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ABSTRACT. We consider the competition among quantity setting players in

a linear evolutionary environment. To set their outputs, players adopt, alter-

natively, the best response rule having perfect foresight or an imitative rule.

Players are allowed to change their behavior through an evolutionary mech-

anism according to which the rule with better performance will attract more

followers. The relevant stationary state of the model describes a scenario

where players produce at the Cournot-Nash level. Due to the presence of

imitative behavior, we find that the number of players and implementation

costs, needed to the best response exploitation, have an ambiguous role

in determining the stability properties of the equilibrium and double stability

thresholds can be observed. Differently, the role of the intensity of choice,

representing the evolutionary propensity to switch to the most profitable rule,

has a destabilizing role, in line with the common occurrence in evolutionary

models. The global analysis of the model reveals that increasing values of

the intensity of choice parameter determine increasing dynamic complexi-

ties for the internal attractor representing a population where both decision

mechanisms coexist.

Keywords: Imitation, heterogeneity, evolutionary game, replicator dynamics, dy-

namic instability, dynamical systems

1. INTRODUCTION

In the literature concerning oligopoly competition, heuristic behaviors and
rule of thumbs are considered as decision mechanisms for players with limited
rationality. Among such heuristics, the gradient rule can be mentioned, intro-
duced by G. I. Bischi and Naimzada, 2000, Bischi, Gallegati, and Naimzada,
1999; Gian-Italo Bischi, Kopel, and Naimzada, 2001, Agiza, Hegazi, and El-
sadany, 2002 and recently considered by Sameh Askar, 2014; SS Askar, 2014
and Fanti, Gori, and Sodini, 2015, according to which players with limited knowl-
edge on the market demand adjust their outputs in order to increase their profits
based on the local estimate of the slope of their profit function at the actual mar-
ket state. Another important heuristic is the Local Monopolistic Approximation
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2 An evolutionary Cournot oligopoly model with imitators and perfect foresight best responders

(LMA), introduced by Tuinstra, 2004, considered in the framework of repeated
oligopolies by G. I. Bischi, Naimzada, and Sbragia, 2007, A. K. Naimzada and
Sbragia, 2006, A. K. Naimzada and Tramontana, 2009 and in a monopolistic
framework by A. Naimzada and Ricchiuti, 2011. According to the LMA rule,
players try to optimize their earnings by estimating a linear market demand
based on the local knowledge of the true demand obtained at the actual mar-
ket state. Moreover, the circumstance of heterogeneous degrees of rationality
and computational abilities among players lead to consider the simultaneous
presence of different decision mechanisms. Various pairings of heterogeneous
behaviors, including the best response, the gradient rule and the LMA rule,
are considered in Leonard and Nishimura, 1999, Den Haan, 2001, Agiza and
Elsadany, 2003, 2004, Angelini, Dieci, and Nardini, 2009, Tramontana, 2010,
Cavalli and Naimzada, 2014, Andaluz and Jarne, 2015, Cavalli, Naimzada, and
Tramontana, 2015, Cavalli and Naimzada, 2015, Pireddu, 2015, Tramontana,
Elsadany, Xin, and Agiza, 2015, A. Naimzada and Tramontana, 2015 and in
Andaluz, Elsadany, and Jarne, 2017.

Heterogeneous behaviors have also been considered in evolutionary set-
tings where players choose to behave according to a certain rule by selecting,
within a finite set of possible decision mechanisms, the most profitable one
evaluated on the basis of the relative performances it has brought in the past.
See Droste, Hommes, and Tuinstra, 2002, for the first contribution in this sense,
and Kopel, Lamantia, and Szidarovszky, 2014, G. I. Bischi, Lamantia, and Radi,
2015, Cerboni Baiardi, Lamantia, and Radi, 2015 and, also, Radi, 2017 among
others. Remarkably, endogenous fluctuations and evolutionary stable hetero-
geneous configurations, where different behaviors coexist along complex dy-
namics, are often observed. Relevance of complex dynamics in economics
have also been highlighted in Anufriev, Radi, and Tramontana, 2018.

