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Abstract

This paper is concerned with preference-aggregation rules satisfying desirable

efficiency and solidarity requirements. We formulate weaker versions of existing sol-

idarity axioms and show how they imply, in conjunction with strategy-proofness, the

existence of reference outcomes holding privileged status. We propose a new class of

rules, fixed order status-quo rules, that can be productively contrasted to their clos-

est counterparts in the literature, status-quo rules based on the least upper bound

of a lattice. Fixed order status-quo rules satisfy stronger efficiency requirements

than lattice status-quo rules but have weaker, though still significant, solidarity

properties. A subfamily based on lexicographic orders is analyzed further. Fixed

order status-quo rules are characterized by strategy-proofness, strong efficiency, and

a third axiom, unanimity-basedness.
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1 Introduction

Consider a group of agents submitting linear orderings over a set of alternatives. A rule

is a function synthesizing the agents’ individual preferences into a single social ordering.

Originating in the seminal work of Arrow [3], this modeling framework corresponds to a

variety of decision-making settings. For example, academic departments might wish to

determine an ordered list of job-market candidates on the basis of the faculty members’

preferences. As the availability of candidates is not known in advance, a single name

will not do and an ordered list is called for.

Arrovian preference aggregation runs into difficulties when issues of interpersonal

comparability come into play. Orderings are relatively complex mathematical objects

and determining when one is better than another on the basis of an agent’s preferences

is not straightforward. This has complicated the formulation of efficiency criteria and

impeded the study of strategic interaction within the model. For if we cannot readily

compare two orderings how are we to know whether an agent will strategically misrep-

resent his preferences to obtain one over another?

To address this issue of comparability, Bossert and Sprumont [5] broke impor-

tant new ground by employing a betweeness relation originally due to Grandmont [14].

Specifically, they defined the prudent extension of an agent’s preferences over alterna-

tives to her preferences over orderings. According to the prudent extension, an ordering

is deemed at least as good as another if and only if, when considering the agent’s own

preferences, it unambiguously dominates it (hence the adjective “prudent”). This domi-

nance occurs when all pairs of alternatives that the agents’ preferences have in common

with one ordering are also present in the other. This way of comparing orderings nat-

urally lead to efficiency and strategy-proofness criteria that were subsequently used by

Bossert and Sprumont to analyze, and in some cases axiomatize, three classes of rules

(monotonic majority alteration, status-quo, and Condorcet-Kemeny).

Along with efficiency and strategy-proofness, fairness is a critical component of

any mechanism. Within the preference aggregation setting, we follow Harless [10] and

channel fairness as a concern for solidarity. Solidarity “embodies the idea of a common

endeavor and shared outcome” (Harless [10], p. 74) and thus holds considerable appeal

in the design of social policy. At a high level, solidarity requires that agents be affected

in the same manner by events they cannot control. Different meanings given to the

components of this qualitative definition lead to different formal concepts. Bossert

and Sprumont considered the property of population monotonicity whereby agents are

required to be unambiguously at least as well off if a subset of their peers choose to
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depart the aggregation process. Along a similar vein, Harless [10] proposed an axiom

of welfare dominance, a property originating in models of binary choice (Moulin [17]),

stipulating that when an agent changes her preferences, all others must be affected in

the same unambiguous way. If the outcome changes, either they all clearly benefit or

they all clearly lose.

The starkness of unambiguous comparisons based on the prudent extension means

that population monotonicity and welfare dominance are very strong properties. In-

deed, when combined with mild efficiency requirements, welfare dominance delivers an

impossibility result (Harless [10]). A more positive picture emerges if we apply popu-

lation monotonicity, as efficiency and population monotonicity uniquely characterize a

class of rules which Bossert and Sprumont named status-quo rules [5]. A similar char-

acterization obtains when efficiency is coupled with a significant weakening of welfare

dominance known as adjacent welfare dominance (which restricts attention to changes

in preferences that involve a single adjacent pair of alternatives in the ordering of a

single agent [10]). All of the above characterizations and impossibilties are consistent

with findings in different models of social choice (e.g., Gordon [11, 12, 13], Harless [9])

in which solidarity principles significantly restrict the set of efficient aggregation proce-

dures.

Status-quo rules are designed to Pareto-improve upon an exogenous reference or-

dering. They do so by considering agent preferences and taking the least upper bound

of a suitably-defined lattice (for reasons that will become clear, from now on we refer to

these rules as lattice status-quo rules). Lattice status-quo rules satisfy group strategy-

proofness, but fail a stricter standard of efficiency known as strong efficiency. Strong

efficiency ensures that when considering any binary comparison of alternatives, the rule

respect the unanimous wishes of the population. And while violations of this prop-

erty don’t necessarily affect the rule’s efficiency in a Pareto sense, they do occasionally

lead to outcomes that are hard to square with intuitive notions of efficient aggrega-

tion. Pathological examples of such undesirable situations are easy to construct (see

Athanasoglou [4] and Example 4 in the present paper).

Contribution. Considering the above discussion, this paper poses a simple question.

Keeping our non-manipulability criterion fixed, what happens if we strengthen our ef-

ficiency requirements and partially relax our concern for solidarity? Do other rules

emerge? If so, how are they related to lattice status-quo rules?

The efficiency improvement we employ in our inquiry is the strong efficiency criterion

mentioned earlier. As regards solidarity, we introduce novel weaker versions of popu-
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lation monotonicity and welfare dominance. Weak population monotonicity requires

that the departure of an agent not make some of the remaining agents unambiguously

better off while others unambiguously worse off. Similarly, weak welfare dominance

requires that a change in preferences by one agent not leave some agents unambigu-

ously better off while others unambiguously worse off. Middle-of-the-road situations in

which preference changes/agent departures lead to new outcomes that are not directly

comparable (in the prudent extension sense) to current ones are allowed.

Weak solidarity criteria can be interpreted as a weak version of the envy-freeness

requirement often encountered in social choice. If they are met, no agent would strongly

desire to trade places with another, were the aggregation outcome to change due to

factors that are out of her control. Though milder than their strong counterparts, the

constraints they impose on the aggregation process are not trivial; it is easy to show

that, except for lattice status-quo rules, none of the other strategy-proof rules considered

by Bossert and Sprumont satisfy them. In fact, when combined with strategy-proofness,

weak solidarity implies the existence of a reference ordering enjoying privileged status

in the aggregation procedure. This ordering is such that, if the preferences of at least

one agent coincide with it, then the rule must pick it. If strong efficiency is added to

the rule’s requirements then a structured set of reference orderings, to accommodate a

number of possible patterns of unanimous agreement, emerges.

Weakening the solidarity requirement gives rise to a different kind of status-quo

rules, fixed order status-quo rules. These rules take into account an exogenous, appro-

priately defined partial order over orderings, and select the first-ranked element on this

list consistent with strong efficiency.1 The set of admissible partial orders over orderings

is very broad, and encompasses all linear orders. By construction, fixed order status-

quo rules are strongly efficient. They are also shown to satisfy group strategy-proofness,

thus retaining the incentive properties of their lattice counterparts. As regards solidar-

ity, they satisfy the stronger group versions of weak population monotonicity and weak

welfare dominance.

We proceed to analyze further a compelling subfamily of fixed order status-quo rules

in which the partial order over orderings has lexicographic structure. These rules imply

an aggregation operator that, subject to respecting strong efficiency, stays as close as

1In fairness, it should be noted that a sub-class of fixed order status-quo rules were mentioned

once previously in the literature, in the concluding section of Bossert and Storcken [6], where the

authors briefly discuss the tightness of their impossibility results. Though familiar with the Bossert-

Storcken paper, I became aware of this fact only after having identified these rules myself via numerical

simulations.
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possible, in the lexicographic sense, to a given reference ordering. Evidently, greater

importance is placed on adhering to the recommendations of the status-quo regarding

its top-ranked alternatives, a feature that may be desirable in several practical settings.

An additional appealing property of lexicographic status quo rules is that they can be

implemented with an efficient polynomial-time algorithm. This is not the norm for

preference aggregation which tends to produce difficult combinatorial problems [7].

Finally, we show that fixed order status-quo rules are characterized by strategy-

proofness, strong efficiency and a third axiom, unanimity-basedness. Unanimity-basedness

is a technical condition imposing that the rule be robust to changes in preferences that

do not alter the structure of unanimous agreement in the population. Lattice-status quo

rules are also shown to satisfy it.

Relation to earlier literature. The interplay between solidarity and efficiency has

been the focus of earlier work in social choice (e.g., Thomson [21], Ching and Thom-

son [8], Gordon [11]). Consistent to the preference aggregation setting, these early papers

were concerned with models in which agents submit linear orderings over alternatives.

Their main objective was to explore the compatibility of efficiency and solidarity in a

variety of contexts. An important difference between them and the current work regards

the outcome space: in [21, 8] agent preferences were mapped to the unit interval, while

in [11] to an arbitrary set.

Along related lines, preference aggregation can be viewed as a special case of

attribute-based social choice models (Nehring and Puppe [18], Gordon [13]). Here,

the preference space involves a collection of binary attributes that may be logically re-

lated to one another. An implication of the results in [18, 13] is that, in the context

of preference aggregation, solidarity is incompatible with very mild notions of efficiency

such as voter sovereignty (i.e., onto-ness) and unanimity. To overcome this impossibility,

Gordon [13] proposed a family of rules that is similar to those explored in the present

work, unanimity rules, for all attribute domains in which they are well-defined. These

rules consider a target outcome on whose binary attributes all agents vote separately.

For a given attribute, the corresponding target outcome is changed only if all agents

prefer its complement. When they are well-defined, these rules are characterized by a

combination of appealing solidarity, incentive-compatibility, and efficiency axioms.

