
 

Department of Economics, Management and Statistics 
University of Milano – Bicocca 

Piazza Ateneo Nuovo 1 – 2016 Milan, Italy 
http://dems.unimib.it/ 

 
 

 
 

 
DEMS WORKING PAPER SERIES 

 
 
 

    Eductive stability may not imply 
evolutionary stability in the presence of 

information costs 
 

Ahmad Naimzada and Marina Pireddu  
 
 

No. 406 – May 2019 

 
 

 
 
 
 
 
 
 



Eductive stability may not imply evolutionary

stability in the presence of information costs

Ahmad Naimzada a∗, Marina Pireddu b†

aDept. of Economics, Management and Statistics, University of Milano -Bicocca,

U6 Building, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy.

bDept. of Mathematics and its Applications, University of Milano -Bicocca,

U5 Building, Via Cozzi 55, 20125 Milano, Italy.

May 2, 2019

Abstract

Starting from a Muthian cobweb model, we extend the profit-based
evolutionary setting in Hommes and Wagener (2010) populated by
pessimistic, optimistic and unbiased fundamentalists, by assuming
that agents face heterogeneous information costs, inversely propor-
tional to the entity of their bias. Hommes and Wagener (2010) proved
that, when the unique steady state of their model is globally educ-
tively stable in the sense of Guesnerie (2002), the equilibrium under
evolutionary learning may be just locally, but not globally, stable,
due to the presence of a period-two cycle. Thanks to the introduc-
tion of information costs, we find that the equilibrium, when globally
eductively stable, may be not even locally stable under evolutionary
learning. More precisely, we analyze our setting by measuring the in-
fluence of agents’ heterogeneity through the parameter describing the
degree of optimism and pessimism. According to the considered pa-
rameter configuration, the unique steady state, which coincides with
the fundamental, may be (locally or globally) stable for every value
of the bias, like in Hommes and Wagener (2010), or it may be stable
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just for suitably small and for suitably large values of the bias. Hence,
increasing beliefs’ heterogeneity can be stabilizing when information
costs are taken into account. We give an interpretation of such coun-
terintuitive result in terms of profits, on which the share updating rule
is based.

Keywords: Muthian cobweb model; heterogeneous agents; evolutionary
learning; information costs; double stability threshold.

JEL classification: B52, C62, D84, E32

1 Introduction

Brock and Hommes (1997) present a Muthian cobweb type demand-supply
model, where producers can choose between rational and naive expectations
about prices, selecting the strategy on the basis of the recent profits the
two forecasting rules allowed to realize. In particular, an information cost
is associated to the use of the more sophisticated forecasting rule. Dealing
with the same share updating mechanism adopted in Brock and Hommes
(1997) for the case without memory, Hommes and Wagener (2010) consider
a Muthian cobweb model framework in which producers can choose among
three different forecasting rules: fundamentalists predict that prices will al-
ways be at their fundamental value, optimists predict that the price of the
good will always be above the fundamental price, whereas pessimists always
predict prices below the fundamental price. Despite the heterogeneity in the
forecasting rules, in Hommes and Wagener (2010) all agents face a null infor-
mation cost, regardless of their degree of rationality. Hommes and Wagener
(2010) focus on the case in which the Muthian model is globally eductively
stable in the sense of Guesnerie (2002), that is, on the case in which the model
is stable under naive expectations, as the slopes of demand and supply sat-
isfy the familiar “cobweb theorem” by Ezekiel (1938). They show that under
evolutionary learning the steady state, which is always (locally or globally)
stable, may coexist with a locally stable period-two cycle, along which prices
fluctuate around the rational expectations price and most agents switch be-
tween optimistic and pessimistic strategies. This means that, although the
model in Hommes and Wagener (2010) is globally eductively stable, the evo-
lutionary system therein admits both the steady state and the period-two
cycle as possible long-run outcomes, and thus, contrarily to the setting in