The presence of heterogeneous decision mechanisms among agents is em-
pirically founded in Cournot competitions. Indeed, both the best response and
imitation behaviors are typically detected in experiments. In detail, the partial
emergence of choices matching the Cournot-Nash equilibrium in experiments
gives indirect indications for the presence of a component of the best response
behavior (see, for example, Huck, Normann, and Oechssler, 1999, Offerman,
Potters, and Sonnemans, 2002 and Bigoni and Fort, 2013). Experiments re-
veal also that Cournot competitions attain fairly high competitive levels. For
example, in Huck et al., 1999 (see also Offerman et al., 2002 and Bigoni and
Fort, 2013), the authors show that players boost more competitive outcomes
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provided they are supplied by information on disaggregated quantities and re-
lated profits of competitors. Fairly high competitive levels are also observed
in the experimental Cournot oligopolies considered in Apesteguia, Huck, and
Oechssler, 2007, Huck, Normann, and Oechssler, 2004, Apesteguia, Huck,
Oechssler, and Weidenholzer, 2010, Oechssler, Roomets, and Roth, 2016,
Friedman, Huck, Oprea, and Weidenholzer, 2015. Such a circumstance pro-
vides indication about the presence of a relevant component of imitative be-
havior, an interpretation which is supported by the theoretical contribution by
Vega-Redondo, 1997, where the author shows that the competitive equilibrium
emerges under the so called “imitate the best” rule, exploited by quantity set-
ting agents. A further experimental fact was evidenced in Friedman et al., 2015,
where the authors show that when players are allowed to compete for an ex-
tended time period, the oligopoly is brought towards the Cournot-Nash equilib-
rium, after reaching high competitive levels. As the authors pointed out, such
an empirical fact can be interpreted in the light of a learning process along
which decision mechanisms are adapted over time based on past experience.

In the present work we consider the above mentioned empirical facts and we
consider a Cournot model formulated in a linear environment where competi-
tors set their outputs adopting, alternatively, the proportional imitation rule intro-
duced in Cerboni Baiardi and Naimzada, 2018a (and similar to the one consid-
ered in Cerboni Baiardi and Naimzada, 2017, Cerboni Baiardi and Naimzada,
2018c, Cerboni Baiardi and Naimzada, 2018b and Cerboni Baiardi and Naimzada,
2019) and the best response rule with perfect foresight exploited at a fixed im-
plementation cost. The evolutionary part of the model accounts for the chang-
ing propensity of each agent to adopt one rule over the other, based on his
evaluation of past performances coming from each decision mechanism and
aims to represent learning processes taking place during the competition.

The model we consider summarizes the dynamics of a population of N
agents by means of a two dimensional discrete time dynamical system. The
resulting map is characterized by a stationary state that represents heteroge-
neous population where both the best responders and imitators coexist and
produce at the Cournot-Nash level.

The local analysis reveals that the above mentioned stationary state can un-
dergo flip bifurcation. In particular, variations in the number of players have
an ambiguous role and a double stability threshold may be observed. Such
an event is quite unexpected since, from the Theocharis’ result provided in
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Theocharis, 1960, most of the literature concerning oligopoly competition high-
lights the destabilizing role of the number of players. Similarly, we show that the
implementation costs influence the stability of the stationary state and, even in
this case, a double stability threshold is found. Again, this occurrence rep-
resents a remarkable circumstance since implementation costs in evolution-
ary models usually have only destabilizing effects (see Hommes, 2013, Brock
and Hommes, 1997). Both phenomena originate from the particular form of
the imitative behavior we consider. Remarkably, such occurrences have also
been found in Cerboni Baiardi and Naimzada, 2018a, where imitators and best
responders with static expectations have been considered in an evolutionary
framework. Due to the simplified mathematical structure of the model here
proposed, we show that the stability retrieval of the stationary state can be
explained observing that the imitative behavior reduces, under suitable con-
ditions, to an adaptive process where imitators’ outputs are adjusted towards
their static expectation best response, thus making the equilibrium stable. Dif-
ferently, the intensity of choice has a destabilizing role, a circumstance which is
in line with most of the literature involving evolutionary selection mechanisms
as introduced in Brock and Hommes, 1997 (see also Hofbauer and Sigmund,
2003).

The global analysis, mainly performed through numerical simulations, high-
lights the effects of parameters’ variations on the dynamical complexities of
trajectories, on the shape of basins of attractions of the existing attracting sets
and on the presence of multiple attractors. In particular, the variations in the
number of players may make the multi-stability rise. Moreover, increasing val-
ues of the intensity of choice determine increasing dynamic complexities for
the internal attractor, where different behaviors coexist in the long run. This
occurrence comes along with the reduction of the related basin of attraction.
From an interpretative point of view, this means that the probability to observe
feasible trajectories that converge towards the internal attractor are decreased
at increasing values of the intensity of choice.

We point out that the model here formulated mainly differs from those consid-
ered in Cerboni Baiardi and Naimzada, 2017, Cerboni Baiardi and Naimzada,
2018c, Cerboni Baiardi and Naimzada, 2018b and Cerboni Baiardi and Naimzada,
2019 because it allows players to change their decision mechanism by means
of an evolutionary mechanism, thus making the share of imitators in the pop-
ulation a dynamic variable. In Cerboni Baiardi and Naimzada, 2018a, the au-
thors formulate a model that follows the same evolutionary framework here
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considered, pairing imitators and best responders with static expectations, thus
obtaining a three dimensional discrete time map to represent the population
dynamics. Here, we strengthen the latter assumption pairing imitators together
with perfect foresight best responders. As a consequence, the Cournot com-
petition is represented by means of a two dimensional discrete time map char-
acterized by a simplified mathematical structure. By doing so it is possible to
better understand dynamical scenarios arising from the model and to provide
further interpretations on parameters’ roles.