In line with the impossibility result of [18, 13] cited above, unanimity rules are

not well-defined in the preference aggregation domain. The primary reason behind this

negative result is the assumption of complete preferences over the outcome space. This

element suggests a unifying theme to the recent literature on preference aggregation that
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this paper contributes to. Bossert and Sprumont, Harless [10] and the current study all

attempt to overcome, in different ways, the difficulties posed by complete preferences

by (i) considering incomplete preferences over the outcome space and (ii) modifying

the efficiency and solidarity axioms. All three are ultimately successful in producing

possibility results.

Paper outline. The paper is organized as follows. Section 2 presents the formal

model and analyzes the relevant notions of efficiency, solidarity, and strategy-proofness

and their implications. Section 3 introduces lattice- and fixed order status-quo rules

and establishes their formal properties. It also discusses a compelling subfamily of rules

based on lexicographic orders. Section 4 offers a characterization of fixed order status-

quo rules and Section 5 presents some concluding thoughts. The Appendix collects all

proofs.

2 Model description

Let A denote a finite set of m ≥ 3 alternatives and N a finite set of n ≥ 2 agents. N

is allowed to vary in the countable set N .

Agents in N submit linear orderings over alternatives in A (i.e., complete, tran-

sitive, and antisymmetric binary relations) and the set of such linear orderings is denoted

by R. From now on we simply refer to elements of R as orderings. Given an ordering

R and a pair of alternatives (a, b), we use the notation (a, b) ∈ R to indicate that a

is at least as good as b according to R. A preference profile RN = (R1, R2, ..., Rn)

is an n-tuple of orderings, representing the preferences of all agents in N (Ri denotes

the preferences of agent i ∈ N). Given a population N ⊂ N , the corresponding set of

preference profiles is given by RN . An rule is a function f :
⋃

N∈N
RN 7→ R, assigning

to each preference profile an ordering.

Consistent with Grandmont [14], for any R,R′, R′′ ∈ R, we say that R′′ is be-

tween R and R′, and write R′′ ∈ [R,R′], if and only if R′′ agrees with R whenever

the latter agrees with R′. That is, R′′ ∈ [R,R′] if and only if R′′ ⊇ R ∩ R′. Bossert

and Sprumont [5] defined the prudent extension of R ∈ R as the binary relation R

over R given by

R′′ R R′ ⇔ R′′ ∈ [R,R′], for all R′′, R′ ∈ R.

Hence, for an agent holding preferences R, R′′ is at least as good as R′ if and only if

R′′ is between R and R′, and it is strictly better if also R′′ 6= R′. Since not all pairs
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of orderings are comparable in this way, the relation R is a partial order (i.e., a

reflexive, transitive, and antisymmetric binary relation) on R. Indeed, the relation R

ranks one ordering over another if and only if the former unambiguously dominates

the latter. As such, it can be thought of as the most conservative relation over orderings

that is consistent with an agent having preferences R.

2.1 Axioms

Let f denote a rule. We begin with a discussion of concepts relating to efficiency. Bossert

and Sprumont used the prudent relation to propose the following property.

Efficiency. There do not exist N ⊂ N , RN ∈ RN , and R′ ∈ R such that R′ ∈
[Ri, f(RN)] for all i ∈ N and R′ 6= f(RN).

Thus, a rule satisfies efficiency if it produces an ordering such that there exists no

other ordering that all agents unambiguously prefer to it. It thus provides an analog of

Pareto efficiency for the economic environment at hand.

An additional property that Bossert and Sprumont discussed is strong efficiency

(they referred to it as “local unanimity” – we adopt the arguably better-suited name

used by Harless [10]).

Strong efficiency. For all N ⊂ N , RN ∈ RN , f(RN) ⊇
⋂
i∈N

Ri.

Introduced by Arrow [3], strong efficiency applies to preference profiles in which

there is unanimous agreement over individual binary comparisons. When such unani-

mous agreement is present, strong efficiency requires that the rule respect its wishes. As

its name suggests, strong efficiency implies efficiency (see footnote 11 in Harless [10]).2

The reverse direction can be easily seen not to hold [5, 4].

We now define our notion of non-manipulability. Given N ⊂ N , RN ∈ RN and

R′i ∈ R, the notation
(
R′i, RN\i

)
denotes the profile that is identical to RN except for

the preferences of agent i ∈ N that are equal to R′i.

Strategy-proofness. There do not exist N ⊂ N , RN ∈ RN , i ∈ N , R′i ∈ R such

that f(R′i, RN\i) ∈ [Ri, f(RN)] and f(R′i, RN\i) 6= f(RN).

Strategy-proofness ensures that by misreporting one’s preferences it is not possible

to obtain an ordering that unambiguously dominates that produced under truthfulness.

It imposes a minimal standard of non-manipulability.

2Note that Bossert and Sprumont [5] contains a typo in this regard, as it claims the two properties

are independent.
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Let us now discuss properties pertaining to solidarity. We begin with the strong

solidarity properties discussed by Harless [10].

Welfare dominance. For all N ⊂ N , RN ∈ RN , i ∈ N , R′i ∈ R, either f(RN) ∈⋂
j∈N\i

[Rj, f(R′i, RN\i)] or f(R′i, RN\i) ∈
⋂

j∈N\i
[Rj, f(RN)].

Hence, welfare dominance requires that whenever an agent changes his preferences

then –in the event of a change in outcome– all other agents be affected in the same

unequivocal way: either they all unambiguously benefit or they all unambiguously lose.

In particular, there is no room for before/after outcomes that are not comparable via

Bossert and Sprumont’s prudent extension.

As mentioned in the introduction, welfare dominance is a strong requirement that

is incompatible with efficiency [10]. Given this impossibility result, we are interested in

relaxations of welfare dominance that preserve concern for solidarity while allowing for

some measure of efficiency. Harless [10] tackled this question by considering a version of

welfare dominance in which before/after unambiguous comparisons are required only for

a restricted domain of preference changes involving a single agent and a single adjacent

pair of alternatives.

Adjacent welfare dominance. For all N ⊂ N , RN ∈ RN , i ∈ N , and R′i ∈ R
such thatR′i andRi are adjacent, either f(RN) ∈

⋂
j∈N\i

[Rj, f(R′i, RN\i)] or f(R′i, RN\i) ∈⋂
j∈N\i

[Rj, f(RN)].

Harless showed that adjacent welfare dominance is compatible with efficiency but

cannot be reconciled with strong efficiency. In addition, as mentioned in the introduc-

tion, he characterized lattice status-quo rules with these two properties.

We pursue a different relaxation of welfare dominance and look for criteria that

leave the domain of preference changes intact but weaken the before/after dominance

requirement. To this end, we introduce the following concept of solidarity.

Weak welfare dominance. For all N ⊂ N , RN ∈ RN , i ∈ N , R′i ∈ R, there

do not exist j, k ∈ N \ i such that f(RN) ∈ [Rj, f(R′i, RN\i)] and f(R′i, RN\i) ∈
[Rk, f(RN)] and f(RN) 6= f(R′i, RN\i).

Weak welfare dominance requires that a change in an agent’s preferences not result

in diametrically-opposed outcomes for some of the remaining agents. In particular, it

cannot be the case that some agents unambiguously benefit from this change while others

unambiguously lose. This element suggests an interpretation of weak welfare dominance

as a form of envy-freeness: if an agent changes her preferences, none of the remaining
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ones should strongly wish to switch identities with another. Note that middle-of-the-

road situations in which the before/after outcomes are not comparable via the prudent

extension are allowed.

Weak welfare dominance is clearly implied by welfare dominance. On the other

hand, it is logically unrelated to adjacent welfare dominance. Which of the two proper-

ties is the more compelling is, to some extent, a subjective matter having to do with the

relative importance we place on the two pillars of the solidarity principle. If we value

the sharpness of the before/after dominance criterion more highly than the compre-

hensiveness of the before/after changes in preferences, then adjacent welfare dominance

resonates more strongly than weak welfare dominance. Conversely, if we care more

about covering all possible preference changes than we do about ensuring ultra-robust

before/after comparisons, then we should prefer weak welfare dominance.3

Related solidarity properties, both strong and weak, emerge when agents enter and

exit the population.

Population monotonicity. For all N ⊂ N , RN ∈ RN , i ∈ N , f(RN\i) ∈⋂
j∈N\i

[Rj, f(RN)].4

Weak population monotonicity. For all N ⊂ N , RN ∈ RN , i ∈ N , there do

not exist j, k ∈ N \ i such that f(RN) ∈ [Rj, f(RN\i)] and f(RN\i) ∈ [Rk, f(RN)]

and f(RN) 6= f(RN\i).

Population monotonicity was first introduced by Thomson [19, 20] in a bargaining

context. It stipulates that when an agent departs from the population, all remaining

agents must find the new ordering unambiguouly at least as good as the previous one.

The starkness of this before/after comparison renders population monotonocity a very

strong requirement. Analogously to adjacent welfare dominance, population monotonic-

ity is compatible with efficiency but cannot be reconciled with strong efficiency (Bossert

and Sprumont [5]). Moreover, again echoing earlier findings, efficiency combined with

population monotonicity characterize lattice status-quo rules [5].

As before, we propose a weakening of this solidarity property by relaxing the strin-

gency of before/after comparisons. Weak population monotonicity imposes that, when

an agent departs, no agents are left unambiguously worse off while others are left un-

3Especially since weak welfare dominance can be meaningfully strengthened to cover all possible

changes in preferences by groups of agents (see next Section).
4Note how population monotonicity implies the stronger conclusion that for all S ⊂ N we have:

f(RN\S) ∈
⋂

j∈N\S
[Rj , f(RN )].
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ambiguously better off. It is clearly implied by population monotonicity and the envy-

freeness interpretation that we discussed in the case of weak welfare dominance carries

over to this property too.

2.2 How discriminating are weak notions of solidarity?

The solidarity requirements just presented, while weaker than their stronger counter-

parts, retain a fair amount of bite. Indeed, with the exception of lattice status-quo rules,

none of the other classes of strategy-proof rules examined by Bossert and Sprumont (i.e.,

Condorcet-Kemeny and monotonic majority alteration) satisfy them. Before showing

why this is true definitions are in order.

