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Abstract

In this paper we consider a nonlinear model for the real economy described by a multiplier-
accelerator setup. The model comprises the government sector, which influences the output
dynamics by means of the fiscal policy, and the money market, where the money supply depends
upon the fluctuations in the economic activity. Through rigorous analytical tools combined
with numerical simulations, we investigate the stability conditions of the unique steady state
and the emergence of different kinds of endogenous dynamics, which are the results of the
action of the fiscal and the monetary policy through their reactivity degrees. Such policies, if
properly tuned, can lead the economy toward the desired full employment target but, on the
other hand, can also generate endogenous fluctuations in the pace of the economic activity,
associated with the occurrence of closed invariant curves and multistability phenomena.

Keywords: nonlinear dynamics; monetary and fiscal policies; bifurcations; multistability.

1 Introduction

It is well-known that macroeconomic variables, such as national income, interest rates, inflation
rates, money supply, etc. exhibit persistent and irregular fluctuations. The models for explaining
the evolutions of these variables are widespread and come from any field of economics, with the
aim of detecting the endogenous sources of such fluctuations. In this respect, nonlinearity is a
key ingredient which is thought to be the source of endogenous cyclic behavior. Accordingly, the
literature that stems from this idea is widespread and developed in the last decades. Among
the milestones in the macro-dynamics literature we can mention the paper by Kalecki [1], who
stressed the crucial role played by investments in a capitalist system and the issue of finding a
well-specified investment function to appease many problems within the considered economy .
Samuelson [2] built a multiplier-accelerator model to analyze the business cycle, while Kaldor [3]
explicitly adopted a nonlinear investment function based on the profit principle. Finally, Hicks
[4] extended the Samuelson’s seminal model with the ideas of floor and ceiling to bound the
growth of investments. After these contributions embedded in the general economic thought, the
original papers have been extended in several directions thanks to the application of the tools
from nonlinear dynamics and bifurcation theory, which allowed reconsidering the various existing
economic models. Many interesting improvements of business cycle modeling spread during the
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recent decades, frequently exhibiting complex dynamics, nonlocal bifurcations and transitions
from order to chaos, as in [5]-[9].

The Samuelsonian multiplier-accelerator modelling approach, which is considered a benchmark
to explain business cycle fluctuations, has been developed and extended in different ways (see,
e.g., [10]-[17]), where the birth of persistent oscillations is discussed through the analysis of the
role of different elements, such as the presence of an income ceiling and an investment floor, or
the introduction of delays in the consumption or investments function.
Nonetheless, a usual objection to business cycle models based on the interaction of the multiplier
and the accelerator is that they neglect monetary factors and, when the latter are considered,
are not an integral part of the model. Only few papers examined the role of the introduction
of the monetary policy within a multiplier-accelerator framework, even if the monetary factors
may be of relevance for understanding the emergence and evolution of the business cycle. In
this regard, we mention the paper by Smith in [18] who introduces money in a simple and lin-
ear multiplier-accelerator model, showing that periodic oscillations may arise and increase when
monetary factors are considered. In [19], Lovell and Prescott study the role of money supply in
determining periods of stability and oscillations in the business cycle within the Samuelsonian
multiplier-accelerator setup and investigate the effects of alternative stabilization strategies that
might be activated by the monetary authority. The work by Sordi in [20] tackles the issue of
business cycle fluctuations in a discrete time multiplier-accelerator model in which a floor and
a ceiling are introduced into the accelerator component of the capital stock evolution. Also the
paper in [21] studies in depth the multiplier-accelerator framework in a context of a monetary
economy where the multiplier effects are closely related to the monetary transactions. Finally,
more recently, Karpetis and Varelas in [22] introduced a money market and a balanced government
expenditure rule in a discrete-time multiplier-accelerator to study their interaction and how they
affect the overall economic stability.
The idea of including the money market in this framework, together with the fiscal policy, fits
into the debate on the proper degree of activism in fiscal and monetary policy making. The main
question to give an answer is of how much to vary monetary and fiscal instruments to reduce mar-
ket turmoil and whether a good fiscal policy is more or less effective than a good monetary policy
for stabilization purposes. In the present paper we enrich the discrete time multiplier-accelerator
setting considered in [23] by taking into account a money market. The aim is to examine the
effects of making monetary factors a relevant part of the economic setup under investigation in
order to understand the interplay between these factors and the fiscal policy instruments may give
rise, reduce or foster the oscillations in the business cycle.
The multiplier-accelerator model encompasses a nonlinear investments function which takes into
account the presence of the monetary sector through the interest rate which, in turn, is deter-
mined by the equilibrium condition on the money market. The money supply is influenced by
the discrepancy between the full employment national income level and the more recent output
realizations. Moreover, the public sector may influence the possibility of the economy to reach a
full employment output level through a level-adjusting rule. Therefore, it turns out to be relevant
to study whether the interplay between these two policies can render the overall system stable or,
instead, endogenous fluctuations arise at the ground of the business cycle.
To this end, we analytically obtain the local asymptotic stability conditions of the unique steady
state, and, with the help of numerical investigations, we investigate the possible kinds of bifurca-
tions, showing the consequent emergence of periodic, quasi-periodic and chaotic dynamics.
We find that the introduction of the monetary policy is capable of leading the economy toward
the targeted level of output.
In general, there is not an unambiguous role played by the two policies since both can be either the
source of endogenous fluctuations, arising when they induce overreaction to real economy signals,
or lead to a stabilization of the dynamics. Indeed, there is a certain role played by both policies
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for the stabilization purposes. For example, instabilities spreading from the money market can be
deadened by the activation of a convenient fiscal policy, as well as stability goals can be achieved
through an appropriate cautionary monetary policy, grounded on a suitably inertial response to
fluctuations in target variables. However, overreactive policies are not beneficial and may generate
complex dynamics in the evolution of the national income in the long run. From the mathematical
viewpoint, this is described by endogenous fluctuations that arise due to Neimark-Sacker or period
doubling bifurcations. In particular, the interplay between fiscal and monetary policies may be
the source of quasi-periodic oscillations, resembling the emergence of business cycle, which are not
possible, as shown in [23], when the money market is not considered and only a level adjusting
fiscal policy is taken into account. Moreover, the effect of endogenizing the money market may
imply multistability. Results, containing a variety of dynamic features, are discussed through
the analysis of local bifurcations and through numerical examples that give insights about global
dynamics.
The rest of the paper is organized as follows: Section 2 introduces the model, Section 3 presents
analytical results on the stability of the unique steady state and the conditions for its asymptotic
stability, Section 4 reports the numerical simulations showing how the relevant parameters of the
two policies may give rise to complex dynamics. Finally Section 5 collects conclusions and some
possible future research perspectives.