2



Brock and Hommes (1997), it may be not globally evolutionary stable.
Extending the model in Hommes and Wagener (2010) by assuming that
agents face heterogeneous information costs, inversely proportional to the
entity of their bias,1 we find that the equilibrium, when globally eductively
stable, may be not even locally stable under evolutionary learning. Hence,
the introduction of differentiated information costs, in addition to making
the characterization of agents’ heterogeneity more complete than in Hommes
and Wagener (2010), allows to obtain a stronger result, which gives a neater
negative answer to the question does eductive stability always imply evolutive
stability? addressed in that paper, and which was in turn inspired by the
claim that “reasonable” adaptive learning processes are asymptotically stable
in Guesnerie (2002).
In more detail, our setting is mainly analyzed by measuring the influence
of agents’ heterogeneity through the parameter describing the degree of op-
timism and pessimism, like done, in financial markets contexts, e.g. in De
Grauwe and Rovira Kaltwasser (2012), in Naimzada and Pireddu (2015),
and in Naimzada and Ricchiuti (2008, 2009). We find that the unique steady
state, which coincides with the fundamental, may be stable either for all val-
ues of the bias or just for suitably small and for suitably large values of the
bias. Thus, thanks to the presence of information costs, the steady state, ac-
cording to the considered parameter configuration, may be either (locally or
globally) stable or unstable when the Muthian model is globally eductively
stable. In particular, the existence for us of a double stability threshold
implies that the introduction of information costs may not only produce a
destabilization of the system for intermediate values of the bias of optimistic
and pessimistic agents, but that a sufficiently strong beliefs’ heterogeneity
may be stabilizing in our setting. Such counterintuitive result can be easily
explained in terms of profits. Namely, when the bias is large enough, the
fitness of optimists and pessimists is very low for prices in a neighborhood of
the fundamental steady state and it becomes relatively more advantageous
being unbiased, despite the higher information cost. The consequent increase

1Namely, according to Hommes (2013), page 150, A fundamentalists strategy, however,

requires structural knowledge of the economy and information about “economic fundamen-

tals”, and therefore we assume positive information-gathering costs for fundamentalists.

In the cobweb model the fundamental forecast requires structural knowledge of demand and

supply curves in order to compute the fundamental steady state price p∗. Since biased
agents do not perfectly know the economic fundamentals, we suppose that their informa-
tion costs are lower than that of unbiased fundamentalists, but still non-negative.
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in the share of unbiased fundamentalists makes prices more likely converge
towards the steady state (see Hommes, 2013), that recovers its local stability.
We stress that the possible destabilization of the steady state occurs via a flip
bifurcation, at which a stable period-two cycle emerges, which persists even
after the pitchfork bifurcation through which the steady state recovers its
local stability. On the other hand, since the map governing the dynamics is
monotonically decreasing, like it happened in Hommes and Wagener (2010)
in the absence of information costs, no richer dynamics can arise.
In addition to the just described results, along the paper we investigate the
effect of the main model parameters on the stability of the steady state. In
particular, we find that increasing the information cost of unbiased funda-
mentalists has a destabilizing effect on the equilibrium, when the latter is not
always unstable and if the bias of optimists and pessimists is large enough.
Indeed, in such case, raising the information cost of unbiased fundamentalists
makes the share of agents opting for such strategy decrease, due to the lower
fitness in terms of profits, not only for prices far from the equilibrium, but also
in a neighborhood of it, and this may lead to a destabilization of the steady
state. On the other hand, increasing the information cost of biased agents
has either no effect on the equilibrium stability or it is stabilizing, when their
bias is excessively large. Namely, in such case, raising the information cost
of optimists and pessimists makes the share of agents opting for those strate-
gies decrease, also due to their lower fitness caused by the scarcely precise
predictions when prices are in a neighborhood of the steady state. The con-
sequent increase in the share of unbiased fundamentalists makes prices more
likely converge towards the fundamental value. The remainder of the paper
is organized as follows. In Section 2 we present the model, that we study
analytically in Section 3, discussing the possible scenarios. In Section 4 we
describe some extensions of the model.