We begin with Condorcet-Kemeny rules, originating in the influential writings of

Condorcet in the 18th century. In modern times these rules were formalized by Ke-

meny [16] and axiomatized by Young and Levenglick [22]. Given two orderings R,R′ ∈
R, let D(R,R′) = (R \ R′) ∪ (R′ \ R). The Kemeny distance between R and R′,

denoted by δ(R,R′), is defined as δ(R,R′) = |D(R,R′)|. Let � be an ordering on R.

Given N ⊂ N , RN ∈ RN , let

K(RN) = arg min
R∈R

∑
i∈N

δ(R,Ri).

The �-Condorcet-Kemeny rule is defined as the aggregation rule which assigns

to each N ⊂ N and RN ∈ RN the strict ordering belonging to K(RN) ranked first

according to �.

We now turn to monotonic majority alteration rules, introduced by Bossert and

Sprumont. Given N ⊂ N and RN ∈ RN , the majority relation M(RN) on A is a

complete and reflexive relation such that, for all (a, b) ∈ A × A, we have a M(RN) b

if and only if

|{i ∈ N : aRib}| ≥ |{i ∈ N : bRia}| .

The majority relation is antisymmetric when the number of agents is odd but may fail

to be so for n even. Thus, a tie-breaking rule is needed: Given a tournament (i.e., a

complete, transitive, and asymmetric relation) � on A, define M�(RN) on A to be a

complete, reflexive and antisymmetric binary relation such that, for all (a, b) ∈ A×A,

we have a M�(RN) b if and only if

|{i ∈ N : aRib}| > |{i ∈ N : bRia}| ,

or |{i ∈ N : aRib}| = |{i ∈ N : bRia}| and a � b.
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Clearly, M�(RN) can fail to be transitive and thus may not always lead to an ordering.

A monotonic majority alteration rule alters M�(RN) to obtain a transitive

relation (and thus a unique ordering) in a way that is agreement-monotonic (for detailed

definitions see Section 4 in [5]). Furthermore, if M�(RN) is itself an ordering, then the

monotonic majority alteration rule must pick it.

Proposition 1 No Condorcet-Kemeny or monotonic majority alteration rule sat-

isfies either weak welfare dominance or weak population monotonicity.

2.3 Implications of weak solidarity: emergence of a reference ordering

In this section we explore some important implications of the weak solidarity axioms we

have just introduced. The main result we obtain is that weak solidarity in combination

with strategy-proofness implies the existence of an ordering enjoying privileged status.

This ordering may be interpreted as a reference outcome that the aggregation process

must favor when determining the social preference.

Theorem 1 Suppose rule f satisfies stategy-proofness, weak welfare dominance

and weak population monotonicity. There exists a reference ordering R0 such

that for all N ⊂ N and RN ∈ RN , we have f(RN) = R0 whenever there exists

i ∈ N such that Ri = R0.

Theorem 1 demonstrates that weak solidarity combined with strategy-proofness

imply the existence of an ordering R0 that functions as a reference point for the rule.

The defining characteristic of this ordering is that, as soon as there exists at least one

agent whose preferences coincide with it, the rule must select it. Thus, two potentially

very different profiles must yield the same aggregate outcome, provided they both include

at least one agent with preferences R0.

While Theorem 1 establishes an important invariance constraint on the set of

strategy-proof rules satisfying weak solidarity, it does not offer guidance for profiles

in which no agent holds preferences R0. The following result shows how adding strong

efficiency to the rule requirements helps, at least partially, in addressing this issue.

Proposition 2 Suppose rule f satisfies stategy-proofness, weak welfare dominance,

weak population monotonicity and strong efficiency. Suppose U is a partial order

on A such that
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(i) for all R ∈ R such that R ⊇ U there exists R′ ∈ R such that R ∩ R′ = U

(“cycle” partial orders), or

(ii) there exist exactly two orderings R1, R2 satisfying R1 ∩ R2 = U and for all

R,R′ ∈ R satisfying R′, R′′ ⊇ U either R′ ∈ [R1, R′′] and R′′ ∈ [R′, R2], or

R′′ ∈ [R1, R′] and R′ ∈ [R′′, R2] (“chain” partial orders).

There exists a reference ordering Ru such that, for all N ⊂ N and RN ∈ RN

satisfying
⋂
l∈N

Rl = U , we have f(RN) = Ru whenever there exists i ∈ N such that

Ri = Ru.

Proposition 2 establishes that, when combined with strong efficiency, weak solidarity

and strategy-proofness extend the existence of reference orderings to profiles in which

no agents hold preferences R0 and/or where picking R0 would violate strong efficiency.

These profiles have a specific kind of structure as they imply patterns of unanimous

agreement that are “cyclic” or “chain-like”. Figure 1 provides illustrative examples for

the case m = 4.5

Figure 1: Let m = 4. Partial orders U1, U2 [resp., U3] satisfy the assumptions of part

(i) [resp., (ii)] of Proposition 2.

Conversely, Figure 2 provides two examples of partial orders that violate the as-

sumptions of Proposition 2.

5To avoid excessive clutter we omit all pairs of identical alternatives in the statement of partial orders

U . We continue this practice repeatedly throughout the text.
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Figure 2: Let m = 4. Examples of partial orders violating the assumptions of Proposi-

tion 2.

Finally, when there are only m = 3 alternatives, reference orderings can be defined

for all patterns of unanimous agreement.

Corollary 1 Suppose m = 3 and rule f satisfies stategy-proofness, weak welfare

dominance, weak population monotonicity and strong efficiency. For all partial

orders U on A there exists a reference ordering Ru such that, for all N ⊂ N and

RN ∈ RN satisfying
⋂
l∈N

Rl = U , we have f(RN) = Ru whenever there exists i ∈ N

such that Ri = Ru.

Example 1. Let A = {a, b, c} and suppose f satisfies the conditions of Theorem 1.

There will exist an ordering R0, say R0 = abc, such that whenever at least one agent

has preferences R0, the rule must pick it. Now, suppose that f is also strongly efficient.

Consider the partial order on A given by U = {(b, a)}. What Corollary 1 says is the

following: There exists another orderingRu, sayRu = bca, such that for allN ⊂ N and

profiles RN satisfying
⋂
l∈N

Rl = {(b, a)}, if there exists an agent i ∈ N with preferences

Ri = Ru = bca then f(RN) = bca.

3 Status-quo rules

We begin this section with a formal definition of two rules that meet various efficiency

and solidarity properties. The common thread running through them is the existence

of an exogenous reference outcome that they seek to Pareto-improve upon.
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3.1 Improving upon a status quo in two different ways

3.1.1 Lattice status-quo rules

These rules were introduced in Bossert and Sprumont [5] and refined and extended

by Harless [10]. Given an ordering R0 ∈ R and its prudent extension R0, Guil-

baud and Rosenstiehl [15] proved that (R,R0) is a lattice so that every collection

{R1, R2, ..., RT} ⊆ 2R has a unique least upper bound, i.e., a unique ordering R ∈ R
such that

R R0 Rt, for all t ∈ {1, 2, ..., T}, (1)

and [
R′ R0 Rt, for all t ∈ {1, 2, ..., T}

]
⇒ R′ R0 R. (2)

With this notion at hand, f is a lattice status-quo rule with reference orderingR0 if,

for all N ⊂ N , RN ∈ RN , f(RN) equals the unique ordering satisfying conditions (1)-

(2) when applied to the collection {Ri : i ∈ N}. 6

3.1.2 Fixed order status-quo rules

We now turn to the second, novel class of rules. Before proceeding, we define a class of

partial orders on R that will prove essential.

A partial order � on R is conclusive if, for every partial order U on A, there

exists (a unique) Ru ∈ R such that (i) Ru ⊇ U and (ii) Ru � R for all R ∈ R
satisfying R ⊇ U .

We note an obvious corollary of the above definition.

Corollary 2 All linear orders on R are conclusive partial orders on R.

Example 2. An example of a conclusive partial order on R is the following. Let

A = {a, b, c} and define � as per Figure 3. That is, (i) abc � R for all R ∈ R,

(ii) cab � bca, cba, acb, (iii) bac � bca, cba, and (iv) cba � bca. The respective Ru

orderings are summarized in Table 1. We see clearly how � is agnostic on the relative

order of the pair {cab, bac}, as well as pairs {acb, cba} and {acb, bca}.
By contrast, the partial order � such that only abc � R for all R ∈ R, with no

other binary comparisons specified, is clearly not conclusive.

6While we are concerned with the strict version, it is worthwhile to note that Harless [10] extended

lattice status-quo rules to account for status-quo weak orderings (i.e., where R0 is a complete, reflexive,

and transitive binary relation on A).
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Example 2: Figure 3 and Table 1

Figure 3: A schematic view of �. Two or-

derings R 6= R̃ are connected by a directed

path originating in R if and only R � R̃. A

question mark indicates undetermined bi-

nary comparisons.

U Ru

∅ abc

all subsets of

{(a, b), (a, c), (b, c)}
abc

{(c, a)} cab

{(c, b)} cab

{(c, a), (c, b)} cab

{(b, a)} bac

{(b, a), (b, c)} bac

{(b, a), (c, a)} cba

Table 1: The associated Ru or-

derings for each partial order U

on A. Pairs of identical alterna-

tives are omitted in the statement

of the U ’s. U ’s implying unan-

imous preferences are also omit-

ted.

Example 3. A more subtle non-conclusive partial order is the following. Let A =

{a, b, c} and consider a partial order � on R such that for all pairs of orderings R1

and R2 we have δ(abc, R1) < δ(abc, R2) ⇒ R1 � R2. Thus, � assigns first rank to

ordering abc and orders the remaining elements of R in increasing Kemeny distance to

it; the smaller the distance, the better the rank. Binary comparisons of orderings with

equal Kemeny distance from abc are undetermined. Thus, for example, bac � cab and

{bac 6� acb, acb 6� bac}. Consider now U = {(c, a)}, implying {R ∈ R : R ⊇ U} =

{cab, bca, cba}. Since δ(abc, cab) = δ(abc, bca) = 2 < δ(abc, cba) = 3, there does not

exist an ordering Ru satisfying both (i) Ru ⊇ U and (ii) Ru � R for all R ∈ R such

that R ⊇ U .