2 The baseline model

We present a closed economy model consisting of a real sector, described by a multiplier-accelerator
setup, and of a monetary sector. The macroeconomic equilibrium condition, at any time t, is given
by

Yt = Ct + It +Gt, (1)

where Yt represents the national income, Ct denotes consumption, It investments and Gt public
expenditures. Consumption linearly depends on the last realization of national income, i.e.

Ct = C̄ + cYt−1, (2)

where C̄ is the autonomous consumption and c ∈ (0, 1) is the marginal propensity to consume.
We assume that government intervenes into the real market to stabilize the economy by means

of a level-adjusting rule. In other words, the government has to establish a full employment income
Y F and modifies its expenditures according to the gap between the full employment income and
the national income, namely

Gt = Ḡ+ g(Y F − Yt−1). (3)

Government expenditures depends on an autonomous component Ḡ > 0 and on a discretionary
expenditure g(Y F − Yt−1) where g > 0 measures the reactivity of the fiscal policy with respect to
deviations from the target Y F .

The principle of acceleration determines investments. Precisely, we assume the investments
function is made up by three components. Besides an autonomous component, a second component
is increasing in the national income variation between period t− 1 and t− 2 and is described by
a bounded S-shaped function according to the hypothesis that investments can not reach too
high or too low values (see [23]). Such a function is continuous and differentiable at each point
and it makes this second component constant when the national income does not change for two
consecutive periods. A third component is also included to highlight the negative dependence of
investments to the interest rate. Thus the investments function can be summarized as

It = Ī + γa2

(
a1 + a2

a1e−(Yt−1−Yt−2) + a2
− 1

)
+ ϕRt, (4)
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where Ī is the autonomous component of investments, γ > 0 relates to the accelerator component,
a1 and a2 are positive parameters that determine the investment function variation range and
ϕ ≤ 0. It is worth noting that a functional form as the one proposed here for the investments
function is in line with the classic macroeconomic literature of the 1930s-1950s (see, e.g., [1], [3],
[24]). Moreover, the motivation for considering a sigmoid function to model a component of the
investments comes from the Hicks’ idea of embodying a floor and a ceiling in the evolution of
investments, in order to take into account the impossibility of an indefinite growth and disinvest-
ment due to resource and physical constraints (see [12]-[13] and [25]-[26]). Finally, expression (4)
also states that investments negatively depend on the interest rate, being ϕ ≤ 0. In fact, the in-
terest rate reflects the cost of borrowing in order to finance investment projects and, other things
being equal, as the interest rates rise, financing new investment projects becomes more expensive.

Let us now introduce the money market, for which we the equilibrium condition reads as

MS
t

P̄
=
MD
t

P̄
, (5)

that is, the real money demand MD
t /P̄ equals the real money supply MS

t /P̄ . In what follows, for
simplicity, we set P̄ = 1 and we consider the real money demand function

MD
t = d1Yt−1 + d2Rt, (6)

which is determined, in accordance with the liquidity preference theory (see e.g. [27] and [19]),
by the national income and the interest rate Rt, where d1 > 0 and d2 < 0 accounts for the income
and the interest rate effects on real money demand, respectively.
As concerns the money supply, the total money quantity at time t is defined by the money creation
policy of the monetary authority. For instance, one can suppose that the authority focuses on the
money variation with the aim of moderating fluctuations in the economic activity with respect to
the benchmark of full employment income Y F . Accordingly, we shall assume the following target
adjusting monetary policy

MS
t = MS

t−1 + µ(Y F − (1− θ)Yt−1 − θYt−2), (7)

where µ > 0 represents the reaction of the monetary policy with respect to deviation of the
full employment output to the last observed income variation, while θ ∈ [0, 1) weights the past
realization of national income. When θ = 0, only the last output realization is considered by
the money supply rule in reacting to the deviations from the full employment income, while
when 0 < θ < 1/2 the two most recent output observations are taken into account, giving more
relevance to the closest one. For θ = 1/2, both Yt and Yt+1 are equally weighted while for θ > 1/2
a greater importance is assigned to farther output realizations, accounting for a higher level of
inertia or cautionary response1. Thus, according to (7), the money supply will move cyclically
or counter-cyclically in order to moderate adjustments in interest rates as output changes. In
particular, when the economic activity is low (namely when Y F > (1−θ)Yt−1 +θYt−2), the aim of
the monetary policy is to stimulate the economy through an increase of the money supply. This
has the effect of reducing the interest rate, as also evident by making explicit Rt through (5), (6)
and (7), which provides

Rt =
1

d2
(MS

t−1 + µ(Y F − (1− θ)Yt−1 − θYt−2)− d1Yt−1). (8)

1We would like to remark that the fiscal policy, and thus the changes in the government expenditures, affects
income more rapidly than the monetary policy and it is reasonable to assume only one lag in its response to the
deviation of the full employment income from the last realization. On the contrary, as argued by Woodford in [28],
it is generally optimal for the monetary policy to respond inertially to fluctuations in the target variables and/or
their determinants, so that the policy will continue for some time to depend upon past variable realizations, even
when these are irrelevant to the determination of the future values of the target variables. See also Gramlich ([29])
for a discussion of monetary versus fiscal policy and the role of time lags in shaping stabilization strategies.
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As a consequence, reduced interest rates have a positive effect on investments and, therefore, on
the level of the national income.

