 0.042 0.026 N=100 0.663 0.423 0.302 0.238 0.205
N=200 0.809 0.314 0.146 0.074 0.040 N=200 1.186 0.654 0.418 0.297 0.236
N=400 - 0.809 0.313 0.145 0.073 N=400 1.067 1.196 0.651 0.415 0.297
N=800 - - - 0.313 0.144 N=800 1.214 1.057 1.201 0.652 0.414

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.104 0.080 0.065 0.054 0.050 N=10 0.310 0.280 0.253 0.241 0.233
N=25 0.094 0.070 0.054 0.043 0.036 N=25 0.264 0.218 0.188 0.165 0.155
N=50 0.089 0.064 0.048 0.037 0.029 N=50 0.236 0.186 0.152 0.129 0.116
N=100 0.085 0.061 0.045 0.033 0.025 N=100 0.230 0.172 0.133 0.107 0.091
N=200 0.082 0.059 0.043 0.031 0.023 N=200 0.203 0.157 0.120 0.091 0.074
N=400 0.079 0.058 0.041 0.030 0.022 N=400 0.212 0.150 0.113 0.085 0.065
N=800 0.077 0.055 0.041 0.029 0.021 N=800 0.206 0.147 0.110 0.081 0.060

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.937 0.936 0.935 0.938 0.936 N=10 0.936 0.935 0.932 0.933 0.934
N=25 0.951 0.945 0.940 0.937 0.937 N=25 0.956 0.952 0.942 0.943 0.939
N=50 0.959 0.952 0.945 0.937 0.934 N=50 0.961 0.956 0.950 0.945 0.943
N=100 0.970 0.961 0.952 0.945 0.940 N=100 0.965 0.962 0.957 0.953 0.948
N=200 0.980 0.972 0.963 0.956 0.950 N=200 0.970 0.966 0.962 0.958 0.956
N=400 0.980 0.980 0.973 0.965 0.958 N=400 0.968 0.970 0.967 0.963 0.960
N=800 0.983 0.981 0.981 0.973 0.966 N=800 0.965 0.968 0.970 0.967 0.964




Table A4 ctd. Panel C: linear shrinkage regression, trimmed sample

Entropy loss: Normal model

Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.069 0.059 0.047 0.048 0.047 N=10 0.238 0.212 0.198 0.197 0.191
N=25 0.103 0.071 0.060 0.054 0.049 N=25 0.272 0.225 0.202 0.190 0.186
N=50 0.173 0.101 0.070 0.056 0.049 N=50 0.372 0.278 0.232 0.205 0.192
N=100 0.377 0.184 0.106 0.072 0.054 N=100 0.676 0.413 0.311 0.259 0.229
N=200 1.216 0.370 0.180 0.102 0.070 N=200 1.552 0.673 0.410 0.305 0.252
N=400 - 1.200 0.364 0.175 0.101 N=400 - 1.542 0.662 0.406 0.304
N=800 - - - 0.361 0.175 N=800 - - - 0.665 0.400

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.112 0.098 0.083 0.081 0.077 N=10 0.304 0.274 0.257 0.253 0.245
N=25 0.088 0.070 0.061 0.055 0.050 N=25 0.210 0.185 0.169 0.159 0.154
N=50 0.080 0.062 0.050 0.042 0.037 N=50 0.171 0.150 0.134 0.121 0.113
N=100 0.078 0.059 0.046 0.037 0.031 N=100 0.151 0.131 0.114 0.101 0.091
N=200 0.073 0.054 0.041 0.032 0.026 N=200 0.121 0.105 0.092 0.080 0.070
N=400 0.072 0.050 0.038 0.029 0.022 N=400 0.107 0.083 0.074 0.064 0.056
N=800 0.055 0.051 0.036 0.027 0.020 N=800 0.071 0.076 0.059 0.052 0.045

