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Abstract

Models with sunspot equilibria have long been a topic of interest
among economists. It then becomes an interesting question to ask whether
there is empirical support for their existence. One approach to answer this
question is through lab experiments. Such equilibria have been success-
fully reproduced in the lab, but little is known about their determinants
and, most importantly, about their convergence dynamics: when, and
how, do individuals assign a coordination role to signals which are pub-
licly known to have no fundamental value? In order to answer this ques-
tion, we run a laboratory experiment in which individuals are connected
through a network, and each of them directly observes the actions of her
neighbors as well as aggregated information. By manipulating both the
type of information available and the structure of the network, we study
the extent to which players are able to converge, and how convergence
happens over time. We show that general information about other play-
ers’ behavior hinders coordination, while information specifically related
to the sunspot enhances it.

Keywords: sunspot equilibrium, laboratory experiment, coordina-
tion, social networks, communication.
JEL classification: C92, D81, D85.

1 Introduction

Can factors that do not directly affect the fundamentals of an economy neverthe-
less affect its performance? In macroeconomics, models in which this extrinsic
uncertainty is the driving force behind fluctuations have a rich history. Early
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work by authors such as Azariadis (1981) and Cass and Shell (1983) established
the theoretical basis for the literature that followed. In these macroeconomic
models, the extrinsic or “sunspot” shock is most easily thought of as a coordi-
nation device in choosing among multiple equilibria, i.e., through self-fulfilling
expectations on the parts of agents. Benhabib and Farmer (1994) and Farmer
and Guo (1994) are seminal examples. The Benhabib-Farmer-Guo model rep-
resented a huge achievement: when calibrated largely in line with its contem-
porary – the real business cycle model (Kydland and Prescott, 1982) – it could
similarly replicate real world data. However, it did become readily apparent
that in order for sunspot equilibria to obtain, certain parameters of the cali-
bration needed to be outside the range of empirical plausibility. Hence, much
subsequent work focused on producing variations of the model that were more
empirically plausible. Examples include Wen (1998) and Harrison (2001). See
Benhabib and Farmer (1999) for an extensive review of the sunspot literature
in macroeconomics. As a whole, then, this literature helped bring the idea of
sunspot equilibria into the mainstream of macroeconomics, and to establish the
foundation for the belief, now more widely held, that these models are in fact
relevant for explaining the real world.

More recently, another literature has emerged, one that more directly tests
the hypothesis that sunspot equilibria can occur in the real world. This litera-
ture seeks to observe coordination on sunspot equilibria in human interaction,
based on experimental evidence. The laboratory setting provides the unique
ability to create an actual sunspot signal, that is, a message which (i) is ran-
dom, (ii) does not directly affect fundamentals, and (iii) is known as such by
participants, but still is potentially useful as a coordination device. Marimon
et al. (1993), and Duffy and Fisher (2005) are two early examples: both of these
papers provide convincing evidence that, at least in some contexts, sunspot
shocks do matter. Heinemann et al. (2012) also find evidence of sunspot equi-
libria in the presence of noisy sunspot signals. Agents are able to coordinate on
an outcome when sunspot shocks occur in each of these games. In two recent
papers, Arifovic et al. (2019) and Arifovic and Jiang (2019) show the emer-
gence of sunspot equilibria in laboratory experiments reproducing respectively
a simple macroeconomic environment, and bank runs dynamics.

In this paper, we add to this literature by improving our understanding of
how sunspot equilibria emerge. We do so by manipulating the possibilities for
participants to coordinate, connecting them through a predefined social net-
work structure. Compared to the existing experimental literature on sunspot
equilibria, we consider a simplified and more general coordination game, and
focus on the role of information in helping or hindering synchronization on the
sunspot signal. Models in which agents are connected and communicate via a
social network have been used widely in economics over the past decade (see for
example Jackson, 2010 and Jackson and Yariv, 2011). Put simply, each indi-
vidual is a member of a network, and is able to observe her neighbors’ behavior
following a sunspot shock. Hence, every agent’s imitation of her neighbors may
aid in the coordination on a sunspot equilibrium. We put forth a model in which
agents must decide between two symmetric assets. The return on each asset is
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increasing in the number of agents who invest in it. The payoff structure we
pose is based on that of Keser et al. (2012), which can be seen as a special case
of models studied in the game theoretic literature on coordination.

The game we analyze is a local information game, as opposed to the large
literature on local interaction games: “locality is represented by information and
not necessarily by payoffs” (Chwe, 2000). It is closely related to the literature
on global games (Carlsson and Van Damme, 1993; Morris and Shin, 2003), but
it relies on purely strategic uncertainty, rather than on individual noisy signals
about an unknown state of the world. On the other hand, our setup differs
from that of (Chwe, 2000) because the local information our agents care about
concerns actions rather than types. In this sense, our work is more similar to
Cassar (2007) and Battiston and Stanca (2015).

We study different treatments, manipulating two main dimensions. First,
we vary the extent to which subjects see other people’s actions, by changing
the structure of the network, or suppressing it entirely. Second, we introduce a
form of nudging which affects the semantics of the sunspot signal (Duffy and
Fisher, 2005) by referring to it as a potential coordination device.

We confirm previous evidence that the sunspot signal can spontaneously
emerge as a coordination device, and we show that this coordination increases
over time. We find that messages that subjects receive can substantially affect
their reliance on the sunspot. Specifically, while mere information about other
players’ actions can crowd out the sunspot signal, more explicit nudging can
increase its adoption. We also find that the position of a subject in the network
can make her more or less important in driving the group towards the sunspot
equilibrium. Specifically, subjects with more connections play a more important
role in convergence to the sunspot equilibrium.

The rest of the paper proceeds as follows: in the next section, we outline the
model that we have in mind; in Section 3, we describe the experimental design;
in Section 4 we present results of our analysis; and Section 5 concludes.