Plugging (8) in (4) we obtain the expression of investments

It = Ī + γta2

(
a1 + a2

a1e−(Yt−1−Yt−2) + a2
− 1

)
+
ϕ

d2
(MS

t−1 + µ(Y F − (1− θ)Yt−1 − θYt−2)− d1Yt−1),

which, inserted in (1) together with (2) and (3) and coupled with the monetary policy equation
(7), leads to the model

Yt = A+ Yt−1c− g(Yt−1 − Y F ) + a2γ
(

a1+a2
a2+a1e

−(Yt−1−Yt−2)
− 1
)

+
ϕ

d2
(MS

t−1 + µ(Y F − (1− θ)Yt−1 − θYt−2)− d1Yt−1)

Mt = MS
t−1 + µ(Y F − (1− θ)Yt−1 − θYt−2).

Then, by defining ϕ̃ ≡ ϕ/d2 to collect the joint effect of the interest rate on investments and
money demand, and introducing Zt ≡ Yt−1 in view of the subsequent analysis, we can introduce the
function T = (T1, T2, T3) : R3

+ → R3, (Yt,Mt, Zt) 7→ (T1(Yt,Mt, Zt), T2(Yt,Mt, Zt), T3(Yt,Mt, Zt)),
which describes the functioning of the whole economy2 as a the three-dimensional system

T :


Yt = A+ Yt−1c− g(Yt−1 − Y F ) + a2γ

(
a1+a2

a2+a1e
−(Yt−1−Zt−1)

− 1
)

+
ϕ

d2
(MS

t−1 + µ(Y F − (1− θ)Yt−1 − θZt−1)− d1Yt−1)

Mt = MS
t−1 + µ(Y F − (1− θ)Yt−1 − θZt−1),

Zt = Yt−1.

(9)

3 Analytical results on the existence of the steady state and local
stability properties

In this section we shall investigate the existence of steady states for the system in (9) and we shall
analyze how the relevant monetary and fiscal policy parameters affect stability. Firstly, we study
the number and the analytical expression of possible steady states for the map in (9), ending up
with the following:

Proposition 1. The system in (9) has a unique steady state given by

(Y ∗,M∗, Z∗) =

Y F ,
d2

(
Y F (1− c)−A+ Y F d1ϕ

d2

)
ϕ

, Y F


to which corresponds the interest rate

R∗ =
Y F (1− c)−A

ϕ
.

Moreover, the values of (Y ∗,M∗, Z∗) are positive provided that

A

(1− c) + d1ϕ/d2
< Y F <

A

(1− c)
.

2We stress that not all the possible parameter configurations and initial conditional give rise to economically
significant trajectories. In the following analysis we implicitly limit to the feasible configurations. Moreover, the
simulations reported in Section 4 are consistent with this restriction.
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The previous Proposition states that, in equilibrium, the system is able to reach the full em-
ployment desired level of output while, out of equilibrium, the monetary and fiscal policies should
operate to move the system toward the targeted national income level. In other words, the com-
bined action of the two policies can be able to drive the economy toward the full employment
national income, which was not reached in [23] where only the fiscal policy was considered. We
observe that the steady state values of the money quantity positively depends on the full employ-
ment output level Y F in accordance to the money supply rule, and on the parameter d1, signaling
a positive relationship with the increase of the output level; moreover, it negatively depends on
the parameter |ϕ| since, when it grows, it makes the investments less attractive and, accordingly,
the national income grows less with a consequent contraction in the money demand. On the other
hand, M∗ positively depends on |d2|, since it reduces the speculative component of the money
demand (the interest rate) and thus stimulates the economic activity through investments and
national income, with a consequent high level of money in equilibrium. We also highlight that
the steady state output Y ∗ = Y F lies between a value associated with the absence of money
A/((1 − c) + d1ϕ/d2), corresponding to a situation in which no Keynesian functions of money
would be considered, and the Samuelsonian steady state A/(1− c), where no policy interventions
are taken into account.

In the next propositions we study the stability of the equilibrium with respect to the reactivity
of the monetary policy µ. To this end, we say that we are in an unconditionally unstable, mixed
and destabilizing scenario if (Y ∗,M∗, Z∗) is respectively never locally asymptotically stable for
any µ > 0, locally asymptotically stable for µ ∈ (µ̄1, µ̄2) and locally asymptotically stable for
µ ∈ (0, µ̄2), for some 0 < µ̄1 < µ̄2. Finally, we do not discuss cases in which stability occurs
for single values of the parameters. Before studying the model in (9), it is worth recalling the
stability condition of the steady state for the model studied in [23, Prop 3.], in which only the
fiscal policy is considered and money is not present. In this regard, henceforth, we shall make use
of substitution γ̃ ≡ γ(a1 + a2)/(a1a2).

Proposition 2. When no monetary policy is considered, the steady state (Y ∗, Z∗) is locally asymp-
totically stable provided that γ̃ < 1 and

g < c+ 2γ̃ + 1. (10)

When the money market is not considered, the fiscal policy should be set in a way such that
it does not react too aggressively to deviations of output realizations with respect to the full
employment income target, otherwise periodic fluctuations arise in the business cycle.

Now we move the analysis to the study of the monetary policy parameters on the steady
state stability. The following Proposition reports the stability conditions for the steady state
(Y ∗,M∗, Z∗).

Proposition 3. The local stability conditions for (Y ∗,M∗, Z∗) are given by:
−ϕ̃(1− 2θ)µ+ 4γ̃ − 2(g + d1ϕ̃− c) + 2 > 0,
−ϕ̃(γ̃(1− θ) + θ)µ+ (g + d1ϕ̃− c)− γ̃ − (g + d1ϕ̃− c)γ̃ + 1 > 0,
−ϕ̃θµ+ g + d1ϕ̃− c− 2γ̃ + 3 > 0.