The paper is organized as follows. In Section 2 the model is formulated. In
Section 3 the stationary states of the model and the related stability features
are highlighted in analytic form, when possible. In Section 4, global dynamic
scenarios that the model describes are discussed. Section 5 concludes.

2. THE MODEL

We consider a Cournot oligopoly where a population of N ≥ 2 agents com-
pete producing homogeneous goods bearing the same constant marginal pro-
duction cost c. We will denote by qk the output of the generic k-th agent and by
Q the total supply by all agents, which can be expressed by Q =

∑N
k=1 qk. We

further assume that the oligopoly is characterized by a linear inverse demand
function, namely P (Q) = max{a− bQ, 0}. The k-th agent profits result

(2.1) πk = P (Q)qk − cqk

From a theoretical perspective, the set of N players, with strategies given by
positive productions qk ≥ 0, with k = 1, ..., N , and whose utilities match their
profits, defines a game characterized by the Cournot-Nash equilibrium where
each player produces at the level

q∗ =
a− c

b(N + 1)

Noteworthy, the Cournot-Nash notion of equilibrium is very demanding in
terms of rationality and information set owned by players. Because of this, we
will consider the possibility for agents to adopt strategies coming from decision
mechanisms with less burden requirements. The burden of a rule is related
to the costs needed to its implementation. As a result, the performance of an
output will be measured through profits, which that specific output has brought,
diminished by implementation costs. Then, the performance of agent k will be
given by Uk = πk − Ck, where Ck ≥ 0 accounts for the per-period implemen-
tation costs associated to the rule adopted by agent k.
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In the present paper we consider that players can follow either the best re-
sponse rule having perfect foresight or the proportional imitation rule introduced
in Cerboni Baiardi and Naimzada, 2018a. The best response rule with perfect
foresight requires high computational abilities and the hold of relevant informa-
tion set, which includes the players’ profit structure and the market demand.
Hence, we assume that such rule is implemented at a constant average per
period cost C. On the other hand, the imitation heuristic requires the knowl-
edge of the previous period outputs together with resulting performances. Then
it is reasonable to assume that implementation costs associated to the imita-
tive rule are significantly lower than those required to implement the perfect
foresight best response. Therefore, we set the imitation heuristic free from im-
plementation costs. From this it follows that

Uk = πk − Ck, where Ck =

{
C if k is a best responder
0 if k is an imitator

(2.2)

Remark 1. The implementation cost C is assumed to be small enough to en-
sure positive performances at the Cournot-Nash equilibrium. Hence, the upper
bound of C will not exceed the profit π∗ earned by players when producing at
the Cournot-Nash level, namely

(2.3) C < π∗ :=
1

b

(
a− c
N + 1

)2

The model is developed in a discrete time framework where each player, at
the beginning of each period, chooses which decision mechanism to exploit
and, accordingly, he sets his output. If an agent produces following the best
response rule having perfect foresight, he adapts immediately and optimally
his production to his competitors’ aggregate production. Then, at time t+1, the
generic i-th best responder sets the quantity

qi(t+ 1) : = argmax
q
πi(q +Q−i(t+ 1)) =

a− c− bQ−i(t+ 1)

2b
(2.4)

whereQ−i(t+1) denotes the quantity produced by i’s competitors at time t+1.
Otherwise, if an agent adopts the proportional imitation rule, he chooses his
production at the weighted average of the previous period outputs. Weights are
given by the relative performances coming from the previous period choices.
Then, at time t+ 1, the generic j-th imitator sets the quantity

qj(t+ 1) =

∑
l∈A(t) Ulql∑
l∈A(t) Ul

(2.5)
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where A(t) includes outputs in the market at time period t, that is

A(t) := {q ∈ R+ : ∃ n ∈ N s.t. q = qn(t)}

The rule (2.5) considers that imitators are aware of the presence of strategic
interactions and that an action that brought high performances (or the highest
performance) in the previous period may not produce so good a result in the
present time because of changes in environmental conditions. Because of the
indeterminacy of actions’ performances, imitators tackle the problem of whom
to imitate by considering all previous period choices through the rule 2.5, which
can be interpreted as a prudent imitative behavior.

Remark 2. Differently from the proportional imitation rule considered in Cer-
boni Baiardi and Naimzada, 2017 (and also in Cerboni Baiardi and Naimzada,
2018b and Cerboni Baiardi and Naimzada, 2019), the rule 2.5 accounts for per-
formances as weights instead of profits. This reflects the implicit assumption
according to which imitators do not distinguish between competitors exploiting
different decision mechanisms, having only access to information on quanti-
ties adopted by competitors and their related outcomes, which correspond to
performances in the present formulation.

