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Abstract

In the present note we prove the first fundamental theorem of welfare economics, ac-
cording to which all equilibrium allocations are Pareto optimal, for the standard pure
exchange model with shares. In this context the social interaction among agents enters
the definition of equilibrium only through the market clearing conditions, but it does
not affect the agents’ maximization problem. We show that the first fundamental the-
orem of welfare holds true also when introducing stationary equilibria in relation to a
share updating mechanism.
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1 Introduction

Although in the standard pure exchange model all equilibrium allocations are Pareto op-
timal, it is well known that externalities in general equilibrium settings typically lead to
inefficiencies, and the first theorem of welfare may not hold anymore (see e.g. Mas-Colell et
al. 1995).
We here consider a framework with shares, in which the social interaction among agents
enters the definition of equilibrium only through the market clearing conditions, but it does
not affect the agents’ maximization problem. We show that this is not enough to impair
the efficiency of the equilibrium allocations, also when introducing stationary equilibria in
relation to a share updating mechanism.
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This work completes the analysis of the discrete-time exchange economy evolutionary model
in Naimzada and Pireddu (2019b), in which two groups of agents are characterized by pos-
sibly different preference structures, described within a class of utility functions. The repro-
duction level of a group is there related to its attractiveness degree, which depends on the
social visibility level, determined by the consumption choices of the agents in that group.
The attractiveness of a group is described by a generic bell-shaped function, increasing for
low visibility levels, but decreasing when the visibility of the group exceeds a given threshold
value, due to a congestion effect. Thanks to the combined action of the price mechanism and
of the share updating rule, the model is able to reproduce the recurrent dynamic behavior
typical of the fashion cycle, presenting booms and busts both in the agents’ consumption
choices and in the population shares.
We recall that the setting in Naimzada and Pireddu (2019b) is a generalization of that in
Naimzada and Pireddu (2019a), in which only Cobb-Douglas utility functions were consid-
ered. The context in Naimzada and Pireddu (2019a) is in turn an extension of the framework
in Naimzada and Pireddu (2018), where just one particular formulation of the attractiveness
was taken into account.
The remaider of the paper is organized as follows. In Section 2 we present the model, which
coincides with the setting in Naimzada and Pireddu (2019b), as well as the needed defini-
tions. In Section 3 we prove the first theorem of welfare economics, in relation to both the
static and the dynamic notion of equilibrium, and we make some concluding comments.

2 Definitions and set-up of the model

2.1 The Walrasian equilibria with shares

Let us consider an exchange economy with a continuum of agents, which may be of type α
or of type β. 1 There are two consumption goods, x and y, and agents’ preferences, as in
most literature on smooth economies (see e.g. Villanacci et al. 2002), are described by the
class of utility functions introduced in the following definition.

Definition 2.1 For i ∈ {α, β}, we define Ui as the set of utility functions ui : (0,+∞)2 → R

such that

(A1) ui ∈ C2((0,+∞)2);

(A2) ui is differentiably strictly increasing, i.e., Dui(x, y) >> 0, ∀(x, y) ∈ (0,+∞)2;

(A3) ui is differentiably strictly quasiconcave, i.e., Dui(x, y)v = 0 implies vD2ui(x, y)v < 0
∀(x, y) ∈ (0,+∞)2, v ∈ R

2 \ {(0, 0)};

(A4) ∀(x, y) ∈ (0,+∞)2, {(x, y) ∈ (0,+∞)2 : ui(x, y) ≥ ui(x, y)} is closed in the topology of

R
2.

