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ON THE CHARACTERIZATION OF QUASI-PERFECT
EQUILIBRIA

Nicola Gattia , Mario Gillib and Alberto Marchesia

Van Damme [1984] introduces the concept of quasi-perfect equilibrium, which re-
fines sequential equilibrium as well as normal-form perfect equilibrium. It has been
argued by Mertens [1995] that quasi-perfection is conceptually superior to extensive-
form perfection, since quasi-perfection guarantees normal-form perfection, which for
two-player games is equivalent to admissibility. On the other hand, while extensive-
form perfect equilibria are defined as limit points of sequences of Nash equilibria of a
general class of perturbed games in extensive form, till now, to the best of our knowl-
edge, there is no characterization of quasi-perfect equilibria in terms of limit points
of equilibria of perturbed games. The only known result is Lemma 1 by Miltersen
and Sørensen [2010], showing that limit points of sequences of Nash equilibria of a
particular class of perturbed games in sequence form are quasi-perfect equilibria of
the original, unperturbed game in extensive form. However, as the authors point out,
their main result only proves that a subset of the quasi-perfect equilibria can be ob-
tained as limit points of equilibria of their class of perturbed games, and, thus, their
paper provides no characterization of quasi-perfect equilibria in terms of perturbed
games. The present paper fills this gap providing such characterization, showing that
any quasi-perfect equilibrium can be obtained as limit point of a sequence of Nash
equilibria of a certain class of perturbed games in sequence form, at least for the case
of two-player games with nature. This result shows that the sequence form is not
merely a computationally efficient representation, but it also captures game features
that other forms are not able to effectively express.
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1. INTRODUCTION

Perturbed games and trembles are ubiquitous in the theory of equilibrium re-
finements. Motivated by the consideration that a player may be more concerned
with trembles of others than with her own, Van Damme [1984] introduces the
concept of quasi-perfect equilibrium. In a quasi-perfect equilibrium, each player
follows a strategy that specifies an optimal choice against trembles of other play-
ers at each information set, without taking into account her own trembles, except
to the extent that they may make one of her information sets reached that oth-
erwise would not be. According to this definition, trembles encompass the idea
that the players should have strategic uncertainty, i.e., they should not be com-
pletely confident as to what the other players are going to do.1 This leads to
some attractive properties of quasi-perfect equilibria. In particular, Van Damme
[1984] shows that quasi-perfection refines sequential as well as normal-form per-
fect equilibria, and that it is neither a refinement nor a broadening of extensive-
form perfect equilibria.2 Moreover, Mertens [1995] provides an example where
the set of quasi-perfect equilibria and that of extensive-form perfect equilib-
ria are disjoint.3 Van Damme [1984] also proves that a proper equilibrium of
a normal-form game is a quasi-perfect equilibrium in any extensive-form game
having that game as normal form. Furthermore, in a quasi-perfect equilibrium,
each player plays optimal admissible continuations from every information set of
her [Blume et al., 1991]. It has also been argued by Mertens [1995] that quasi-
perfection is conceptually superior to extensive-form perfection, since there are
two-player games where any extensive-form perfect equilibrium involves using a
weakly dominated strategy, while quasi-perfection guarantees normal-form per-
fection, which for two-player games is equivalent to admissibility. This view is
shared by Govindan and Wilson, who put quasi-perfection at the center of their
axiomatic equilibrium selection theory [Govindan and Wilson, 2012, 2006].

Unfortunately, while extensive-form perfect equilibria are characterized as
limit points of sequences of Nash equilibria of perturbed games in extensive
form, till now, to the best of our knowledge, there is no characterization of
quasi-perfect equilibria in terms of limit points of equilibria of perturbed games.
The only known result is Lemma 1 by Miltersen and Sørensen [2010], showing
that, limited to two-player games, limit points of sequences of Nash equilibria of
a particular class of perturbed games in sequence form are quasi-perfect equilib-
ria of the original, unperturbed game in extensive form. However, as the authors
point out, their result only shows that a subset of the quasi-perfect equilibria
can be obtained as limit points of Nash equilibria of their class of perturbed
games, and, thus, their paper provides no characterization of quasi-perfect equi-
libria in terms of perturbed games. In this paper, we fill this gap providing such

1See Hillas and Kohlberg [2002] for additional details.
2However, if payoffs are generic, then every sequential equilibrium is quasi-perfect [Hillas

et al., 2016, Pimienta and Shen, 2014], and sequential equilibria are also extensive-form perfect
equilibria [Blume and Zame, 1994, Kreps and Wilson, 1982].

3See also Hillas and Kohlberg [2002].
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characterization for two-player games with nature. In particular, we provide a
simple example where there is a continuum of quasi-perfect equilibria that are
not limit points of sequences of Nash equilibria of perturbed games à la Mil-
tersen and Sørensen. Then, we introduce a general class of perturbed n-player
games in sequence form generating quasi-perfect equilibria of the original game
as limit points of sequences of Nash equilibria. Finally, we show our main result:
any quasi-perfect equilibrium of a two-player game in extensive form with na-
ture can be obtained as limit point of a sequence of Nash equilibria of our class
of perturbed games in sequence form. In this way, we prove that, in two-player
games with nature, quasi-perfect equilibria can be characterized as limit points
of Nash equilibria of our class of perturbed games in sequence form. A weaker
characterization holds for games with three or more players.

1.1. Summary of the Results

In the following, we briefly discuss how we prove our main result. Following
the idea of trembles in games in extensive form, we introduce a class of perturbed
n-player games in sequence form defined by strictly positive lower bounds on the
probabilities of playing sequences, such that: (i) lower bounds can be expressed
as polynomial functions of the perturbation magnitude; (ii) they approach zero
as the perturbation vanishes; and (iii) lower bounds of child sequences approach
zero faster than the lower bound of their father sequence. Then, we split the
proof of our main result into two steps.

As a first step, we show that any limit point of a sequence of Nash equilibria of
our perturbed n-player games in sequence form is a quasi-perfect equilibrium of
the original, unperturbed game in extensive form. This is a generalization of the
result provided by Miltersen and Sørensen [2010], which is limited to two-player
games and to a particular class of perturbed games in sequence form (a subclass
of ours). Our proof uses different tools from those employed by Miltersen and
Sørensen [2010], as their approach cannot be easily generalized to our case. In
particular, in order to prove this first part of the result, we use an interesting
property of our perturbed games, which is also crucial for the second part of
the proof. Specifically, provided that the perturbation magnitude is sufficiently
small, Nash equilibria of perturbed games prescribe each player to play optimally
everywhere, i.e., also in those parts of the game that are reached with probability
zero in absence of perturbation.4 Intuitively, this property holds thanks to our
definition of perturbed games in sequence form, and condition (iii) in particular.
Formally, we prove it by applying the complementarity slackness theorem to the
primal-dual pair of linear programming problems for computing a player’s best
response to the (fixed) opponents’ strategies in perturbed games in sequence
form. Moreover, this property is strictly connected with the idea of playing an
optimal choice against trembles of other players at each information set, which

4See Theorem 1.
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is crucial for the definition of quasi-perfect equilibrium.5 This last observation
allows us to prove the first part of our main result.6

As for the second part of our proof, we show that, given any quasi-perfect equi-
librium of a two-player game in extensive form with nature, we can build suitable
perturbed games in sequence form, such that they belong to our class and admit
a sequence of Nash equilibria having the given quasi-perfect equilibrium as limit
point. In order to prove this, we exploit the fact that any quasi-perfect equilib-
rium can be obtained as limit point of a sequence of completely mixed behavioral
strategy profiles described as rational functions.7 First, we apply some transfor-
mations on these functions in order to build a sequence of completely mixed
realization plan profiles described as polynomial functions.8 These transforma-
tions ensure that the resulting sequence has the given quasi-perfect equilibrium
as limit point. Then, we show how to construct perturbed games in sequence
form, such that they belong to our class and the sequence of realization plan
profiles just described defines a sequence of Nash equilibria for them.9 In order
to show this, we exploit the property of our perturbed games that we previously
discussed. We prove that we can always build such perturbed games, and this is
guaranteed by the way we apply the transformations.

1.2. Structure of the Paper

The setup of the paper is as follows. Section 2 recalls the notions of game in
extensive and in sequence form, and revises the concepts of Nash equilibria and
its refinements, stressing the role of perturbations. Section 3 provides an example
where there are quasi-perfect equilibria that are not limit points of sequences of
Nash equilibria of games perturbed à la Miltersen and Sørensen, motivating
a general discussion on the relationship between perturbed games in extensive
and in sequence form, and the introduction of an alternative definition of quasi-
perfect equilibrium, following Van Damme [1984]. Section 4 introduces our class
of n-player perturbed games in sequence form and studies the properties of Nash
equilibria in these perturbed games, providing the conceptual tools required by
Sections 5 and 6, which are the core of the paper. Section 5 proves that limit
points of sequences of Nash equilibria of our class of n-player perturbed games in
sequence form are quasi-perfect equilibria of the original games (a generalization
of the Miltersen and Sørensen [2010] result), while Section 6 proves that quasi-
perfect equilibria of two-player games with nature are limit points of sequences of
Nash equilibria of our class of perturbed games in sequence form, completing the
characterization. Section 7 concludes the paper arguing for the expressiveness of
the sequence form.

5See Lemma 4.
6See Theorem 2.
7See Remark 2.
8See Definitions 22 and 25.
9See Definition 19, Lemmas 5 and 6, and Theorem 3.
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2. PRELIMINARIES

In this section, we review notation and definitions required for the results
provided in the following sections. First, we introduce the fundamental notions
related to games in extensive and sequence form. Then, we revise the definitions
of Nash equilibrium and some of its refinements, specifically extensive-form per-
fect and quasi-perfect equilibria.

2.1. Games in Extensive Form

In this subsection, we state our notation and conventions for finite games
in extensive form, following Selten [1975] and Von Stengel [1996]. The basic
structure of a game in extensive form is the game tree T , which is a finite,
directed tree with a distinguished node, the root denoted by o, from which there
is a unique path to every other node. Edges of the tree are denoted by xy, where
x and y are the nodes defining the endpoints of the edge, and y is a child of x.
Nodes without children are called leaves (or terminal nodes, or outcomes) and
their set is denoted by Z, the others are decision nodes, and their set is denoted
by X. The set of all nodes is K = X ∪ Z.