2 The model

At first we recall the discrete-time evolutionary cobweb setting in Hommes
and Wagener (2010), to which we add information costs in the profits (see
(2.8)).
The economy is populated by unbiased fundamentalists, that we will call just
fundamentalists, and by two types of biased fundamentalists, i.e., optimists
and pessimists. In particular, in order to obtain the same steady state as
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in Hommes and Wagener (2010), we assume that optimists and pessimists
are symmetrically biased, with the former (latter) expecting that the price of
the good they produce will always be above (below) the fundamental price.
Moreover, for the sake of simplicity, along the paper we focus on the case in
which, in addition to unbiased fundamentalists, just one group of optimists
and one group of pessimists are present.2 In the Muthian farmer model,
agents have to choose the quantity q of a certain good to produce in the
next period and are expected profit maximizers. Assuming a quadratic cost
function

γ(q) =
q2

2s
, (2.1)

with s > 0, the supply curve is given by

S(pe) = spe, (2.2)

where pe is the expected price and s describes its slope. The demand function
is supposed to be linearly decreasing in the market price, i.e.,

D(p) = A− dp, (2.3)

with A and d positive parameters, representing respectively the market size
and the slope of the demand function. We stress that the demand is positive
for sufficiently large values of A.
At the fundamental price p = p∗ demand equals supply, i.e.,

p∗ =
A

d+ s
. (2.4)

This is also the expression of the unique model steady state in Hommes and
Wagener (2010). Like in that paper, we will deal with the case in which the
Muthian model is globally eductively stable in the sense of Guesnerie (2002),
that is, on the case in which the model is stable under naive expectations, as
the slopes of demand and supply satisfy the familiar “cobweb theorem” by

2Indeed, our main result, according to which global eductive stability may imply not
even local stability under evolutionary learning when information costs are taken into
account, holds true in such minimal setting, too. Nonetheless, we are working on ex-
tending the present framework by introducing several types of biased fundamentalists
facing heterogeneous information costs, inversely proportional to the entity of their bias,
in Naimzada and Pireddu (2019), in order to characterize that setting outcomes from a
dynamic viewpoint.
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Ezekiel (1938) and thus it holds that s/d < 1.
Agents have heterogeneous expectations about the price of the good they
have to produce. In particular, fundamentalists predict that prices will al-
ways be at their fundamental value, while optimists (pessimists) predict that
the price of the good will always be above (below) the fundamental price.
Hence, assuming a symmetric disposition of the beliefs and characterizing the
fundamentalists, pessimists and optimists by subscripts 0, 1, 2, respectively,
in symbols we have that their expectations at time t are given by

pei,t = p∗ + bi, i ∈ {0, 1, 2}, with b0 = 0, b1 = −b, b2 = b, (2.5)

where b > 0 describes the bias of pessimists and optimists. In order to avoid
a negative expectation for pessimists, we will restrict our attention to the
bias values b ∈ (0, p∗), with p∗ as in (2.4).
Denoting by ωi,t the share of agents choosing the forecasting rule i ∈ {0, 1, 2}
at time t, the total supply is given by

∑2
i=0 ωi,tS(p

e
i,t) and thus the market

equilibrium condition reads as

A− dpt =
2

∑

i=0

ωi,tS(p
e
i,t). (2.6)

As concerns the share updating mechanism, Hommes and Wagener (2010)
deal with the discrete choice model in Brock and Hommes (1997) for the
case without memory, in which only the most recently realized net profits
πj,t, j ∈ {0, 1, 2}, are taken into account. In symbols

ωi,t =
exp(βπi,t−1)

∑2
j=0 exp(βπj,t−1)

, i ∈ {0, 1, 2}, (2.7)

where β > 0 is the intensity of choice parameter.
When considering information costs, net profits πj,t, j ∈ {0, 1, 2}, at time t
are defined as

πj,t = ptS(p
e
j,t)− γ(S(pej,t))− cj, (2.8)

with γ and S as in (2.1) and (2.2), respectively, and with the nonnegative
parameter cj representing the information cost deriving by the adoption of
forecasting rule j. Since optimists and pessimists do not perfectly know the
economic fundamentals and make symmetric errors in estimating them, we
may conclude that those agents display the same degree of rationality, and
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thus we will assume that c1 = c2 = c, for a certain c ≥ 0. On the other
hand, unbiased fundamentalists exactly know the formulations of demand
and supply functions and they are able to correctly compute the fundamental
value. Due to their higher degree of rationality with respect to optimists and
pessimists, we will suppose that the information cost c0 of fundamentalists
satisfies 0 ≤ c ≤ c0, i.e., that the information costs are inversely proportional
to the entity of the bias. We stress that for c = c0 = 0 we are led back to
the framework in Hommes and Wagener (2010).
Introducing, like in that paper, the variable xt = pt − p∗, we can write our
model dynamic equation in deviation from fundamental as

xt = −s

d

2
∑

i=0

ωi,t bi

with

ωi,t =
exp

(

−βs

2
(xt−1 − bi)