1We keep the notation used in Naimzada and Pireddu (2018, 2019a), where i ∈ {α, β} was the weight
assigned to good x in the Cobb-Douglas utility function by agents in group i, with 0 < α < β < 1.
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Assumption (A1) allows to perform computations and to employ tools from Calculus such as
the implicit function theorem. Assumption (A2) says that households always prefer a bundle
with slightly more of anything, no matter what they are consuming. Assumption (A3) says
that households prefer bundles in which commodities are fairly distributed and allows to
obtain a unique solution to the household maximization problem. Assumption (A4) implies
that indifference curves of utility functions do not touch the axes and thus that the solution
is interior.
We notice that, by Definition 2.1, we have Uα = Uβ. Hence, we will denote the set of utility
functions simply by U .
In our model we assume that time is discrete, i.e., that t ∈ N. The quantity of good x (y)
consumed by an agent of type i ∈ {α, β} at time t is denoted by xi,t (yi,t). Both kinds
of agents have the same positive endowments of the two goods, denoted respectively by
wx and wy. We define the set of economies as E = U2 × (0,+∞)2, with generic element
E = (uα, uβ, wx, wy). We denote by px,t > 0 and py,t > 0 the prices at time t for goods x and
y, respectively. The size of the population of kind α (β) at time t is denoted by At (Bt). The
normalized variable at = At/(At + Bt) ∈ [0, 1] represents the population fraction composed
by the agents of type α and bt = 1 − at = Bt/(At + Bt) ∈ [0, 1] represents the population
fraction composed by the agents of type β.
We are now in position to provide the definition of market equilibrium.

Definition 2.2 Given the economy E ∈ E and the population share at ∈ [0, 1], a market

equilibrium at time t is a vector (p∗x,t, p
∗
y,t, x

∗
i,t, y

∗
i,t), with i ∈ {α, β}, such that:

− every kind of agent i chooses a utility-maximizing consumption bundle (x∗
i,t, y

∗
i,t), given

(p∗x,t, p
∗
y,t), i.e., the agents of group i ∈ {α, β} at time t solve

max
(xi,t,yi,t)∈(0,+∞)2

ui(xi,t, yi,t) s.t.

px,t xi,t + py,t yi,t ≤ px,t wx + py,t wy

(2.1)

− the markets for the two goods clear, i.e., at time t for good j ∈ {x, y} it holds that

at jα,t + (1− at) jβ,t = at wj + (1− at)wj = wj.

We notice that, since utility functions are differentiably strictly increasing, problem (2.1)
may be rewritten as

max
(xi,t,yi,t)∈(0,+∞)2

ui(xi,t, yi,t) s.t.

px,t xi,t + py,t yi,t = px,t wx + py,t wy

(2.2)

and from the budget constraint we obtain xi,t = wx+ptwy−pt yi,t, where we set pt = py,t/px,t.
Hence, (2.2) simply becomes

max
yi,t∈(0,+∞)

ui(wx + ptwy − pt yi,t, yi,t).

From here, thanks to the fact that ui is differentiably strictly quasiconcave, there exists a
unique optimal consumption choice for good y, depending on pt, that we call y

∗
i,t(pt). Hence,
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the optimal consumption choice of agent i for good x, depending on pt, that we call x
∗
i,t(pt),

is given by x∗
i,t(pt) = wx+pt wy−pt y

∗
i,t(pt). The equilibrium price p∗t can then be determined

by using one of the two market clearing conditions, since by Walras’ law the other market
clearing condition is redundant. In this manner p∗t will be influenced by the population
share at, so that we can write p∗t (at). Inserting p∗t (at) into x∗

i,t(pt) and y∗i,t(pt), we find the
equilibrium consumption choices x∗

i,t and y∗i,t, which will depend on at, as well. Indeed,
using the extended approach based on first order conditions and market clearing conditions
to characterize equilibria (cf. Paragraph 8.4 in Villanacci et al. 2002), it is possible to
prove that in any time period, for all E ∈ E and at ∈ (0, 1), there exists at least a market
equilibrium (see Proposition 1 in Naimzada and Pireddu 2019b) and that, for all population
shares, generically in the set of economies, market equilibria are finite and regular, i.e.,
they depend in a smooth manner on economies and population shares (cf. Proposition 2
in Naimzada and Pireddu 2019b). Moreover, in order to avoid indeterminacy issues, we
checked in Proposition 3 in Naimzada and Pireddu (2019b) that a unique equilibrium exists
when dealing with utility functions that yield individual demand functions with the gross
substitute property, such as the Cobb-Douglas utility functions. If this is the case, for
every economy E ∈ E and for every t ∈ N, it holds that the equilibrium price p∗t and the
equilibrium allocation (x∗