2 The Model

We consider a model similar to that of Keser et al. (2012). Suppose that N ≥ 2
investors choose between two assets, A and B.1 The return for investor i in asset
j is:

Rij = rij + kNj (1)

where j ∈ {A,B}, Nj ∈ {0, . . . , N − 1} is the number of agents besides i
that choose asset j, and k > 0.

There are positive externalities, or complementarities, captured by the last
term in the equation: each investor earns k times the number of other investors

1We limit our analysis to two assets for simplicity of exposition, but it can be trivially
generalized to three or more symmetric assets, as long as the sunspot is also distributed
uniformly over them.
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who invest in the same asset. The term rij is instead the base, or standalone,
value for the investor. It is the return the asset would earn with no complemen-
tarities; that is, if no one else besides investor i chooses the asset.2

Heinemann et al. (2012) and Keser et al. (2012) also consider a context in
which agents face a coordination problem in their decision between two assets A
and B, with similarly defined complementarities. But in their work, the assets
are differentiated by their risk profiles; in our case instead, they are perfectly
symmetric, sharing the same k and with (riA, riB) being i.i.d. pairs of values
from a common distribution. For simplicity, we assume that the sum of the base
values is constant, and that the difference between them is uniformly distributed
over the interval, [−γM , γM ], for γM = max(riA − riB) = max(riB − riA).3

The decision to play one asset over the other will naturally depend on the
expected number of other players also playing it:

xi =

{
A if E[RiA] ≥ E[RiB ]

B otherwise.
(2)

where

E[Rij ] = rij + kE[Nj ].

When not specified otherwise, we will be interested in the case in which the
maximum difference between base values is less than the maximum benefit from
coordination:

γM < k(N − 1). (3)

Under this assumption, the one-shot game has exactly two pure Nash equi-
libria: full coordination on each of the two assets. Once we consider the re-
peated version of this game, any sequence of plays in {A,B}T is a potential
pure Nash equilibrium, and the problem becomes that of coordinating on the
same sequence.

Given that the two assets are perfectly symmetric, and that the base values of
different players are independent, we can assume that ex ante they are expected
to be played with the same probability:

E[NA] = E[NB ] =
N − 1

2
. (4)

2.1 Introducing the sunspot

So far we have seen that the two assets are differentiated by their base values,
which are also independent across individuals. Now we introduce the a non-
fundamental sunspot device S, taking value S = A or S = B with the same

2Equation (1) can be considered as a special case of the payoffs scheme adopted by (Chwe,
2000), in which the individual utility function is supermodular.

3In our experiment, riA + riB = 5 and the difference between the base values follows a
discrete probability distribution. We discuss the discrete case in the next subsection.
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probability 1
2 . How does introduction of the sunspot affect the equilibrium prop-

erties of this game? We now examine the Nash equilibria of the repeated version
of this game.

We enrich the model by allowing each agent to have expectations about
the influence of the sunspot, S ∈ {A,B}, on other agents’ choice. We are not
interested, at this stage, in modeling the mechanics of such influence; we simply
capture it with a coefficient α ∈ [0, 1], where E[NS ] = α(N − 1), so that

E[Rij ] =

{
rij + k(N − 1) · α if S = j

rij + k(N − 1) · (1− α) otherwise
(5)

In particular, α = 1 represents the belief that everybody follows the sunspot;
α = 0 represents the belief that everybody deviates from it; α = 1

2 (falling back
to Equation 4) represents the belief that the sunspot does not, on average, affect
agents’ decisions.

Given α, each subject forms E[Rij ], and hence chooses xi, based on the
value of riA and riB . Let T ∈ {A,B} denote the non-sunspot asset, and γ =
riS − riT ∈ [−γM , γM ] be the relative advantage, in terms of base value, from
choosing the sunspot: strategies are mappings σ : [−γM , γM ] 7→ {S, T}.

Given beliefs about other players (α) and own difference between base values
(γ), the condition for picking asset S is:

xi = S ⇐⇒ E[RiS ] > E[RiT ]

⇐⇒ riS + k(N − 1) · α > riT + k(N − 1) · (1− α)

⇐⇒ γ > k(N − 1)(1− 2α) (6)

We are implicitly assuming that players pick T when indifferent: in fact, the
following proof disregards this eventuality – since it happens with zero proba-
bility, it does not affect beliefs, and hence Nash equilibria. One can equivalently
assume that when indifferent, agents randomize. Excepting this eventuality,
Equation (6) guarantees that best replies are always pure strategies, and allows
us to state the following.

Lemma 1. Best replies are monotonic in γ: given an α, if a player chooses S
for a given γ′, she should do the same for γ′′ > γ′.

Proof. If Equation (6) holds for γ = γ′, it holds also for γ = γ′′ > γ′.

Corollary 1. Optimal strategies can take only three forms:

1. Always strategy: i.e. Always play the sunspot:

For example, if α = 1, Equation (6) becomes γ < k(N − 1), which is
always true by virtue of Equation 3. In other words, if other players are
always expected to play the sunspot, the best reply is to always play the
sunspot.

5



2. Threshold strategy: i.e. play the sunspot if and only if γ > γ̄, for some
γ̄ ∈ R,

For example, if α = 1
2 , Equation (6) becomes γ > 0. In this case, other

players are expected to not take the sunspot into consideration, hence pick-
ing the asset with the larger base value (which is S if and only if γ > 0),
and this is precisely the best reply.

3. Never strategy: i.e. never play the sunspot.

For example, if α = 0, Equation (6) becomes γ > k(N−1), which is always
false by virtue of Equation 3. In other words, if other players are expected
to never play the sunspot the best reply is to never play the sunspot.

The three strategies above, α ∈
{

0, 1
2 , 1
}

, each respectively an example of
one of the forms of strategies, are also symmetric Nash equilibria.

In what follows, we analyze all possible values for α. In order to do so, we
state another result based on Equation (6).

Lemma 2. Best replies are monotonic in α: given γ, if a player chooses S for
a given α′, she should do the same for α′′ > α′.