In addition to the game tree T , a game in extensive form has the following
components. There are n players numbered from 1 to n, with N = {1, . . . , n}
denoting the set of players. Moreover, the game has also random chance moves
that are usually treated as if they are played by an additional player, called
chance player and denoted as player 0. A further element of a game in extensive
form is the player function ι : X → N ∪ {0} that assigns to each decision node
the player whose turn it is. Using this function, the set of decision nodes X can
be partitioned in X0, X1, . . . , Xn so that each element x ∈ Xi belongs to exactly
one player i ∈ N ∪ {0}, called the player to move at x, i.e., ι(x) = i for all
x ∈ Xi. The set of decision nodes X is partitioned into information sets. Each
information set u belongs to exactly one player i ∈ N ∪ {0}, called the player to
move at u, i.e., ι(x) = i for all x ∈ u. The set of all information sets of player i
is denoted by Ui, while U =

⋃
i∈N∪{0} Ui is the set of all information sets in the

game. The idea is that for any x, x′ ∈ u ∈ Ui, player i is not able to distinguish
x from x′, i.e., the path connecting the root o to x from the path connecting o
to x′.

The possible moves of a player are represented by a function that assigns to
each edge xy a label, called a choice at x, such that the choices at x are always
distinct, i.e., the children y of a decision node x can be distinguished by the
respective labels of the edges xy. Since a player is not able to distinguish the
nodes in the same information set, for all nodes x ∈ u there are the same possible
choices, called the choices at u, and the set of these choices is denoted by Cu. In
particular, all nodes x ∈ u have the same number |Cu| of children. For simplicity,
it is assumed that for any pair of information sets u, v ∈ U , the choice sets Cu
and Cv are disjoint. Finally, let us denote by Di =

⋃
u∈Ui

Cu the set of all choices
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of player i, and by D =
⋃
u∈U Cu the set of all choices in the game.

We say that a decision node x ∈ K precedes a node y ∈ K if there is a path
from x to y, and that y ∈ K is reachable from u ∈ U if there is some node x ∈ u
preceding y. The sequence of choices assigned to edges on the path connecting
the root o with a vertex x ∈ K is called the path to x, and it is denoted by p (x).
A path to a leaf z ∈ Z is called a play.

In this work, each player is assumed to have perfect recall. This is a structural
property of the information sets of the player, reflecting the hypothesis that
she does not forget what she knew or did earlier. The meaning is that a player
who has to make a decision at one of her information sets knows which of her
other information sets have been reached by the previous course of the play
and which choices have been taken there. In games with perfect recall, we can
define a precedence relation over information sets of the same player, following
Von Stengel and Forges [2008]. Formally, for any player i ∈ N ∪ {0}, u ∈ Ui
is said to precede v ∈ Ui, denoted by u � v, if there is a node y ∈ v that is
reachable from u. We also write u ≺ v if u � v and u 6= v. Moreover, it is
possible to prove Kuhn theorem [Kuhn, 1953], which states that, in the context
of games in extensive form with perfect recall, instead of using mixed strategies,
one can restrict attention to behavior strategies without loss of generality.10

For player i ∈ N∪{0}, a behavior strategy βi ∈ Bi is a probability distribution
on Cu for each information set u ∈ Ui, formally it is a function βi : Di → R+ such
that

∑
c∈Cu

βi (c) = 1 for all u ∈ Ui. Fixed positive probabilities for the chance
moves are also part of the game in extensive form, and they can be specified as a
behavior strategy β0 for player 0. Without loss of generality, for any c ∈ D0, we
assume β0 (c) > 0, since branches of the game tree that are never reached can be
pruned. A behavior strategy profile is a tuple β = (βi)i∈N∪{0} = (β−i, βi) ∈ B,
where β−i denotes the partial strategy profile obtained by removing player i’s
strategy from β. We say that β ∈ B is completely mixed if, for any i ∈ N,
every behavior strategy βi assigns strictly positive probability to every choice
c ∈ Di. Moreover,

(
β
/
β′i
)

denotes the behavior strategy profile obtained from
β = (β−i, βi) ∈ B by replacing player i’s behavior strategy βi with β′i ∈ Bi.

Finally, for i ∈ N , player i’s payoff function hi is defined on the set of leaves
Z, i.e., hi : Z → R. We remark that chance receives no payoff. Moreover, we
can also define the payoff vector function h : Z → Rn, which assigns a vector
of players’ payoffs to each leaf, i.e., h is a vector-valued function whose i-th
component is the scalar function hi.

Next, we introduce the formal definition of finite game in extensive form, as
stated by Selten [1975].

Definition 1 A game in extensive form is a tuple:

Γ = (T,N, ι, U,D, β0, h) ,

10See Selten [1975].
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where:
• T is the finite game tree;
• N = {1, ..., n} is the set of players;
• ι : X → N ∪ {0} is the player function;
• U is the information partition;
• D is the set of possible choices;
• β0 is the fixed positive probability distribution for the chance moves;
• h is the payoff vector function.

Using the elements of a game in extensive form, we can define some further
concepts. For any behavior strategy profile β ∈ B, it is immediate to define the
probability of reaching any node x ∈ K, denoted by P (x|β), by just multiplying
the probability of the choices on the path from the root o to x, formally: P (x|β) =∏
j∈N∪{0}

∏
c∈p(x)∩Dj

βj (c). Additionally, for any information set u ∈ U, we can

define P (u|β) as the sum of the probabilities of reaching the nodes in u when β
is played.

For i ∈ N , player i’s expected payoff associated to a strategy profile β ∈ B
is defined as Hi (β) =

∑
z∈Z P (z|β)hi (z) . Furthermore, letting Z(u) ⊆ Z be

the set of leaves reachable from u ∈ U , for any β ∈ B, if P (u|β) > 0, then it
is possible to define the player i’s expected payoff conditional to an information
set u ∈ Ui being reached, as follows:

Hi(β|u) =
∑

z∈Z(u)

P (z|β)

P (u|β)
hi (z) .

Table I sums up the main symbols used for games in extensive form.

2.2. Games in Sequence Form

Von Stengel [1996] defines the sequence form for any game in extensive form
with perfect recall. The sequence form is a strategic description which represents
strategies in a different way with respect to the extensive form: rather than as
complete plans of moves at every information set, a player looks at each leaf of
the game tree and considers the sequence of choices she needs to make so that the
leaf can be reached. These are the player’s choices prescribed by the respective
play, i.e., the path from the root o to the leaf. They represent a “sequence”
that will be considered instead of a pure strategy. Formally, any node x ∈ K
of the game tree, for any player i ∈ N ∪ {0}, defines a sequence si of choices
in Di on the path from the root o to x, i.e., choices in Di ∩ p(x). The set of
all sequences of player i is denoted by Si, while a sequence profile is a tuple
(s0, s1, . . . , sn) ∈ S0 × S1 × . . . × Sn = S. Notice that a sequence si can be
regarded as a string of player i’s choices found on the path to some node x.
However, for easy reference to its elements, we can define sequence si as the
set of its choices. This is possible since we assumed that choices at different
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Symbol Meaning
T game tree
o root of the game tree
xy edge of the tree, y child of x
Z terminal nodes of the game tree
X decision nodes of the game tree

K = X ∪ Z nodes of the game tree
N = {1, . . . , n} players

0 chance player

ι : X → N ∪ {0} function that specifies the player
whose turn is to choose at each decision node

u ∈ Ui information set of player i
Cu set of choices at u
Di set of all choices of player i

βi ∈ Bi player i’s behavior strategy
β = (β−i, βi) ∈ B behavior strategy profile

β
/
β′i

behavior strategy profile obtained from β ∈ B
by replacing βi with β′i ∈ Bi

P (x|β) probability of reaching x ∈ K if β ∈ B is played
hi : Z → R player i’s payoff function

Hi (β) =
∑
z∈Z

P (z|β)hi (z) player i’s expected payoff associated to β ∈ B

Hi(β|u) =
∑

z∈Z(u)

P(z|β)
P(u|β)hi (z)

player i’s expected payoff conditional to u ∈ Ui
being reached associated to β ∈ B

p (x) path to a node x ∈ K
p (z) path to a leaf z ∈ Z, i.e., a play
u � v u ∈ Ui precedes v ∈ Ui
u ≺ v u ∈ Ui precedes v ∈ Ui and u 6= v

TABLE I

Notation for games in extensive form
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information sets are distinct. Note that, for each player, there are at most as
many sequences as the number of nodes of the game tree; so their number is
linear in the size of the game tree, in contrast to the number of pure strategies
which may be exponential in the size of the tree.

By definition of perfect recall, every node in an information set u ∈ Ui defines
the same sequence of choices for player i, hence the following definitions are well
posed. For i ∈ N ∪ {0}, the function σ : Ui → Si returns the sequence si ∈ Si
defined by nodes in u ∈ Ui. For any u ∈ U and c ∈ Cu, the sequence σ (u) can be
extended by adding c at the end, i.e., σ (u) c = σ (u)∪c. Thus, the set Si of player
i’s sequences can be represented as Si = {∅} ∪ {σ (u) c | u ∈ Ui, c ∈ Cu} . Note
that σ (o) = ∅, hence the empty sequence ∅ belongs to Si, for any i ∈ N∪{0}. To
simplify notation, given a sequence si ∈ Si and a choice c ∈ Di, we denote as si|c
the extended sequence obtained by appending c to si (if the resulting sequence
is well-defined for player i). Moreover, for every pair of sequences si, s

′
i ∈ Si,

we write s′i @ si whenever the set of choices defining sequence s′i is a strict
subset of that defining sequence si. The sequences of the chance player 0 are also
considered, since it is treated as the other players.

In order to define the payoffs associated to sequence profiles, note that, by
definition of game tree, there is a unique path from the root o to every other node,
hence for any node x ∈ K there exists a unique sequence profile (s0, s1, ..., sn) ∈ S
leading to x. Hence, we can define the function ξ : K → S specifying the sequence
profile reaching x ∈ K. Then, in a game in sequence form, the player i’s payoff
function is gi : S → R, where:

gi (s0, s1, ..., sn) =

{
hi(z) if (s0, s1, ..., sn) = ξ (z)

0 otherwise
.

Then, g = S → Rn is the payoff vector function of the game in sequence form,
where the i-th component of g is function gi.

In addition to the payoffs, it is also necessary to specify how sequences are
selected by a player. In games in extensive form, because of Kuhn Theorem, a
player may just decide by a behavior strategy. In games in sequence form, instead,
a player cannot just decide on a single sequence. In general, behavior strategy
probabilities will be replaced by the realization probabilities of sequences. For
any player i ∈ N ∪ {0}, the realization plan of a behavior strategy βi ∈ Bi is
the function ri : Si → R defined as follows: for any sequence si ∈ Si, it holds
ri (si) =

∏
c∈si βi (c) . Then, for any information set u ∈ Ui and choice c′ ∈ Cu,

we have ri (σ (u) c′) =
∏
c∈σ(u) βi (c)βi (c′) . By construction, a realization plan

of a behavior strategy can be characterized by the following linear restrictions:

(1) ri (∅) = 1,

because the empty product is 1; for any information set u ∈ Ui

(2) −ri (σ (u)) +
∑
c∈Cu

ri (σ (u) c) = 0,
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because
∑
c∈Cu

βi (c) = 1; and for every sequence si ∈ Si

(3) ri (si) ≥ 0,

because it is a probability. This leads to the following definition: a function
ri : Si → R+ fulfilling restrictions (1), (2), and (3) is a realization plan for
player i ∈ N ∪ {0}. The set of all realization plans for player i is denoted by Ri,
while r = (ri)i∈N∪{0} = (r−i, ri) ∈ R is a tuple representing a realization plan

profile. Moreover, we use (r
/
r′i) to denote the realization plan profile obtained

from r ∈ R by replacing player i’s realization plan with r′i ∈ Ri.
Let us recall that Von Stengel [1996] proves that any realization plan ri : Si →

R+ satisfying linear restrictions (1), (2), and (3) arises from a suitable behavior

strategy such that βi (c) = ri(σ(u)c)
ri(σ(u))

for all u ∈ Ui and c ∈ Cu if ri (σ (u)) > 0,

while βi(c) can be any otherwise.
Now, it is possible to provide the formal definition of the game in sequence

form associated to a finite game in extensive form with perfect recall.