Given a conclusive partial order � on R, f is a fixed order status-quo rule

associated with � if, for all N ⊂ N and RN ∈ RN ,

f(RN) = R, where R ⊇
⋂
i∈N

Ri and R � R′ for all R′ ∈ R s.t. R′ ⊇
⋂
i∈N

Ri.

(3)
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Thus, for each profile RN , a fixed order status-quo rule associated with � assigns

to it the first-ranked ordering according to � that satisfies strong efficiency. Since �
is conclusive, this ordering will be unique.

Fixed order status-quo rules can be interpreted in the following way. Suppose �
represents a pre-existing consensus on the relative desirability of different outcomes.

Moreover, assume the recommendations of� should always be heeded, unless they result

in unanimous opposition on the part of the agents. As we are dealing with orderings,

such opposition is interpreted as unanimous disagreement regarding individual binary

comparisons. Thus, the reasoning goes, the decision-maker should consult� and pick its

first-ranked element that does not meet such resistance. The fact that � is a conclusive

partial order ensures that this element is unique and thus that the rule is well-defined.

3.2 Properties of status-quo rules

We begin this section by stating stronger versions of our strategy-proofness and solidarity

axioms involving groups of agents.

Group strategy-proofness. There do not exist N ⊂ N , RN ∈ RN , S ⊂ N and

R′S ∈ RS such that f(R′S, RN\S) ∈
⋂
i∈S

[Ri, f(RN)] and f(R′S, RN\S) 6= f(RN).

Group weak welfare dominance. For all N ⊂ N , RN ∈ RN , S ⊂ N , R′S ∈
RS , there do not exist i, j ∈ N \ S such that f(RN) ∈ [Ri, f(R′S, RN\S)] and

f(R′S, RN\S) ∈ [Rj, f(RN)] and f(RN) 6= f(R′S, RN\S).

Group weak population monotonicity. For all N ⊂ N , RN ∈ RN , S ⊂ N ,

there do not exist j, k ∈ N \ S such that f(RN) ∈ [Rj, f(RN\S)] and f(RN\S) ∈
[Rk, f(RN)] and f(RN) 6= f(RN\S).

Note how there is no need to introduce group population monotonicity as it is

implied by population monotonicity. By contrast, the group versions of weak welfare

dominance and weak population monotonicity do not follow from the singleton ones.7

We proceed to establish the properties of lattice and fixed order status-quo rules.

Proposition 3 Lattice status-quo rules satisfy group strategy-proofness, group

population monotonicity, adjacent welfare dominance, group weak welfare dom-

inance, and efficiency.

7Details available upon request.
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Proposition 4 Fixed order status-quo rules satisfy group strategy-proofness, group

weak population monotonicity, group weak welfare dominance, and strong effi-

ciency.

It is worth nothing that the proof of Proposition 4 demonstrates that fixed order

status-quo rules satisfy the following stronger version of group weak population mono-

tonicity: for all N ⊂ N , RN ∈ RN , S ⊂ N there does not exist j ∈ N \ S such that

f(RN) ∈ [Rj, f(RN\S)] and f(RN) 6= f(RN\S). Thus, the departure of a subset of

agents cannot leave any of the remaining agents unambiguously worse off.

3.3 A subfamily of fixed order status-quo rules

In this section we discuss an intuitive subfamily of fixed order status-quo rules. This

subfamily is obtained by imposing additional structure on the set of conclusive partial

orders.

Before doing so, we introduce the notion of a lexicographic order on R. Given

R ∈ R, the lexicographic order �R on R is defined as follows: for all R1, R2 ∈ R
where R1 = a1a2....am and R2 = b1b2....bm, R1 �R R2 if and only if there exists

k ∈ {1, 2, ...,m} such that al = bl for all l < k− 1 and (ak, bk) ∈ R. Note that for all

R ∈ R, the relation �R is complete, so that �R is a linear order on R.

Suppose f is a fixed order status quo rule associated with �. The rule f is a

lexicographic fixed order status-quo rule if there exists R0 ∈ R such that � =

�R0 . For simplicity, we refer to f as a lexicographic status-quo rule with reference

ordering R0. Thus, lexicographic status-quo rules pick the strongly efficient ordering

that is ranked first by linear order �R0 on R or, put differently, is lexicographically

closest to the reference ordering R0.

Subject to respecting strong efficiency, lexicographic status-quo rules search for an

ordering that strays as little as possible from the top-ranked recommendations of R0.

Evidently, greater importance is placed on maintaining agreement vis-a-vis the top-

ranked alternatives of R0 compared to the less desirable ones. This feature of the rule

resonates in many practical settings. For instance, in the faculty recruitment example of

the introduction, given the tightness of the academic job marker it is often the case that

not more than two or three candidates will ever reject an offer. Thus, if the aggregation

procedure must take carefully into account a reference ordering of the candidates, it is

important that it do so by staying as close as possible to its top-ranked candidates.

Computational considerations. A compelling feature of lexicographic status-quo
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rules is that they can be efficiently implemented in polynomial time. Computational

tractability is often elusive in voting and social choice theory (Brandt et al. [7]) so it is

worth briefly elaborating on the details.

Suppose f is a lexicographic status-quo rule with reference ordering R0. Given

N ⊂ N and RN ∈ RN , define the directed graph G = (V,E) where V = A and

E =

{
(x, y) ∈ A× A : x 6= y, (x, y) ∈

⋂
i∈N

Ri

}
. To construct E, we may use a naive

algorithm that mechanically goes through all agent orderings to determine the pairs of

alternatives over which there is unanimous agreement. Thus, the construction of G can

be completed in a maximum of
(
m
2

)
· n
(
m
2

)
= O(m4n) operations.8 With the graph G

defined, we apply to it a topological ordering algorithm (see pages 77-79 in Ahuja

et al. [1]) in which ties are broken lexicographically by consulting R0 and picking the

alternative that is best-ranked by it. The output of this algorithm will be f(RN).

Informally, the full algorithm works as follows:

Input: A,N,RN , R0

Step 0 Naively construct graph G = (V,E).

Topological ordering algorithm.

Step 1 Select the first-ranked alternative in R0 having in-degree 0 in G. Call this alternative

a1. Delete a1 and all edges incident to it from G , and update V and E to V 1 and E1

accordingly. Update G to G1 = (V 1, E1).

For k = 2, 3, ...,m

Step k Select the first-ranked alternative in R0 among V k−1 having in-degree zero in graph

Gk−1 = (V k−1, Ek−1). Call this alternative ak. Delete ak and all edges incident to it

from Gk−1, and update V k−1 and Ek−1 to V k and Ek accordingly. Update Gk−1 to

Gk = (V k, Ek).

If k < m, increment k by 1; else terminate.

Figure 4: Computational implementation of lexicographic status-quo rule with reference

ordering R0.

The algorithm in Figure 4 terminates after Step m with ordering a1a2...am as

output. The tie-breaking rule it employs ensures that a1a2...am is the strongly efficient

ordering that is first-ranked by �R0 . Hence, f(RN) = a1a2...am.

The running time of the topological ordering algorithm is O(|E|) = O(m2) (Ahuja

8Here we are assuming that agent orderings are stored as m×m 0-1 arrays.
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et al. [1]). Considering that Step 0 can be naively completed in O(m4n) operations, the

total complexity of the algorithm in Figure 4 is O(m4 ·n+m2) = O(m4 ·n). Evidently,

the most computationally burdensome part of the process is the construction of graph

G. As there probably exist more efficient ways of determining the partial order
⋂
i∈N

Ri,

lexicographic status-quo rules are likely to be implementable at lower computational

cost.

Example 4. Suppose A = {a, b, c, d, e} and let f denote the lexicographic status-quo

rule with reference ordering R0 = abcde. Let N = {1, 2, 3} and consider the profile

satisfying

R1 = edbca, R2 = decba, R3 = ecdab.

The above preferences imply
⋂
i∈N

Ri = {(c, a), (d, a), (d, b), (e, a), (e, b), (e, c)}.9

The corresponding graph G is given by Figure 5.

Figure 5: Graph G = (V,E) for profile (R1, R2, R3)

Figure 6 illustrates the topological ordering algorithm applied to profile (R1, R2, R3).

At every step k = 1, 2, .., 5 the selected alternative ak is depicted in a red box. We

obtain f(R1.R2, R3) = debca.

9For simplicity we again omit pairs of identical alternatives.
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Figure 6: Application of algorithm of Figure 4 to profile (R1, R2, R3). Recall R0 = abcde.

Now, suppose ordering R1 is replaced by R′1 = edcba, i.e., agent 1 switches the

order of adjacent alternatives b and c. These preferences imply R′1 ∩ R2 ∩ R3 =

{(c, a), (d, a), (d, b), (e, a), (e, b), (e, c), (c, b)}. Hence, compared to profile (R1, R2, R3),

there exists unanimous agreement on an additional pair of alternatives, namely (c, b).

Figure 7 displays the application of the algorithm to this profile, yielding f(R′1, R2, R3) =

decab.

Furthermore, note that we obtain the exact same pattern of unanimous agreement,

and thus also outcome, if agent 1 were to exit the population. That is, f(R′1, R2, R3) =

f(R2, R3) = decab.

Figure 7: Application of algorithm of Figure 4 to profile (R′1, R2, R3) or (R2, R3). Recall

R0 = abcde.

Finally, consider profile RN and suppose ordering R3 is replaced by R′′3 = cedab.

These preferences implyR1∩R2∩R′′3 = {(c, a), (d, a), (d, b), (e, a), (e, b)}. Hence, com-

pared to profile (R1, R2, R3), there is no longer unanimous agreement on pair (e, c). Fig-

ure 8 displays the application of the algorithm to this profile, yielding f(R1, R2, R
′′
3) =

cdeab.
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Figure 8: Application of algorithm of Figure 4 to profile (R1, R2, R
′′
3). Recall R0 = abcde.