The imitation rule here considered does not provide any performance based
selection. This marks the main difference from the rules considered by Vega-
Redondo, 1997 and by Schlag, 1998, where players make a careless and in-
cautious selection among the quantities to imitate. Indeed, according to the rule
defined by Vega-Redondo, 1997 every player refuses to imitate every strategy
that did not produce the best result, while, according to the rule considered by
Schlag, 1998, every player refuses to imitate every strategy that has produced
worse outcomes than his own.

We reduce the complexities of the model by assuming that players exploiting
the same rule are characterized by the same initial conditions. This implies
that the outputs of those players using the same rule are equal among them
also in subsequent periods. Then, at time t, the best responders’ outputs equal
the single value q1(t). The resulting performances coming from using the best
response will be denoted by U1(t). Analogously, the imitators’ outputs equal the
single value q2(t) and the performances that result from using the proportional
imitation rule will be denoted by U2(t). The splitting of the population between
best responders and imitators can be described by introducing the new variable
ω(t) ∈ (0, 1) that represents the share of imitators in the population at time t.
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From the previous arguments, recurrences (2.4) reduce to the following one-
dimensional correspondence

(2.6) q1(t) := G(q2(t)) =
a− c− bNω(t)q2(t)
b(N(1− ω(t)) + 1)

Equation (2.6) reports the strategy of best responders with perfect foresight and
the strategy of the representative imitator agent. Under the same assumptions,
recurrences (2.5) reduce to the following one-dimensional map

q2(t+ 1) =
U1(t)

U1(t) + U2(t)
q1(t) +

U2(t)

U1(t) + U2(t)
q2(t)(2.7)

where

U1(t) = (max{0, a− bN((1− ω(t))G(q2(t)) + ω(t)q2(t))} − c)G(q2(t))− C

U2(t) = (max{0, a− bN((1− ω(t))G(q2(t)) + ω(t)q2(t))} − c) q2(t)

The evolutionary part of the model describes how the propensity to adopt a
decision mechanism changes over time. Along the line marked by Brock and
Hommes, 1997 (see also Hommes, 2013), we consider that the rule with better
performance will attract more followers. Then, the fraction ω(t) of imitators
evolves along with the exponential replicator dynamics

(2.8) ω(t+ 1) =
eβU2(t)

eβU2(t) + eβU1(t)

Parameter β is the so called “intensity of choice”, which measures how sen-
sitive the players are for selecting the previous-time best performer decision
mechanism. In the extreme case β = 0, differences in performances cannot be
observed and the fraction of imitators remains fixed over time at the value 1/2.
In the other extreme case β = ∞, performances are perfectly observed and,
in each period, all agents choose the previous-time decision rule which carried
out the best performance.

The oligopoly dynamics is driven by a discrete time correspondence

(q2(t), ω(t)) −→T (q2(t+ 1), ω(t+ 1))

where T stands for a two dimensional map defined by recurrences (2.7) and
(2.8), each of which describes time advancements of imitators’ output and their
share in the population. In the next Sections, we will provide both local and
global analysis of the model limited to those dynamic scenarios along which
the price remains positive.
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3. LOCAL ANALYSIS

Stationary states of the model are provided in the following proposition.

Proposition 3. The dynamical system defined by map T is characterized by
the stationary state E∗

E∗ = (q∗, ω∗) where q∗1 = q∗2 = q∗ =
a− c

b(N + 1)
, ω∗ =

1

1 + e−βC
(3.1a)

In addition, provided that condition (2.3) is met, the dynamical system has a
second stationary state E0 given by

E0 = (q0, ω0) where q01 =
√
C/b, q02 = q0 =

a− c
bNω0

−
√
C

b

N(1− ω0) + 1

Nω0
,

(3.2a)

Here ω0 is the unique solution in the interval (0, 1) of the equation f(ω) = 0

with

f(ω) =
a− c
bNω

−
√
C

b

N(1− ω) + 1

Nω
+

1

β
√
Cb

log

(
1

ω
− 1

)
Proof. See Appendix 6.1 �

Remark 4. The stationary state E∗, where the production level of best respon-
ders equals the imitators’ one, is consistent with the Cournot-Nash equilib-
rium. Moreover, the equilibrium share of imitators is an increasing function
with respect to the evolutionary parameter β. Indeed, increasing values of β
enhances the capacity of players to distinguish the differences in performances
from each rule, thus strengthening the incentive to adopt the imitation rule lead-
ing to higher performances at the Cournot-Nash level. Similarly, the equilibrium
share of imitators grows along with C. Indeed, increasing C determines the de-
creasing incentive to adopt the best response rule due to high implementation
costs.