Definition 2 The game in sequence form associated to a finite game in ex-
tensive form with perfect recall Γ is the tuple:

ΓS = (S,N,R, r0, g) ,

where:
• S = S0 × S1 × ...× Sn is the set of sequence profiles;
• N = {1, ..., n} is the set of players;
• R = R0 × R1 × . . . × Rn is the set of realization plan profiles, where each
Ri is the set of player i’s realization plans described by the linear restric-
tions (1), (2), and (3);

• r0 is the realization plan of β0;
• g is the payoff vector function of the sequence form.

As for games in extensive form, for any i ∈ N , we define the player i’s expected
payoff associated to a realization plan profile r ∈ R, as follows:

Gi (r) =
∑
s∈S

gi (s)
∏

i∈N∪{0}

ri (si) .

When working with the sequence form, it is useful to adopt matrix notation.
In particular, each function gi can be described as a multi-dimensional matrix
Mi indexed by sequence profiles s = (s0, s1, ..., sn) ∈ S, such that the entry of Mi

corresponding to s ∈ S is equal to gi(s). Moreover, we can overload the definition
of ri and use it as a nonnegative vector with |Si| components representing a
realization plan. Then, we can express linear restrictions (1), (2), and (3) by a
“constraint” matrix Fi with 1 + |Ui| rows and |Si| columns, such that vectors ri
must satisfy the following matrix equality:

Fi ri = fi,
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Symbols Meaning
si ∈ Si sequence of player i

σ : Ui → Si function defining sequence si leading to u ∈ Ui
σ (u) c sequence leading to u extended by c ∈ Cu

ξ : K → S function defining the sequence profile reaching x ∈ K
gi : S → R player i’s payoff function in the sequence form

Mi player i’s payoff matrix
ri : Si → R+ player i’s realization plan
Firi = fi linear restrictions on realization plans

Gi (r) =
∑
s∈S

gi (s)
∏

j∈N∪{0}
rj (sj) player i’s expected payoff associated to r ∈ R

si|c extended sequence obtained by appending c to si
s′i @ si sequence s′i is a strict subset of sequence si

TABLE II

Notation for games in sequence form

where fi is a vector with 1+|Ui| components such that fi = (1, 0, ..., 0)
T
. Finally,

using matrix notation, we can write:

Gi(r) = rTi

Mi

∏
j 6=i∈N∪{0}

rj

 ,

assuming the product involving vectors rj is appropriately defined.

Table II sums up the notation used for games in sequence form.

2.3. Nash Equilibria in Games in Extensive Form and in Sequence Form

Formally, in a game in extensive form we have the following definition.

Definition 3 A behavior strategy profile β∗ ∈ B is a Nash equilibrium of a
game in extensive form Γ, denoted by β∗ ∈ NE (Γ), if and only if for any player
i ∈ N it holds:

β∗i ∈ arg max
βi∈Bi

Hi

(
β∗
/
βi
)
.

Similarly, in a game in sequence form we have the following definition, which
is equivalent to the previous one, given the relationship between extensive form
and sequence form in games with perfect recall.

Definition 4 A realization plan profile r∗ ∈ R is a Nash equilibrium of a
game in sequence form ΓS , denoted by r∗ ∈ NE (ΓS), if and only if for any
player i ∈ N it holds:

r∗i ∈ arg max
ri∈Ri

Gi
(
r∗
/
ri
)
.



12 N. GATTI, M. GILLI, A. MARCHESI

2.4. Extensive-Form Perfect Equilibria

Selten [1975] has been the first game theorist proposing perturbed games to
model equilibrium refinements. The original idea of Selten was that, however
close to being rational players were, they would never be perfectly rational. Thus,
there would always be some chance that a player would make a mistake. This
idea may be implemented by approximating a candidate equilibrium strategy
profile by a nearby completely mixed strategy profile and requiring that any
of the deliberately chosen actions, i.e., those given positive probability in the
candidate strategy profile, be optimal, not only against the candidate strategy
profile, but also against the nearby completely mixed strategy profile.

Formally, we consider the definition of extensive-form perfect equilibrium pro-
vided by Van Damme [1984].

Definition 5 In a game in extensive form Γ, a behavior strategy profile βε ∈ B
is an ε-perfect equilibrium of Γ, if and only if it is fully mixed, and for each
player i ∈ N , for all u ∈ Ui and c, c′ ∈ Cu, it holds:

Hi

(
βε
/
c|u
)
< Hi

(
βε
/
c′|u
)

=⇒ βεi (c) ≤ ε,

where, for any c ∈ Cu,
(
βε
/
c
)

denotes the strategy profile obtained from βε by
letting player i play choice c with probability one at u.

Definition 6 In a game in extensive form Γ, a behavior strategy profile β∗ ∈ B
is an extensive-form perfect equilibrium of Γ, denoted by β∗ ∈ PE (Γ), if and
only if it is a limit point (as ε goes to zero) of ε-perfect equilibria βε ∈ B of Γ.

Now, we introduce the concepts proposed by Selten [1975].

Definition 7 For any game in extensive form Γ, a Selten perturbed game in
extensive form ΓSe is a pair (Γ, η) where η is a function

η : D → (0, 1)

assigning a positive lower bound on the probability of playing each choice c ∈ D,
such that, for any information set u ∈ U , it holds

∑
c∈Cu

η (c) < 1.

Lower bounds on the probabilities of playing choices represent what are usually
referred to as trembles, which model the idea that players are not perfectly
rational and, thus, they can make mistakes.

Definition 8 For any game in extensive form Γ, a Selten test sequence is a
sequence of Selten perturbed games in extensive form {(Γ, ηk)}k∈N such that for
any information set u ∈ U and choice c ∈ Cu it holds:

lim
k→∞

ηk (c) = 0.
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Definition 9 In a game in extensive form Γ, a behavior strategy profile β∗ ∈ B
is a limit equilibrium of a Selten test sequence {(Γ, ηk)}k∈N if there exists a
sequence of behavior strategy profiles {βk}k∈N such that each βk ∈ B is a Nash
equilibrium of (Γ, ηk) and β∗ is a limit point of the sequence.

Finally, from Lemma 5 and Theorem 4 of Selten [1975], it follows the charac-
terization of extensive-form perfect equilibria in terms of Selten perturbed games
in extensive form.

Proposition 1 In a game in extensive form Γ, a behavior strategy profile
β∗ ∈ B is an extensive-form perfect equilibrium of Γ if and only if it is a limit
equilibrium of some Selten test sequence {(Γ, ηk)}k∈N.

2.5. Quasi-Perfect Equilibria

From the previous definitions, it is clear that, in an extensive-form perfect
equilibrium, each player takes into account the possibility that both herself and
her opponents may tremble in future. On the other hand, in a quasi-perfect equi-
librium, introduced by Van Damme [1984], players only consider the possibility
of opponents’ trembles. On one hand, the definition of extensive-form perfect
equilibrium may be thought of as corresponding to the idea that players really
do make mistakes. On the other hand, one might think of the trembles as instead
encompassing the idea that the players should have a little strategic uncertainty,
i.e., they should not be completely confident as to what the other players are
going to do. In such a case a player should not be thought of as being uncertain
about her own actions or planned actions. This is a possible interpretation of the
idea behind van Damme’s definition of quasi-perfect equilibrium.

Van Damme [1984] and Miltersen and Sørensen [2010] present several def-
initions of quasi-perfect equilibria. We focus, here, on the definition used by
Miltersen and Sørensen [2010]. In order to do that, we need some preliminary
definitions.

Definition 10 A u-local purification of a behavior strategy βi ∈ Bi is a
player i’s behavior strategy βuPi ∈ BuPi (βi) such that:

• βuPi is identical to βi at all v ∈ Ui such that v ≺ u;
• for all v ∈ Ui such that u � v, there is a choice c ∈ Cv with βuPi (c) = 1.

Definition 11 A u-local purification of βi ∈ Bi, say βuP
′

i ∈ BuPi (βi), is a
u-local best response to β ∈ B if and only if it achieves the best expected payoff
against β among all u-local purifications of βi, i.e., it holds:

βuP
′

i ∈ arg max
βuP
i ∈BuP

i (βi)

Hi

(
β
/
βuPi

)
.
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Definition 12 A u-local purification of βi ∈ Bi, say βuP
′

i ∈ BuPi (βi), is ε-

consistent with βi, denoted by βuP
′

i ∈ BεCi (βui ), if and only if, at all information
sets v ∈ Ui such that u � v, βi assigns probability strictly bigger than ε to all
choices to which βuP

′

i assigns probability one.

Definition 13 In a game in extensive form Γ, a behavior strategy profile βε ∈
B is an ε-quasi-perfect equilibrium of Γ if and only if it is fully mixed, and for
each player i ∈ N and for any u ∈ Ui, all u-local purifications of βεi that are
ε-consistent with βεi are u-local best responses to βε. Formally, βε ∈ εQP (Γ) if
and only if, for all i ∈ N and for any u ∈ Ui, it holds:

1. βεi (c) > 0 for every choice c ∈ Cu;
2. BεCi (βε,ui ) ⊆ arg max

βuP
i ∈BuP

i (βε
i )
Hi

(
βε
/
βuPi

)
.

Definition 14 In a game in extensive form Γ, a behavior strategy profile β∗ ∈
B is a quasi-perfect equilibrium of Γ, denoted by β∗ ∈ QP (Γ), if and only if it
is a limit point (as ε goes to zero) of ε-quasi-perfect equilibria βε ∈ B of Γ.

Next, we introduce the perturbed games in sequence form proposed by Mil-
tersen and Sørensen [2010]. They are based on the idea of forcing a lower bound
on the realization probability of each sequence, where the magnitude of the lower
bound depends on the length of the sequence.

Definition 15 For any game in extensive form Γ, a Miltersen-Sørensen per-
turbed game ΓMS is a pair (ΓS , ε) where ε ∈ (0, 1) and for any player i ∈ N ,
for any realization plan ri ∈ Ri, and for all si ∈ Si it holds:

ri (si) ≥ ε|si|,

where |si| is the number of choices in the sequence si.