Let us compare the above outcomes to those obtained with the equivalent lattice

status-quo rule. Let g denote the lattice status-quo rule with reference ordering R0 =

abcde. Applying Harless’s improvement algorithm [10] it is easy to see that

g(RN) = abcde, g(R′1, R2, R3) = cdeab, g(R1, R2, R
′′
3) = abcde.

Table 2 summarizes the results of rules f and g to enable easier comparison.

profile unanimous agreement f g

(R1, R2, R3)
{

(c,a),(d,a),(d,b),

(e,a),(e,b), (e,c)
} debca abcde

(R′1, R2, R3) or

(R2, R3)

{
(c,a),(d,a),(d,b),

(e,a),(e,b), (e,c),(c,b)
} decab cdeab

(R1, R2, R
′′
3)

{
(c,a),(d,a),(d,b),

(e,a),(e,b)
} cdeab abcde

Table 2: Example 4. Comparing the lexicographic status-quo rule f to its lattice coun-

terpart g. Recall that R1 = edbca, R2 = decba, R3 = ecdab, R′1 = edcba, R′′3 = cedab.

Profile (R1, R2, R3) provides a vivid example of how lattice status-quo rules may

fail strong efficiency. The ordering g(R1, R2, R3) = abcde violates all six unanimous

binary comparisons present in the electorate.

Conversely, suppose agent 1 changes her preferences to R′1 or exits the aggregation

procedure. This results in f(R′1, R2, R3) = f(R2, R3) = decab and g(R′1, R2, R3) =

g(R2, R3) = cdeab. The violation of strong efficiency of rule g has been attenuated

to just pair (e, c). Meanwhile, consistent with g’s solidarity properties, agents 2 and

3 unambiguously prefer the new ordering to g(R1, R2, R3). The same is not true of

f , since (b, a) ∈ R2 and (c, b) ∈ R2 so that f(R′1, R2, R3) and f(R2, R3) are not
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comparable to f(R1, R2, R3) for agent 2. Hence, adjacent welfare dominance, as well

as population monotonicity, fail rule f at this profile.

Finally, suppose agent 3 changes her preferences toR′′3 . This results in f(R1, R2, R
′′
3) =

cdeab and g(R1, R2, R
′′
3) = abcde. Once again, rule g fails strong efficiency in a sig-

nificant way. On the other hand, (e, c) ∈ R2 and (c, b) ∈ R2 so that f(R1, R2, R
′′
3)

is not comparable to f(R1, R2, R3) for agent 2. Thus, f fails the welfare dominance

requirement (note that this is not the case for g).

3.4 Weak orders

An interesting extension of the model involves the introduction of indifferences to the

reference partial orders as well as to the outcome space, analogous to Harless [10]. This

would necessitate changes to both the properties that rules aspire to satisfy and the

rules themselves. The concept of betweeness would need to be redefined so that for all

R,R′, R′′ ∈ R̄, where R̄ is the set of weak orderings on A, R ∈ [R′, R′′] is equivalent

to R′ ∩ R′′ ⊆ R ⊆ R′ ∪ R′′. This would in turn affect the definitions of strategy-

proofness and weak solidarity. Furthermore, strong efficiency might need to be adapted

by supplementing the requirement that f(RN) ⊇
⋂n

i=1Ri with a property stipulating

that for any pair of alternatives (a, b) with a 6= b, (a, b) ∈
⋂n

i=1Ri ⇒ (b, a) 6∈ f(RN).

Finally, the introduction of indifferences would necessitate the definition of fixed-order

status-quo rules on the basis of conclusive partial orders on R̄.

Given the above, it is unclear whether the proof of Proposition 4 can be adapted to

this more general framework and, more generally, whether the corresponding desirable

properties of fixed order status-quo rules continue to hold. Elucidating this point would

enable a fuller comparison of fixed-order and lattice status-quo rules.

4 A characterization of fixed order status-quo rules

We now offer an axiomatic characterization of fixed order status-quo rules. Our anal-

ysis is reminiscent of Theorem 1 in Bossert and Sprumont where monotonic major-

ity alteration rules are shown to uniquely satisfy majority-basedness, unanimity, and

strategy-proofness.10

We proceed by introducing a property that is similar, at least in a technical sense,

to the majority-basedness requirement of Bossert and Sprumont. Given N ⊂ N , RN ∈
10Majority basedness stipulates that profiles with the same majority relation be assigned the same

outcomes, whereas unanimity is a minimal standard of efficiency implying that if all agents have the

same orderings, then the rule must also pick this ordering.
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RN , define the unanimity relation U(RN) on A by

U(RN) ≡
⋂
i∈N

Ri = {(a, b) ∈ A× A : |i ∈ N : aRib| = n}. (4)

For any profileRN , the relation U(RN) is a partial order onA. By definition, all strongly

efficient orderings are supersets of U(RN); furthermore, for any pair of alternatives

(a, b) ∈ A×A inclusion in U(RN) obviously implies inclusion in profile RN ’s majority

relation.

The unanimity relation plays a central role in the following axiom.

Unanimity-basedness. For all N ⊂ N , RN , R̃N ∈ RN ,

U(RN) = U(R̃N)⇒ f(RN) = f(R̃N). (5)

Unanimity-basedness requires that a rule be invariant to changes in agent prefer-

ences that do not alter the underlying unanimity relation of the electorate. As such,

it implies that the rule can be recast as a function from U to R, where U is the set

of partial orders on A. It is straightforward to check that unanimity-basedness implies

Bossert and Storcken’s [6] extrema independence axiom, and thus also precludes dic-

tatoriality. Variants of unanimity-basedness has also been analyzed in other models of

social choice (see, e.g., Gordon [11, 13]).

Among the strategy-proof rules examined by Bossert and Sprumont, lattice status-

quo rules are the only ones that are unanimity-based (that monotonic majority alteration

rules and Condorcet-Kemeny rules are not unanimity-based is obvious).

Proposition 5 All lattice status-quo rules are unanimity-based.

We proceed with the characterization. The proof frequently invokes the following

Lemma.

Lemma 1 Suppose rule f satisfies unanimity-basedness and strategy-proofness.

For all N ⊂ N , R1
N , R

2
N ∈ RN we have

U(R1
N) ⊆ U(R2

N) ⊆ f(R1
N) ⇒ f(R1

N) = f(R2
N).

Lemma 1 is reminiscent of Arrow’s choice axiom (Arrow [2]). It also has an exact

analog (Lemma 3) in the cycle-location model studied by Gordon [12]. It implies that
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if an ordering R is selected from a set of strongly efficient orderings, then R must also

be picked when considering any subset of this set for which it does not violate strong

efficiency. For example, if A = {a, b, c} and rule f picks ordering R = abc when there

is no unanimous agreement among agents with respect to any pair of alternatives, then

it should also pick R when unanimous agreement among agents is confined to everyone

ranking a over b.

Recall that U denotes the set of partial orders on A. By unanimity-basedness, we

can re-write Lemma 1 to suppress its dependence on profiles: For all U1, U2 ∈ U ,

U1 ⊆ U2 ⊆ f(U1) ⇒ f(U1) = f(U2). (6)

We are now ready to state this section’s main result.

Theorem 2 A rule satisfies strong efficiency, unanimity-basedness, and strategy-

proofness if and only if it is a fixed order status-quo rule.

Remark 1. The above characterization is tight since (a) Condorcet-Kemeny rules

satisfy strong efficiency and strategy-proofness but not unanimity-basedness, (b) lat-

tice status-quo rules satisfy unanimity-basedness and strategy-proofness but not strong

efficiency, and (c) we can construct rules satisfying unanimity-basedness and strong

efficiency that violate strategy-proofness. The latter can be done by taking a func-

tion f : RN 7→ R that respects unanimity-basedness (meaning that it can be recast

as f : U 7→ R) and strong efficiency, but violates Lemma 1 and thus also strategy-

proofness. For example, suppose A = {a, b, c}, f is unanimity-based and strongly

efficient and satisfies f(∅) = abc and f({(a, b)}) = cab.11 Assume, further, that profile

RN is such that U(RN) = {(a, b)} so that f(RN) = cab. Suppose now that agent i has

preferences Ri = abc. If this agent misreports his preferences submitting R′i = bac, we

have U(R′i, RN\i) = ∅, so that f(R′i, RN\i) = abc and strategy-proofness is violated.

Remark 2. Given Theorem 1 and the dubious normative content of unanimity-

basedness, it is natural to wonder whether unanimity-basedness can be substituted with

weak welfare dominance and weak population monotonocity in the characterization of

fixed order status-quo rules. Unfortunately, the following argument shows why this is

not possible. Consider R0 ∈ R and its exact opposite −R0. Suppose f is a fixed order

status-quo rule with a conclusive partial order � that ranks R0 and −R0 in first and

11Once again, to avoid clutter, we omit pairs of identical alternatives in the definition of U .
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second place, respectively. That is, � is conclusive and also satisfies R0 � −R0 � R

for all R 6= R0,−R0. Consider the following rule g:

g(RN) =


R0, if R0 ∈ RN and U(RN) = ∅
−R0, if R0 6∈ RN and U(RN) = ∅
f(RN), otherwise

Rule g coincides with f for all profiles in which there exists at least one pair of (non-

identical) alternatives over whose relative order all agents agree on. By contrast, when

U(RN) = ∅, rule g does the following: (i) if there exists an agent holding preferences

R0, the rule picks this ordering; (ii) if not, then it picks the exact opposite of R0, namely

−R0. Evidently, g violates unanimity-basedness.

Using Proposition 4 and the structure of rule g, it is straightforward to prove that g

satisfies strong efficiency, group strategy-proofness, group weak welfare dominance and

group weak population monotonicity.12 (Note how, consistent to Theorem 1, rule g

stipulates R0 as its reference ordering.)