Proof. The right hand side of Equation (6) is decreasing in α, so if it holds for
α = α′, it also holds for α = α′′ > α′.

Lemma (2), combined with the analysis above for α ∈
{

0, 1
2 , 1
}

, guarantees
that the possible values of α for which the best reply is to never play the sunspot
(the never strategy) are an interval [0, α), and that the possible values of α for
which the best reply is to always play the sunspot (the always strategy) are an
interval (α, 1], with α < 1

2 < α.

Lemma 3. No value of α ∈ (0, α) ∪ (α, 1) results in a symmetric Nash equilib-
rium.

Proof. If we take α ∈ (0, α), the best reply is (by definition) to never play the
sunspot, but this strategy induces a belief αBR = 0 6= α: hence, beliefs are not
consistent. Analogously, if we take α ∈ (α, 1), then αBR = 1 6= α.

To reiterate, the only symmetric Nash equilibria identified so far are α ∈{
0, 1

2 , 1
}

.

2.1.1 Threshold Nash Equilibria

We now look for Nash equilibria in the intermediate region α ∈ [α, α]. In this
case, strategies are threshold strategies. That is, they are strategies such that S
is played whenever γ > γ̄. This threshold is the value of γ for which Equation
(6) is binding, that is, γ̄ = k(N − 1)(1− 2α).

In the following, we refer to symmetric Nash Equilibria with threshold strate-
gies as Threshold Nash Equilibria (TNE). In a TNE each player uses a threshold
strategy with the same γ̄ that satisfies Equation (6).
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In a TNE, the value of α induced by γ̄ is αBR = αγ̄ = P{γ > γ̄}: the only
value of α consistent with believing that other players use γ̄ as a threshold.
Hence, each α results in a given γ̄, and each γ̄ induces a given αγ̄ .

Specifically, αBR = αγ̄ = P{γ > γ̄},= 1 − P{γ < γ̄}. To pin down αγ̄ ,
we exploit the fact that γ is uniformly distributed. The CDF of the uniform
distribution is, for x ∈ [a, b], F (x) = x−a

b−a . In our case a = −γM and b = γM .
Hence,

αγ̄ = 1− F (γ̄) = 1− γ̄ + γM
2γM

=
1

2
− γ̄

2γM
.

One last intermediate result will help us characterize αγ̄ :

Lemma 4. For α ∈ [α, α], if γ̄ is the threshold for the best reply to beliefs α,
then αγ̄ − α is strictly increasing in α, and it is 0 for α = 1

2 .

Proof. By definition,

αγ̄ =
1

2
− γ̄

2γM
=

1

2
− k(N − 1)(1− 2α)

2γM
.

Hence,

αγ̄ − α =
1

2
− k(N − 1)(1− 2α)

2γM
− α

which is seen to be equal to zero at α = 1
2 . The gradient of this with respect

to α is:

k(N − 1)

γM
− 1

which is guaranteed to be positive by Equation (3).

Hence, α = 1
2 is the only TNE. Figure 1 plots αγ̄ against α for some example

parameters.
The following result summarizes our analysis so far:

Result 1. The coordination game with a sunspot signal, when base values fol-
low a symmetric, uniform, continuous distribution and the benefits from coor-
dination are not dominated by differences in base values, admits exactly three
symmetric Nash equilibria: always follow the sunspot, always deviate from the
sunspot, and always play the asset with the highest base value.

Proof. We already know that when Equation (3) is satisfied, all values of α ∈
{0, 1

2 , 1} correspond to Nash equilibria. Lemma 3 guarantees that there are no
other Nash equilibria in (0, α) ∪ (α, 1); Lemma 4 guarantees that there are no
other Nash equilibria (TNE) in [α, α].
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Figure 1: Comparison of α and αγ̄
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 with k = 3
 with k = 5

Note: γM = 5, N = 4, k as specified.

2.1.2 The discrete case

We now consider the case in which – as in our experiment, explained in detail
in the next section – the difference between base values follows a discrete prob-
ability distribution. Let Γ be its support. We continue to assume that values
in Γ are uniformly spaced in [−γM , γM ], and equiprobable. Hence, it should be
easy to observe that the analysis of α ∈ [0, α) ∪ (α, 1] remains valid. That is,
the only Nash equilibria in these ranges occur at α = 0 and α = 1.

For what concerns threshold strategies (α ∈ (α, α)), now multiple values of
α or of γ̄ can correspond to the same threshold strategy. For instance, in our
experiment, Γ = {−5,−3,−1, 1, 3, 5}, so γ̄ = 1.5 and γ̄ = 2, which are both
between 1 and 3, denote the same threshold strategy: “choose the sunspot if
and only if γ is equal to 3 or 5”. And, if the strategy which best replies to
α is the same as that best replies to αBR, this will also be a Threshold Nash
Equilibrium.

Given the assumptions on the distribution of γ, the values of α which cor-
respond to the elements of Γ are of the form αh = h

H for h ∈ {0, . . . ,H}. That
is, they partition [0, 1] into H intervals of equal width 1

H . The condition for the
coincidence of a strategy with its best reply is hence

|αγ̄ − αh| <
1

H
⇐⇒

∣∣∣∣∣12 − k(N − 1)(1− 2 h
H )

2γM
− h

H

∣∣∣∣∣ < 1

H

⇐⇒
∣∣∣∣(1

2
− h

H

)(
1− k(N − 1)

γM

)∣∣∣∣ < 1

H

⇐⇒

∣∣∣∣∣∣∣∣∣
(
H

2
− h
)

︸ ︷︷ ︸
A

(
1− k(N − 1)

γM

)
︸ ︷︷ ︸

B

∣∣∣∣∣∣∣∣∣ < 1. (7)

We know that B is strictly negative because of Equation (3), but at the limit
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for k → γM
N−1 , it tends to 0. Hence, for any choice of H, h, N and γM , we can

find a value of k that satisfies Equation (3) and Equation (7), and results in a
symmetric equilibrium.