2 − βci
)

∑2
j=0 exp

(

−βs

2
(xt−1 − bj)2 − βcj

) ,

or, more explicitly, recalling (2.5), as

xt = sb
d
(ω1,t − ω2,t)

= sb
d

exp(−βs

2
(xt−1+b)2)−exp(−βs

2
(xt−1−b)2)

exp(−βs

2
(xt−1+b)2)+exp(−βs

2
(xt−1−b)2)+exp(−βs

2
x2

t−1
−β(c0−c))

.
(2.9)

For the model formulation in terms of xt, the unique steady state is given
by x∗ = 0 and we will derive the corresponding stability conditions in terms
of the intensity of choice parameter in Proposition 3.1. To such aim, it is
expedient to rewrite (2.9) as

xt = f(xt−1), (2.10)

where the one-dimensional map f : (−p∗,+∞) → R is defined as

f(x) =
sb

d

exp
(

−βs

2
(x+ b)2

)

− exp
(

−βs

2
(x− b)2

)

exp
(

−βs

2
(x+ b)2

)

+ exp
(

−βs

2
(x− b)2

)

+ exp
(

−βs

2
x2 − β(c0 − c)

) . (2.11)

We stress that f is differentiable and that, recalling the expression of p∗ in
(2.4), its domain is enlarged by considering increasing values of A. Moreover,
when extending its domain to R, the map is odd. Namely, replacing x with
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−x leaves the denominator unchanged, while the two terms on the numer-
ator of f are interchanged. Moreover, Hommes and Wagener (2010) prove
in their Theorem A that the function in (2.11) is always decreasing when
c = c0 = 0, using an argument based on the nonnegativity of the variance
in relation to a suitable stochastic process concerning the biases. In a com-
pletely analogous manner, it is possible to show that the map f is decreasing
also for nonnull information costs. This excludes the possibility of complex
dynamics in our framework, too, and indeed at most we observe a period-
two cycle, either coexisting with the locally stable steady state, or being the
unique attractor. Namely, differently from what obtained in Theorem A in
Hommes and Wagener (2010), where in the absence of information costs the
fundamental steady state is always (locally or globally) stable for s/d < 1,
in Proposition 3.1 we show that the intensity of choice parameter β may also
be either destabilizing or it may play an ambiguous role on the equilibrium
stability when information costs are taken into account.

3 Analytical results and possible scenarios

We start our analysis by investigating in the next result which are the steady
states for our model and by studying their local stability.

Proposition 3.1 Equation (2.10) admits x = 0 as unique steady state. The
equilibrium x = 0 is locally asymptotically stable for map f in (2.11) if

β <
d
(

2 + exp
(

βb2s

2
− β(c0 − c)

))

2b2s2
. (3.1)

Hence, if s/d < 1, according to the considered parameter configuration, one
of the following possibilities occurs:

(a) there exists β̄ > 0 such that x = 0 is stable for β ∈ (0, β̄) and unstable
otherwise;

(b) there exist 0 < β′ < β′′ such that x = 0 is stable for each β ∈ (0, β′) ∪
(β′′,+∞) and unstable otherwise;

(c) x = 0 is stable for every β > 0.
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In particular, (a) occurs when b <
√

2(c0−c)
s

, (b) occurs when b >
√

2(c0−c)
s

but

it is not too large, and (c) occurs for sufficiently large values of b >
√

2(c0−c)
s

.

Proof. A straightforward check ensures that x = 0 solves the fixed-point
equation f(x) = x, with f as in (2.11).
In order to show that x = 0 is the unique steady state it suffices to observe
that f is positive if and only if x is negative.
The stability condition follows by imposing that f ′(0) ∈ (−1, 1). By direct
computations, we have

f ′(0) =
−2βs2b2 exp

(

−βb2s

2

)

d
(

2 exp
(

−βb2s

2

)

+ exp (−β(c0 − c))
) .