Remark 3. As mentioned earlier, Theorem 2 is reminiscent of Bossert and Sprumont’s

characterization of monotonic majority alteration rules with majority-basedness, una-

nimity, and strategy-proofness. The common thread between the two results is that

both majority- and unanimity-basedness are very strong properties that seem to be nec-

essary for these sorts of characterizations to go through. This is because the efficiency

and strategy-proofness axioms are too weak to sufficiently restrict the range of possible

rules.

Remark 4. While admittedly a very strong property, unanimity-basedness is not with-

out practical relevance. Criminal law jury trials in the United States require unanimous

agreement to issue a verdict. If such consensus is not reached then a mistrial is declared,

with the status-quo outcome being an acquittal on the related charges. In the political

sphere, a number of prominent organizations are known to use unanimity-based meth-

ods in their decision-making processes. For example, the five permanent members of the

United Nations Security Council have veto power in the approval of all “substantive”

(as opposed to “draft”) resolutions. These countries can also use their veto power in

the selection of the United Nations’ Secretary General. Another example of unanimity-

basedness can be observed in the European Council’s deliberative procedures. There,

unanimous agreement is needed for decisions to be reached in many important areas

including EU membership, taxation, foreign policy, common security, justice and home

12Details available upon request.
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affairs.

5 Concluding thoughts

This paper has dealt with preference aggregation in the classical Arrovian framework.

Within this setting, emphasis was placed on rules that satisfy notions of solidarity. We

formulated novel relaxations of existing solidarity properties and showed how they im-

ply, in conjunction with strategy-proofness, the emergence of reference outcomes holding

privileged status. We proceeded to introduce a new class of rules, fixed order status-quo

rules, satisfying these solidarity requirements as well as desirable criteria of efficiency

and strategy-proofness. An appealing subfamily based on lexicographic orders was high-

lighted for its intuitive interpretation and computational tractability. Finally, fixed or-

der status-quo rules were characterized by strong efficiency, strategy-proofness, and an

additional axiom of a more technical nature, unanimity-basedness.

Status-quo rules, lattice as well as fixed order, are appropriate in settings character-

ized by high volatility, with agents changing their preferences often and entering/exiting

the aggregation procedure at will. In such instances it is important to guarantee a mea-

sure of fairness that precludes dramatic, and diametrically opposed, reversals of fortune

for agents who are not responsible for these changes. This requirement may be inter-

preted as a weak form of envy-freeness. Moreover, in view of their joint dependence on

exogenous orders, status-quo rules are applicable in environments defined by strong pre-

existing views on the desirability of different outcomes whose recommendations should

be modified only if met with strenuous opposition.

The present work suggests natural directions for future research. Given Remark

2, we know that weak solidarity axioms together with strong efficiency and strategy-

proofness are not sufficient to characterize fixed order status-quo rules. It would be

interesting to determine what additional axioms may be brought to bear to achieve

such a characterization. Furthermore, it would be worthwhile to delve deeper into

lexicographic status-quo rules and better understand why they might be preferable to

other fixed order status-quo rules. Finally, a promising extension of the proposed rules

involves the introduction of indifferences to the reference partial orders as well as to the

outcome space.
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Appendix

Proposition 1. It is sufficient to prove the impossibility for the m = 3 case. This is

because problems with three alternatives embed into larger ones by considering profiles

in which (i) there exist three alternatives that appear among the top three positions in

all agent orderings and (ii) all agents order the remaining alternatives in the same way.

Suppose N = {1, 2, 3} and A = {a, b, c} and consider the following profile R1 =

R2 = abc, R3 = cba. Note that the majority relation of this profile equals the ordering

abc. As a result, all Condorcet-Kemeny and monotonic majority alteration rules will

select ordering abc. Now suppose agent 1 changes his preferences to cba and note that

the majority relation of this new profile equals the ordering cba. Hence, once again,

all Condorcet-Kemeny and monotonic majority alteration rules will select ordering cba,

resulting in an unambiguously better (resp., worse) outcome for agent 3 (resp., 2). This

violates weak welfare dominance.

Consider now a �-Condorcet-Kemeny rule such that ordering R = abc is ranked

first by �. Construct a profile with three agents such that R1 = R2 = −abc = cba and

R3 = abc. When applied to profile (R1, R2, R3), the �-Condorcet-Kemeny rule will

pick ordering cba. Now, suppose agent 1 departs. Then, in the reduced profile (R2, R3)

the rule will pick abc, an outcome that is unambiguously worse for agent 2 and better for

agent 3, thus violating weak population monotonicity. Similarly, consider a monotonic

majority alteration rule such that when the majority relation equals A×A, the rule picks

ordering abc. When applied to profile (R1, R2, R3) this monotonic majority alteration

rule will pick ordering cba. Now, suppose agent 1 departs. Then, in the reduced profile

(R2, R3) the rule will pick abc, an outcome that is unambiguously worse for agent 2

and better for agent 3, thus violating weak population monotonicity. Repeating the

above argument for all R ∈ R, establishes that all Condorcet-Kemeny and monotonic

majority alteration rules fail weak population monotonicity.

Theorem 1. Let N ⊂ N and assume |N | ≥ m!. A profile is diversified if for

all R ∈ R there exists i ∈ N such that Ri = R. Suppose RN is diversified and

let f(RN) = R0. By construction, there exist i, j ∈ N such that Ri = R0 and

Rj = −R0, where −R denotes the exact opposite of R. By weak welfare domi-

nance, f(Ri, Rj, R
′
k, RN\{i,j,k}) = R0 for all R′k ∈ R. Similarly, weak welfare dom-

inance applied to agent l 6= i, j, k implies f(Ri, Rj, R
′
l, R

′
k, RN\{i,j,k,l}) = R0 for all

R′k, R
′
l ∈ R. Repeating this argument for all other agents except i and j obtains

f(Ri, Rj, R
′
N\{i,j}) = R0 for all R′N\{i,j} ∈ RN\{i,j}. Strategy-proofness applied to
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deviations by agent j implies that f(R0, R′N\i) = R0 for all R′N\i ∈ RN\i.

We show that the above result holds irrespective of the identity of the agent holding

preferences R0. Consider the diversified profile Rp
N that is a relabeling of the orderings

in RN . That is, for all x ∈ N there exists a unique y ∈ N such that Rx = Rp
y.

Suppose f(Rp
N) = Rp. By construction, there exist k, l ∈ N such that Rp

k = Rp and

Rp
l = −Rp. We distinguish between two cases according to whether k = i, or k 6= i. If

k = i, then Ri = Rp
k and thus R0 = Rp and we are done. Conversely, if k 6= i, using

weak welfare dominance and strategy-proofness as before implies f(Rp, R′N\k) = Rp for

all R′N\k ∈ RN\k. In particular, setting R′i = R0 yields f(Rp, R0, R′N\{k,i}) = Rp for

all R′N\{k,i} ∈ RN\{k,i}. Given the previously established equality f(R0, R′N\i) = R0

for all R′N\i ∈ RN\i, we conclude Rp = R0. Thus, the equality f(R0, R′N\i) = R0 for

all R′N\i ∈ RN\i holds for all i ∈ N .

We now extend the above result to all populations in N . Consider the already-

examined population N and a profile R̂N in which there exist i, j ∈ N such that

R̂i = R0 and R̂j = −R0. By the previous argument, f(R̂N) = R0. Let N ′ ⊂ N and

distinguish between two cases:

(a) N ∩ N ′ = ∅. Consider a profile R′N ′ in which there exist i′, j′ ∈ N ′ such that

R′i′ = R0 and R′j′ = −R0. Let k′ ∈ N ′ and introduce the profile (R̂N , R
′
k′).

Weak population monotonicity implies f(R̂N) = f(R̂N , R
′
k′) = R0. Repeating

this argument iteratively for all agents in N ′, yields f(R̂N , R
′
N ′) = f(R̂N) = R0.

Let j ∈ N . Recalling that R′i′ = R0 and R′j′ = −R0 and using the fact that

f(R̂N , R
′
N ′) = R0, weak population monotonicity implies f(R̂N\j, R

′
N ′) = R0.

Repeating this argument iteratively for all agents in N , yields f(R′N ′) = R0 =

f(R̂N , R
′
N ′). Imposing strategy-proofness to deviations by agent j′ and not-

ing how the preferences of agents in N ′ \ {i′, j′} were arbitrary, we conclude

f(R0, RN ′\i′) = R0 for all RN ′\i′ ∈ RN ′\i′ . As before, we can prove that this

result holds for all i′ ∈ N ′.

(b) N∩N ′ 6= ∅. Consider once again a profile R′N ′ in which there exist i′, j′ ∈ N ′ such

that R′i′ = R0 and R′j′ = −R0. Take N0 ⊂ N such that N0∩N = N0∩N ′ = ∅.
Consider a profile R0

N0 in which there exist i0, j0 ∈ N0 such that R0
i0 = R0 and

R0
j0 = −R0. By part (a), f(R0

N0) = R0 and f(R′N ′ , R
0
N0) = R0. By repeatedly

removing agents belonging to N0 from the population N ′∪N0 and applying weak

population monotonicity, we obtain f(R′N ′) = R0 = f(R0
N0 , R′N ′). Imposing

strategy-proofness to deviations by agent j′ and noting how in profile R′N ′ the
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preferences of agents in N ′ \ {i′, j′} were arbitrary, we conclude f(R0, RN ′\i′) =

R0 for all RN ′\i′ ∈ RN ′\i′ . As before, we can prove that this result holds for all

i′ ∈ N ′.

We conclude that for all N ⊂ N and RN ∈ RN , if there exists i ∈ N with Ri = R0

then f(RN) = R0.