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.815 0.778 0.796 0.773 0.772 N=10 0.828 0.809 0.805 0.785 0.773
N=25 0.896 0.880 0.850 0.835 0.821 N=25 0.883 0.877 0.864 0.856 0.830
N=50 0.916 0.893 0.874 0.849 0.836 N=50 0.891 0.886 0.871 0.860 0.854
N=100 0.916 0.897 0.882 0.854 0.839 N=100 0.885 0.879 0.868 0.860 0.849
N=200 0.931 0.923 0.904 0.887 0.859 N=200 0.880 0.884 0.881 0.874 0.864
N=400 0.895 0.939 0.928 0.912 0.889 N=400 0.857 0.885 0.887 0.884 0.875
N=800 0.606 0.900 0.939 0.931 0.911 N=800 0.632 0.861 0.887 0.887 0.887
Panel D: quadratic shrinkage regression, trimmed sample

Entropy loss: Normal model Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.043 0.031 0.026 0.021 0.020 N=10 0.203 0.184 0.172 0.163 0.160
N=25 0.075 0.047 0.035 0.027 0.024 N=25 0.248 0.205 0.185 0.173 0.164
N=50 0.135 0.072 0.045 0.031 0.023 N=50 0.332 0.250 0.210 0.187 0.173
N=100 0.311 0.146 0.077 0.045 0.031 N=100 0.569 0.369 0.273 0.224 0.195
N=200 0.888 0.307 0.143 0.075 0.044 N=200 1.174 0.561 0.364 0.269 0.220
N=400 - 0.883 0.304 0.142 0.075 N=400 - 1.164 0.563 0.361 0.267
N=800 - - - 0.303 0.141 N=800 - - 1.162 0.556 0.360

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.097 0.077 0.065 0.055 0.050 N=10 0.287 0.259 0.241 0.226 0.219
N=25 0.082 0.062 0.049 0.041 0.036 N=25 0.216 0.183 0.165 0.152 0.143
N=50 0.079 0.057 0.043 0.034 0.028 N=50 0.184 0.152 0.132 0.116 0.107
N=100 0.080 0.058 0.043 0.032 0.025 N=100 0.170 0.139 0.115 0.098 0.086
N=200 0.079 0.056 0.041 0.029 0.022 N=200 0.146 0.119 0.097 0.080 0.068
N=400 0.081 0.055 0.039 0.028 0.021 N=400 0.139 0.102 0.084 0.068 0.056
N=800 0.081 0.057 0.039 0.028 0.020 N=800 0.129 0.097 0.072 0.059 0.048

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.932 0.927 0.929 0.930 0.926 N=10 0.938 0.934 0.930 0.929 0.929
N=25 0.965 0.962 0.956 0.949 0.943 N=25 0.968 0.966 0.960 0.956 0.955
N=50 0.972 0.968 0.959 0.957 0.952 N=50 0.973 0.970 0.967 0.963 0.957
N=100 0.973 0.965 0.957 0.949 0.944 N=100 0.969 0.964 0.958 0.955 0.950
N=200 0.981 0.974 0.968 0.960 0.951 N=200 0.973 0.970 0.966 0.964 0.958
N=400 0.956 0.983 0.977 0.968 0.959 N=400 0.970 0.974 0.970 0.967 0.963
N=800 0.899 0.956 0.984 0.978 0.969 N=800 0.948 0.970 0.974 0.970 0.968

Table A4: Average risks (normalized by the dimension N) measured by the entropy and quadratic loss functions and average

coefficient of determination of the (positive) eigenvalues regression, including a linear term (Panel A) and a trimmed eigenvalues

sample (Panel C); a linear and quadratic term (Panel B) and a trimmed eigenvalues sample (Panel D). The trimming depends on the
dimension N, i.e. 10%-90% for N<20; 5%-95% for 20<N<100; 1%-99% for N>100. Simulations refer the multivariate Normal (LHS
tables) and Student-t (5 degrees of freedom; RHS tables) cases. The number of Monte Carlo replications is 500 and the conditioning

number is p(/():l()K with x=4.