We remark also that the stationary state E0 is consistent with the Walrasian
equilibrium in the special case in which C → 0 since, in this limit, players pro-
duce at the market clearing price. Indeed, denoting the aggregate production
at E0 by Q0, it results

lim
C→0

P (Q0) = lim
C→0

max{0, a− bN((1− ω0)q01 + ω0q02)} = c

Remark 5. If profits were used instead of performances in the imitation rule
(2.5), the first stationary statesE∗ of the model would still be the same, whereas
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the second stationary state E0 would change into the following

E0
π = (q02,π, ω

0
π), q02,π =

a− c
bNω0

π

, ω0
π =

1

1 + e−βC

In addition, at E0
π, best responders set vanishing productions (namely q01,π =

0). It results that E0
π can be interpreted as the Walrasian equilibrium at which

players produce at the market clearing price. Indeed, denoting the aggregate
production at E0

π by Q0
π, it results

P (Q0
π) = max{0, a− bN((1− ω0)q01,π + ω0

πq
0
2,π)} = c

for any value of C ≥ 0.

The following proposition outlines the stability property of the stationary state
E∗.

Proposition 6. The stationery stateE∗ is locally asymptotically stable provided

(3.3) ω∗ < ωf

where ω∗ =
1

1 + e−βC
and ωf :=

N + 1

2N

3π∗ − C
2π∗ − C

. At ω∗ = ωf the fixed point

E∗ undergoes flip bifurcation.

Proof. See Appendix 6.2. �

Remark 7. Analytical evaluations of the stability property of E0 cannot be given
since the fraction of imitators at E0 cannot be obtained in analytic form. How-
ever, the stationary stateE0 is never found to be stable in numerical simulations
performed within a wide range of parameters’ values.

In the following, we consider the role of the relevant parameters of the model
in determining the stability properties of E∗, that is the number of players, the
implementation costs and the intensity of choice.

The stability condition (3.3) can be exploited in order to highlight the role of
parameter N . We first note that the above mentioned condition is met at ex-
treme values of N , that is when N = 2 and as N approaches the maximum
value Nmax := (a− c)/

√
Cb− 1 at which the relation (2.3) is no more satisfied.

Indeed, in both cases, it is easy to verify that ωf > 1. On the other hand, the
same condition may not be satisfied at intermediate values of N and a dou-
ble stability threshold can be observed (see bifurcation diagrams in figure 1).
Figure 3, left panel, shows that the role of N depends on the values of β. In
detail, if the intensity of choice β is small enough, the number of players does
not affect the stability of E∗. On the other hand, if the value of β is sufficiently
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high, a first increase of N ’s values leads to the loss of stability of E∗, while
further increases of the same parameter leads to its stability retrieval. We note
that the presence of the double stability threshold at increasing values of N
has to be referred to the specific imitative behavior we consider and it repre-
sents a remarkable circumstance since, from the Theocharis’ result provided
in Theocharis, 1960, most of the literature concerning oligopoly competition
shows the destabilizing role of the number of players.

FIGURE 1. Bifurcation diagrams as N varies of q1 (left), q2
(center) and ω (right). Parameters are: a = 100, b = c = C = 1
and β = 2.

A double stability threshold may also appear at increasing values of C. In-
deed, the condition (3.3) is met both at extreme values ofC, that is atC = 0 and
for values of C that approach its the maximum value Cmax := π∗ at which the
relation 2.3 is no more satisfied. On the contrary, the same condition may not
be satisfied for intermediate values of implementation cost C (see bifurcation
diagrams in figure 21). In addition, figure 3, right panel, shows that the desta-
bilizing role of C is conditioned by the values of β. The presence of a double
stability threshold is a remarkable circumstance since, usually, implementation
costs in evolutionary models have a destabilizing effect (see Hommes, 2013,
Brock and Hommes, 1997).

Remark 8. If, in the imitation rule 2.7, profits were used as weights instead of
performances, the stability condition of E∗ provided in Proposition 6 would boil
down to

ω∗ <
3

4

N + 1

N

1We note that in figure 2 left panel, points of the phase space are visited along stable periodic
cycles at which the share of imitators vanishes. At those points, only perfect foresight best
responders are present, who produce at the Cournot-Nash level even after the stability loss of
E∗.
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In this case, the stability properties of the stationary state E∗ would be deter-
mined by parameters β, C and N only, all of which have a destabilizing role. It
follows that the double stability threshold that may be observed when N or C
vary would disappear.

FIGURE 2. Bifurcation diagrams of q1 (left), q2 (center) and ω
(right) as C varies. Parameters are N = 5, a = 100, b = c = 1
and β = 0.5.

FIGURE 3. Left. Stability regions of E∗ in theN−β plane (left)
at C = 1. Right. Stability region in the C − β plane at N = 5.
Other parameters are a = 100, b = c = 1.