Since f ′(0) is always negative, the stability of x = 0 is guaranteed when
f ′(0) > −1, which is equivalent to (3.1). In particular, setting g(β) = β

and h(β) =
(

d
(

2 + exp
(

βb2s

2
− β(c0 − c)

)))

/ (2b2s2) , we notice that g is

increasing. According to the sign of the exponent
(

βb2s

2
− β(c0 − c)

)

in h,

such map may be decreasing or increasing for β > 0. More precisely, the

former possibility occurs for b <
√

2(c0−c)
s

, and the graphs of g and h intersect

in one point β̄ > 0 with g(β) < h(β) only for β < β̄, and thus (a) occurs.
If instead h is increasing, it is also convex. Since g(0) < h(0) and h tends
to +∞ faster than g for β → +∞ due to the presence of the exponential

function, the graphs of g and h either intersect twice, when b >
√

2(c0−c)
s

but

it is not too large, so that (b) occurs, or they never intersect, for sufficiently

large values of b >
√

2(c0−c)
s

, and thus (c) occurs. This concludes the proof.

�

In the numerical simulations we shall perform below, c0 will be suitably
chosen and we will let b free to vary, while the remaining parameters will
be fixed as follows: A = 8, s = 0.95, d = 1, β = 10, c = 0.1. In such
configuration, setting c0 = 0.2 like in Figure 2, case (a) in Proposition 3.1

occurs for b <
√

2(c0−c)
s

= 0.459, while for b > 0.459 cases (b) and (c) take

place. Namely, fixing for instance b = 0.4 we find that x = 0 is stable
just for β ∈ (0, 9.565), while for b = 1 we have that x = 0 is stable for
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β ∈ (0, 2.512) ∪ (5.717,+∞) and x = 0 is stable for all values of β when
b = 2.
We stress that when setting c = c0 = 0, i.e., in the absence of information
costs, case (a) in Proposition 3.1 can not occur, because map h in the proof
above is always increasing. Hence, if we neglected information costs we would
not observe, in particular, the most classical effect of the intensity of choice
parameter, that is, the local destabilizing scenario. Moreover, also case (b) in
Proposition 3.1 would not occur since, as shown in Theorem A in Hommes
and Wagener (2010) and as we recalled above, without information costs the
steady state is always (locally or globally) asymptotically stable.
Despite such differences with the findings in Hommes and Wagener (2010)
concerning the local stability of the steady state, similar conclusions to those
drawn in Theorem A therein in regard to the existence of a locally stable
period-two cycle can be obtained in the presence of information costs, too.
Namely, Proposition 3.2 holds true. In particular, we stress that with the
introduction of information costs, when the steady state loses stability, a
flip bifurcation occurs at which a globally stable period-two cycle emerges.
The period-two cycle becomes locally stable only in case the steady state
recovers its stability for increasing values of β, otherwise the period-two cycle
remains globally stable. When instead the steady state is always stable like
in Hommes and Wagener (2010), the locally stable period-two cycle emerges,
together with an unstable period-two cycle, for sufficiently large values of β
through a double fold bifurcation of the second iterate of f and both the
steady state and one of the two period-two cycles remain locally stable when
raising β.

Proposition 3.2 For 1/2 < s/d < 1, the dynamical system in (2.10) admits
a (locally) stable period-two cycle when β is large enough. Moreover, for
β → +∞ the values of the period-two cycle approach {−sb/d, sb/d}.

Proof. The proof of the existence of the (locally) stable period-two cycle
when β is sufficiently large follows the same steps described in the verification
of point (ii) in Theorem A in Hommes and Wagener (2010), adapted in
order to take into account the information costs. In particular, since f 2

is monotonically increasing and bounded, the desired conclusion follows by
rewriting the map f in (2.11) as

f(x) =
sb

d

exp (−2βsbx)− 1

1 + exp (−2βsbx) + exp
(

−βsb

2
(2x− b)− β(c0 − c)

)
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and checking that f 2(U) ⊂ U, with U = [b(1 + ε)/2,+∞) where ε = s/d −
1/2 > 0.
As concerns the limit situation with β → +∞, we find that

f(x) =























sb
d

for x < min
{

−b2+(c0−c)
2b

, 0
}

0 for min
{

−b2+(c0−c)
2b

, 0
}

< x < max
{

b2−(c0−c)
2b

, 0
}

−sb
d

for x > max
{

b2−(c0−c)
2b

, 0
}

and the values of the period-two cycle for β → +∞ are given by {−sb/d, sb/d},
as desired.