Then, since we are interested in the role that the monetary policy parameter µ plays on the
steady state stability, in the next Proposition we make explicit the role of such a parameter. Thus
the following result holds:
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Proposition 4. The steady state (Y ∗,M∗, Z∗) is locally asymptotically stable provided that γ̃ < 1
and

• when 0 ≤ θ < 1

2
if

0 ≤ µ < s2 provided that g < c+ 4γ̃ − 1 + 4θ(1− γ̃)− d1ϕ̃ (11a)

0 ≤ µ < s1 provided that c+ 4γ̃ − 1 + 4θ(1− γ̃)− d1ϕ̃ ≤ g < 2γ̃ + 1 + c− d1ϕ̃ (11b)

• when
1

2
≤ θ ≤ 1 if

0 ≤ µ < s2 provided that g < c+ 2γ̃ + 1− d1ϕ̃ (12a)

s1 < µ < s2 provided that 2γ̃ + 1 + c− d1ϕ̃ < g < c+ 4γ̃ − 1 + 4θ(1− γ̃)− d1ϕ̃ (12b)

where

s1 =
2ϕ̃(2γ̃ − (g − c+ d1ϕ̃) + 1)

1− 2θ
and s2 =

ϕ̃(g − c+ d1ϕ̃+ 1)(1− γ̃)

(γ̃(1− θ) + θ)
. (13)

Conditions (11) and (12a) give rise to destabilizing scenarios with respect to µ, while condition
(12b) gives rise to a mixed scenario. For all the remaining parameters’ configurations we have
unconditionally unstable scenarios.

Proposition 4 allows us to understand the effect of the accelerator mechanism and of the
policies on the stability of (Y ∗,M∗, Z∗). The first comment is about the role of the accelerator
parameter. If the reactivity of investments to income variations is too strong (γ̃ > 1), neither fiscal
nor monetary policy intervention is able to stabilize the system, and the source of endogenous
fluctuations is ascribed to the accelerator mechanism, in agreement with the setting studied in
Proposition 2. Conversely, when γ̃ < 1 and the money supply is adjusted giving more relevance to
the most recent real economy signals, the money market can be the source of instability. This can
be understood by comparing the stability condition (10) with those in (11). If (10) holds true,
conditions in (11) can be violated either due to an overreaction of the monetary policy (when
µ > si) or when the parameters characterizing the money market (d1 and d2) and its effects on
investments (φ) are too large, so that g < 2γ̃ + 1 + c − d1ϕ̃. This may happen also when more
relevance is given to the least recent real economy signal, but in this case there is some space for
a stabilizing role of the monetary policy, the steady state can be stable even if (10) is violated (as
evident from (12b)) and hence the fiscal policy is the source of endogenous fluctuations. This is
a scenario in which the monetary authority, by sufficiently adjusting the level of money supply,
is able to stabilize an otherwise unstable scenario up to a certain level, beyond which the steady
state becomes unstable again. To summarize, the reaction of the monetary authority in changing
the money supply is not always stabilizing since when such a reactivity is sufficiently large, the
steady state may turn unstable.

We now comment more in detail the joint role of µ, g and θ on the stability of (Y ∗,M∗, Z∗)
with the help of Figures 1 and 2. In Figure 1 we report the stability regions of the steady state
in the (µ, g) plane, obtained by setting c = 0.7, γ̃ = 0.5, d1 = 1 and and ϕ̃ = 1, for different
values of θ. In the left panel of Figure 1 the stability region is represented using yellow color and
shows, in accordance with the result of Proposition 4, how the steady state become unstable as
µ sufficiently increases. Moreover, for small values of µ, increasing g has a destabilizing effect,
as in [23] while if µ increases, we find that introducing a fiscal policy has an initial stabilizing
effect, which is thwarted by increasing the degree of its reactivity g. In other words, there exists a
double stability threshold, which arises due to the intervention of the monetary policy and makes
the fiscal policy able to stabilize the economy if its reactivity is not too strong. The central and
right panels of Figure 1 highlight the evolution of the stability region as long as an additional
weight is assigned to the past level of national income on determining the money supply. If
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Figure 1: The left panel depicts the stability region (yellow color) of (Y ∗,M∗, Z∗) for θ = 0, on varying
µ and g. The stability thresholds s1 and s2, defined in (13), are represented by a red and blue line,
respectively. The central and the right panels represent the evolution of the stability region, bounded by
the vertical axis and by the lines with the same color, for increasing values of θ.

we compare the stability regions when 0 ≤ θ ≤ 1/2 and when 1/2 ≤ θ ≤ 1, we note that the
two stability thresholds, s1 (lower lines) and s2 (upper lines), move upward, signaling that, in
order to get stability when a higher weight is assigned to the past levels of national income, a
stronger reaction of the fiscal policy is required. However, when 0 ≤ θ ≤ 1/2 the unique possible
scenarios on increasing µ are those destabilizing (for small enough reactivity of the fiscal policy)
and unconditionally unstable, while when 1/2 < θ ≤ 1 a sufficiently reactive monetary policy can
counterbalance the destabilizing effects of the fiscal policy, provided that it is not too overreactive.
In this case we have a mixed scenario for µ.

In Figure 2 we report the stability region of the steady state in the (θ, µ) parameter plane
for different values of g, where the red and the blue curves are related to the first two stability
conditions of Proposition 3. The parameters are the same used for Figure 1, with the exception
of d1 = 0.1. These panels allow us to appraise the role that the two parameters of the monetary
policy exert on the stability of (Y ∗,M∗, Z∗). In the left panel the case of a weakly reactive fiscal
policy is depicted and the region of parameters that guarantees the stability of (Y ∗,M∗, Z∗) is
represented by yellow color. In this case, when µ is sufficiently small, the steady state is always
stable while it can be destabilized for increasing values of θ as long as the monetary authority
reacts slightly more to the deviations of the income realizations to its full employment level. On
the other hand, if the reaction parameter µ grows more, there are no means of stabilization even
if a growing weight is assigned to the past income levels. Such behavior occurs for all values of
g that preserve the stability of the economy when no monetary policy is used (i.e. when µ = 0),
which, in the present setting, corresponds3 to g < 2.6, as noticeable also from the middle panel of
Figure 2, where, for g = 0.5 and g = 2, stability is achieved in the regions below the solid and the
dashed lines, respectively. When the degree of the fiscal policy reactivity increases, if µ is not too
large, the steady state is stable for any value of θ, while there exists a double stability threshold
on increasing the reactivity of the monetary policy µ. Moreover, also recalling the left panel of
Figure 2, we can note that the stability region increases in size due to the impact played by the
fiscal policy.