Table A5: Monte Carlo results: condition number p(K) =10" with x=5

Panel A: linear shrinkage regression

Entropy loss: Normal model

Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.088 0.070 0.061 0.052 0.056 N=10 0.236 0.202 0.194 0.179 0.170
N=25 0.115 0.078 0.056 0.048 0.040 N=25 0.306 0.238 0.195 0.182 0.174
N=50 0.195 0.111 0.071 0.053 0.045 N=50 0.404 0.291 0.228 0.198 0.179
N=100 0.387 0.189 0.104 0.065 0.048 N=100 0.677 0.417 0.288 0.227 0.196
N=200 1.461 0.383 0.178 0.101 0.064 N=200 1.814 0.674 0.405 0.291 0.229
N=400 - 1.240 1.453 0.376 0.178 N=400 - 1.787 0.677 0.407 0.288
N=800 - - - 0.376 0.174 N=800 - - - 0.673 0.407

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.135 0.116 0.104 0.092 0.094 N=10 0.291 0.261 0.252 0.236 0.227
N=25 0.103 0.083 0.068 0.060 0.054 N=25 0.230 0.192 0.163 0.153 0.147
N=50 0.092 0.071 0.056 0.046 0.041 N=50 0.191 0.156 0.132 0.117 0.108
N=100 0.083 0.063 0.048 0.038 0.031 N=100 0.179 0.146 0.112 0.093 0.082
N=200 0.078 0.058 0.043 0.033 0.026 N=200 0.175 0.129 0.099 0.081 0.067
N=400 0.080 0.055 0.040 0.030 0.023 N=400 0.179 0.126 0.095 0.071 0.057
N=800 0.080 0.056 0.038 0.029 0.021 N=800 0.174 0.131 0.089 0.067 0.051

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.803 0.786 0.777 0.791 0.773 N=10 0.828 0.764 0.702 0.763 0.809
N=25 0.862 0.835 0.828 0.811 0.811 N=25 0.916 0.913 0.913 0.912 0.888
N=50 0.885 0.862 0.845 0.827 0.804 N=50 0.927 0.930 0.929 0.926 0.919
N=100 0.914 0.890 0.875 0.854 0.830 N=100 0.922 0.928 0.933 0.933 0.932
N=200 0.929 0.916 0.906 0.880 0.855 N=200 0.913 0.924 0.931 0.936 0.937
N=400 0.940 0.928 0.921 0.906 0.881 N=400 0.907 0.912 0.924 0.931 0.937
N=800 0.951 0.940 0.933 0.921 0.911 N=800 0.898 0.907 0.912 0.924 0.933
Panel B: quadratic shrinkage regression

Entropy loss: Normal model Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.041 0.027 0.019 0.016 0.013 N=10 0.233 0.207 0.188 0.173 0.168
N=25 0.079 0.044 0.029 0.020 0.015 N=25 0.306 0.240 0.205 0.187 0.175
N=50 0.150 0.076 0.043 0.026 0.018 N=50 0.419 0.303 0.243 0.202 0.185
N=100 0.316 0.147 0.075 0.042 0.026 N=100 0.656 0.413 0.299 0.238 0.206
N=200 0.810 0.314 0.147 0.074 0.040 N=200 1.197 0.651 0.413 0.304 0.237
N=400 - 0.809 0.312 0.145 0.073 N=400 1.057 1.200 0.652 0.414 0.301
N=800 - - - 0.312 0.145 N=800 1.230 1.060 1.198 0.654 0.415

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.106 0.081 0.065 0.056 0.050 N=10 0.325 0.289 0.261 0.240 0.232
N=25 0.094 0.069 0.054 0.043 0.036 N=25 0.265 0.214 0.185 0.166 0.154
N=50 0.089 0.064 0.048 0.037 0.029 N=50 0.236 0.185 0.154 0.128 0.116
N=100 0.085 0.061 0.044 0.033 0.025 N=100 0.222 0.166 0.131 0.107 0.092
N=200 0.082 0.059 0.043 0.031 0.022 N=200 0.214 0.155 0.118 0.095 0.075
N=400 0.079 0.058 0.041 0.030 0.022 N=400 0.203 0.156 0.112 0.084 0.066
N=800 0.077 0.056 0.040 0.029 0.021 N=800 0.207 0.145 0.111 0.080 0.060