Equation (7) also confirms that, keeping all other parameters fixed, given a
symmetric equilibrium at h = h̄, then each value of h at least as close to H

2 (i.e.,∣∣H
2 − h

∣∣ ≤ ∣∣H2 − h̄∣∣) also corresponds to a symmetric equilibrium (because the
absolute value of the term A is smaller, or equal, while the term B is unchanged).

We can hence conclude what follows.

Result 2. The coordination game with a sunspot signal, when base values fol-
low a symmetric, uniform, discrete distribution, can admit any strictly positive
number of symmetric equilibria.

Proof. If k is small enough so that Equation (3) is not satisfied and H is even
(so that 0 6∈ Γ), then the only resulting symmetric equilibrium will be α = 1

2 .
If H = 0, so that Γ = {0}, then clearly both playing the sunspot and not

playing the sunspot are symmetric Nash equilibria, and there are no others.
To obtain a number of equilibria p ≥ 3, it is sufficient to design a game with

H = p− 1, and, for any choice of other parameters, pick k such that Equation
(3) is satisfied, and Equation (7) is satisfied for h = 1 (and hence for all h).

Figure 1 displays, for γM , N and H corresponding to our experimental de-
sign, the possible configurations of symmetric equilibria. In our experiment,
k = 5, and hence only the three trivial symmetric equilibria are present. Equa-
tion (3) is binding for 5 = k · 3 =⇒ k = 5

3 , so the two corner solutions α = 0
and α = 1 exist if and only if k > 5

3 (that is, in all panels of Figure 1 except the
top left one).

2.1.3 Generalizing the continuous case

We conclude this analysis by considering the case in which the possible values
of γ follow a continuous distribution over [−γM , γM ] which is symmetric but
not uniform.

Result 3. The coordination game with a sunspot signal, when base values follow
a generic continuous distribution, can admit any number of symmetric equilib-
ria.

Proof. Equation (6) – and hence the determination of γ̄ from a given α – is
unchanged from the uniform case. For its part, Result 2 does not depend on
the actual numerosity of Γ, but only on the resulting CDF (the complement to
1 of α).

Now given any values of k, N , γM and H, consider the corresponding discrete
game: let FΓ be the resulting CDF, and FU the CDF for the uniform distribution
over [−γM , γM ]. The CDF

Fλ(γ) = λFΓ + (1− λ)FU
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Figure 2: Possible configurations of symmetric equilibria for H = 6
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Note: γM = 5, N = 4, H = 6, k as specified. Black dots denote trivial symmetric equilibria.

Blue dots denote nontrivial symmetric equilibria – cases in which α and αγ̄ (orange dots)

fall in the same interval.
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defines a probability distribution that, for λ → 1 is arbitrarily close to that
of the discrete case, while still assigning a strictly positive probability to any
interval in [−γM , γM ].

2.2 Testable hypotheses

The model naturally suggests some empirical hypotheses: first, that the sunspot
does play a role.

[HYPOTHESIS 1] α 6= 1
2 : choices of individuals are affected by the

sunspot signal.

We then know that for our parametrization, only the three trivial equilibria
are available. It is hence natural to hypothesize that choices will converge
towards one of the two corner solutions.

[HYPOTHESIS 2] α → {0, 1}: if choices of individuals are affected
by the sunspot, they eventually tend to one of the two “extreme”
equilibria in which base values are entirely disregarded.

Finally, given that convergence on common strategies requires information
on other players’ actions (α) – an element which our experimental design al-
lows us to manipulate – we can hypothesize that the speed of convergence will
increase along with the amount of information received about other players’
actions.

[HYPOTHESIS 3] Convergence to a symmetric equilibrium is faster
if more information is available to each player about other players’
choices.

Next, we test these hypotheses experimentally.

3 Experimental design

Our experiment brings this model into the lab, and inspired especially by Duffy
and Fisher (2005), introduces sunspot shocks as a possible coordination device
in a multiple equilibrium setting. In addition, we specifically look at the effect
of local information (i.e. concerning specific individuals, and flowing over a
predefined network structure) on individual decisions. We start by describing
the reference design (BASE). Then we will describe the three alternative designs
we implemented.

In each session, subjects were randomly and anonymously assigned to groups
of four participants, in which they remained for the entire session. We divided
each session into four phases, each of which was in turn composed of 20 periods,
or rounds, for a total of 80 rounds in a session. At the beginning of each round, a
sunspot shock was drawn: the experimenter drew a ball from an urn containing
2 red and 2 blue balls, and all screens in the room turned that color. This color
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Figure 3: Structure of local information

A

B
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D

(a) Reference network

A

B

C

D

(b) Unbalanced network

was the sunspot signal, though we avoided any reference to this language in the
experimental instructions, which only read:

“During each round, all screens will be colored the same color, either RED
or BLUE, randomly selected in front of all participants. This color does not
enter payoff computations.”

For each subject, independently, the computer then randomly split $5.00
between two assets RED and BLUE, assigning an integer “base value” to each
(hence two numbers in {0, 1, 2, 3, 4, 5}, adding up to 5). Subsequently, each
subject chose which asset to invest in: RED or BLUE. The return from the
investment was the subject’s base value for the chosen asset plus $5 for every
other member of her group who had invested in the same asset in that round.
At the end of each session, each subject was paid the return from a randomly
chosen round of the session (plus a $5.00 show-up fee).4

Each session was split into four phases; some groups of subjects received
local information in phases I and III, others in phases II and IV. We will refer
to the other phases of the game as “no information” phases. Local information
consisted in the decision of another member of one’s group in the previous round
(except for the very first round of the session), according to the cycle network
depicted in Figure 3a, where the arrow from B to A means for instance that A
got to know B’s previous choice. The network was shown to participants, who
also knew that positions would remain unchanged throughout the entire session.