Conversely, if the reactivity of the fiscal policy is too large, (i.e. g ≥ 2.6), as in the right panel
of Figure 2, it turns out to be useful to introduce a form of inertia in the response of the monetary
policy (θ > 1/2) in order to gain stability. In this case, the size of the stability region diminishes
as g increases and a certain degree of reactivity is needed to preserve stability, even if we note
that increasing values of µ are not always beneficial since the stability region may shrink as long

3The threshold is obtained from condition (11a) when θ = 0.
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Figure 2: The left panel depicts the stability region (yellow color) of (Y ∗,M∗, Z∗) for g = 0.2, on varying
θ and µ. Middle and right panels show the evolution of stability regions for couples of increasing values of
g. The red and blue colors are related to the thresholds defined by the first and the second condition in
Proposition 3, respectively. Stability is guaranteed for θ and µ belonging to the regions lying below (middle
panel) or between (right panel) stability thresholds.

as the reactivity of the monetary policy gets more aggressive.

4 Numerical simulations

In this section we present some numerical simulations in order to complement the previously
conducted analysis and check whether complex dynamics may arise when the steady state turns
unstable, as a consequence of the joint actions of the two policies. Unless differently stated, we
shall make use of these parameter values: γ = 1.11, A = 100, Y F = 205, ϕ = −20, d1 = 1, d2 = −20
and, according to what done in [23], we set a1 = 4.5, a2 = 0.5 and c = 0.7. We point out that
in the two dimensional bifurcation diagrams reported in Figures 3-7 the white color refers to
convergence toward the steady state, while other colors are used to represent attractors consisting
of more than a single point. Moreover, hatched regions correspond to parameter configurations
characterized by divergence or unfeasibility. Finally, the initial datum is chosen in a suitably small
neighborhood of the steady state.

The left panels of Figures 3-5 report the two-dimensional bifurcation diagrams in the (µ, g)
parameter plane for different values of θ.
The first consideration that can be inferred from such diagrams is the different kind of dynamics
arising when stability is lost. In fact, either on increasing g or µ, when the white region is crossed
through its upper border (corresponding to the line defined by s1 in Proposition 4, see also Figure
1) convergence to the steady state is replaced by convergence to a period two cycle, as we enter the
red region. Conversely, when instabilities occur passing over the lower bound of the white region
(corresponding in this case to the line defined by s2), the steady state is immediately replaced by
an attractor consisting of several points.

To emphasize how the reactivity of the monetary policy affects the overall dynamics, we can
observe the two examples of one-dimensional bifurcation diagrams with respect to µ, reported in
the middle and right panels of Figure 3, obtained for two different values of g. In the middle panel
of Figure 3, there is no intervention of the fiscal policy nor degree of inertia in the monetary policy.
Observing the black bifurcation diagram, we can see that when µ increases, the steady state loses
stability via Neimark-Sacker bifurcation. However, when the reactivity µ of the monetary policy is
not too strong, the steady state also coexists with a cycle of period 3 (red bifurcation diagram4.).

4Throughout this section, red bifurcation diagrams are computed following the attractor along a sequence {xi}
of parameter values. This means that the initial datum for the simulation related to parameter value xi+1 is chosen
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In this case, the actual final outcome of the economy depends not only on its parameters but
also on the initial level of national income, whose evolution is then significantly path dependent.
When the steady state becomes unstable, an attracting closed invariant curve emerges, whose
diameter quickly increases as µ increases. When this curve collides with the basin boundary of
the period 3 cycle, it disappears and trajectories converge to the periodic attractor, which then
evolves through a cascade of period doubling bifurcations leading to complex dynamics. We will
provide more details about such global phenomena at the end of this section.
In the right panel of Figure 3 we account for a certain level of intervention of the fiscal authority.
In this case, the steady state remains stable for a larger interval of µ until it loses stability via
period doubling bifurcation, after which the occurrence of a secondary Neimark-Sacker bifurcation
evolving into complex dynamics.

The previous phenomena are robust with respect to the introduction of a small degree of inertia
(θ ≤ 0.5) in the money supply rule, as exemplified by the two-dimensional bifurcation diagram
obtained for θ = 0.25 and reported in the left panel of Figure 4. It is worth to remark that, when
a certain degree of intervention of the government is encompassed, the intervention of the public
authority in reaction to the deviation of the income from the full employment level is able to
drive the economy towards the objective of the policy, even for large values of the monetary policy
reactivity µ. However, we note that the parameter g has an ambiguous effect on the stability of
the steady state, for a given value of µ. In fact, an increase of g has the effect of reducing the
complexity of the orbits, and lets the steady state gain stability; however, as g keeps increasing,
we cross the upper bound of the stability region, associated with the white color, and the steady
state undergoes a period doubling bifurcation. With this respect we consider the right panel of
Figure 4, in which the one dimensional bifurcation diagram is computed with respect to g. When
the fiscal policy is not sufficiently strong, the dynamics of the output are not convergent towards
the steady state, being the latter associated with the occurrence of a Neimark-Sacker bifurcation.
On the other hand, when the policy acts sufficiently strong, it is able to stabilize the dynamics,
leading the economy to the desired output level or, at least, to a reduction of the qualitative
complexity of the trajectories, with the occurrence of a cycle of period two. We stress that when
the money market is considered, the interplay of both monetary and fiscal policies gives rise to
possibly high levels of complexity, differently from [23], in which it is shown that on changing the
reactivity of a level targeting fiscal policy the steady state could lose stability just giving rise to
a period 2 cycle.

The same qualitative behaviors are observed also when the parameter θ is further increased
(left panel, Figure 5). In particular, comparing the two dimensional bifurcation diagrams in
Figures 3- 5, we can observe that when the two bifurcation curves move upward, the size of the
region associated with complex dynamics increases. It is worth to note that, when the inertia in
the money supply grows, a sufficiently large degree of the fiscal policy reaction is necessary to
get the stability of the steady state if the monetary authority overreacts to the deviations of the
full employment income to its recent realizations. Moreover, in the case reported in Figure 5, as
predicted by Proposition 4, if we consider a high level of reactivity in the fiscal policy, we have the
appearance of a double stability threshold, as already commented before, and the steady state is
locally asymptotically stable only for intermediate values of the policy parameter µ. This is also
evident from the one dimensional bifurcation diagram reported in the right panel of Figure 5, from
which we can additionally observe a situation of multistability for increasing values of µ, where
the steady state coexists with cycles, making again crucial the choice of the national income to
consider when setting the policy intervention.