�

We notice that, although the values of the period-two cycle when β → +∞
are not affected by the introduction of the information costs, the basin of
attraction of the period-two cycle and, consequently, that of the steady state,
do. Namely, according to the proof of point (iii) of Theorem A in Hommes
and Wagener (2010), when information costs are missing and β → +∞ the
map governing the dynamics reads as

f(x) =











sb
d

for x < − b
2

0 for − b
2
< x < b

2
−sb
d

for x > b
2

Hence, the interval of values of x for which f vanishes, that is, the basin
of attraction of the steady state, is reduced by the introduction of informa-
tion costs and this induces an enlargement in the basin of attraction of the
period-two cycle. In particular, if the bias is small enough with respect to
the difference in the information costs, i.e., if b <

√
co − c, then being funda-

mentalists is not profitable for any initial condition as β → +∞, because the
losses in the profits of optimists and pessimists deriving by their lower degree
of rationality are more than compensated by the reduced information costs
they face, when compared to those of fundamentalists. Hence, the basin of
attraction of the steady state shrinks to x = 0 and the whole population
switches from pessimism to optimism in every time period.

Rewriting the stability conditions in Proposition 3.1 in terms of the bias,
we obtain the following result:
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Corollary 3.1 The equilibrium x = 0 is locally asymptotically stable for map
f in (2.11) if

b2 <
d
(

2 + exp
(

βb2s

2
− β(c0 − c)

))

2βs2
. (3.2)

Hence, according to the considered parameter configuration, x = 0 is stable
for every b > 0 or there exist 0 < b′ < b′′ such that x = 0 is stable for each
b ∈ (0, b′) ∪ (b′′,+∞).

Proof. Condition (3.2) follows by making b explicit in (3.1). Moreover, set-

ting g(b) = b2 and h(b) =
(

d
(

2 + exp
(

βb2s

2
− β(c0 − c)

)))

/ (2βs2) , we no-

tice that for b ≥ 0 both g and h are increasing, convex maps with g(0) < h(0).
Since h tends to +∞ faster than g for b → +∞ due to the presence of
the exponential function, the graphs of g and h intersect never or twice ac-
cording to the considered parameter configuration. The proof is complete.
�

Thus, in Proposition 3.1 and in Corollary 3.1 we found up to two possible
stability thresholds for x = 0 with respect to β and b, respectively, and
x = 0 may be locally stable just for sufficiently low and for sufficiently high
values of the intensity of choice parameter and of the bias. In particular, this
means that the introduction of information costs may not only produce a
destabilization of the system for intermediate values of the bias of optimistic
and pessimistic agents, but that a sufficiently strong beliefs’ heterogeneity
may be stabilizing in our setting. As we shall see towards the end of the
present section, such counterintuitive result can be easily explained in terms
of profits.
We recall that also in the financial market settings considered in Chiarella
et. al. (2006), in De Grauwe and Rovira Kaltwasser (2012) and in Naimzada
and Pireddu (2015) two stability thresholds for the unique steady state are
detected. However, while in those contexts the stability region lies within
the two thresholds, in the present framework the stability region lies outside
the two thresholds. Moreover, in the numerical simulations performed in
Chiarella et. al. (2006) and in De Grauwe and Rovira Kaltwasser (2012) the
focus is on the threshold at which the steady state loses stability through a
Hopf bifurcation.