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.934 0.932 0.936 0.938 0.937 N=10 0.931 0.935 0.936 0.935 0.933
N=25 0.952 0.947 0.939 0.939 0.938 N=25 0.954 0.950 0.949 0.942 0.939
N=50 0.958 0.953 0.943 0.940 0.938 N=50 0.961 0.955 0.950 0.945 0.941
N=100 0.971 0.962 0.956 0.943 0.939 N=100 0.966 0.962 0.959 0.953 0.949
N=200 0.980 0.973 0.962 0.957 0.951 N=200 0.970 0.967 0.963 0.959 0.954
N=400 0.980 0.981 0.975 0.964 0.957 N=400 0.968 0.970 0.967 0.964 0.957
N=800 0.982 0.981 0.982 0.974 0.966 N=800 0.965 0.968 0.970 0.967 0.964




Table A5 ctd. Panel C: linear shrinkage regression, trimmed sample

Entropy loss: Normal model

Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.070 0.061 0.051 0.048 0.050 N=10 0.235 0.214 0.197 0.198 0.191
N=25 0.106 0.074 0.060 0.053 0.050 N=25 0.272 0.225 0.203 0.190 0.184
N=50 0.174 0.099 0.071 0.057 0.047 N=50 0.377 0.280 0.227 0.203 0.191
N=100 0.373 0.180 0.107 0.071 0.054 N=100 0.641 0.414 0.306 0.259 0.232
N=200 1.372 0.370 0.176 0.102 0.069 N=200 0.916 0.637 0.408 0.306 0.249
N=400 - 1.366 0.367 0.174 0.099 N=400 1.320 0.917 0.631 0.401 0.304
N=800 - - - 0.363 0.172 N=800 - - 0.920 0.623 0.400

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.112 0.099 0.086 0.081 0.080 N=10 0.301 0.277 0.257 0.253 0.244
N=25 0.089 0.071 0.060 0.054 0.051 N=25 0.212 0.186 0.170 0.159 0.153
N=50 0.080 0.061 0.050 0.042 0.036 N=50 0.173 0.151 0.131 0.120 0.113
N=100 0.078 0.059 0.046 0.037 0.031 N=100 0.152 0.131 0.113 0.101 0.092
N=200 0.072 0.054 0.041 0.032 0.025 N=200 0.118 0.106 0.091 0.080 0.070
N=400 0.072 0.051 0.038 0.029 0.022 N=400 0.107 0.083 0.074 0.064 0.056
N=800 0.055 0.051 0.036 0.027 0.020 N=800 0.069 0.075 0.059 0.052 0.045

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.811 0.774 0.787 0.770 0.768 N=10 0.818 0.805 0.805 0.779 0.777
N=25 0.890 0.874 0.853 0.837 0.821 N=25 0.884 0.880 0.865 0.850 0.837
N=50 0.914 0.902 0.871 0.847 0.844 N=50 0.888 0.881 0.877 0.868 0.853
N=100 0.921 0.904 0.876 0.860 0.841 N=100 0.879 0.880 0.875 0.858 0.844
N=200 0.935 0.923 0.910 0.885 0.862 N=200 0.883 0.884 0.883 0.870 0.870
N=400 0.897 0.937 0.926 0.911 0.893 N=400 0.857 0.885 0.886 0.886 0.872
N=800 0.609 0.900 0.939 0.928 0.916 N=800 0.628 0.860 0.885 0.890 0.888
Panel D: quadratic shrinkage regression, trimmed sample

Entropy loss: Normal model Entropy loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.044 0.034 0.025 0.023 0.019 N=10 0.204 0.182 0.172 0.165 0.159
N=25 0.075 0.045 0.033 0.028 0.024 N=25 0.247 0.206 0.185 0.171 0.164
N=50 0.135 0.072 0.044 0.031 0.025 N=50 0.336 0.251 0.207 0.187 0.172
N=100 0.311 0.146 0.077 0.045 0.031 N=100 0.573 0.369 0.272 0.222 0.194
N=200 0.888 0.307 0.143 0.075 0.045 N=200 1.172 0.561 0.365 0.270 0.220
N=400 - 0.885 0.304 0.142 0.075 N=400 - 1.161 0.558 0.359 0.268
N=800 - - - 0.303 0.141 N=800 - - - 0.558 0.360