Then, Miltersen and Sørensen [2010] prove the following result.

Proposition 2 In a two-player game in extensive form Γ, for any ε > 0:

NE
(
ΓMS

)
⊆ εQP (Γ) .

In words, for two-player games in extensive form, Miltersen and Sørensen [2010]
show that a limit point of a sequence of Nash equilibria of their perturbed games
in sequence form is a quasi-perfect equilibrium of the original, unperturbed game.
However, there are quasi-perfect equilibria that cannot be characterized in this
way, as shown in the following section.
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Figure 1.— Example of game in extensive form.

3. REMARKS ON PERTURBED GAMES AND REFINEMENTS OF NASH EQUILIBRIA

This section prepares for the core results in this paper, which are the lemmas
and theorems in Sections 4, 5, and 6. First, we provide an example showing that
there are quasi-perfect equilibria that are not captured by Miltersen-Sørensen
perturbed games. This motivates the introduction of an alternative definition of
quasi-perfect equilibrium, following Van Damme [1984], and a general discussion
on the relationship between perturbed games in extensive and in sequence form.

3.1. A Motivating Example

The game in extensive form of Figure 1 shows that the result of Miltersen and
Sørensen [2010] (see also Proposition 2) does not provide a characterization of
quasi-perfect equilibria in terms of perturbed games, because there are quasi-
perfect equilibria that are not limit points of sequences of Nash equilibria of
Miltersen-Sørensen perturbed games in sequence form.11

In particular, in the game of Figure 1, the sets of rationalizable strategies,
of Nash equilibria, of normal-form perfect equilibria, of extensive-form perfect
equilibria, and of quasi-perfect equilibria coincide and they are:

{β1 ∈ B1 : β1 (A) = β1 (C) = 1} ×B2.

However, note that for any Miltersen-Sørensen perturbed game ΓMS :

r1 (B) ≥ ε and r2 (AD) ≥ ε2,
11In the game of Figure 1 all quasi-perfect equilibria result in the same outcome. However,

there are games with outcomes identified by quasi-perfect equilibria that cannot be obtained
as limit points of Nash equilibria of Miltersen-Sørensen perturbed games. Some examples are
available form authors at request.
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which implies that, in any Nash equilibrium of the Miltersen-Sørensen perturbed
game, action b is played with probability 1− ε by the second player, hence:

NE
(
ΓMS

)
=

{
β1 ∈ B1 : β1 (A) = 1− ε, β1 (C) =

1− ε− ε2

1− ε

}
×

× {β2 ∈ B2 : β2 (b) = 1− ε} .

Clearly, this shows that there is a continuum of ε-quasi-perfect equilibria that
are not Nash equilibria of ΓMS , namely all those with β2(a) > 0 as ε goes to
zero. Hence:

Remark 1 There exist games in extensive form Γ such that:

NE
(
ΓMS

)
⊂ εQP (Γ) .

3.2. An Alternative Definition of Quasi-Perfect Equilibria

In order to characterize quasi-perfect equilibria, we need to generalize in an
opportune way Miltersen-Sørensen perturbed games. In particular, in order to
prove our result, we resort to an alternative definition of quasi-perfect equilibria,
following one of those provided by Van Damme [1984].

First, we need some auxiliary notation and definitions. Given two behavior
strategies βi, β

′
i ∈ Bi and an information set u ∈ Ui, we write βi =

u
β′i whenever

βi (c) = β′i (c) for every choice c ∈ Cu. Furthermore, given βi, β
′
i ∈ Bi and

u ∈ Ui, we write βi
/
u
β′i to denote a behavior strategy which is equal to β′i at

all information sets v ∈ Ui such that u � v, while it is equal to βi at the other
information sets. In addition, overloading notation, given β ∈ B, β′i ∈ Bi, and
u ∈ Ui, β

/
u
β′i denotes a strategy profile obtained from β by replacing player i’s

strategy βi with βi
/
u
β′i.

Definition 16 A family of parameterized behavior strategy profiles, denoted
by P, is a family of functions β ∈ P such that

β : (0, 1)→ B

maps any number ε ∈ (0, 1) to a behavior strategy profile β(ε) ∈ B. Moreover,
we say the following:
• β ∈ P is completely mixed if β(ε) is always completely mixed;
• β ∈ P is rational (respectively polynomial) if each probability βi (ε, c) can

be expressed as a rational (respectively polynomial) function of ε.

We are now ready to provide a definition of quasi-perfect equilibria more con-
venient to our work, following Van Damme [1984].12

First, we introduce the idea of best responses at information sets.13

12See also Govindan and Wilson [2012] Definition 4.1.
13In the terminology of Van Damme [1984], u-best responses are quasi-best replies.
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Definition 17 Given a game in extensive form Γ, a completely mixed behavior
strategy profile β ∈ B, a player i ∈ N , and an information set u ∈ Ui, a behavior
strategy βi ∈ Bi is an u-best response to β ∈ B, written βi ∈ BRu(β), if the
following holds:

max
β′
i∈Bi:βi=

u
β′
i

Hi

(
β
/
u
β′i|u

)
= max
β′
i∈Bi

Hi

(
β
/
u
β′i|u

)
.

Intuitively, βi is an u-best response to β whenever playing as prescribed by
βi at information set u is part of some player i’s optimal strategy in the game
following u, given that u has been reached and the other players behave as
prescribed by β. In other words, βi is a best response to β whenever player i
ends up playing at information set u.

The formal definition of quasi-perfect equilibrium follows.14

Definition 18 Given a game in extensive form Γ, β ∈ B is a quasi-perfect
equilibrium of Γ if there exists a completely mixed β ∈ P such that:

1. β is a limit point (as ε goes to zero) of β(ε);
2. for every player i ∈ N and information set u ∈ Ui, βi ∈ BRu(β(ε)) holds

eventually (i.e., for sufficiently small ε).

In words, provided that ε ∈ (0, 1) is sufficiently small, for every player i and
information set u ∈ Ui, βi prescribes player i to play an optimal strategy against
β(ε), given that u has been reached and she will play optimally in the rest of the
game (assuming opponents follow strategies in β(ε)). This condition encodes the
fact that a player only considers the possibility of opponents’ future trembles,
while she does not care about hers.

Note that the game in extensive form of Figure 1 also shows that, in order
to span the entire set of quasi perfect equilibria, it is necessary to use non-
polynomial β ∈ P. In particular, in order to get β2 (a) ∈ (0, 1), we must have

β1 (D) = β1(B)
β1(A) , and this rational restriction is generally required any time in an

equilibrium we have to combine sequential rationality and fully mixed behavior
strategies. This is formally shown by Theorem 4.1 of Hammond [1994], where
he proves that equilibrium refinements have four equivalent characterizations: (i)
complete conditional probability systems;15 (ii) lexicographic hierarchies of prob-
abilities;16 (iii) extended logarithmic likelihood ratios; and (iv) certain “canoni-
cal rational probability functions” representing “trembles” directly as infinitesi-
mal probabilities. In particular, Kohlberg and Reny [1997] prove that sequential
equilibria can be characterized in terms of relative probabilities that compare
the likelihoods of any pair of events, even those with probability zero.17 More

14See Van Damme [1984] Lemma 2.
15See Myerson [1986] and McLennan [1989].
16See Blume et al. [1991] and Govindan and Klumpp [2003].
17Note that quasi perfect equilibria are a refinement of sequential equilibria.
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generally, Blume and Zame [1994] prove that the equilibrium correspondences
of extensive-form perfect and sequential equilibria are semi-algebraic sets and,
therefore, they can be defined by finite systems of polynomial inequalities. For
the sake of this paper, we can sum up these results in the following statement:
any quasi-perfect equilibrium can be obtained as limit point (as ε goes to zero)
of β(ε) where the behavioral strategy profiles β(ε) ∈ B can be described using
rational functions of ε. This crucial property allows us to restrict our attention
to rational functions of ε. Formally:

Remark 2 Given a game in extensive form Γ, let β ∈ B be a quasi-perfect
equilibrium of Γ. Then, there exists a completely mixed β ∈ P such that β is
rational and conditions (1) and (2) in Definition 18 hold.

3.3. Perturbed Games in Extensive and in Sequence Form

Before entering into the details of the proof of our characterization, it is useful
to understand the different ways of working of the perturbations when applied
to the different forms. Indeed, similar perturbations applied to different game
forms produce different refinements. In the following, we discuss the connection
between perturbations for the extensive form and those for the sequence form.

As discussed in Section 2.2, given a game in extensive form and its corre-
sponding sequence form, we can transform behavior strategies into realization
plans and vice versa, even if the transformation from realization plans to be-
havior strategies is not uniquely determined. However, things are slightly more
complex with perturbed games.

First, let us consider perturbed games in extensive form. Let a Selten perturbed
game in extensive form ΓSe = (Γ, η) be given. Since for any i ∈ N , u ∈ Ui, and
c ∈ Cu

βi (c) =
ri (σ (u) c)

ri (σ (u))
≥ η(c),

we can build an associated perturbed game in sequence form (ΓS , η) such that,
for any i ∈ N , ui ∈ Ui, and c ∈ Cu, it must be the case that:

ri (σ (u) c) ≥ η(c) ri (σ (u)) .

This means that, in the associated perturbed game in sequence form, the real-
ization plan of a sequence σ(u)c is subject to a lower bound that depends on the
realization plan of the sequence σ(u).18

On the other hand, given a Miltersen-Sørensen perturbed game ΓMS = (ΓS , ε),
since for any i ∈ N , u ∈ Ui, and c′ ∈ Cu

ri (σ (u) c′) =
∏

c∈σ(u)

βi (c)βi(c
′) ≥ ε|σ(u)c

′|,

18Farina and Gatti [2017] show how an extensive-form perfect equilibrium can be computed
by means of the sequence form.
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we can construct an associated perturbed game in extensive form (Γ, ε) where
for any i ∈ N , u ∈ Ui, and c′ ∈ Cu it must hold:

βi (c′) ≥ ε|σ(u)c
′|∏

c∈σ(u) βi (c)
.

This means that, in the associated perturbed game in extensive form, the be-
havior strategy of a choice c′ is subject to a lower bound that depends on the
probabilities of the choices c ∈ σ(u). Such a lower bound is not compliant with
the definition of the Selten perturbed game, which instead requires that the lower
bound depends only on ε and not on βi.

4. NASH EQUILIBRIA OF PERTURBED GAMES

In this section, we introduce a class of n-player perturbed games in sequence
form and prove some properties of their Nash equilibria, which turn out to be
useful in proving the core results in Sections 5 and 6.

4.1. A General Approach to Perturbation in Sequence Form

Next, we introduce our class of n-player perturbed games in sequence form,
which generalizes those studied by Miltersen and Sørensen [2010].