Figures 6 and 7 represent the two-dimensional bifurcation diagram in the (θ, µ) parameter
plane for different values of the fiscal policy parameter g. In Figure 6 we consider the situation in
which the fiscal policy does not intervene. We observe that the steady state is locally stable if the

suitably close to the attractor toward which convergence occurred for parameter value xi
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Figure 3: Two-dimensional bifurcation diagram in the (µ, g) plane for θ = 0 (left panel). White color
refers to convergence toward the steady state, while other colors are used to represent attractors consisting
of more than a single point. The hatched region stands for divergence or unfeasible economic values of the
variables. The central and the left panels report the bifurcation diagrams with respect to µ for different
values of g, showing the possibility of attractors coexistence, even when the steady state is locally stable
(central panel). For the red bifurcation diagram we modified the initial value of variables Y and Z, setting
Y0 = Z0 = 210.

Figure 4: Two-dimensional bifurcation diagrams in the (µ, g) plane for θ = 0.25 (left panel). White color
refers to convergence toward the steady state, while other colors are used to represent attractors consisting
of more than a single point. The hatched region stands for divergence or unfeasible economic values of the
variables. The right panel reports the bifurcation diagram on varying g.

degree of the monetary policy reaction is not too large. In fact, for increasing values of µ, and for
any θ, the steady state turns unstable and complex dynamics arise with consequent endogenous
fluctuations that characterize the course of the business cycle. In the right panel of Figure 6 we
report a bifurcation diagram on increasing parameter θ in order to show how the degree of inertia
in the money supply rule may generate different dynamic scenarios. In this case, when there is
no space for the fiscal policy and the reaction of the monetary authority is set at an intermediate
level, the steady state is locally asymptotically stable when more weight is assigned to the most
recent output observations while the steady state loses stability via a Neimark-Sacker bifurcation
when θ increases, with the consequent emergence of complex dynamics. Hence, in this case, an
increase in the degree of inertia in the money supply rule is not necessarily an advantage in terms
of reaching the desired output level.

When the economy accounts for a certain level of fiscal policy intervention (left panel, Figure 7),
we note a general increase in the white region, which is associated with the stability of the steady
state. Moreover, there exists a double stability threshold when the monetary policy aggressively
reacts. In fact, on one hand, when the degree of inertia θ is very low, the dynamics are periodic
while a sufficient degree of inertia in the response of the monetary authority is able to stabilize the
economy; on the other hand, when the policy assigns more weights to the past output realization,
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Figure 5: Two-dimensional bifurcation diagram in the (µ, g) plane for θ = 0.75 (left panel). White color
refers to convergence toward the steady state, while other colors are used to represent attractors consisting
of more than a single point. The hatched region stands for divergence or unfeasible economic values of the
variables. The right panel reports the bifurcation diagram with respect to µ and reveals the possibility
of different coexisting business cycles for a sufficiently high level of the reactivity parameter µ. The red
bifurcation diagram is computed following the attractor along a decreasing sequence of parameter values
ranging from µ = 2.3 to µ = 1.84.

Figure 6: Two-dimensional bifurcation diagram in the (θ, µ) plane for g = 0 (left panel). White color
refers to convergence toward the steady state, while other colors are used to represent attractors consisting
of more than a single point. The hatched region stands for divergence or unfeasible economic values of
variables. The right panel shows the bifurcation diagram with respect to θ in the absence of fiscal policy.

the coupling with the reaction to the deviation of the output from its full employment level renders
the steady state unstable and complex dynamics arise again. Looking at the bifurcation diagram
in the right panel in Figure 7, we can see that θ is able to stabilize the dynamics by reducing
the complexity of the orbits through a reverted Neimark-Sacker bifurcation followed by a period
halving bifurcation. Nonetheless, the range of parameters θ for which the steady state remains
locally stable is quite narrow and a Neimark-Sacker bifurcation of the steady state occurs, with
dynamics that start oscillating in a complex and intricate manner.

Finally, in Figure 8 we show a bifurcation diagram with respect to the parameter µ when the
fiscal policy is not considered (g = 0) and there is no inertia in the money supply rule (θ = 0).
As it is clearly visible from the picture, when the reactivity of the monetary policy increases,
the steady state loses stability confirming all the previous analytical results; moreover, when it is
still locally stable, it may coexist with a closed invariant curve associated with orbits that largely
oscillates above and below the steady state output level. It is worth stressing the evidence that the
introduction of the monetary policy in this simple multiplier-accelerator setting is the responsible
for generating the business cycle with fluctuations in the national income dynamics, in a context
in which the same qualitative dynamics would not occur if only the fiscal policy were considered
(see [23]). This may be due to the fact that an excessive tightening of monetary policy may lead
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Figure 7: Two-dimensional bifurcation diagram in the (θ, µ) plane for g = 1 (left panel). White color
refers to convergence toward the steady state, while other colors are used to represent attractors consisting
of more than a single point. The hatched region stands for divergence or unfeasible economic values of
variables. The right panel depicts the bifurcation diagram with respect to θ when also the fiscal policy is
present, and shows the double stability threshold for the steady state.

to instability in other sectors of the economy, with a negative effect on economic actors’ behavior
by weakening their assessment of the future state of the economy. Moreover, as evident from the
bifurcation diagram and the times series reported in Figure 8, there could be the possibility of
coexisting business cycles in which, being the national income different from its desired level, the
final state of the economy can be characterized by persistent higher or lower level of output.

The corresponding basins of attraction of this multistability situation is depicted in Figure
9 where we highlight the evolution of the two coexisting attractors as long as µ increases. In
particular, the basin of the steady state is colored in blue while the basin of the closed curve is
represented in yellow. In the first row, moving from left to right, which corresponds to an increase
of the value of the reactivity parameter µ, we observe a quite sharp shrink in the basin of the
steady state. Such a shrinking is even more evident in the bottom-left panel where a higher value
of µ is considered. For this value, the state state is unstable and another closed curve coexists
with the previously existing one. The enlargement of the bottom-right panel of Figure 8 allows us
to appraise the smallest of the two coexisting curves and the corresponding basins. This situation,
in which one basin is extremely small, is associated with the consequent unpredictability of the
asymptotic state of the economy in a wide region of the state variables.