i,t, y
∗
i,t)i∈{α,β} are uniquely determined by the value of the population

share at ∈ (0, 1). Actually, the argument above suggests that a unique equilibrium exists even
when a = 0 and a = 1, although such extreme cases are not encompassed in Propositions 1
and 3 in Naimzada and Pireddu (2019b) due to the differential topology tools used in the
proofs of those results.
We stress that, even if by now no dynamic aspects have been introduced, and thus we are
just considering a variation of the classical exchange economy setting with two consumers,
in which we take into account population shares in market clearing conditions, we need to
check that all the steps in the original proofs of existence, generic regularity and uniqueness
of equilibria still hold true in our framework. In particular, such verification cannot be
performed on the Edgeworth box due to the fact that the two groups of agents in general do
not have the same numerosity.

2.2 The stationary equilibria

In Definition 2.3 below we shall introduce the dynamic notion of equilibrium, i.e., of market
stationary equilibrium, that is a market equilibrium in which population shares, and con-
sequently prices and optimal consumption choices, are constant over time. We stress that
shares are constant because in every period they solve the dynamic equation governing the
share updating rule. For the brevity’s sake, we will not report any equation describing the
share updating rule, referring the interested reader e.g. to (2.4) in Naimzada and Pireddu
(2018), or to (15) in Naimzada and Pireddu (2019b), where a more general formulation of the
objects involved is proposed. We recall that the same general formulation of the evolutionary
mechanism can be found also in (5) in Naimzada and Pireddu (2019b), where however, like in
Naimzada and Pireddu (2018), just the Cobb-Douglas utility functions were considered. In
all cases, if shares are constant, the equilibrium price determined through the market clear-
ing condition is constant, too, and consequently also the equilibrium consumption choices
are constant.
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Definition 2.3 Given the economy E ∈ E , the vector (a∗, p∗, x∗
i , y

∗
i ), i ∈ {α, β}, is a market

stationary equilibrium if a∗ ∈ [0, 1] is constant and if, given a∗, (p∗, x∗
i , y

∗
i ), i ∈ {α, β}, is a

market equilibrium in every time t.

We remark that, in order not to overburden notation and terminology, although a∗ is not part
of the market equilibrium vector introduced in Definition 2.2, we call the objects described
in Definition 2.3 (market stationary) equilibria, and we use the symbol ∗ even for the shares.
In fact, as done in Naimzada and Pireddu (2018, 2019a, 2019b), when for all population
shares each economy admits a unique market equilibrium, it is possible to identify market
stationary equilibria just with the population share a∗, since it univocally determines all
other equilibrium components. Namely, according to what explained in Subsection 2.1, when
dealing e.g. with utility functions that yield individual demand functions with the gross
substitute property, it holds that, for every economy, a∗ determines a unique equilibrium
price p∗, which in turns determines a unique equilibrium allocation (x∗

i , y
∗
i )i∈{α,β}. We also

notice that in Definition 2.2 there are time subscripts, missing in Definition 2.3, as the latter
describes a stationary, time-unvarying, situation.