Quadratic loss: Normal model Quadratic loss: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.098 0.078 0.064 0.056 0.050 N=10 0.288 0.256 0.239 0.227 0.219
N=25 0.082 0.062 0.049 0.041 0.036 N=25 0.215 0.185 0.164 0.150 0.143
N=50 0.079 0.057 0.043 0.034 0.028 N=50 0.185 0.153 0.131 0.117 0.107
N=100 0.081 0.058 0.043 0.032 0.025 N=100 0.172 0.139 0.114 0.097 0.085
N=200 0.079 0.056 0.041 0.029 0.022 N=200 0.145 0.118 0.097 0.080 0.068
N=400 0.081 0.055 0.040 0.028 0.021 N=400 0.138 0.101 0.083 0.068 0.056
N=800 0.081 0.057 0.039 0.028 0.020 N=800 0.127 0.098 0.072 0.059 0.048

R-squared: Normal model R-squared: Student-t model

T=200 | T=400 | T=800 | T=1600 | T=3200 T=200 | T=400 | T=800 | T=1600 | T=3200
N=10 0.931 0.927 0.929 0.927 0.933 N=10 0.936 0.936 0.928 0.924 0.925
N=25 0.964 0.960 0.957 0.948 0.947 N=25 0.969 0.963 0.963 0.958 0.952
N=50 0.973 0.969 0.962 0.956 0.947 N=50 0.973 0.972 0.965 0.962 0.958
N=100 0.973 0.963 0.955 0.952 0.941 N=100 0.967 0.965 0.961 0.955 0.949
N=200 0.982 0.974 0.968 0.961 0.950 N=200 0.973 0.970 0.967 0.962 0.957
N=400 0.957 0.983 0.976 0.968 0.960 N=400 0.970 0.974 0.970 0.967 0.963
N=800 0.900 0.956 0.984 0.976 0.969 N=800 0.947 0.971 0.974 0.971 0.968

Table A5: Average risks (normalized by the dimension N) measured by the entropy and quadratic loss functions and average

coefficient of determination of the (positive) eigenvalues regression, including a linear term (Panel A) and a trimmed eigenvalues

sample (Panel C); a linear and quadratic term (Panel B) and a trimmed eigenvalues sample (Panel D). The trimming depends on the
dimension N, i.e. 10%-90% for N<20; 5%-95% for 20<N<100; 1%-99% for N>100. Simulations refer the multivariate Normal (LHS
tables) and Student-t (5 degrees of freedom; RHS tables) cases. The number of Monte Carlo replications is 500 and the conditioning

number is p(K):10K with x=5.




Table A6: Unconstrained conditional correlation estimates: Empirical percentiles and descriptive statistics

Panel A: Comovement analysis: simple correlation coefficient

0.05 0.1 0.25 0.5 0.75 0.9 0.95 min max mean std
r_sk 0.988 0.990 0.992 0.995 0.997 0.998 0.999 0.965 1.000 0.994 0.005
r_sm 0.532 0.569 0.632 0.704 0.778 0.803 0.821 0.325 0.860 0.701 0.100
r_eb 0.795 0.811 0.847 0.891 0.932 0.944 0.956 0.774 0.982 0.887 0.052
re 0.522 0.550 0.595 0.672 0.719 0.748 0.765 0.501 0.807 0.664 0.076
sk_sm 0.525 0.581 0.625 0.705 0.782 0.805 0.822 0.303 0.861 0.701 0.103
sk_eb 0.777 0.813 0.841 0.889 0.923 0.940 0.951 0.755 0.980 0.883 0.052
sk_e 0.519 0.550 0.582 0.669 0.721 0.751 0.762 0.504 0.808 0.659 0.080
sm_db 0.621 0.700 0.776 0.825 0.897 0.927 0.948 0.500 0.973 0.825 0.096
sm_e 0.657 0.755 0.808 0.850 0.888 0.903 0.917 0.460 0.947 0.835 0.083
eb_e 0.672 0.705 0.749 0.808 0.847 0.879 0.951 0.590 0.989 0.803 0.081