5 Concluding remarks

In this paper we have shown how a rich variety of dynamical outcomes may arise in a real econ-
omy described by a nonlinear multiplier-accelerator model when the public authority influences
the dynamics of the national income either via fiscal or monetary policy. The consideration of
the two policy instruments fits into the debate on which of the two instruments is better able to
purse the stabilization objective. The investigation of the effects of these policies is pertinent not
only for deepening the discussion on the potential implications of the different fiscal and monetary
programs, but also with respect to the dynamical outcomes that they can give rise. The dynamics
of the specified model basically depends on two parameters, one related to the reactivity of the
fiscal policy in adjusting the deviation of the output realizations from its full employment level,
and another linked to the responsiveness of the money supply with respect to the variation be-
tween the full employment income and the two last output realizations.
It is firstly shown that, from a static viewpoint, the introduction of the monetary policy is able
to lead the economy to the desired output equilibrium level. Secondly, from a dynamic point of
view, the interaction of the two policy instruments causes a variety of local bifurcation scenarios
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Figure 8: Top panel: bifurcation diagram on varying µ showing the coexistence of different attractors.
Bottom panel: times series of Yt showing coexisting business cycles. Parameters are set as declared at the
beginning of the section except for γ = 1.13. The red diagram is obtained with initial datum suitably close
to the steady state while the black diagram is obtained with Y0 = Z0 = 220,M0 = 88.

(Neimark-Sacker and period doubling), multistability, as well as complex dynamics. In particular,
the introduction of the monetary policy can have beneficial effects in reducing the complexity of
the orbits and in leading the economy toward the full employment income, if it is not too ag-
gressive. Otherwise endogenous oscillations in the national income dynamics can take place along
an attractive closed invariant curve, which is interpreted as a business cycle in economics. Both
the government and the monetary authority are able to influence the size and the persistence
of the oscillations by properly tuning their policy instruments. Finally, from a global analysis
perspective, we have shown the coexistence of different attractors, occurring even when the na-
tional income steady state is locally stable, and thus making the choices of policy makers crucial
to shift the output in the desired direction. Within the present framework, the introduction of
the monetary policy allowed us to thoroughly investigate the dynamics of the economic activity,
which can exhibit interesting dynamic features that would not be present in a context where only
the fiscal policy is present. In particular, the role of the monetary policy has to be read in terms
of the possibility of stabilizing the national income dynamics but, at the same time, it can also
be responsible for the generation of the business cycle. This confirms the importance of the role
played by the monetary sector and and the relevance of studying how manipulating and targeting
the money supply (and, ultimately, the interest rate) influences the real economic variables.
The present setting can be extended in several directions that take into account the role of the
monetary policy: firstly, the introduction of the financial sector would add realism in order to
contribute to the debate on whether the monetary authority should respond to financial factors,
such as asset prices, in monetary policy rules; secondly, the introduction of an asset market would
allow to account for different agents’ expectations, whose interaction would affect the overall eco-
nomic stability; thirdly, the role of expectation can also be considered on the real side, as the
consumption choices can also be affected by individual perceptions on the output level which, in
turn, may contribute to the amplification of business cycle fluctuations.
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Figure 9: Basins of attraction for different values of the reactivity parameter µ. The yellow color refers to
the basin of the closed invariant curve surrounding the steady state (first row), whose basin is depicted in
blue, and the other closed curve (second row) arising when the steady state loses stability, whose basin is
still represented in blue.

Appendix

Proof of Proposition 1. The assert follows by setting Yt−1 = Yt = Y ∗, Zt = Zt−1 = Z∗ and
Mt = Mt−1 = M∗. From the second equation in (9) we immediately obtain Y ∗ = Y F , which
indeed provides Z∗ = Y F from the third equation in (9). Setting Y ∗ = Z∗ = Y F in the first
equation in in (9) we find M∗.
Then, setting Mt−1 = M∗ and Yt−1 = Y ∗ in (8) we obtain R∗. Recalling that d2 < 0 and
ϕ < 0, imposing M∗ > 0 and R∗ > 0 and solving with respect to Y F we easily find the positivity
conditions.

Proof of Proposition 2. See [23].

Proof of Propositions 3-4. The Jacobian matrix of the system is given by

J =

 c− g − ϕ̃(d1 − µ(θ − 1)) + γ̃eZ−Y (a1+a2)2

(a2+a1eZ−Y )2
ϕ̃ −ϕ̃µθ − γ̃eZ−Y (a1+a2)2

(a2+a1eZ−Y )2

µ(θ − 1) 1 −µθ
1 0 0

 ,
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which, evaluated at the steady state (Y ∗,M∗, Z∗), becomes

J∗ =

 c− g + γ̃ − ϕ̃(d1 + µ(1− θ)) ϕ̃ −γ̃ − ϕ̃µθ
−µ(1− θ) 1 −µθ

1 0 0

 .

The characteristic polynomial P (λ) = λ3 +C1λ
2 +C2λ+C3 associated to matrix J∗ is defined by

C1 = g − c− γ̃ + d1ϕ̃+ ϕ̃µ− ϕ̃µθ − 1, C2 = c− g + 2γ̃ − d1ϕ̃+ ϕ̃µθ, C3 = −γ̃.

The stability conditions (see [30]) require
1 + C1 + C2 + C3 > 0,
1− C1 + C2 − C3 > 0,
1− C2 + C1C3 − (C3)

2 > 0,
C2 < 3,

namely 
ϕ̃µ > 0,
2c− 2g + 4γ̃ − 2d1ϕ̃− ϕ̃µ+ 2ϕ̃µθ + 2 > 0,
g − c− γ̃ + cγ̃ + d1ϕ̃− gγ̃ − d1ϕ̃γ̃ − ϕ̃γ̃µ− ϕ̃µθ + ϕ̃γ̃µθ + 1 > 0,
g − c− 2γ̃ + d1ϕ̃− ϕ̃µθ + 3 > 0.

The first condition is always true. Introducing α = g − c + d1ϕ̃ we can rewrite the last three
condition of the previous system as

−ϕ̃(1− 2θ)µ+ 4γ̃ − 2α+ 2 > 0,
−ϕ̃(γ̃(1− θ) + θ)µ+ α− γ̃ − αγ̃ + 1 > 0,
−ϕ̃θµ+ α− 2γ̃ + 3 > 0.