All information provided at any time was also repeated at the subsequent
periods of the same phase. Moreover, after each phase, each participant saw
a summary of her choices and of all information obtained during the phase,
together with:

1. Her average earnings in that phase

2. Average earnings for her group in that phase

3. What her average earnings would have been if all members of her group
had always chosen the asset with the higher base value in that phase

4This game is essentially a 4-players Battle of the Sexes (BoS) game, but with incomplete
information (the base values of other players are unknown). See Banks and Calvert (1992)
for a version of the 2-player BoS with incomplete information.
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4. What average earnings in her group would have been if all members of
her group had always chosen the asset with the higher base value in that
phase

5. What her average earnings would have been if all members of her group
had always followed the sunspot in that phase

6. What average earnings in her group would have been if all members of her
group had always followed the sunspot in that phase

See Figure 8 in Appendix A.1 for a screenshot of this.

3.1 Alternative treatments

In order to unveil the mechanism by which sunspot shocks can emerge as coor-
dination devices, we designed and implemented three variations of the BASE
design.

1. Unbalanced network (UNB): local information was allowed to flow
according to the richer, and unbalanced, network shown in Figure 3b

2. Aggregate information (AGG): participants did not receive informa-
tion from the network, and were informed instead of the number of players
in their group selecting RED in the previous period.

3. No hint (NOH): each round was carried out exactly as in the base treat-
ment, but the end-of-phase summaries did not contains the two statements
about what average earnings would have been if everyone had played the
sunspot throughout the phase.

Notice that treatment NOH provides subjects with strictly less information
than BASE, UNB with strictly more (see Figure 4, left, where each arrow rep-
resents an increase of information available to participants). Strictly speaking,
treatment AGG is not directly comparable with any other treatment, since in
comparison with BASE it brings a tradeoff between aggregate and local in-
formation (whereby the former does not allow for analysis of the behavior of
any specific neighbor over time). The fact, however, that payoffs depend in the
same way on the choices of all peers suggests that the available information set
in AGG is richer for the purpose of coordination.

It is important to notice that information available to subjects in the exper-
iment treatment takes two very different forms. Information concerning other
players’ actions (which is manipulated in the UNB and AGG dummies) does
not involve in any way the sunspot signal, and in this sense we will refer to it
as generic information.

Vice-versa, the “hint” provided at the end of phases mentions the sunspot
signal, and the possibility to coordinate by exploiting it. Hence, we refer to it
as explicit information. The difference is summarized in Figure 4, right.
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Figure 4: Schema of experimental treatments
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Table 1: Distribution of subjects across treatments

Treatment BASE UNB AGG NOH Total
Subjects 36 40 24 20 120

Treatments were assigned with a between-subjects design, with both local
and aggregate information being released according to the alternating scheme
over phases described for the BASE treatment. This will allow us in some
cases to pool together observations from different treatments: for instance, un-
der all treatments, half of the groups would play the first phase without any
information, hence in the same exact conditions across all sessions.

4 Results

We ran the experiments between February 21st and February 28th, 2017 in the
“Columbia Experimental Laboratory in the Social Sciences” (CELSS). 124 sub-
jects participated in the experiment across six sessions, each counting between
16 and 24 participants. We exclude one group of four subjects because one par-
ticipant left the experiment before its conclusion: our analysis is hence based
on 24 groups of four subjects each, observed over 80 rounds, for a total of 9600
observations. See Table 1 for the distribution across treatments.

We start our analysis by looking at general evidence of coordination. Figure 5
(left) shows that there is a slight preference for BLUE overall (which is significant
– p = 0.000 from a binomial test), but that such preference weakens after the
first phase. Figure 5 (right) shows that during the first phase the distribution of
choices inside groups is qualitatively analogous to the expected one had players
made their decision randomly (or according to their base signals, which were
independently drawn): coordination is very limited, and the most frequently
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Figure 5: Frequency of RED

BLUE RED
Individual choice

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

e

Random (p=0.5)
Phase 1
Other phases

0 1 2 3 4
Players choosing RED

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

e

Random (p=0.5)
Phase 1
Other phases

Note: Frequency of RED at the individual (left) and group (right) level.

observed configuration at the group level is with two participants playing BLUE
and two playing RED. In subsequent phases coordination increases, and this
configuration becomes the least frequent.

4.1 Evidence of sunspot relevance

In principle, coordination could be reached by other means than via the sunspot:
for instance, always playing RED would seem like a simpler symmetric strategy
to guarantee perfect coordination. Hence, we now specifically check whether
the color of the sunspot signal has any effect.

Figure 6 (left) shows that participants’ choices are uncorrelated with the
sunspot signal in the very first rounds (the probability of playing the sunspot
being 0.5), but the correlation quickly increases and reaches 0.9 in the last
rounds of play. Figure 6 (left) shows the other side of the coin: the decreasing
importance, from phase to phase, of the individual base value.5 For instance,
having a base value of $ 5 for RED results in playing RED 86.49 % of times in
phase 1, and only 60.7 % of times in phase 4.

In order to pinpoint the specific determinants of the individual decision, we
start by analyzing the BASE treatment. Consider the variable rsunst defined
as taking value 1 if the sunspot signal was RED at round t, 0 if it was BLUE,
and the variable redi,t defined as 1 if participant i played RED at round t, 0
if participant played blue. Moreover, for t > 1 let neighi,t−1 = 1 if subject
i’s neighbor chooses RED in period t − 1, and neighi,t−1 = 0 if she chooses
BLUE.6 Finally, let rbasei,t be the base value for the RED asset for participant
i at period t (recall that the base value for the BLUE asset is just 5− rbasei,t).
We quantify the main determinants of the individual decision by estimating the

5In fact, this reflects the actual reason to introduce asymmetric – and private – base values,
which was to slow down coordination by reducing the focus on the sunspot value.

6We consider a “neighbor” the subject whose action is observed by i; for instance, in Figure
3a, B is a neighbor of A.
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Figure 6: Influence of base value and sunspot signal
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Note: Left: correlation between sunspot and chosen color, calculated for each round of play.