Proposition 2. Begin with part (i). Consider a partial order U satisfying the property

in the statement of the Proposition. Let N ⊂ N and suppose Ru
N is a profile such that

for all R ∈ R satisfying R ⊇ U , there exists at least one i ∈ N such that Ru
i = R. Let

f(Ru
N) = Ru. By construction, there exist i, j ∈ N such that Ru

i = Ru and Ru
i ∩Ru

j =

U . Weak welfare dominance and strong efficiency imply f(Ru
i , R

u
j , R

′
k, RN\{i,j,k}) = Ru

for all R′k ∈ R such that

(
R′k ∩

⋂
l∈N\k

Ru
l

)
= U . Repeating this argument iteratively

for all l ∈ N \ {i, j} we deduce that f(Ru
i , R

u
j , R

′
N\{i,j}) = Ru for all R′N\{i,j} ∈

RN\{i,j} such that

( ⋂
l∈N\{i,j}

R′l ∩Ru
i ∩Ru

j

)
= U . Next, strategy-proofness applied

to deviations by agent j and strong efficiency imply that f(Ru, R′N\i) = Ru for all R′N\i

such that

( ⋂
i∈N\i

R′i ∩Ru
i

)
= U . As before, this equality holds for all i ∈ N .

Using similar arguments as in the proof of Theorem 1 we can extend the above

result to an arbitrary N ⊂ N . This concludes the proof of part (i).

Now consider part (ii). Consider a partial order U satisfying the property in the

statement of the Proposition. Let N ⊂ N and suppose Ru
N is a profile such that for

all R ∈ R satisfying R ⊇ U , there exists at least one i ∈ N such that Ru
i = R. Let

f(Ru
N) = Ru. By construction, there exists i ∈ N such that Ru

i = Ru.

If Ru ∈ {R1, R2}, then there exists j ∈ N such that Ru
i ∩Ru

j = U and an identical

proof to that of part (i) yields the desired result. Suppose instead Ru
i = Ru 6∈ {R1, R2}

and consider an agent j ∈ N \ i. Weak welfare dominance and strong efficiency imply

that f(Ru
i , R

′
j, R

u
N\{i,j}) = Ru for all R′j ∈ R such that

(
R′j ∩

⋂
l∈N\j

Ru
l

)
= U . If this

were not the case, then either agents holding preferences R1 would unambiguously gain

and those holding preferences R2 would unambiguously lose from j’s preference change,

or vice versa.13 Repeating the same argument iteratively for all agents in N \ i yields

13Given the structure of U , for a profile RN to satisfy
⋂

i∈N
Ri = U there must exist a group of agents

holding preferences R1 and another holding preferences R2.
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f(Ru, R′N\i) = Ru for all R′N\i such that

( ⋂
i∈N\i

R′i ∩Ru
i

)
= U . Note how we did

not need to invoke strategy-proofness in this case. As before, this equality holds for all

i ∈ N and we can extend the result to all subsets of N .

Corollary 1. Suppose m = 3. Partial orders with three non-identical alternatives

yield a unique strongly efficient ordering so the result trivially holds. Partial orders

U consisting of two pairs of non-identical alternatives yield exactly two strongly ef-

ficient orderings that differ with respect to a single binary comparison. Thus part

(i) of Proposition 2 implies the result. Partial orders U consisting of a single pair of

non-identical alternatives are such that there exists a unique pair of orderings R1, R2

satisfying R1 ∩ R2 = U and a unique third ordering R3 that is strictly between them.

Thus part (ii) of Proposition 2 implies the result.

Proposition 3. Group strategy-proofness, group population monotonicity, adjacent

welfare dominance, and efficiency follow from Theorem 2 in Bossert and Sprumont [5]

and Proposition 1 in Harless [10].

Let us prove group weak welfare dominance. Consider a lattice status-quo rule

f with reference ordering R0, and suppose, in contradiction, that there exists N ⊂
N , a profile RN , S ⊂ N , and a pair of agents i, j ∈ N \ S such that f(RN) ∈
[Ri, f(R′S, RN\S)] and f(R′S, RN\S) ∈ [Rj, f(RN)] and f(RN) 6= f(R′S, RN\S).

Since f(RN) ∈ [Ri, f(R′S, RN\S)] and f(RN) 6= f(R′S, RN\S) there must exist

(a, b) ∈ Ri ∩ f(RN) such that (a, b) 6∈ f(R′S, RN\S). This pair must satisfy (a, b) 6∈
Rj ; otherwise f(R′S, RN\S) ∈ [Rj, f(RN)] would imply that (a, b) ∈ f(R′S, RN\S), a

contradiction.

Recall the sequential-improvement algorithm discussed by Harless [10] that is used

to calculate the output of lattice status-quo rules. According to this algorithm, we

start from R0 and gradually move away from it by switching the ranks of pairs of

alternatives (x, y) such that the following two conditions hold: (i) alternatives x and

y are adjacent in the current ordering, and (ii) y is unanimously preferred to x by

the agents. The algorithm stops when the current ordering is such that no pair of

alternatives simultaneously satisfies conditions (i) and (ii). For further information and

the formal details of the algorithm, consult Harless [10].

Now, distinguish between two cases:

(i) (a, b) ∈ R0. Since (a, b) ∈ Ri and (a, b) 6∈ Rj and i, j ∈ N \ S, in profile

(R′S, RN\S) alternative b is not unanimously preferred to a. Thus, when applied
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to (R′S, RN\S), Harless’ improvement algorithm will never replace the pair (a, b)

with (b, a). Thus, (b, a) 6∈ f(R′S, RN\S), a contradiction.

(ii) (b, a) ∈ R0. Since (a, b) ∈ Ri and (a, b) 6∈ Rj and i, j ∈ N \ S, in profile

RN alternative a is not unanimously preferred to b. Thus, when applied to RN ,

Harless’ improvement algorithm will never replace the pair (b, a) with (a, b). Thus,

(a, b) 6∈ f(RN), a contradiction.

Proposition 4. That fixed order status-quo rules satisfy strong efficiency is obvious

by construction. Suppose f is a fixed order status-quo rule associated with �.

We begin with group strategy-proofness. Suppose that f fails group strategy-

proofness so that there exist N ⊂ N , RN ∈ RN , S ⊂ N and R′S ∈ RS such that

f(R′S, RN\S) ∈
⋂
i∈S

[Ri, f(RN)] and f(R′S, RN\S) 6= f(RN). By strong efficiency⋂
j∈N

Rj ⊆ f(RN) and
⋂

j∈N\S
Rj ∩

⋂
j∈S

R′j ⊆ f(R′S, RN\S).

Distinguish between three cases:

(i) f(R′S, RN\S) � f(RN). This implies
⋂
j∈N

Rj 6⊆ f(R′S, RN\S). By strong effi-

ciency, there must exist a pair of alternatives (a, b) ∈
⋂
j∈S

Rj such that (a, b) ∈

f(RN) and (a, b) 6∈ f(R′S, RN\S). This contradicts f(R′S, RN\S) ∈
⋂
i∈S

[Ri, f(RN)].

(ii) f(RN) � f(R′S, RN\S). This implies
⋂

j∈N\S
Rj ∩

⋂
j∈S

R′j 6⊆ f(RN). By strong

efficiency, there must exist a pair of alternatives (a, b) ∈
⋂
j∈S

R′j such that (a, b) 6∈⋂
j∈S

Rj , (a, b) 6∈ f(RN) and (a, b) ∈ f(R′S, RN\S). Thus, (b, a) ∈ Ri for some i ∈

S, (b, a) ∈ f(RN), and (b, a) 6∈ f(R′S, RN\S). This contradicts f(R′S, RN\S) ∈⋂
i∈S

[Ri, f(RN)].

(iii) f(RN) and f(R′S, RN\S) are incomparable according to �. Consider two sub-

cases:

(a) f(R′S, RN\S) ⊇
⋂
j∈N

Rj . Since � is conclusive, we must have f(RN) �

f(R′S, RN\S), a contradiction.

(b) f(R′S, RN\S) 6⊇
⋂
j∈N

Rj . There must exist (a, b) ∈
⋂
j∈S

Rj such that (a, b) 6∈

f(R′S, RN\S). This contradicts f(R′S, RN\S) ∈
⋂
i∈S

[Ri, f(RN)].
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We now address group weak population monotonicity. Suppose that f fails this

property and there exist N ⊂ N , RN ∈ RN , S ⊂ N and j, k ∈ N \ S such that

f(RN) ∈ [Rj, f(RN\S)] and f(RN\S) ∈ [Rk, f(RN)], with f(RN) 6= f(RN\S). We

distinguish between two cases:

(i) f(RN) ⊇
⋂

i∈N\S
Ri. Strong efficiency implies f(RN\S) ⊇

⋂
i∈N\S

Ri ⊇
⋂
i∈N

Ri.

Since both f(RN) and f(RN\S) satisfy strong efficiency at both profiles RN and

RN\S , this implies f(RN\S) � f(RN) and f(RN) � f(RN\S). This is a contra-

diction.

(ii) f(RN) 6⊇
⋂

i∈N\S
Ri. Then, f(RN\S) ⊇

⋂
i∈N\S

Ri implies that there must exist

(a, b) ∈ f(RN\S)∩
⋂

i∈N\S
Ri such that (a, b) 6∈ f(RN). This contradicts f(RN) ∈

[Rj, f(RN\S)].

Finally, we address group weak welfare dominance. Suppose that f fails this prop-

erty and there exist N ⊂ N , RN ∈ RN , S ⊆ N , R′S ∈ RS and i, j ∈ N \ S
such that f(RN) ∈ [Ri, f(R′S, RN\S)] and f(R′S, RN\S) ∈ [Rj, f(RN)] and f(RN) 6=

f(R′S, RN\S). Trivially, we have: (a) Ri ⊇
(⋂

l∈S
R′l ∩

⋂
l∈N\S

Rl

)
and (b) Rj ⊇

⋂
l∈N

Rl.

This yields:

f(RN) ⊇ Ri ∩ f(R′S, RN\S)
(a) + str. eff.

⊇
⋂
l∈S

R′l ∩
⋂

l∈N\S

Rl (7)

f(R′S, RN\S) ⊇ Rj ∩ f(RN)
(b)+ str. eff.