(14)

Before making the stability conditions explicit from System (14), we collect some identities and
inequalities that will be used in the rest of the proof. Let us define

s3 =
α− 2γ̃ + 3

ϕ̃θ
.

and note that since c < 1, we have α > −1. We have

s1 > 0⇔
{

0 ≤ θ < 1/2,
α < 2γ̃ + 1,

∪
{

1/2 < θ ≤ 1,
α > 2γ̃ + 1,

s2 > 0⇔ γ̃ < 1,
θ 6= 0 and s2 > 0⇒ s3 > 0,

(15)

where the last implication is due to the fact that, when θ 6= 0, s3 > 0 is equivalent to α > 2γ̃ − 3,
but 2γ̃ − 3 < −1 when γ̃ < 1.

Moreover, we have

s1 − s2 =
(γ̃ + 1)(−α+ 4γ̃ + 4θ − 4γ̃θ − 1)

ϕ̃(1− 2θ)(γ̃(1− θ) + θ)
, (16)

and
θ 6= 0 and s2 > 0⇒ s2 − s3 < 0 (17)

since

s2 − s3 =
−3γ̃ − 2θ − αγ̃ + 4γ̃θ − 2γ̃2θ + 2γ̃2

ϕ̃θ(γ̃(1− θ) + θ)
< 0
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is equivalent to

α >
−3γ̃ − 2θ + 4γ̃θ − 2γ̃2θ + 2γ̃2

γ̃
=

2γ2 − 3γ̃ − 2θ(1− γ̃)2

γ̃
,

in which the rightmost term is smaller than −1, since when s2 > 0 we have γ̃ < 1 and consequently

2γ2 − 3γ̃ − 2θ(1− γ̃)2

γ̃
< −1⇔ −2γ̃(1− γ̃)− 2θ(1− γ̃)2 < 0.

We can now make (14) explicit with respect to µ. In particular, we distinguish different cases
depending on the values of µ.

• θ = 0
System (14) becomes 

−ϕ̃µ+ 4γ̃ − 2α+ 2 > 0,
−ϕ̃γ̃µ+ α− γ̃ − αγ̃ + 1 > 0,
α− 2γ̃ + 3 > 0,

(18)

in which the last condition requires α > 2γ̃ − 3, while the first and the second one respectively
become µ < s1 and µ < s2. Hence we can write

θ = 0,
α > 2γ̃ − 3,
0 ≤ µ < min{s1, s2}.

To have a non-empty stability interval we need s1 > 0 and s2 > 0, which, setting θ = 0 in (15),
respectively provide α < 2γ̃ + 1 and γ̃ < 1 (so α > 2γ̃ − 3 holds true). Moreover, setting θ = 0 in
(16) we have that s1 < s2 when α > 4γ̃ − 1. System (18) then becomes

0 ≤ µ < s2when


θ = 0,
−1 < α < 4γ̃ − 1,
γ̃ < 1,

(19)

and

0 ≤ µ < s1when


θ = 0,
4γ̃ − 1 ≤ α < 2γ̃ + 1,
γ̃ < 1.

(20)

• 0 < θ < 1/2
Conditions in (14) respectively become µ < s1, µ < s2 and µ < s3. Thus, to have a non-empty

stability interval, we need s1 > 0, i.e. α < 2γ̃ + 1 and s2 > 0, i.e. γ̃ < 1. Recalling (15) and (17),
this last condition guarantees that s3 > 0 and s2 < s3. Hence we can write

0 < θ < 1/2,
−1 < α < 2γ̃ + 1,
γ̃ < 1,
0 ≤ µ < min{s1, s2}.

Since from (16) we have s1 < s2 when α > 4γ̃ − 1 + 4θ(1− γ̃) and noting that

4γ̃ − 1 + 4θ(1− γ̃) < 2γ̃ + 1⇔ 2(1− γ̃)(2θ − 1) (21)

is negative for γ̃ < 1 and 0 < θ < 1/2, we can conclude

0 ≤ µ < s2 when


0 < θ < 1/2,
−1 < α < 4γ̃ − 1 + 4θ(1− γ̃),
γ̃ < 1,

(22)
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and

0 ≤ µ < s1 when


0 < θ < 1/2,
4γ̃ − 1 + 4θ(1− γ̃) ≤ α < 2γ̃ + 1,
γ̃ < 1.

(23)

Combining (19) and (22) we obtain condition (11a), while (20) and (23) together provides (11b).

• θ = 1/2
The first condition in (14) is α < 2γ̃ + 1, the second one requires µ < s2 and the third one

requires µ < s3. Thus, to have a non-empty stability interval we need s2 > 0, i.e. γ̃ < 1, which
guarantees s3 > 0 and s2 < s3. The system (14) then becomes

0 ≤ µ < s2 when


θ = 1/2,
−1 < α < 2γ̃ + 1,
γ̃ < 1.

(24)

• 1/2 < θ ≤ 1
The first condition in (14) is α > s1, the second one requires µ < s2 and the third one requires

µ < s3. Thus, to have a non-empty stability interval we need s2 > 0, i.e. γ̃ < 1, which again
guarantees that s3 > 0 and s2 < s3. The system (14) becomes

1/2 < θ ≤ 1,
γ̃ < 1,
s1 < µ < s2.

(25)

To have a non-empty stability interval we need s1 < s2. Recalling (16), we have

α < 4γ̃ − 1 + 4θ(1− γ̃),

where it is easy to the see that the right hand side is greater than −1.
In particular, a destabilizing scenario occurs when s1 ≤ 0, i.e. from (15) when α < 2γ̃ + 1,

which allows writing

0 ≤ µ < s2 when


1/2 < θ ≤ 1,
−1 < α ≤ 2γ̃ + 1,
γ̃ < 1,

which combined with (24) provides condition (12a). Finally, we have a mixed scenario when
s1 > 0, i.e. from (15) when α > 2γ̃ + 1, which allows rewriting System (25) as (12b). We stress
that, thanks to (21), the second condition in the rightmost system is always fulfilled by some
α.
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