The stability recovery of the stationary state E∗, that occurs as the number
of players N or the implementation cost C attain sufficiently high values, is due
to the fact that, in these cases, imitators adjust their outputs towards their best
response with static expectation, regardless of their share in the population.
In detail, taking into account Assumption 2.3, if N approaches the maximum
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value Nmax or if implementation costs C approach the maximum value Cmax,
any single time step adjustment of imitators’ output can be approximated by

q2(t+ 1) ∼ γεG(q2(t)) + (1− γε) q2(t)

= q2(t) + γε (G(q2(t))− q2(t))(3.4)

provided q2(t) is placed in a suitable neighborhood of the Cournot-Nash pro-
duction level q∗ with radius ε > 0. In relation (3.4), γε is a positive and small
reaction parameter, which represents the speed of velocity with which the quan-
tity q2(t) is adjusted towards G(q2(t)) (see Appendix 6.3 for more details). The
imitators’ behavior as described by relation (3.4) can be justified considering
that, in the limit N → Nmax or C → Cmax, best responders realize small
performances with respect to the imitators’ ones. Then, when computing their
next period production through the weighted average (2.7), imitators assign
much less importance to best responders’ outputs with respect to their own
past choices. Under this point of view, γε can be interpreted as the weight that
imitators give to the best responders output, while 1 − γε is meant to be the
weight given to their own previous period outputs.

The role of the intensity of choice β can be highlighted by rewriting the sta-
bility condition (3.3) in order to provide the explicit expression of the threshold
value βf of β, at which the equilibrium point E∗ turns to an unstable saddle.
Indeed E∗ is locally asymptotically stable if

(3.5) β < βf := − 1

C
log

(
1

ωf
− 1

)
At β = βf flip bifurcation occurs. Relation (3.5) clearly highlights the destabi-
lizing role of the intensity of choice (see also the bifurcation diagrams in figures
3). Such a finding is somehow expected and in line with existing literature (see
e.g. Brock and Hommes, 1997 and Hommes, 2013). The interpretation is that
small values of β result in an important level of inertia of players when choos-
ing the most profitable decision mechanism. Differently, at high values of the
intensity of choice, players react to small differences in performances coming
from each rule, thus having a high propensity to change their behavior and with
the effect of destabilizing the system.

4. GLOBAL ANALYSIS

The global analysis reveals further interesting dynamic phenomena which
cannot be deduced by means of the local stability analysis provided in the pre-
vious Section. To this purpose we provide several numerical simulations where
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FIGURE 4. Bifurcation diagrams varying β of ω (left), q2 (center)
and q1 (right) at N = 5, a = 100, b = c = C = 1.

the static game’ parameters a, b and c are kept fixed at the values a = 100,
b = c = 12. We first note that the vertical line L := {(q∗, ω) : ω ∈ (0, 1)},
where q∗ is the production at the Cournot-Nash level, is invariant under the ac-
tion of map T , that is T (L) ⊂ L. Then, initial conditions lying on L are mapped
towards E∗ ∈ L in one step. This implies that line L is included in the basin of
attraction of E∗. Examples of this occurrence are provided in figure 5, where
the invariant line L is shown. In particular, in the left panel, a dynamic scenario
is shown, where β = 1, C = 1 and N = 12, at which the stationary state E∗

is a stable internal attractor representing a heterogeneous population in which
best response and imitative rules coexist. The grey points of the phase space
represent the basin of attraction of E∗, while the orange points represent the
basin of attraction of unfeasible trajectories. Differently, in the right panel of the
same figure, a new scenario is obtained at increased value of β = 2 beyond
the threshold value βf . The stationary state E∗ has lost its stability through the
flip bifurcation and an internal chaotic attractor, arising after the usual period
doubling cascade, is represented. Its basin of attraction is represented by the
green points. As usual, the orange points represent the basin of attraction of
unfeasible trajectories. The comparison between the two scenarios provided in
figure 5 reveals that increasing values of β produce increasing dynamic com-
plexities in feasible trajectories. Noteworthy, when E∗ is unstable, outputs of
best responders and imitator players slightly differ from the Cournot-Nash level
and feasible trajectories take place in the neighborhood of the invariant line L.

2Fundamental parameters are fixed at the values usually adopted within experimental oligopolies
with an underlying linear structure (see e.g. Huck et al., 1999 or Oechssler et al., 2016 among
others.)
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As a consequence, most of the dynamics of the system is due to wide varia-
tions of the relative fraction of imitators, taking place above the floor 1/2. Then,
the loss of stability of E∗ can be thought as a transition from an initial sce-
nario, where each player produces following a given rule in time, towards a new
scenario where players produce at the same level alternating the adoption of
either rule or the other. Moreover, the shape of the basins highlights that the
possibility for non-diverging dynamics to occur is influenced by initial conditions.
Indeed, feasible trajectories are as likely to be observed as initial productions
are closer to the Cournot-Nash level. Also, if the initial conditions sufficiently
approach the Cournot-Nash production, the convergence towards the internal
attractor occurs regardless of the fraction of imitators. At the same time, if the
fraction of best responders increases, the initial deviation from the Cournot-
Nash production, which still leads to non-divergent paths, grows larger.