3 The first theorem of welfare economics

Before stating and proving the first theorem of welfare, according to which all equilibrium
allocations are Pareto optimal, we have to explain how the definition of Pareto efficient
allocation reads in our context with population shares. Accordingly, we provide the following:

Definition 3.1 Given the population share at ∈ [0, 1], an allocation (x∗
i,t, y

∗
i,t)i∈{α,β} ∈ (0,+∞)4

is Pareto optimal at time t if there does not exist (x′
i,t, y

′
i,t)i∈{α,β} ∈ (0,+∞)4 such that

(i) at time t for good j ∈ {x, y} it holds that

at j
∗
α,t + (1− at) j

∗
β,t = at j

′
α,t + (1− at) j

′
β,t

(ii) uα(x
′
α,t, y

′
α,t) ≥ uα(x

∗
α,t, y

∗
α,t) and uβ(x

′
β,t, y

′
β,t) > uβ(x

∗
β,t, y

∗
β,t) or vice versa

uα(x
′
α,t, y

′
α,t) > uα(x

∗
α,t, y

∗
α,t) and uβ(x

′
β,t, y

′
β,t) ≥ uβ(x

∗
β,t, y

∗
β,t).

Also of the definition of Pareto efficient allocation it is possible to furnish a dynamic coun-
terpart, starting from the definition of market stationary equilibrium, which reads as follows:

Definition 3.2 The vector (a∗, x∗
i , y

∗
i ), with i ∈ {α, β}, is stationary Pareto optimal if a∗ ∈

[0, 1] is constant and if, given a∗, (x∗
i , y

∗
i )i∈{α,β} is a Pareto optimal allocation in every time

t.

We stress that, differently from the case of market stationary equilibria, it is not possible
to identify stationary Pareto optimal vectors just with the population share a∗, since the
latter does not univocally determine the components of the Pareto optimal allocations, even
when each economy admits for all population shares a unique market equilibrium. The
same remark applies to the concept of Pareto optimal allocation, which is not univocally
determined by the population shares. Namely, even when the two groups of agents have the
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same numerosity, the Pareto set, i.e., the set of Pareto optimal allocations, in the classical
exchange economy is a curve joining in the Edgeworth box the bottom-left edge to the top-
right edge.
Recalling that, according to Proposition 1 in Naimzada and Pireddu (2019b), in any time
period, for all economies and population shares at ∈ (0, 1), there exists at least a market
equilibrium, we are now in position to state our main result:

Proposition 3.1 (The first fundamental theorem of welfare economics) Given the

economy E ∈ E and the population share at ∈ (0, 1), let (p∗x,t, p
∗
y,t, x

∗
i,t, y

∗
i,t), with i ∈ {α, β},

be a market equilibrium at time t. Then the allocation (x∗
i,t, y

∗
i,t)i∈{α,β} ∈ (0,+∞)4 is Pareto

optimal.

Proof. Since the arguments we shall employ are independent of the considered time period,
in order not to overburden notation, we will omit the subscript t along the proof.
Assume by contradiction that, given E ∈ E and a ∈ (0, 1), (p∗x, p

∗
y, x

∗
i , y

∗
i ), with i ∈ {α, β},

is a market equilibrium, but that (x∗
i , y

∗
i )i∈{α,β} is not Pareto optimal. Then, there exists

(x′
i, y

′
i)i∈{α,β} ∈ (0,+∞)4 such that conditions (i) and (ii) in Definition 3.1 hold true.

Recalling (2.2), we claim that from (ii) it follows that

px x
′
i + py y

′
i ≥ px x

∗
i + py y

∗
i = px wx + py wy, for i ∈ {α, β}. (3.1)

Namely, if for instance px x
′
α + py y

′
α < px x

∗
α + py y

∗
α = pxwx + py wy, then agent α could

choose as consumption bundle (x̃α, ỹα) = (x′
α, y

′
α) + ((px x

∗
α + py y

∗
α − px x

′
α − py y

′
α)/px, 0),

since (x̃α, ỹα) would belong to the budget set of agent α. Indeed,

px x̃α + py ỹα = px x
′
α + py y

′
α + px x

∗
α + py y

∗
α − px x

′
α − py y

′
α = px x

∗
α + py y

∗
α = pxwx + py wy.