⊇
⋂
l∈N

Rl. (8)

Eq. (7) implies that f(RN) satisfies strong efficiency at profile (R′S, RN\S). Thus,

f(R′S, RN\S) � f(RN). Equivalently, Eq. (8) implies f(RN) � f(R′S, RN\S). This is

a contradiction.

Proposition 5. Consider N ⊃ N , RN and ordering R0. Recall that the lattice

status-quo rule with reference orderingR0 assigns to each profileRN the unique ordering

R satisfying (i) R ∈ [R0, Ri] for all i ∈ N and; (ii)
{
R′ ∈ [R0, Ri] for all i ∈ N

}
⇒ R′ ∈ [R0, R] for all R′ ∈ R such that R′ 6= R. Note that the condition R ∈ [R0, Ri]

for all i ∈ N is equivalent to requiring R ⊇ R0 ∩
⋃
i∈N

Ri.

Now, consider two profiles RN and R′N such that U(RN) = U(R′N) and suppose

there exists a pair of alternatives (a, b) such that (a, b) ∈
⋃
i∈N

Ri but (a, b) 6∈
⋃
i∈N

R′i.
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This implies that (b, a) ∈ U(R′N) and (b, a) 6∈ U(RN), a contradiction. Thus, there

can exist no such pair (a, b).

Hence, for all pairs of profiles RN and R′N we have U(RN) = U(R′N)⇒
⋃
i∈N

Ri =⋃
i∈N

R′i. Combining this fact with the definition of lattice status-quo rules mentioned

above, we conclude that two profiles having the same unanimity relation will necessarily

yield identical outcomes under any lattice status-quo rule.

Lemma 1. Consider N ⊂ N and two profiles R1
N , R

2
N satisfying U(R1

N) ⊆ U(R2
N)

and f(R1
N) ⊇ U(R2

N). Let R̃1
N be a profile in which there exist two agents i, j ∈ N

with orderings R̃1
i = R1

1 and R̃1
j = R1

2 such that U(R̃1
N) = R1

1 ∩R1
2 = U(R1

N).14 This

implies that R̃1
l ∈ [R1

1, R
1
2] for all other agents l 6= i, j.

Similarly, consider a profile R̃2
N in which there exist i, j ∈ N with orderings R̃2

i =

R2
1 and R̃2

j = R2
2 such that U(R̃2

N) = R2
1 ∩ R2

2 = U(R2
N). This implies that R̃2

l ∈
[R2

1, R
2
2] for all l 6= i, j. Furthermore, suppose there exists an agent h ∈ N with

preferences R̃2
h = f(R1

N).

Finally, assume without loss of generality that R2
1 ∈ [R1

1, R
2
2]. Figure 9 provides a

schematic view of the orderings R1
1, R

1
2, R

2
1, R

2
2 and our hypothesis regarding f(R1

N).

Figure 9: The orderings used in the proof of Lemma 1. An ordering lying between two

others denotes betweeness in the Grandmont [14] sense.

Note that unanimity-basedness implies f(R1
N) = f(R̃1

N) and f(R2
N) = f(R̃2

N).

Let R̂N be a profile in which there exist i, j ∈ N such that R̂i = R1
1 and R̂j = R2

2

and such that U(R̂N) = R1
1 ∩ R2

2.15 This implies that R̂l ∈ [R1
1, R

2
2] for all l 6= i, j

Furthermore, suppose there exists k ∈ N such that R̂k = f(R1
N).

First, we prove that f(R̂N) = f(R1
N). Suppose this is not true, so that f(R̂N) 6=

f(R1
N) = f(R̃1

N). Recall that, by assumption, R̂k = f(R1
N). Agent k can misreport

14This is a slight abuse of notation since R1
1 and R1

2 do not necessarily belong in profile R1
N .

15If the reader finds this notation hard to follow, here is an illustrative example. Consider
(
R1

1, R
1
2

)
=

(cdab, bacd) and
(
R2

1, R
2
2

)
= (cbda, cbad). This implies

[
R1

1, R
1
2

]
= [cdab, bacd],

[
R2

1, R
2
2

]
= [cbda, cbad],

and
[
R1

1, R
2
2

]
= [cdab, cbad], so that (omitting identical pairs of alternatives) we obtain U(R̃1

N ) = {(c, d)},
U(R̃2

N ) = {(c, d), (c, b), (c, a), (b, d), (b, a)}, and U(R̂N ) = {(c, d), (c, a), (c, b)}.
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his preferences to R′k = R1
2 so that U(R′k, R̂N\k) = U(R̃1

N) = U(R1
N). By unanimity-

basedness, f(R′k, R̂N\k) = f(R1
N), violating strategy-proofness. Thus, f(R̂N) =

f(R1
N).

Let us now prove that f(R̂N) = f(R2
N). Suppose this is not true, so that f(R̂N) 6=

f(R2
N) = f(R̃2

N). By assumption R̃2
h = f(R1

N), and we have just proved that f(R̂N) =

f(R1
N). Agent h can misreport his preferences to R′h = R1

1 so that U(R′h, R̃
2
N\h) =

U(R̂N). By unanimity-basedness, f(R′h, R̃
2
N\h) = f(R̂N) = f(R1

N), violating strategy-

proofness. Thus, f(R̂N) = f(R̃2
N) = f(R2

N).

We conclude that f(R1
N) = f(R̂N) = f(R2

N).

Theorem 2. Necessity follows from Proposition 4.

We turn to proving sufficiency. Recall that, by Lemma 1, given any two U1, U2 ∈ U ,

the following holds:

U1 ⊆ U2 ⊆ f(U1) ⇒ f(U1) = f(U2). (9)

Rule f induces a binary relation �f on R defined as follows

R1 �f R2 ⇔ ∃U ∈ U such that R1, R2 ⊇ U and f(U) = R1. (10)

Let �f∗ denote the transitive extension of �f . That is,

1. R1 �f R2 ⇒ R1 �f∗ R2, for all R1, R2 ∈ R, and

2. {R1 �f R2 and R2 �f R3} ⇒ R1 �f∗ R3, for all distinct R1, R2, R3 ∈ R.

We will show that �f∗ is a conclusive partial order on R.

First we show that �f∗ is reflexive. Given R ∈ R, the partial order U = R satisfies

R ⊇ U ; moreover, by strong efficiency f(U) ⊇ R ⇒ f(U) = R. Thus, the right-hand

side of Eq. (10) implies R �f∗ R.

Now we show that �f∗ is anti-symmetric. Suppose there exist R1, R2 such that

R1 �f∗ R2 and R2 �f∗ R1. Hence there exist U1 ∈ U such that f(U1) = R1 and

R1, R2 ⊇ U1, and U2 ∈ U such that f(U2) = R2 and R1, R2 ⊇ U2. Consider the

partial order R1∩R2. Since R1 ⊇ U1 and R2 ⊇ U1, we have U1 ⊆ R1∩R2. Similarly,

U2 ⊆ R1 ∩R2. Applying (9) to U1 and R1 ∩R2, implies R1 = f(U1) = f(R1 ∩R2).

Doing the same for U2 and R1 ∩ R2 implies R2 = f(U2) = f(R1 ∩ R2). Hence,

R1 = R2.

Finally we prove that �f∗ satisfies transitivity. For this purpose it is sufficient to

show that for any three distinct orderingsR1, R2, andR3 we have {R1 �f R2 and R2 �f

R3} ⇒ R3 6�f R1. Suppose otherwise. Thus, there exist U1, U2, U3 ∈ U such that:
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(a) f(U1) = R1, and R1, R2 ⊇ U1.

(b) f(U2) = R2, and R2, R3 ⊇ U2.

(c) f(U3) = R3, and R3, R1 ⊇ U3.

By similar reasoning as when proving anti-symmetry, we must have f(R1 ∩R2) = R1,

f(R2 ∩ R3) = R2, and f(R3 ∩ R1) = R3. To avoid immediate contradictions via

Eq. (10), this implies R3 6∈ [R1, R2], R1 6∈ [R2, R3] and R2 6∈ [R1, R3].

Consider the partial order R1 ∩R2 ∩R3 on A. We distinguish between two cases:

(i) f(R1 ∩ R2 ∩ R3) = Rk ∈ {R1, R2, R3}. Applying Eq. (9) to partial orders

R1 ∩ R2 ∩ R3 and Rk−1 ∩ Rk (defining Rk−1 ≡ R3 when k = 1), we obtain

f(R1 ∩R2 ∩R3) = Rk = f(Rk−1 ∩Rk) = Rk−1, a contradiction.

(ii) f(R1 ∩R2 ∩R3) = Rl 6∈ {R1, R2, R3}. The definition of the betweeness relation

implies the following:{
R ∈ R : R ⊇ R1 ∩R2 ∩R3

}
=
{
R ∈ R : R ∈ [R1, R2] ∪ [R2, R3] ∪ [R3, R1]

}
Thus by strong efficiency Rl = f(R1∩R2∩R3) ∈ [Rk−1, Rk] for some k = 1, 2, 3

(again, defining Rk−1 ≡ R3 when k = 1), so that f(R1∩R2∩R3) ⊇ Rk−1∩Rk.

Applying Eq. (9) to R1 ∩R2 ∩R3 and Rk−1 ∩Rk we obtain f(R1 ∩R2 ∩R3) =

Rl = f(Rk−1 ∩Rk) = Rk−1, a contradiction.

Thus, �f∗ is transitive, which implies that it is partial order on R. Moreover, it

is conclusive since for every partial order U on A, the ordering f(U) is such that (i)

f(U) ⊇ U and (ii) f(U) �f∗ R for all R ∈ R satisfying R ⊇ U .

Let g be a fixed order status-quo rule associated with �f∗ . Consider N ⊂ N and a

profile RN and let f(RN) = f(U(RN)) = R̃. By Eq. (10), �f∗ is such that R̃ ranked

first among all orderings in the set {R ∈ R : R ⊇ U(RN)}. Hence, g(RN) = f(RN).
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