Definition 19 Given a game in sequence form ΓS and a player i ∈ N , let
`i : (0, 1)× Si 7→ R be a function that maps any number ε ∈ (0, 1) and sequence
si ∈ Si to a lower bound `i(ε, si) such that:

1. `i(ε, si) is a polynomial in ε, for every si ∈ Si;
2. lim

ε→0+
`i(ε, si) = 0, for every si ∈ Si \ {∅}, while `i(ε,∅) = 1;

3. lim
ε→0+

`i(ε,si|c)
`i(ε,si)

= 0, for every si ∈ Si and c ∈ Cu such that si|c ∈ Si.
Then, we define an `i-quasi-perfect perturbation for Ri as a function ε 7→

Ri(ε) defined over ε ∈ (0, 1) in which Ri(ε) is the set of all the realization plans
ri ∈ Ri such that ri(si) ≥ `i(ε, si) for every si ∈ Si.

In words, an `i-quasi-perfect perturbation constrains player i to play every se-
quence si ∈ Si with probability larger than or equal to the lower-bound `i(ε, si).
Furthermore, the lower-bounds enjoy particular properties:

1. they can be expressed as polynomials in ε;
2. they approach zero as ε goes to zero;
3. for every sequence si ∈ Si and choice c ∈ Cu such that si|c ∈ Si, `i(ε, si|c)

approaches zero faster than `i(ε, si).

Definition 20 Given a game in extensive form Γ, we call perturbed sequence
form of Γ the sequence form ΓS of Γ together with an `i-quasi-perfect perturbation
for Ri, for every player i ∈ N .
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In the following, the tuple (ΓS , {`i}i∈N ) denotes a perturbed sequence form
of Γ, defined for some `i-quasi-perfect perturbations. Moreover, we let ΓS(ε) be
a particular perturbed game in sequence form, which is obtained from ΓS by
restricting each set of realization plans Ri to be Ri(ε).

19

In matrix notation, we can write the constraints defining Ri(ε) as ri ≥ `i(ε)
for all i ∈ N , where, overloading notation, `i(ε) is a vector-valued function of ε,
defined over ε ∈ (0, 1), whose components are the functions `i(ε, si) for si ∈ Si.
In the following, we use r(ε) to denote a valid realization plan profile for a
perturbed game in sequence form ΓS(ε), i.e., ri(ε) ∈ Ri(ε) for all i ∈ N .

4.2. Properties of Nash Equilibria of Perturbed Games

The main result of this section is Theorem 1, which provides a characterization
of Nash equilibria perturbed games in sequence form, a necessary step to derive
that any limit point of a sequence of Nash equilibria of perturbed games in
sequence form is a quasi-perfect equilibrium of the original, unperturbed game
in extensive form, our generalization of Miltersen and Sørensen [2010] result. To
prove Theorem 1, we need to derive some properties that characterize the Nash
equilibria of perturbed games in sequence form ΓS(ε). In particular, Lemma 1 is
used to prove Lemma 2 that in turn is used to prove Lemma 3, which allows us
to prove Theorem 1.

First, we introduce the definition of player i’s expected utility in the sequence
form, given that information set u has been reached: given a player i ∈ N and
an information set u ∈ Ui, we let

Gi(u, r) =
∑

s∈S:σ(u)@si

gi(s)
∏
j∈N

rj(sj)

be player i’s expected utility contribution due to terminal nodes that are reach-
able from u, given that realization plan profile r ∈ R is played.

Lemma 1 Given a perturbed sequence form (ΓS , {`i}i∈N ), r(ε) is a Nash equi-
librium of a perturbed game in sequence form ΓS(ε) if and only if, for every
player i ∈ N , r̃i(ε) = ri(ε)− `i(ε) is an optimal solution to Problem (4).

max r̃Ti

Mi

∏
j 6=i∈N

rj(ε)

 s.t.(4a)

Fi r̃i = fi − Fi `i(ε)(4b)

r̃i ≥ 0.(4c)
19Let us remark that ΓS(ε) may not be well-defined for all values of ε ∈ (0, 1), since some

sets Ri(ε) might be empty. Nevertheless, conditions (1)–(3) in Definition 19 ensure that there
exists ε̄ ∈ (0, 1) such that ΓS(ε) is well-defined for all ε ∈ (0, ε̄). Thus, whenever we refer to a
perturbed game in sequence form ΓS(ε), we can safely assume that it is well-defined, provided
that ε is sufficiently small.
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Proof: Recall that in a Nash equilibrium every player must play a best re-
sponse to the opponents’ strategies. Let us fix a player i ∈ N . Consider the
best-response problem of player i against r(ε) in ΓS(ε), then introducing vari-
ables r̃i = ri − `i(ε), the problem can be rewritten as follows:

max r̃Ti

Mi

∏
j 6=i∈N

rj(ε)

+ `i(ε)
T

Mi

∏
j 6=i∈N

rj(ε)

 s.t.

Fi r̃i = fi − Fi `i(ε)
r̃i ≥ 0,

which is equivalent to Problem (4) since the second term in the objective function
is a constant. Q.E.D.

Let us remark that Problem (4) is a linear program, as all players’ realization
plans are fixed, except for that of player i. In the following remark, we introduce
the dual of Problem (4).

Remark 3 Given a perturbed sequence form (ΓS , {`i}i∈N ), for every realiza-
tion plan profile r(ε) of ΓS(ε) and player i ∈ N , Problem (5) is the dual of
Problem (4), where v ∈ R|Ui|+1 denotes the vector of dual variables associated
with Constraints (4a):

min (fi − Fi`i(ε))T v s.t.(5a)

FTi v ≥

Mi

∏
j 6=i∈N

rj(ε)

 .(5b)

The following remark introduces an equivalent way of expressing the con-
straints in Problem (5), where the conditions that each variable vu must satisfy
are made explicit.

Remark 4 Constraints (5a) in Problem (5) are equivalent to:

(6) vu ≥
∑
s∈S:

si=σ(u)c

gi(s) ∏
j 6=i∈N

rj(ε, sj)

+
∑
u′∈Ui:

σ(u′)=σ(u)c

vu′ ,

for every information set u ∈ Ui and choice c ∈ Cu.

The optimal solutions to Problem (5) enjoy some particular properties, which
are stated in the following lemmas. The first lemma says that, in an optimal
solution, each variable vu is set to the value of player i’s expected utility for an
optimal strategy in the game following u, and this holds for any u ∈ Ui because
of perturbations..
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Lemma 2 Given a perturbed sequence form (ΓS , {`i}i∈N ), for every realization
plan profile r(ε) of ΓS(ε) and player i ∈ N , v∗ ∈ R|Ui|+1 is an optimal solution
to Problem (5) if and only if, for every u ∈ Ui, it holds:

(7) v∗u = max
r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i).

Proof: Let us consider Problem (5). First, observe that the objective func-
tion coefficient of the first component of v is always zero, since `i(ε, ∅) = 1 by
Definition 19. Moreover, for every information set u ∈ Ui, the objective func-
tion coefficient for the component vu associated with u is equal to `i(ε, σ (u))−∑
c∈σ(u)

`i(ε, σ (u) c). Then, in an optimal solution v∗ ∈ R|Ui|+1 to Problem (5),

each variable vu is set to its minimum value given Constraints (6).

(⇐=) Suppose v∗ ∈ R|Ui|+1 is an optimal solution to Problem (5). We prove
Equation (7) using a simple inductive argument. The base case of the induction is
when there is no information set u′ ∈ Ui with u ≺ u′. For every choice c ∈ σ (u),
the following must hold:

vu ≥
∑
s∈S:

si=σ(u)c

gi(s) ∏
j 6=i∈N

rj(ε, sj)

 ,

which, using the fact that v∗u must be set to its minimum possible value given
the constraints, implies the following:

v∗u = max
c∈σ(u)

∑
s∈S:

si=σ(u)c

gi(s) ∏
j 6=i∈N

rj(ε, sj)

 = max
r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i),

where last equality holds since there is no u′ ∈ Ui such that u ≺ u′ and∑
c∈σ(u)

r′i(σ (u) c) = r′i(σ (u)) = 1, for the definition of realization plan. As for

the inductive step, let us consider an information set u ∈ Ui and assume, by
induction, that Equation (7) holds for every information set u′ ∈ Ui with u ≺ u′.
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We can write:

v∗u = max
c∈σ(u)


∑
s∈S:

si=σ(u)c

gi(s) ∏
j 6=i∈N

rj(ε, sj)

+
∑
u′∈Ui:

σ(u′)=σ(u)c

v∗u′

 =

= max
c∈σ(u)


∑
s∈S:

si=σ(u)c

gi(s) ∏
j 6=i∈N

rj(ε, sj)

+

+
∑
u′∈Ui:

σ(u′)=σ(u)c

max
r′i∈Ri:

r′i(σ(u′))=1

Gi(u, r(ε)
/
r′i)

 =

= max
r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i),

where the first equality directly follows from the optimality of v∗, the second
one from the inductive hypothesis, while the last equality holds since we have∑
c∈σ(u)

r′i(σ (u) c) = r′i(σ (u)) = 1.

(=⇒) By contradiction, suppose that Equation (7) holds and v∗ ∈ R|Ui|+1 is
not an optimal solution to Problem (5). Thus, there must be an information set
u ∈ Ui such that Equation (7) holds for all u′ ∈ Ui with u ≺ u′ and v∗u satisfies
all the Constraints (6) with strict inequality. Thus,

v∗u > max
c∈σ(u)


∑
s∈S:

si=σ(u)c

gi(s) ∏
j 6=i∈N

rj(ε, sj)

+
∑
u′∈Ui:

σ(u′)=σ(u)c

v∗u′

 =

= max
r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i),

which contradicts Equation (7) for the information set u. Q.E.D.

The following lemma says that, if an optimal solution to Problem (5) satisfies
Constraint (6), for an information set u and a choice c ∈ Cu, with equality, then
playing choice c at u is part of an optimal strategy in the game following u, and
this holds for any u ∈ Ui because of perturbations.

Lemma 3 Given a perturbed sequence form (ΓS , {`i}i∈N ), for every realization
plan profile r(ε) of ΓS(ε), player i ∈ N , information set u ∈ Ui, and choice
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c ∈ Cu, Constraint (6) holds with equality in an optimal solution to Problem (5)
if and only if:

(8) max
r′i∈Ri:

r′i(σ(u)c)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i).

Proof: In the following, let v∗ ∈ R|Ui|+1 be optimal for Problem (5).

(=⇒) Using Lemma 2 and Equation (8), we can write:

v∗u = max
r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri

r′i(σ(u)c)=1

Gi(u, r(ε)
/
r′i) =

=
∑
s∈S:

si=σ(u)c

gi(s) ∏
j 6=i∈N

rj(ε, sj)

+
∑
u′∈Ui:

σ(u′)=σ(u)c

v∗u′ .