However, since x̃α > x′
α and ỹα = y′α, by condition (A2) in Definition 2.1 it would follow

that uα(x̃α, ỹα) > uα(x
′
α, y

′
α) ≥ uα(x

∗
α, y

∗
α), contradicting the fact that (x∗

α, y
∗
α) solves the

maximization problem (2.2). This shows that (3.1) is fulfilled.
To fix ideas let us assume that (ii) in Definition 3.1 reads as uα(x

′
α, y

′
α) ≥ uα(x

∗
α, y

∗
α) and

uβ(x
′
β, y

′
β) > uβ(x

∗
β, y

∗
β), and let us show that this implies that

px x
′
β + py y

′
β > px x

∗
β + py y

∗
β = pxwx + py wy. (3.2)

Namely, if it were px x
′
β + py y

′
β ≤ px x

∗
β + py y

∗
β = pxwx + py wy, agent β could choose

(x′
β, y

′
β) as consumption bundle, since it would belong to his/her budget set. However, since

uβ(x
′
β, y

′
β) > uβ(x

∗
β, y

∗
β), this would violate the fact that (x∗

β, y
∗
β) solves the maximization

problem (2.2). Thus (3.2) holds true.
Summing condition (3.1) for agent α multiplied by the share a with condition (3.2) multiplied
by the share 1− a, we obtain

px
(
ax′

α + (1− a)x′
β

)
+ py

(
ay′α + (1− a)y′β

)
> px

(
ax∗

α + (1− a)x∗
β

)
+ py

(
ay∗α + (1− a)y∗β

)
,

which contradicts condition (i) in Definition 3.1.
Hence (x∗

i , y
∗
i )i∈{α,β} must be Pareto optimal, and this concludes the proof. �
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From the previous result, we immediately obtain the following:

Corollary 3.1 Given the economy E ∈ E , let (a∗, p∗, x∗
i , y

∗
i ), i ∈ {α, β}, be a market sta-

tionary equilibrium with a∗ ∈ (0, 1). Then the vector (a∗, x∗
i , y

∗
i ), with i ∈ {α, β}, is stationary

Pareto optimal.

Proof. Since (a∗, p∗, x∗
i , y

∗
i ), i ∈ {α, β}, is a market stationary equilibrium, by Definition

2.3, a∗ ∈ (0, 1) is constant and, given a∗, (p∗, x∗
i , y

∗
i ), i ∈ {α, β}, is a market equilibrium for

every t. Hence, by Proposition 3.1, the allocation (x∗
i , y

∗
i )i∈{α,β} is Pareto optimal in any time

period t. By Definition 3.2 the vector (a∗, x∗
i , y

∗
i ), with i ∈ {α, β}, is then stationary Pareto

optimal.
The proof is complete. �

We conclude by recalling that at the end of Subsection III.A in Naimzada and Pireddu (2018)
we gave evidence of the decreasing behavior, with respect to the corresponding population
share, for each group of consumers, of the (Cobb-Douglas) utility level computed in corre-
spondence to the optimal consumption quantities (cf. Figure 12 in Naimzada and Pireddu
2018). From this observation, due to the inverse proportionality between the two groups’
shares, we drew the wrong conclusion that all stationary equilibria are Pareto inefficient,
since each change in shares which made a group better off, would make the other group
worse off.
The mistake in such argument lies in the fact that, according to Definition 2.2, the concept
of equilibrium allocation is given for a fixed value of the population shares, and the same
remark applies to Definition 2.3 of market stationary equilibrium, as well as to Definition
3.1 of efficient allocation and to Definition 3.2 of stationary Pareto optimal vector. Hence,
it makes no sense to investigate the Pareto optimality of equilibrium allocations when the
population shares vary. In particular, it is not correct to wonder whether some of the sta-
tionary equilibria are Pareto efficient considering them all together, as they are characterized
by different population shares and thus they are not comparable one with the other.
In fact, it is not true that in our model all stationary equilibria are Pareto inefficient. On the
contrary, we checked above the validity of the first theorem of welfare, according to which
every (stationary) equilibrium allocation is (stationary) Pareto optimal.
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