Right: frequency of RED as a function of its base value.

following equation on periods from 2 onwards:

redi,t = β0 + β1rsunst + β2rbasei,t + β3redi,t−1 + βτ t+ εi,t (8)

which also controls for own lagged action redi,t−1, and for a time trend (t is the
period of play).

We then further restrict to periods in which local information was provided
to subjects (i.e., excluding groups in “no information” phases), and estimate the
following equation, which also accounts for the behavior of a subject’s neighbor:

redi,t = β0 + β1rsunst + β2rbasei,t + β3redi,t−1 + β4neighi,t−1 + βτ t+ εi,t (9)

Table 2 shows results from estimating equations 8 and 9 via probit. The
preference for playing the asset with the highest base value is strongly significant
(and intriguingly, own decision at previous round is significant only in presence
of local information), but an overwhelming role is played by the value of the
sunspot, leading us to confirm [HYPOTHESIS 1]:

Result 4. The sunspot signal has a significant and substantial in-
fluence on individual choices.

In order to better characterize the decision process – and to study which
conditions affect the decision to play the sunspot value – we then adopt a dif-
ferent approach, and look at the determinants of the decision to follow the
sunspot value. That is, we create a new dependent variable encoding whether
the sunspot signal was followed or not:

followi,t =

{
1 if redi,t = rsunst

0 otherwise
.
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Table 2: Main determinants of playing RED

(1) (2)

rsuns 0.817∗∗∗ 0.807∗∗∗

(0.031) (0.058)
rbase 0.189∗∗∗ 0.162∗∗∗

(0.021) (0.037)
red 1 0.009 0.096∗

(0.032) (0.056)
neigh 1 0.010

(0.044)
t 0.001 0.001

(0.001) (0.001)

Observations 2,844 1,104

Note: Marginal effects from probit estimation with clustered standard errors at the group

level. Dependent variable: redi,t. ***p< 0.01, **p< 0.05, *p< 0.10.

Moreover, we transform rbasei,t into a new variable representing the base
value for the asset corresponding to the sunspot signal :

sbasei,t =

{
rbasei,t if rsunst = 1

5− rbasei,t otherwise
.

Notice that sbasei,t, just like rbasei,t, takes values in the set {0, 1, 2, 3, 4, 5},
and has expected mean 2.5. A value of 3 or more means that the sunspot signal
and the base value are aligned (e.g. sbasei,t = 5 if the sunspot is RED and the
base value for RED is 5, or the sunspot is BLUE and the base value for BLUE
is 5); a value of 2 or less implies a tension between following the sunspot and
playing the asset with the largest base value.

We then estimate the analog of Equation (9) looking at the choice to play
the sunspot rather than to play RED:

followi,t = β0+β1rsunst+β2sbasei,t+β3followi,t−1+β4fneighi,t−1+βτ t+εi,t,
(10)

where fneighi,t−1, in analogy with neighi,t−1, denotes whether the neighbor
followed the sunspot in the previous period. We still include rsunst among
the regressors in order to control for any idiosyncratic preference for following
the sunspot when RED (we have seen in Figure 5 that the two assets are not
perceived in a perfectly symmetric way).

Table 3 provides results from different formulations nested in Equation (10).
The coefficient on sbase is significant in every model: subjects again tend to
follow the sunspot more when it has a higher base value, be it red or blue.
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Table 3: Main determinants of choice

(1) (2) (3) (4) (5)

rsuns 0.009 0.013∗ 0.010 0.014∗∗∗ 0.0001
(0.008) (0.007) (0.008) (0.005) (0.010)

sbase 0.077∗∗∗ 0.070∗∗∗ 0.070∗∗∗ 0.060∗∗∗ 0.047∗∗∗

(0.013) (0.014) (0.014) (0.012) (0.014)
follow 1 0.220∗∗∗ 0.210∗∗∗

(0.036) (0.077)
fneigh 1 0.001

(0.016)
t 0.003∗∗∗ 0.005∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001)
t2 −0.00003∗∗∗

(0.00001)

Observations 2,880 2,880 2,880 2,844 1,104

Note: Marginal effects from probit estimation with clustered standard errors at the group

level. Dependent variable: followi,t. Qualitatively similar results are obtained when

controlling also for group-fixed effects. ***p< 0.01, **p< 0.05, *p< 0.10.

Enriching the minimal model (column (1)) by controlling for the round of play
and for its second power (given the curvature which clearly emerges from Figure
6), we see that subjects follow the sunspot more over time (positive coefficient
on t) but the effect decreases over time (negative coefficient on t2). This per-
sistence in following the sunspot is also captured by the positive coefficient on
followi,t−1. All of the previous coefficients are significant.

The analysis above provides a conclusion concerning [HYPOTHESIS 2]:

Result 5. In the baseline treatment, propensity to follow the sunspot
signal increases over time.

The propensity to follow also features strong persistence, as evidenced by
the positive and significant coefficient for one’s lagged action (followi,t−1) in
columns (4) and (5). However, we do not find significant evidence that sub-
jects imitate their neighbor’s behavior in the previous period (coefficient on
fneighi,t−1 in column (5)). It is important to note that fneighi,t−1 is strongly
correlated with followi,t−1. Hence, the latter’s coefficient does not have an ob-
vious interpretation. We defer the analysis of the effect of local information to
later sections.

The coefficient on rsunst is always positive, and significant in some of our
models. This suggests that the sunspot is more salient when it is RED (possibly
as a consequence of BLUE being considered a “default” choice – see Figure 5).
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While there is no obvious explanation for this preference, the fact itself that the
coefficient is occasionally significant supports the decision to control for it.