Panel B: Level coherence analysis: relative differences in conditional correlation means

0.05 0.1 0.25 0.5 0.75 0.9 0.95 min max mean std
r_sk 0.033 0.034 0.035 0.038 0.042 0.044 0.045 0.032 0.050 0.039 0.004
r_sm -0.023 -0.020 -0.004 0.009 0.022 0.026 0.028 -0.068 0.032 0.008 0.019
r_eb -0.029 -0.016 -0.008 -0.004 -0.001 0.001 0.002 -0.035 0.007 -0.006 0.008
re -0.022 -0.016 -0.010 -0.004 0.000 0.002 0.003 -0.029 0.005 -0.005 0.007
sk_sm -0.060 -0.055 -0.041 -0.028 -0.019 -0.016 -0.014 -0.100 -0.013 -0.031 0.017
sk_eb -0.064 -0.059 -0.050 -0.043 -0.039 -0.036 -0.036 -0.069 -0.029 -0.045 0.009
sk_e -0.059 -0.055 -0.049 -0.045 -0.039 -0.036 -0.035 -0.061 -0.034 -0.044 0.007
sm_db -0.033 -0.030 -0.025 -0.017 -0.005 0.005 0.015 -0.038 0.040 -0.013 0.016
sm_e -0.030 -0.029 -0.023 -0.015 -0.007 0.001 0.006 -0.033 0.039 -0.013 0.014
eb_e -0.008 -0.005 -0.003 0.000 0.003 0.006 0.008 -0.010 0.020 0.001 0.005

Panel C: Dispersion coherence analysis: relative differences in conditional correlation standard deviations

0.05 0.1 0.25 0.5 0.75 0.9 0.95 min max mean std
r_sk 0.025 0.032 0.042 0.051 0.059 0.066 0.078 0.011 0.099 0.051 0.016
r_sm 0.149 0.195 0.222 0.269 0.328 0.417 0.438 0.137 0.456 0.284 0.080
r_eb 0.063 0.082 0.109 0.203 0.276 0.339 0.357 0.047 0.671 0.209 0.116
re 0.419 0.434 0.502 0.612 0.664 0.743 0.795 0.374 0.903 0.606 0.121
sk_sm 0.127 0.151 0.177 0.223 0.276 0.330 0.369 0.101 0.408 0.234 0.074
sk_eb 0.008 0.035 0.071 0.141 0.214 0.290 0.315 -0.009 0.618 0.159 0.114
sk_e 0.376 0.388 0.459 0.567 0.611 0.684 0.762 0.322 0.866 0.560 0.119
sm_db -0.193 -0.180 -0.138 -0.080 -0.026 0.015 0.036 -0.274 0.233 -0.075 0.084
sm_e 0.172 0.220 0.299 0.333 0.375 0.429 0.482 0.164 0.514 0.338 0.082
eb_e 0.287 0.305 0.353 0.405 0.463 0.512 0.539 0.274 0.586 0.411 0.078

TableA6: Empirical percentiles (from 0.05 to 0.95) and descriptive statistics (min, max. mean, std) for the conditional correlations of
the 49 Fama-French industries vs. the market factor. Panel A refers to simple correlation coefficients (of the conditional
correlations) computed across the 49 industries and models. Panel B refers to relative differences for the means (of the conditional
correlations) computed across industries and models. Panel C refers to relative differences for the standard deviations (of the
conditional correlations) computed across industries and models. The various models are 2-step SP-DCC (r), regularized 3-step SP-
DCC (sk), regularized-smoothed 3-step SP-DCC (sm), bivariate Engle DCC (eb), Engle DCC (e). Hence, the fourth raw in Panel A, i.e.
r_e, reports empirical percentiles and descriptive statistics for the 49 simple correlation coefficients of the conditional correlations
(of the various industries vs. the market factor), obtained from two-step SP-DCC (r) and Engle (2002) DCC (e) estimation. Moreover,
the fourth rows in Panel B and C report similar figures for the relative differences in mean and standard deviation of the conditional
correlations (of the various sectors vs. the market factor) generated by the two models.