(⇐=) Using Lemma 2 we can write:

v∗u =
∑
s∈S:

si=σ(u)c

gi(s) ∏
j 6=i∈N

rj(ε, sj)

+
∑
u′∈Ui:

σ(u′)=σ(u)c

v∗u′ =

= max
r′i∈Ri

r′i(σ(u)c)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i).

This concludes the proof. Q.E.D.

Now, we are ready to prove a fundamental property of the Nash equilibria of
perturbed games in sequence form ΓS(ε).

Theorem 1 Given a perturbed sequence form (ΓS , {`i}i∈N ), a realization plan
profile r(ε) is a Nash equilibrium of ΓS(ε) if and only if, for every player i ∈ N ,
information set u ∈ Ui, and choice c ∈ Cu, it holds that:

1. if ri(ε, σ (u) c) > `i(ε, σ (u) c), then

max
r′i∈Ri:

r′i(σ(u)c)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i);

2. if max
r′i∈Ri:

r′i(σ(u)c)=1

Gi(u, r(ε)
/
r′i) < max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i), then

ri(ε, σ (u) c) = `i(ε, σ (u) c).
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Proof: Recall that, by Lemma 1, r(ε) is a Nash equilibrium of ΓS(ε) if and
only if, for every player i ∈ N , r̃i(ε) = ri(ε) − `i(ε) is an optimal solution to
Problem (4). The result is a direct application of the complementarity slackness
theorem in linear programming. Let us fix i ∈ N , u ∈ Ui, and c ∈ σ (u). By
applying the theorem to Problems (4) and (5) we can conclude that r̃i(ε) and
v∗ ∈ R|Ui|+1 are optimal if and only if the following holds:

1. if r̃i(ε, σ (u) c) > 0 (i.e., equivalently, ri(ε, σ (u) c) > `i(ε, σ (u) c)), then
Constraint (6) for information set u and choice c must hold with equality,
which, using Lemma 3, implies Equation (8);

2. if Constraint (6), for information set u and choice c, does not hold with
equality, then it must be r̃i(ε, σ (u) c) = 0 (i.e., equivalently, ri(ε, σ (u) c) =
`i(ε, σ (u) c)). Notice that the constraint holds with strict inequality when-
ever

max
r′i∈Ri:

r′i(σ(u)c)=1

Gi(u, r(ε)
/
r′i) < max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i),

by Lemma 3.
Since the two conditions hold for every player i ∈ N , information set u ∈ Ui,
and choice c ∈ σ (u), the proof is complete. Q.E.D.

Intuitively, in a Nash equilibrium of ΓS(ε), player i plays sequence σ (u) c with
probability strictly greater than its lower-bound `i(ε, σ (u) c) only if playing c is
part of some optimal strategy in the game following u. Conversely, whenever
c ∈ Cu is not part of any optimal strategy in the game following u, it must be
the case that sequence σ (u) c is played with minimum probability. Theorem 1
formally expresses the idea that, in a perturbed game in sequence form ΓS(ε),
when a player decides how to play in a given information set, she does not take
into account her future trembles, but only opponents’ ones.

5. NASH EQUILIBRIA OF PERTURBED GAMES IN SEQUENCE FORM ARE

QUASI-PERFECT EQUILIBRIA

In this section, we prove the first part of our main result: all limit points of
sequences of Nash equilibria of n-player perturbed games ΓS(ε) are quasi-perfect
equilibria of the game in extensive form Γ. Note that this result is a generalization
of Lemma 1 by Miltersen and Sørensen [2010], however, our proof is significantly
different, since there is no a direct way to extend their proof to the general case
of our perturbed games.

First, we provide the following definition.

Definition 21 A family of parameterized realization plan profiles, denoted by
R, is a family of functions r ∈ R such that

r : (0, 1) 7→ R
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maps any number ε ∈ (0, 1) to a realization plan profile r(ε) ∈ R. Moreover, we
say the following:
• r ∈ R is completely mixed if r(ε) is always completely mixed;
• r ∈ R is rational (respectively polynomial) if each term ri (ε, si) can be

expressed as a rational (respectively polynomial) function of ε.

Then, we provide a characterization of u-best responses in terms of the se-
quence form.

Lemma 4 Given a game in extensive form Γ, a completely mixed behavior strat-
egy profile β ∈ B, a player i ∈ N , and an information set u ∈ Ui, a behavior
strategy βi ∈ Bi is a u-best response to β ∈ B, i.e., βi ∈ BRu(β), if and only if
the following holds for every choice c ∈ Cu:

βi (c) > 0 =⇒ max
r′i∈Ri:

r′i(σ(u)c)=1

Gi(u, r
/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r
/
r′i),

where r ∈ R is the realization plan of β.

Proof: First, let us notice that the following relation holds:

max
r′i∈Ri:

r′i(σ(u)c)=1

Gi(u, r
/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r
/
r′i)⇐⇒(9)

max
β′
i∈Bi:β′

i(c)=1
Hi

(
β
/
u
β′i | u

)
= max
β′
i∈Bi

Hi

(
β
/
u
β′i | u

)
.

In order to see this, for z ∈ Z(u) and β′i ∈ Bi, let Hi(z, β, β
′
i) be such that:

Hi(z, β, β
′
i) = hi(z)

 ∏
j 6=i∈N

∏
c∈p(z)∩Dj

βj (c)

 ∏
c∈p(z)∩Di:c/∈σ(u)

β′i (c)

 .

Since r is the realization plan of β and r′i(σ (u)) = 1, the first line of Equation (9)
is the same as:

max
β′
i∈Bi:β′

i(c)=1

∑
z∈Z(u)

Hi(z, β, β
′
i) = max

β′
i∈Bi

∑
z∈Z(u)

Hi(z, β, β
′
i).

Then, by dividing both sides of the equality by
∑
x∈u

∏
j 6=i∈N

∏
c∈p(x)∩Dj

βi (c) and

using the definition of Hi(β | u), i.e.,

Hi(β | u) =

∑
z∈Z(u)

hi(z) ∏
j∈N

∏
c∈p(z)∩Dj

βj(c)


∑
x∈u

∏
j∈N

∏
c∈p(x)∩Dj

βj(c)
=

∑
z∈Z(u)

hi(z) ∏
j∈N

∏
c∈p(z)∩Dj :
c/∈σ(u)

βj(c)


∑
x∈u

∏
j 6=i∈N

∏
c∈p(x)∩Dj

βj(c)
,
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we get the second line of Equation (9). Clearly, we can prove the other direction
of Equation (9) following the same steps in the reverse order (and multiplying
instead of dividing).

(=⇒) Suppose that the condition holds for every choice c ∈ Cu. Clearly,

max
β′
i∈Bi:βi=

u
β′
i

Hi

(
β
/
u
β′i | u

)
=
∑
c∈Cu

βi (c) max
β′
i∈Bi:β′

i(c)=1
Hi

(
β
/
u
β′i | u

)
,

and, since βi (c) > 0 only if max
r′i∈Ri

r′i(σ(u)c)=1

Gi(u, r
/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r
/
r′i), a direct

application of Equation (9) proves the result.
(⇐=) As for the other direction, let βi ∈ BRu(β) be given. Thus, we have
max

β′
i∈Bi:βi=

u
β′
i

Hi

(
β
/
u
β′i | u

)
= max
β′
i∈Bi

Hi

(
β
/
u
β′i | u

)
. By contradiction, suppose that

max
r′i∈Ri

r′i(σ(u)c)=1

Gi(u, r
/
r′i) < max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r
/
r′i) for some choice c ∈ σ (u) such that

βi (c) > 0. By Equation (9), we would have

max
β′
i∈Bi:β′

i(c)=1
Hi

(
β
/
u
β′i | u

)
< max
β′
i∈Bi

Hi

(
β
/
u
β′i | u

)
,

which implies the following

max
β′
i∈Bi:βi=

u
β′
i

Hi

(
β
/
u
β′i | u

)
=
∑
c∈Cu

βi (c) max
β′
i∈Bi:β′

i(c)=1
ui
(
β
/
u
β′i | u

)
< max
β′
i∈Bi

ui
(
β
/
u
β′i | u

)
,

which contradicts the fact that βi ∈ BRu(β). Q.E.D.

Intuitively, a behavior strategy βi is a u-best response to β if and only if it
places positive probability only on choices c ∈ Cu that are part of some player
i’s optimal strategy in the game following information set u.

Theorem 2 Given a perturbed sequence form (ΓS , {`i}i∈N ), let:
1. r ∈ R be such that r(ε) is a Nash equilibrium of ΓS(ε);
2. β ∈ P be such that β(ε) has r(ε) as realization plan.
Then, any limit point (as ε goes to zero) of β(ε) is a quasi-perfect equilibrium

of Γ.

Proof: Let us fix r ∈ R such that r(ε) is a Nash equilibrium of ΓS(ε), and
let β ∈ B be a limit point (as ε goes to zero) of β(ε). In order to prove that
β is a quasi-perfect equilibrium of Γ, it is sufficient to show that condition (2)
in Definition 18 holds. First, notice that there must exist ε̄ ∈ (0, 1) such that,
for all ε ∈ (0, ε̄), and for every player i ∈ N , information set u ∈ Ui, and choice
c ∈ σ (u), if βi (c) > 0, then ri(ε, σ (u) c) > `i(ε, σ (u) c). Otherwise, by conditions



28 N. GATTI, M. GILLI, A. MARCHESI

(2)–(3) in Definition 19, it would be βi (c) = 0. In the following, let us fix i ∈ N ,
u ∈ Ui, and c ∈ σ (u). Suppose that βi (c) > 0. For all ε ∈ (0, ε̄), we have that
ri(ε, σ (u) c) > `i(ε, σ (u) c), which, by Theorem 1, implies the following:

max
r′i∈Ri

r′i(σ(u)c)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i).

Thus, Lemma 4 allows us to conclude that βi ∈ BRu(β(ε)) eventually, i.e., for
ε ∈ (0, ε̄). Thus, β ∈ B is a quasi-perfect equilibrium of Γ. Q.E.D.

6. QUASI-PERFECT EQUILIBRIA ARE NASH EQUILIBRIA OF PERTURBED GAMES

IN SEQUENCE FORM

In this section, we prove the second part of our main result: any quasi-perfect
equilibrium of a two-player game in extensive form with nature Γ can be obtained
as limit point of a sequence of Nash equilibria of perturbed games in sequence
form ΓS(ε), for a suitably defined perturbed sequence form of Γ. The general
idea of the proof is the following.

1. From Remark 2, we know that any quasi-perfect equilibrium β ∈ B of
a game in extensive form Γ can be obtained for some completely mixed
β ∈ P such that β is rational.

2. Letting r ∈ R be such that r(ε) is the realization plan of β(ε), we apply
two transformations to r, in order to obtain r∗ ∈ R such that:

• r∗ is polynomial (instead of being rational, like r);

• for every player i ∈ N and information set u ∈ Ui, player i’s optimal
strategies in the game following information set u are preserved when
replacing realization plan profile r(ε) with r∗(ε);

• β is a limit point (as ε goes to zero) of β∗(ε), where β∗ ∈ P is such
that r∗(ε) is the realization plan of β∗(ε).