4.2 Comparison of treatments

In this section we compare the results across the different treatments. Hence,
we expand the sample to include data from all treatments, and we include a
dummy variable for each treatment, with the BASE treatment as the default:

followi,t = β0+β1rsunst + β2sbasei,t + β3followi,t−1

+βUNBUNB + βAGGAGG+ βNOHNOH

+β4info starti + βτ t+ βτ2t
2 + εi,t (11)

where info starti denotes whether in the alternating scheme subject i was
among those who received information in the first phase. See Table 4 for the esti-
mation results. Again, the coefficient on rsuns is positive and significant: all else
equal, subjects follow the sunspot more often when it is red. When looking at
coefficients for treatment dummies, the distinction, made in Section 3, between
generic and explicit information becomes crucial. Increasing the availability of
generic information (treatments UNB and AGG) results in the sunspot being
played less. However, decreasing the availability of sunspot-specific information
(treatment NOH) also decreases the propensity to follow the sunspot signal.
As a result, every treatment dummy has a negative coefficient7 – subjects follow
the sunspot less often in each of these treatments than in the BASE treatment.

Both the unbalanced and the aggregate information treatments provide more
generic information than the BASE treatment. The fact that increasing com-
munication opportunities decreases the ability to coordinate on the sunspot sig-
nal could seem surprising. But it in fact makes sense. With more generic infor-
mation, subjects don’t rely on a separate coordination device, i.e., the sunspot,
as much. Information about other players’ actions provided via the network
or aggregate information does not per se provide proof that they are following
the sunspot; vice-versa, such information can crowd out attention devoted to
the sunspot. On the other hand, the sunspot nudge has a clear interpretation.
In the case of the NOH treatment, we intentionally did not give the subjects
information about the sunspot itself. As a result, they are less likely to follow
it. We interpret this as strong evidence reinforcing Duffy and Fisher (2005)’s
assertion that the semantics of the sunspot matters.

4.3 More on the effect of information

Next, we investigate further, and more directly, the causal effect of generic
information on the decision to follow the sunspot.

7NOH in the first phase is an exception (column (3)), but at that time the treatment was
still identical to BASE.
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Table 4: Cross-treatments comparison

All All (t2) Ph. 1 Ph. 2 Ph. 3 Ph. 4

(1) (2) (3) (4) (5) (6)

rsuns 0.010∗ 0.012∗∗ 0.026 0.009 0.004 0.013∗

(0.006) (0.006) (0.026) (0.009) (0.006) (0.007)
sbase 0.098∗∗∗ 0.098∗∗∗ 0.234∗∗∗ 0.099∗∗∗ 0.046∗∗∗ 0.047∗∗∗

(0.010) (0.010) (0.021) (0.010) (0.008) (0.009)
follow 1 0.288∗∗∗ 0.281∗∗∗ 0.240∗∗∗ 0.240∗∗∗ 0.348∗∗∗ 0.387∗∗∗

(0.019) (0.019) (0.033) (0.025) (0.032) (0.051)
UNB −0.057∗ −0.057∗ −0.104∗∗ −0.058 −0.029 −0.049

(0.034) (0.034) (0.051) (0.042) (0.025) (0.030)
AGG −0.054 −0.054 −0.186∗∗∗ −0.063∗ −0.018 −0.021

(0.034) (0.034) (0.060) (0.035) (0.024) (0.046)
NOH −0.048 −0.048 0.098 −0.068 −0.055 −0.061

(0.045) (0.046) (0.060) (0.046) (0.039) (0.043)
info start −0.036 −0.036 −0.080∗∗ −0.043∗ −0.006 −0.035

(0.024) (0.024) (0.033) (0.025) (0.015) (0.023)
t 0.003∗∗∗ 0.007∗∗∗ −0.006 −0.011 −0.015∗∗ 0.020

(0.0003) (0.001) (0.008) (0.009) (0.007) (0.013)
t2 −0.00005∗∗∗ 0.0004 0.0002 0.0001∗ −0.0001

(0.00001) (0.0003) (0.0001) (0.0001) (0.0001)

Observations 9,480 9,480 2,280 2,400 2,400 2,400

Note: Marginal effects from probit estimation with clustered standard errors at the group

level. Dependent variable: followi,t. See Table 10 in Appendix D for interaction effects.

***p< 0.01, **p< 0.05, *p< 0.10.

Recall that information was provided according to an alternating scheme (in
phases I and III for some groups, II and IV for others). Hence, we can more
carefully separate out the subjects that received information from those that
did not. In particular, here, we restrict to the first phase, and run a between-
subjects comparison, on four samples of participants:

B) those who receive local information according to the balanced network
(reference category) – sourced from treatments BASE and NOH,

U) those who receive local information according to the unbalanced network
– sourced from treatment UNB,

A) those who receive aggregate information – sourced from treatment AGG,

N) groups in a “no information” phase (recall Section 3), who receive neither
local nor aggregated information – sourced from all four treatments.
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Restricting to the first phase guarantees both that NOH is indistinguishable
from BASE (since the hint was provided at the end of each phase), and that
groups in sample N) were still not exposed to any local or aggregate information.

Columns 1 to 3 of Table 5 provide the results from estimating the following
equation:

followi,t = β0+β2sbasei,t+β3followi,t−1+γUUi+γAAi+γNNi+βτ t+εi,t. (12)

(analogous to Equation (10)) on (parts of) phase I. Columns 4 to 6 reproduce
the same model using the (round-specific) payoffs as dependent variable, i.e.,
estimating the determinants of welfare. We do this because, given that the
sunspot does not directly affect fundamentals, payoffs could in principle be un-
related to the decision to follow the sunspot. The pattern identified in Section
4.2 is clearly confirmed: additional information about the actions of groupmates
causes a significant decrease in the willingness to follow the sunspot signal (coef-
ficients γA and γU ), which results in a (albeit non-significant) decrease of average
payoffs. More ambiguous results emerges from the analysis of group N), whose
members seem to play the sunspot slightly less but initially gain comparatively
high payoffs (higher base values are relatively important at the beginning, when
coordination is very low). Summing up, Table 5 confirms the results in the
previous section about the effect of generic and explicit information. We can
summarize such results in the following, related to [HYPOTHESIS 3]:

Result 6. Adding generic information is detrimental to the decision
to follow the sunspot signal and, hence, to coordination.