We now illustrate in Figures 1 and 2 the possible scenarios found in
Corollary 3.1 for increasing values of b, while fixing the other parameters like
described just after Proposition 3.1. More precisely, recalling that c = 0.1,
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before considering for c0 the relatively high value c0 = 2 in Figure 2, we
focus in Figure 1 on the case c0 = 0.11, in order to show that for almost
coinciding values of the information costs for fundamentalists and for biased
agents we obtain just the two frameworks which can occur in the absence of
information costs. Namely, in Figure 1 (A) for b = 0.4 we find that the steady
state x = 0 is globally stable and in Figure 1 (B) for b = 0.8 we observe, in
addition to the locally stable steady state, denoted by a black dot, a stable
and an unstable period-two cycles, denoted respectively by black and empty
squares, which are born for b ≈ 0.690 through a double fold bifurcation of
the second iterate of f, that we illustrate in Figure 1 (C). Raising the value
of the information cost for fundamentalists to c0 = 2, in Figure 2 (A) for
b = 0.3 we still find that the steady state x = 0 is globally stable, but in
Figure 2 (B) for b = 0.5 we observe that the steady state is now unstable,
and it is denoted by an empty dot, being surrounded by a globally stable
period-two cycle, born for b ≈ 0.393 through a pitchfork bifurcation of the
second iterate of f, which corresponds to a flip bifurcation of f. In Figure
2 (C) for b = 1 the steady state x = 0 is again locally stable thanks to
a further pitchfork bifurcation of the second iterate of f that has occurred
for b ≈ 0.850 at x = 0. The basin of attraction of x = 0 is separated by
that of the locally stable period-two cycle by an unstable period-two cycle,
born through the pitchfork bifurcation. We stress that in the frameworks
considered in Figures 1 and 2 the period-two cycle persists for larger values
of b and that the distance between the period-two points increases with b.
In fact, due to the oddness of map f, those period-two points have opposite

values. We also remark that if b >
√

2(c0−c)
s

, but it is not too large, so that

case (b) in Proposition 3.1 occurs, then x = 0 loses and recovers stability
for increasing values of β through a flip bifurcation of f and a pitchfork
bifurcation of the second iterate of f, respectively, as it happens in Figure 2
when raising b.

Before concluding the section by deriving in Corollary 3.2 the stability
conditions for x = 0 with respect to the information costs, we give an eco-
nomic interpretation of the reason why the introduction of information costs
may lead, for increasing values of the bias, to a destabilization of the steady
state, possibly followed by a recovery of its local stability.
Let us start noticing that, in the absence of information costs, x = 0 is (lo-
cally or globally) stable for every value of b because in a neighborhood of
the steady state it is relatively advantageous being fundamentalists. More
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(A) (B) (C)

Figure 1: The graph of the second iterate of f for c0 = 0.11, and b = 0.4 in
(A), b = 0.8 in (B), and b = 0.690 in (C).

(A) (B) (C)

Figure 2: The graph of the second iterate of f for c0 = 0.2, and b = 0.3 in
(A), b = 0.5 in (B) and b = 1 in (C).

precisely, if the bias is small, x = 0 is globally stable because profits of fun-
damentalists and biased agents do not differ very much and thus it does not
happen that the profits of optimists or pessimists are much higher than those
of fundamentalists when the initial condition is far from the steady state. On
the other hand, the latter phenomenon does occur when b is large enough,
as in this case the price forecast of optimists or pessimists is considerably
more precise than that of fundamentalists when prices are far from the equi-
librium. Then, in that region, a locally stable period-two cycle arises, along
which agents switch between optimism and pessimism, even if x = 0 remains
locally stable, because in a neighborhood of the steady state it is still rela-
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tively profitable being fundamentalists.
When introducing information costs, which are higher for fundamentalists
than for biased agents, for intermediate values of the bias it may be rel-
atively more profitable being optimists or pessimists than fundamentalists
even for prices in a neighborhood of the steady state.3 Hence, starting from
lower values of b and increasing the bias, the basin of attraction of x = 0
shrinks, until a globally stable period-two cycle emerges, with agents switch-
ing between optimism and pessimism. However, when the bias is excessively
large, for prices close to the equilibrium it becomes again relatively more
profitable being fundamentalists, because the forecast error made by biased
agents is too big, and thus x = 0 recovers its stability.