Other interesting dynamic scenarios, obtained by keeping C = 1 and N = 5

fixed while β is increasing (β = 0.162, 1, 2), are provided in figures 6. With the
mentioned values of the parameters, the stationary state E∗ is stable and it is
represented together with its basin of attraction, denoted by the grey points of
the phase space. E∗ coexists with a three band chaotic attractor placed at the
extreme values of ω, whose basin is denoted by the yellow points.

Such chaotic trajectories describe a scenario where all the players simulta-
neously switch their behavior from the best response to the imitation rule. The
sequence in figure 6 shows that the intensity of choice influences the shape of
the basins of attraction (an effect which can also be observed, even if with a
lower importance, by comparing the two scenarios in figure 5). Indeed, increas-
ing values of β shrink the basin of the internal attractor E∗ around the invariant
line L, which makes the basin of chaotic trajectories widen. Then, increasing
values of β strengthen the phenomenon according to which the convergence
towards the equilibrium occurs provided initial outputs are closer and closer
to the invariant line L as the number of imitators’ fraction increases. We fi-
nally mention that the scenarios depicted in figures 5 and 6 are distinguished
by different values of N , namely N = 12 and N = 5 respectively. Hence,
besides the counter-intuitive effect according to which increasing values in the
number of players involved in the competition may give rise to a double stability
threshold (as noted in Section 2), variations of N may also produce the rise of
multi-stability scenarios.
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FIGURE 5. Basins of attractions of internal attractors (grey and
green points) and of divergent trajectories (orange points). Left.
Stable E∗ at β = 1. Right. Chaotic attractor at β = 2. Other
parameters are N = 12, a = 100 and b = c = C = 1.

FIGURE 6. Basins of attractions of E∗ (grey points), of a three
band chaotic attractor placed at extreme values of ω (yellow
points) and of unfeasible trajectories (orange points). Left. β =
0.162. Center. β = 1. Right. β = 2. Other parameters are
N = 5, a = 100 and b = c = C = 1.

5. CONCLUSION

The dynamics of a population of N quantity setting players that compete in
a linear oligopoly framework, iterating their decisions in discrete time periods,
is here considered. Players exploit, alternatively, the perfect foresight best re-
sponse rule or an imitative rule in order to set their outputs. The choice of which
decision mechanism to exploit is driven by an evolutionary process according
to which the rule that brought the highest performance in the previous time
period attracts more followers. The model we formulate is characterized by a
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relevant stationary state where agents set their outputs at the Cournot-Nash
production level, which represents a heterogeneous population where rational
and imitative rules coexist. We found that the number of players involved in
the competition, considered as a parameter, has an ambiguous role in influenc-
ing the stability property of the stationary state and a double stability thresh-
old may be observed. This represents a circumstance in contrast with most
of the literature concerning oligopoly competition, which has to be referred to
the specific imitative behavior we consider. A similar occurrence can be found
when implementation costs, needed to exploit the best response rule, become
heavier. Again, this circumstance should be referred to the presence of the
imitation heuristic and marks the difference with most part of the literature on
evolutionary competition (see Brock and Hommes, 1997 or Hommes, 2013),
where implementation costs have an unambiguous destabilizing role. On the
contrary, the intensity of choice, which represents the evolutionary propensity
to switch to the most profitable rule, is confirmed to be destabilizing, in line with
acknowledged evolutionary models (see e.g. Hofbauer and Sigmund, 2003).
The global analysis of the model, performed through numerical simulations, re-
veals that the number of players may also produce the rise of multi-stability. It
also shows that the intensity of choice increases the dynamical complexities of
feasible trajectories and influences the shape of basins of attraction. Indeed,
increasing values of β may produce period doubling cascades and the rise of
chaotic dynamics. In addition, increasing values of intensity of choice shrink
the basin of the internal attractor, which determines the rise of complex trajec-
tories along which players produce at the Cournot-Nash and, at the same time,
undergo cyclic variations in their own behavioral rule.