Table A7: Constrained conditional correlation estimates: Empirical percentiles and descriptive statistics

Panel A: Comovement analysis: simple correlation coefficient

0.05 0.1 0.25 0.5 0.75 0.9 0.95 min max mean std
r_sk 0.998 0.998 0.999 1.000 1.000 1.000 1.000 0.991 1.000 0.999 0.001
r_sm 0.652 0.693 0.724 0.784 0.819 0.849 0.861 0.497 0.868 0.773 0.070
re 0.846 0.857 0.867 0.886 0.905 0.919 0.925 0.811 0.933 0.887 0.025
sk_sm 0.650 0.687 0.721 0.783 0.817 0.848 0.859 0.487 0.867 0.771 0.071
sk_e 0.832 0.853 0.864 0.884 0.902 0.915 0.924 0.804 0.932 0.884 0.027
sm_e 0.788 0.867 0.900 0.932 0.948 0.959 0.962 0.649 0.970 0.916 0.056

Panel B: Level coherence analysis: relative differences in conditional correlation means

0.05 0.1 0.25 0.5 0.75 0.9 0.95 min max mean std
r_sk 0.024 0.024 0.024 0.025 0.026 0.028 0.028 0.023 0.029 0.025 0.002
r_sm 0.005 0.008 0.013 0.017 0.022 0.024 0.024 -0.012 0.029 0.017 0.007
re -0.017 -0.010 -0.002 0.008 0.018 0.026 0.038 -0.026 0.062 0.010 0.017
sk_sm -0.019 -0.016 -0.011 -0.008 -0.004 -0.002 -0.002 -0.038 0.001 -0.008 0.006
sk_e -0.043 -0.035 -0.027 -0.017 -0.006 0.000 0.015 -0.051 0.038 -0.015 0.018
sm_e -0.033 -0.032 -0.023 -0.011 0.003 0.019 0.033 -0.037 0.056 -0.007 0.021

Panel C: Dispersion coherence analysis: relative differences in conditional correlation standard deviations

0.05 0.1 0.25 0.5 0.75 0.9 0.95 min max mean std
r_sk 0.026 0.028 0.031 0.034 0.040 0.044 0.051 0.025 0.104 0.037 0.012
r_sm 0.123 0.137 0.166 0.194 0.222 0.249 0.277 0.101 0.322 0.196 0.046
r_e 0.082 0.104 0.141 0.181 0.200 0.228 0.257 0.024 0.310 0.174 0.054
sk_sm 0.077 0.097 0.133 0.157 0.183 0.216 0.243 0.038 0.290 0.160 0.048
sk_e 0.036 0.065 0.106 0.138 0.169 0.193 0.225 -0.009 0.278 0.137 0.055
sm_e -0.099 -0.089 -0.043 -0.022 0.000 0.033 0.039 -0.114 0.068 -0.023 0.040

Table A7: Empirical percentiles (from 0.05 to 0.95) and descriptive statistics (min, max. mean, std) for the conditional correlations
of the 49 Fama-French industries vs. the market factor obtained from constrained estimation. Panel A refers to simple correlation
coefficients (of the conditional correlations) computed across the 49 industries and models. Panel B refers to relative differences
for the means (of the conditional correlations) computed across industries and models. Panel C refers to relative differences for the
standard deviations (of the conditional correlations) computed across industries and models. The various models are constrained 2-
step SP-DCC (r), regularized 3-step SP-DCC (sk), regularized-smoothed 3-step SP-DCC (sm) and constrained Engle DCC (e). Hence,
the third raw in Panel A, i.e. r_e, reports empirical percentiles and descriptive statistics for the 49 simple correlation coefficients of
the conditional correlations (of the various industries vs. the market factor), obtained from constrained two-step SP-DCC (r) and
Engle (2002) DCC (e) estimation. Moreover, the third rows in Panel B and C report similar figures for the relative differences in
mean and standard deviation of the conditional correlations (of the various sectors vs. the market factor) generated by the two
models.