Rewriting the stability conditions in Proposition 3.1 in terms of the in-
formation costs, we obtain the following result:

Corollary 3.2 The equilibrium x = 0 is locally asymptotically stable for
map f in (2.11) for every value of the information costs 0 ≤ c ≤ c0 if
b ≤

√

d/(βs2), while if b >
√

d/(βs2) then x = 0 is locally asymptotically
stable when

c0 − c < log





d exp
(

βb2s

2

)

2(b2βs2 − d)





1

β

. (3.3)

Hence, if b >
√

d/(βs2), according to the considered parameter configuration,
with respect to c one of the following possibilities occurs:

(a) x = 0 is unstable for every 0 ≤ c ≤ c0;

(b) there exists c′ ∈ (0, c0) such that x = 0 is unstable for c ∈ (0, c′) and
stable for each c ∈ (c′, c0);

(c) x = 0 is stable for every 0 ≤ c ≤ c0 ,

3In this respect, we stress that, for low values of b, when the difference in the information
costs is high with respect to the bias, x = 0 may be globally asymptotically stable even if
the net profits of fundamentalists are lower than the net profits of biased fundamentalists,
also in a neighborhood of the steady state. This is indeed what happens for the parameter
configuration considered in Figure 2, where for b = 0.3 we have that x = 0 is globally
asymptotically stable and for x(0) = 0.1 it holds that π1 = 8.213, π2 = 8.270, π3 =
8.184, while for b = 0.5 just the period-two cycle is globally asymptotically stable and for
x(0) = 0.1 it holds that π1 = 8.118, π2 = 8.213, π3 = 8.184. Hence, the introduction of
information costs allows for a large variety of frameworks, whose correct interpretation
requires to take into account the values both of the information costs and of the bias.
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while with respect to c0 one of the following possibilities occurs:

(d) x = 0 is unstable for every c0 ≥ c;

(e) there exists c′0 > c such that x = 0 is stable for each c0 ∈ (c, c′0) and
unstable for c0 ∈ (c′0,+∞).

In particular, (a) and (d) occur when d ≤ (2b2βs2)/
(

exp
(

βb2s

2

)

+ 2
)

, (b)

occurs when d > (2b2βs2)/
(

exp
(

βb2s

2

)

+ 2
)

and c0 is larger than the right-

hand side in (3.3), (c) occurs when c0 is smaller than the right-hand side in

(3.3), (e) occurs when d > (2b2βs2)/
(

exp
(

βb2s

2

)

+ 2
)

.

Proof. Condition (3.3) immediately follows by making c0−c explicit in (3.1),
and (a)–(e) directly follow by observing that the right-hand side in (3.3) is

positive if and only if d > (2b2βs2)/
(

exp
(

βb2s

2

)

+ 2
)

. �

Hence, according to Corollary 3.2, increasing the information cost of bi-
ased agents has either no effect on the equilibrium stability or it is stabi-
lizing, when their bias is excessively large. Namely, in such case, raising
the information cost of optimists and pessimists makes the share of agents
opting for those strategies decrease, also due to their lower fitness caused
by their scarcely precise predictions when prices are in a neighborhood of
the steady state. The consequent increase in the share of unbiased funda-
mentalists makes prices more likely converge towards the fundamental value
(see Hommes, 2013), and this explains the observed stabilizing effect on the
equilibrium. On the other hand, Corollary 3.2 tells us that raising the infor-
mation cost of fundamentalists is destabilizing, when the equilibrium is not
always unstable and if the bias of optimists and pessimists is large enough.
Indeed, in such case, increasing the information cost of unbiased fundamen-
talists makes the share of agents opting for such strategy decrease, due to the
lower fitness in terms of profits, not only for prices far from the equilibrium,
but also in a neighborhood of it, and this may lead to a destabilization of
the steady state.

4 Conclusion

We believe the analyzed setting, which despite its simplicity allowed us to
give a neat negative answer to the question does eductive stability always
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imply evolutive stability? addressed in Hommes and Wagener (2010), can
be a starting point for other research developments. Indeed, in addition to
investigating, as we are doing in Naimzada and Pireddu (2019), which are
the differences in the outcomes deriving from the introduction in the model
of several types of biased fundamentalists facing heterogeneous information
costs, inversely proportional to the entity of their bias, we recall that the
final sentence in Hommes and Wagener (2010) reads as follows: “The study
of the stability of evolutionary systems with many trader types in various
market settings and with more complicated strategies remains an important
topic for future work”. In this perspective, the present framework could be
further extended by considering a richer set of forecasting rules, including e.g.
rational expectations agents, with differentiated information costs, in view of
analyzing whether dynamic phenomena more complex than the period-two
cycle can emerge when the fundamental steady state loses stability or even
when it is stable.
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