6. APPENDIX

6.1. Proof of Proposition 3. Stationary states of (2.7) satisfy the equation

(q2 − q1)(π1 − C) = 0

If q1 = q2 := q∗, relation (2.6) implies

q∗ =
a− c

b(N + 1)

By replacing this expression in recurrence (2.8), the stationary fraction of imita-
tors results

ω∗ =
1

1 + e−βC
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Instead, if π1 −C = 0, the explicit expression of π1 and the correspondence
(2.6) leads to

(6.1) q01 =
√
Cb, q02 =

a− c
bNω0

−
√
C

b

N(1− ω0) + 1

Nω0

where ω0 is the solution of the equation

f(ω) =
a− c
bNω

−
√
C

b

N(1− ω) + 1

Nω
+

1

β
√
Cb

log

(
1

ω
− 1

)
Provided that condition (2.3) holds, that is

(6.2)
1

b

(
a− c
N + 1

)2

> C,

it can be showed that f(ω) vanishes at a unique within (0, 1). Indeed, f(ω) is
a monotonically deceasing function

dG

dω
= −N + 1

Nω2

(
a− c

b(N + 1)
−
√
C

b

)
− 1

ω(1− ω)
1

β
√
Cb

< 0

In addition, the extremes of f(ω) are of opposite signs at the extremes of the
interval (0, 1):

lim
ω→0+

f(ω) =
N + 1

Nω

(
a− c

b(N + 1)
−
√
C

b

)
+

1

β
√
Cb

log

(
1

ω
− 1

)
+

√
C

b
= +∞

lim
ω→1−

f(ω) =
N + 1

Nω

(
a− c

b(N + 1)
−
√
C

b

)
+

1

β
√
Cb

log

(
1

ω
− 1

)
+

√
C

b
= −∞

6.2. Proof of Proposition 6. The eigenvalues λ1 and λ2 of the Jacobian ma-
trix of map (2.6) computed at E∗ are root of the characteristic polynomial P (λ)
given by

P (λ) = −λ
(

1

2π∗ − C

(
π∗ −

Nω∗(π∗ − C)
N(1− ω∗) + 1

)
− λ

)
(6.3)

The first root is λ1 = 0 while the second λ2 is given by
(6.4)

λ2 =
1

2π∗ − C

(
π∗ −

Nω∗(π∗ − C)
N(1− ω∗) + 1

)
=
π(N(1− 2ω∗) + 1) +NCω∗

(2π − C)(N(1− ω∗) + 1)

It is easy to see that λ2 < 1. Thus, the Cournot-Nash equilibrium E∗ is stable
provided that λ2 > −1, which is satisfied if and only if

(6.5) ω∗ <
N + 1

N

3π∗ − C
2(2π∗ − C)
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6.3. Derivation of formula (3.4). If N approaches its maximum value Nmax,
the profit π∗ at the Cournot-Nash level approaches the implementation cost C.
Then, in this limit, it is C = π∗ + εN , for some suitably small εN > 0. Similarly,
if the implementation cost C approaches its maximum value Cmax = π∗, then
C = π∗ − εC , for some suitably small εC > 0. Denoting by ε0 alternatively εN
or −εC , the dynamics of imitators can be rewritten as

q2(t+ 1) =
π1 − (π∗ + ε0)

π1 + π2 − (π∗ + ε0)
G(q2(t)) +

π2
π1 + π2 − (π∗ + ε0)

q2(t)(6.6)

Suppose that, at period t, it results

q2(t) < q∗

such that q2(t) = q∗ − ε for some suitable ε > 0. On the one hand this implies

q1(t) = G(q2(t)) = q∗ +
Nωε

N(1− ω) + 1
> q∗

In addition, the first order approximation of best responders and imitators’ prof-
its are respectively

π1 ∼ π∗ + 2bq∗kε

π2 ∼ π∗ + bq∗(k − 1)ε

where we used the shortcut k = Nω/(N(1− ω) + 1). Recurrence 6.6 can be
approximated to the first order as follows

q2(t+ 1) =
π1 − (π∗ + ε0)

π1 + π2 − (π∗ + ε0)
G(q2(t)) +

π2
π1 + π2 − (π∗ + ε0)

q2(t)

∼ 2bq∗kε+ ε0
π∗ + bq∗(3k − 1)ε+ ε0

G(q2) +
π∗ + bq∗(k − 1)ε

π∗ + bq∗(3k − 1)ε+ ε0
q2(t)

∼ q2(t) +
2bq∗k

π∗
ε (G(q2(t))− q2(t)) +

ε0
π∗

(G(q2(t))− q2(t))

= q2(t) +

(
2bq∗k

π∗
ε+

1

π∗
ε0

)
(G(q2(t))− q2(t))

The speed of adjustment

γε =
2bq∗k

π∗
ε+

1

π∗
ε0

is always positive provided that ε0 = εN . Instead, if ε0 = −εC , the parameter
γε remains positive provided that a sufficiently high value of N is selected such
that π∗ − C = εC < 2bq∗kε. An analogous result is obtained assuming that, at
period t, it results q2(t) > q∗ with q2(t) = q∗ + ε for some suitable ε > 0.
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