• we can build a particular perturbed sequence form (ΓS , {`βi }i∈N ) of
Γ, which depends on β, such that each r∗(ε) is a valid realization plan
for the perturbed game ΓS(ε).

3. Finally, we prove that r∗(ε) defines a sequence of Nash equilibria of per-
turbed games ΓS(ε).

We remark that all the results in this section hold for n-player games, except
for Lemma 5 that can be proved only for two-player games with nature.

6.1. Transformations

First, we introduce and analyze two types of transformations that are defined
on functions r ∈ R. The first one allows us to make polynomial a rational r.
The second kind of transformation applies to a polynomial r ∈ R and allows us
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to change the degrees of ε terms in the polynomials defining r. This last step is
fundamental for being able to build the perturbed sequence form of interest. In
both cases, we show that applying a transformation preserves players’ optimal
strategies at information sets.20

Let us start introducing some useful remarks.

Remark 5 Given a rational r ∈ R, for every player i ∈ N and sequence
si ∈ Si, we can write:

ri(ε, si) = a0(si) +
a1(si)ε+ . . .+ adN (si)(si)ε

dN (si)

1 + b1(si)ε+ . . .+ bdD(si)(si)ε
dD(si)

= a0(si) +
PolyNi (ε, si)

PolyDi (ε, si)
,

where a0(si) ∈ [0, 1], ax(si) ∈ R for all x ∈ {1, . . . , dN (si)}, and bx(si) ∈ R for all
x ∈ {1, . . . , dD(si)}, with dN (si), dD(si) ∈ N denoting the degrees of polynomials
PolyNi (ε, si) and PolyDi (ε, si), respectively.

Remark 6 Given a polynomial r ∈ R, for every player i ∈ N and sequence
si ∈ Si, we can write:

ri(ε, si) = a0(si) + a1(si)ε+ . . .+ ad(si)(si)ε
d(si) = Polyi(ε, si),

where a0(si) ∈ [0, 1] and ax(si) ∈ R for all 1 ∈ {1, . . . , d(si)}, with d(si) ∈ N
denoting the degree of the polynomial Polyi(ε, si).

Remark 7 Let β ∈ P be rational. It is easy to prove that r ∈ R, where r(ε) is
the realization plan of β(ε), is rational too. This is a direct consequence of the
fact that the product of rational functions is rational.

Before defining the transformations, let us introduce a motivating example
that we will use to explain how they work.

Motivating Example Let us consider the game in extensive form of Figure 1,
introduced in Section 3.1. As previously discussed, a quasi-perfect equilibrium of
the game is the behavior strategy profile β = (β1, β2) ∈ B:

β1(A) = 1, β1(C) = 1, and β2(a) = β2(b) =
1

2
.

According to Definition 18, β can be obtained as a limit point (as ε goes to zero)
of β(ε), where β ∈ P is defined as follows:

β1(ε) =


β1(ε,A) = 1− ε

1−ε
β1(ε,B) = ε

1−ε
β1(ε, C) = 1− ε

1−2ε
β1(ε,D) = ε

1−2ε

 and β2(ε) =

[
β2(ε, a) = 1

2
β2(ε, b) = 1

2

]
.

20This is true in n-player games for transformations of the second type, while it only holds
in two-player games for transformation of the first type.
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Then, we can define r ∈ R such that r(ε) is the realization plan of β(ε).

r1(ε) =


r1(ε,∅) = 1
r1(ε,A) = 1− ε

1−ε
r1(ε,B) = ε

1−ε
r1(ε,AC) = 1− 2ε

1−ε
r1(ε,AD) = ε

1−ε

 and r2(ε) =

 ∅ = 1
r2(ε, a) = 1

2
r2(ε, b) = 1

2

 .
Note that, being β rational, r is rational too.

Next, we introduce the first type of transformation.

Definition 22 Given a rational r ∈ R and a rational function ε 7→ C(ε)
defined over ε ∈ (0, 1), we define C ◦ r as a rational rC ∈ R such that:

rCi (ε, si) = a0(si) +
PolyNi (ε, si)

PolyDi (ε, si)
C(ε),

for every player i ∈ N and sequence si ∈ Si.

Remark 8 Note that the transformation in Definition 22 is always well defined,
as r(ε) ∈ R immediately implies rC(ε) ∈ R.

Letting β,βC ∈ P be such that β(ε), respectively βC(ε), has r(ε), respec-
tively rC(ε), as realization plan, it is a direct consequence of Definition 22 that
β and βC have the same limit points (as ε goes to zero).

Remark 9 lim
ε→0+

β(ε) = lim
ε→0+

βC(ε).

In the following lemma, we prove that, for any player i ∈ N and information
set u ∈ Ui, replacing r(ε) with rC(ε) does not affect player i’s optimal strategies
in the game following u, provided that ε is sufficiently small.

Lemma 5 Given a two-player 21 game in sequence form ΓS, let:
1. r ∈ R be rational;
2. ε 7→ C(ε) be a rational function defined over ε ∈ (0, 1).
Then, there exists ε̄ ∈ (0, 1) such that, for all ε ∈ (0, ε̄), and for any player

i ∈ N , information set u ∈ Ui, and choice c ∈ Cu, it holds:

max
r′i∈Ri:

r′i(σ(u)c)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i)⇐⇒

max
r′i∈Ri:

r′i(σ(u)c)=1

Gi(u, r
C(ε)

/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r
C(ε)

/
r′i).

21Let us remark that Lemma 5 holds for two-player games only, a counterexample is available
from authors at request.
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Proof: Let us fix a player i ∈ N , an information set u ∈ Ui, and a choice
c ∈ Cu. Given that each ri(ε, si) is a function of ε, we can write Gi(u, r(ε)

/
r′i) =

Ki(r
′
i) + Vi(ε, r

′
i), where Ki(r

′
i) ∈ [0, 1] is the component of Gi(u, r(ε)

/
r′i) that

does not depend on ε, while Vi(ε, r
′
i) is the part depending on ε. Let us consider

the case in which Ki(r
′
i) > 0 (as the case Ki(r

′
i) = 0 is trivial). Clearly, there

exists ε̄ ∈ (0, 1) such that, for any player i, information set u, and choice c, for
all ε ∈ (0, ε̄), Vi(ε, r

′
i) is smaller than Ki(r

′
i) independently of r′i. Thus, for all

ε ∈ (0, ε̄) we have that:

max
r′i∈Ri:

r′i(σ(u)c)=1

Ki(r
′
i) + Vi(ε, r

′
i) = max

r′i∈Ri:

r′i(σ(u))=1

Ki(r
′
i) + Vi(ε, r

′
i)⇐⇒

max
r′i∈Ri:

r′i(σ(u)c)=1

Ki(r
′
i) = max

r′i∈Ri:

r′i(σ(u))=1

Ki(r
′
i) and

max
r′i∈Ri:

r′i(σ(u)c)=1

Vi(ε, r
′
i) = max

r′i∈Ri:

r′i(σ(u))=1

Vi(ε, r
′
i).

Since there are only two players: Gi(u, r
C(ε)

/
r′i) = Ki(r

′
i) + Vi(ε, r

′
i)C(ε). This

proves the result. Q.E.D.

In the following, we are interested in particular transformations in which the
function ε 7→ C(ε) has a specific shape, which allows us to make polynomial any
rational r ∈ R.

Definition 23 Given a game in sequence form ΓS and a rational r ∈ R,
we define rp ∈ R as Cp ◦ r, where the function ε 7→ Cp(ε) has the following
expression:

Cp(ε) =
∏
i∈N

∏
si∈Si

PolyDi (ε, si).

It is an immediate consequence of Definition 23 that:

Remark 10 Given a rational r ∈ R, rp is polynomial.

Motivating Example Following Definition 23, let Cp(ε) = (1 − ε)4, which
allows us to obtain rp ∈ R such that:

rp1(ε) =


rp1(ε,∅) = 1
rp1(ε,A) = 1− ε+ 3ε2 − 3ε3 + ε4

rp1(ε,B) = ε− 3ε2 + 3ε3 − ε4
rp1(ε,AC) = 1− 2ε+ 6ε2 − 6ε3 + 2ε4

rp1(ε,AD) = ε− 3ε2 + 3ε3 − ε4

 and rp2(ε) =

 rp2(ε,∅) = 1
rp2(ε, a) = 1

2
rp2(ε, b) = 1

2

 .
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Now, we are ready to introduce a second type of transformation. First, given
a polynomial r ∈ R, for every player i ∈ N and sequence si ∈ Si, let us define
Li(si) ∈ Rd(si)+1 as the coefficients vector of Polyi(ε, si), i.e.,

Li(si)
T = [ a0(i, si) a1(i, si) . . . ad(si)(i, si) ]T .

Let also di = max
si∈Si

d(si) be the maximum degree of polynomials Polyi(ε, si).

Next, for every player i ∈ N , we define a matrix containing the coefficients of
polynomials defining ri, as follows.

Definition 24 Given a polynomial r ∈ R and a player i ∈ N , we define the
coefficients matrix Qi associated with ri as a matrix of dimensions |Si|× (di+1)
whose rows are the vectors Li(si)

T .

In the following, we use Qi[x] to denote the x-th column of matrix Qi. More-
over, Qi[x] 6= 0 means that Qi[x] is nonzero component wise.

We are now ready to define the transformation.

Definition 25 Given a game in sequence form ΓS and a polynomial r ∈ R,
we define a shift of r, written Shift(r), as a polynomial rs ∈ R such that, for
every player i ∈ N , the coefficients matrix Qsi associated with rsi is a matrix of
dimensions |Si| × (dsi + 1) that satisfies the following conditions:

1. Qi[0] = Qsi [0];
2. for all x ∈ {1, . . . , di} such that Qi[x] 6= 0, there exists si(x) ∈ {1, . . . , dsi}

such that Qi[x] = Qsi [si(x)];
3. for all x, y ∈ {1, . . . , di} with x < y such that Qi[x] 6= 0 and Qi[y] 6= 0, we

have that si(x) < si(y).

In words, for every player i ∈ N , Shift(r) modifies the shape of the polynomials
defining sequence probabilities ri(ε, si) in a way that preserves their ordering for
sufficiently small values of ε. The idea is that the resulting polynomials have the
same coefficients of the original ones, but the degrees are changed so that if two
coefficients were multiplied by the same power of ε in the original polynomials,
then the same holds in the new ones.

Remark 11 Let us remark that, given the coefficients matrices Qsi obtained by
applying a shift operation to a polynomial r ∈ R, we can easily recover their
associated polynomial rs ∈ R.

Letting β,βs ∈ P be such that β(ε), respectively βs(ε), has r(ε), respectively
rs(ε), as realization plan, it is a direct consequence of Definition 25 that:

Remark 12 lim
ε→0+

β(ε) = lim
ε→0+

βs(ε).
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Unfortunately, a generic shift transformation does not preserve player i’s op-
timal strategies at the information sets. In order to guarantee this, we need to
introduce particular shift transformations.

Definition 26 Given a game in sequence form ΓS, a polynomial r ∈ R, and
s ∈ N, we define a proportional shift of r with degree s, written s-Shift(r), as
a particular shift such that, for every player i ∈ N and x ∈ {1, . . . , di} with
Qi[x] 6= 0, it holds si(x) = xs− x.

Remark 13 Note that rs(ε) can be obtained from r ∈ R by substituting each
appearance of ε with εs, i.e., it is the case that rs(ε) = r(εs).

We can prove the following fundamental property of proportional shifts.

Lemma 6 Given a game in sequence form ΓS and a polynomial r ∈ R, there
exists ε̄ ∈ (0, 1) such that, for all ε ∈ (0, ε̄), and for any player i ∈ N , information
set u ∈ u, and choice c ∈ Cu, it holds:

max
r′i∈Ri:

r′i(σ(u)c)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r(ε)
/
r′i)⇐⇒

max
r′i∈Ri:

r′i(σ(u)c)=1

Gi(u, r
s(ε)

/
r′i) = max

r′i∈Ri:

r′i(σ(u))=1

Gi(u, r
s(ε)

/
r′i),

where rs ∈ R is defined as s-Shift(r), for some s ∈ N.

Proof: Let us fix a player i ∈ N , an information set u ∈ Ui, and a choice
c ∈ Cu. Given that each ri(ε, si) is a function of ε, we can write Gi(u, r(ε)

/
r′i) =

Ki(r
′
i) + Vi(ε, r

′
i), where Ki(r

′
i) ∈ [0, 1] is the component of Gi(u, r(ε)

/
r′i) that

does not depend on ε, while Vi(ε, r
′
i) is the part depending on ε. Let us consider

the case in which Ki(r
′
i) > 0 (as the case Ki(r

′
i) = 0 is trivial). Clearly, there

exists ε̄ ∈ (0, 1) such that, for any player i, information set u, and choice c, for
all ε ∈ (0, ε̄), Vi(ε, r

′
i) is smaller than Ki(r

′
i) independently of r′i. Thus, we can

write the following:

max
r′i∈Ri:

r′i(σ(u)c)=1

Ki(r
′
i) + Vi(ε, r

′
i) = max

r′i∈Ri:

r′i(σ(u))=1

Ki(r
′
i) + Vi(ε, r

′
i)⇐⇒

max
r′i∈Ri:

r′i(σ(u)c)=1

Ki(r
′
i) = max

r′i∈Ri:

r′i(σ(u))=1

Ki(r
′
i) and

max
r′i∈Ri

r′i(σ(u)c)=1

Vi(ε, r
′
i) = max

r′i∈Ri:

r′i(σ(u))=1

Vi(ε, r
′
i).

By definition, we have: Gi(u, r
s(ε)

/
r′i) = Ki(r

′
i)+Vi(ε

s, r′i), which concludes the
proof. Q.E.D.
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In the rest of this work, we are interested in a particular proportional shift
transformation in which s is equal to the maximum length of all players’ se-
quences.

Definition 27 Given a game in sequence form ΓS and a rational r ∈ R, we
define r∗ ∈ R as the result of a proportional shift smax-Shift(rp), where we have
smax = max

i∈N,si∈Si

|si|.

Motivating Example Following Definition 27, we can define r∗ ∈ R. First,
we report below the coefficients matrix Q1 associated with rp1.

x 0 1 2 3 4
∅ 1 0 0 0 0
A 1 −1 3 −3 1
B 0 1 −3 3 −1

AC 1 −2 6 −6 2
AD 0 1 −3 3 −1

Then, we apply an smax-Shift(rp) transformation, with smax = 2, which allows
us to obtain the following coefficients matrix Qs1.

x 0 1 2 3 4 5 6 7 8
∅ 1 0 0 0 0 0 0 0 0
A 1 0 −1 0 3 0 −3 0 1
B 0 0 1 0 −3 0 3 0 −1

AC 1 0 −2 0 6 0 −6 0 2
AD 0 0 1 0 −3 0 3 0 −1

Thus, r∗ is defined as follows:

r∗1(ε) =


r∗1(ε,∅) = 1
r∗1(ε,A) = 1− ε2 + 3ε4 − 3ε6 + ε8

r∗1(ε,B) = ε2 − 3ε4 + 3ε6 − ε8
r∗1(ε,AC) = 1− 2ε2 + 6ε4 − 6ε6 + 2ε8

r∗1(ε,AD) = ε2 − 3ε4 + 3ε6 − ε8

 and r∗2(ε) =

 r∗2(ε,∅) = 1
r∗2(ε, a) = 1

2
r∗2(ε, b) = 1

2

 .

6.2. Perturbed Sequence Form

Now, suppose we are given a quasi-perfect equilibrium β ∈ B of a game in
extensive form Γ, obtained for some completely mixed and rational β ∈ P. Let
r ∈ R be such that r(ε) is the realization plan of β(ε). In the following, let us
define r∗ ∈ R as in Definition 27, and let β∗ ∈ P be such that β∗(ε) has r∗(ε)
as realization plan. For ease of presentation, given β ∈ B, for every player i ∈ N
and sequence si ∈ Si, we say that si ∈ S(β) if and only if βi (c) > 0, where c
is the last choice in sequence si, i.e., S(β) represents the support of β, which is
the set of sequences whose last choice is played with positive probability in β.
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Definition 28 Given a quasi-perfect equilibrium β ∈ B of a game in extensive
form Γ, we define its associated perturbed sequence form (ΓS , {`βi }i∈N ) such that,
for any player i ∈ N and sequence si ∈ Si:
• if si ∈ S(β), then `βi (ε, si) = εdmin(s

′
i)+|si|−|s

′
i|, where s′i ∈ Si is the longest

sequence such that s′i @ si and s′i /∈ S(β), while dmin(s′i) is the minimum
degree of ε in the polynomial defining r∗i (ε, s

′
i);

• if si /∈ S(β), then `βi (ε, si) = r∗i (ε, si).

Remark 14 Note that, given Definition 28 and how the transformations in the
previous sections are performed, it is always the case that each `βi is well defined
and satisfies the conditions of Definition 19. Thus, the perturbed sequence form
(ΓS , {`βi }i∈N ) is always well defined.

Motivating Example Let us return to our motivating example and show
how the perturbed sequence form (ΓS , {`βi }i∈N ) is defined. Given the definition
of β ∈ B, we have S(β) = {A,AC, a, b} and, thus:

`1(ε) =


`1(ε,∅) = 1
`1(ε,A) = ε
`1(ε,B) = ε2 − 3ε4 + 3ε6 − ε8
`1(ε,AC) = ε2

`1(ε,AD) = ε2 − 3ε4 + 3ε6 − ε8

 and `2(ε) =

 `2(ε,∅) = 1
`2(ε, a) = ε
`2(ε, b) = ε

 .
It is easy to check that each realization plan profile r∗(ε) is a Nash equilibrium
of ΓS(ε), provided that ε is sufficiently small.

Theorem 3 Given a quasi-perfect equilibrium β ∈ B of a game in extensive
form Γ, let (ΓS , {`βi }i∈N ) be its associated perturbed sequence form. Then, r∗(ε)
defines a sequence of Nash equilibria of perturbed games ΓS(ε) and β is a limit
point (as ε goes to zero) of β∗(ε).

Proof: Let us consider an ε̄ ∈ (0, 1) such that, for all ε ∈ (0, 1), r∗(ε) is a
well-defined realization plan profile of ΓS(ε) and Lemmas 5 and 6 hold. Clearly,
given Remarks 9 and 12, we have that β is a limit point (as ε goes to zero)
of β∗(ε). Moreover, given Definition 28, we have that, for every player i ∈ N ,
information set u ∈ Ui, and choice c ∈ σ (u), if βi (c) = 0, then r∗(εk, σ (u) c) =

`βi (ε, σ (u) c), while, whenever βi (c) > 0, we have r∗(ε, σ (u) c) > `βi (ε, σ (u) c).
Invoking Lemma 4 and Theorem 1 allows us to conclude that r∗(ε) is a Nash
equilibrium of ΓS(ε). Q.E.D.

7. CONCLUSION

The main contribution of this paper is the characterization of quasi-perfect
equilibria of two-player games as limit points of sequences of Nash equilibria of
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a particular class of perturbed games in sequence form. This result is formalized
in Theorems 2 and 3.

Beside the characterization of quasi-perfect equilibria for two-player games,
the results of this paper show that the sequence form defined by Von Stengel
[1996] is not merely a computationally efficient representation of a game, but it
also plays a crucial role when defining the properties of the solution concepts.
In particular, as shown in Theorem 1 and Lemma 4, our perturbed games in
sequence form allow us to capture game features that cannot be expressed using
the extensive form, such as the idea of playing optimally against opponents’
trembles in the game following an information set, which is the core idea behind
quasi-perfection. More precisely, while extensive-form perfect equilibria are the
limit points of Nash equilibria of perturbed games in extensive form, for any
vanishing perturbation applied to players’ choices, quasi-perfect equilibria are
the limit points of Nash equilibria of perturbed games in sequence form, once a
specific class of vanishing perturbations is applied to players’ sequences.

Interestingly, as discussed in Section 3.3, we can map perturbations defined
on the extensive form to associated perturbations applied to the sequence form,
and vice versa. However, this mapping returns perturbations that depend also
on the strategies themselves and not only on the perturbation magnitude. This
means that quasi-perfect equilibria are also the limit points of Nash equilibria of
perturbed games in extensive form, when the perturbation applied to a player’s
choice depends on the player’s behavioral strategy for previous choices in the
game tree. We recall that an analogous result holds for extensive-form perfect
equilibria: they are the limit points of Nash equilibria of perturbed games in
sequence form, when the perturbation applied to a player’s sequence depends on
the player’s realization plan. Thus, even if the sequence form and the extensive
form are equivalent, the extensive form is the most natural form when dealing
with extensive-form perfect equilibria, while the sequence form is the most natu-
ral form when dealing with quasi-perfect equilibria. We remark that the sequence
form is superior to the extensive form for any computational task.

A final interesting aspect is that Theorem 3, once again, shows the marked
difference between refinements in two-player and n-player games. In particu-
lar, Lemma 5 cannot be easily extended to general n-player games. However,
this lemma is necessary only when the quasi-perfect equilibrium of interest can
only be obtained for a sequence of completely mixed behavior strategy profiles
described by rational functions in ε. Therefore, for n-player games a weaker char-
acterization holds, which only encompasses quasi-perfect equilibria that are ob-
tainable with sequences of completely mixed behavior strategy profiles described
by polynomial functions in ε.
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