4.4 Effect of sunspot specific nudging

Figure 7 presents suggestive evidence of the influence that the end of phase has
on participants’ actions. The effect of ends of phases is clearly identified by the
concentration of non-sunspot plays just before, followed by a sharp decrease.
This phenomenon is driven by subjects who start following the sunspot from
the first round of the following phase, and before that, play it by mere chance.
Since the probability of playing the sunspot by chance is 1

2 , the number of
consecutive chance non-sunspot plays is distributed as 2−n.

We now further examine the effect of our end-of-phase hints or sunspot
nudges, motivated by Duffy and Fisher (2005), who state that “semantics of the
language of sunspots matters”: that is, inducing a “common understanding of
the meaning of the sunspot realization” can influence the propensity to follow
the sunspot.

Recall that treatment NOH is perfectly comparable with treatment BASE
except for the absence of two messages, on the screen at the end of each phase,
reporting what (1) own gains and (2) average group gains, respectively, would
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Table 5: Between-subject results on phase I

follow Payoffs
t=1-20 t=1-10 t=11-20 t=1-20 t=1-10 t=11-20

(1) (2) (3) (4) (5) (6)

rsuns 0.023 0.023 −0.006 −1.289∗∗∗ −0.246 −2.294∗∗∗

(0.028) (0.028) (0.033) (0.201) (0.298) (0.279)
sbase 0.231∗∗∗ 0.231∗∗∗ 0.232∗∗∗ 0.747∗∗∗ 0.821∗∗∗ 0.631∗∗∗

(0.020) (0.020) (0.021) (0.058) (0.085) (0.079)
follow 1 0.254∗∗∗ 0.254∗∗∗ 0.282∗∗∗ 0.055 0.084 0.072

(0.033) (0.033) (0.037) (0.197) (0.283) (0.271)
U) −0.188∗∗∗ −0.188∗∗∗ −0.192∗∗∗ −0.499 −0.274 −0.626

(0.063) (0.063) (0.073) (0.372) (0.533) (0.508)
A) −0.209∗∗∗ −0.209∗∗∗ −0.248∗∗∗ −0.554 −0.304 −1.012∗∗

(0.080) (0.080) (0.079) (0.373) (0.539) (0.509)
N) −0.034 −0.034 −0.027 0.038 0.689∗ −0.498

(0.062) (0.062) (0.065) (0.247) (0.353) (0.338)
t 0.003 0.003 0.009∗ 0.003 0.040 −0.218∗∗∗

(0.002) (0.002) (0.005) (0.017) (0.056) (0.046)

Observations 2,280 2,280 1,200 2,280 1,080 1,200
R2 0.111 0.100 0.159

Note: Dependent variable: followi,t for columns 1 to 3 (probit marginal effects), payoffs for

columns 4 to 6 (OLS coefficient estimates). Standard errors are clustered at the group level.

Each column provides the result of the estimation on a subset of periods of Phase I.

***p< 0.01, **p< 0.05, *p< 0.10.
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Figure 7: Distribution of last round of non-sunspot play
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Note: left: data from all treatments except NOH; right: data from NOH. Not shown: subjects

who always played the sunspot (11 in the left sample, 5 in the right sample).

have been, had everybody in the group followed the sunspot signal at every
round of the phase:

hint
(1)
i = 5× 3 +

T+20∑
t=T+1

sbasei,t

hint
(2)
i = 5× 3 +

1

4

T+20∑
t=T+1

∑
j∈G(i)

sbasej,t

where the first term of each, 5 × 3, is the outcome of perfect coordination,
T ∈ {0, 20, 40, 60}, and G(i) denotes the group of i.

It is important to recognize that these hints provided no actual information
which could be used for future play: they can hence be interpreted as a pure
nudging mechanism. hint(1) could have been entirely reconstructed by subjects
based on information they already possessed (their base values and the value of
the sunspot at each round). hint(2) in principle allowed them to reconstruct the
average of the 60 base values of other group members – which were unknown to
the subject. But in addition to the complexity of the operation – which subjects
had little time to execute – its result would have been of little importance
to guide their actions. Indeed, no further information was available on other
players’ behavior, the average itself was strongly concentrated around 2.5 (the
average base value), and most importantly it was unrelated to future base values
(which were to be independently drawn).

In order to specifically analyze the effect of nudging, we construct and esti-
mate a difference-in-differences model, interacting the variable post, indicating
rounds from 21 onwards (i.e., when subjects in BASE have been nudged at least
once) with the NOH treatment, while still including usual controls rsunst and
sbasei,t:
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Table 6: Difference-in-differences results for BASE and NOH.

follow Payoffs
t=1-40 t=1-60 t=1-80 t=1-40 t=1-60 t=1-80

(1) (2) (3) (4) (5) (6)

rsuns 0.006 −0.008 0.002 −0.856∗∗∗ −0.877∗∗∗ −0.714∗∗∗

(0.010) (0.008) (0.006) (0.188) (0.145) (0.123)
sbase 0.127∗∗∗ 0.096∗∗∗ 0.084∗∗∗ 1.450∗∗∗ 1.488∗∗∗ 1.455∗∗∗

(0.017) (0.014) (0.013) (0.053) (0.042) (0.036)
info start −0.035 0.007 0.018 −0.783∗∗∗ 0.004 0.324∗∗∗

(0.040) (0.035) (0.032) (0.184) (0.146) (0.124)
NOH 0.053 0.034 0.026 0.506∗ 0.306 0.189

(0.040) (0.032) (0.030) (0.266) (0.255) (0.250)
post 0.191∗∗∗ 0.220∗∗∗ 0.251∗∗∗ 2.165∗∗∗ 2.692∗∗∗ 2.934∗∗∗

(0.027) (0.038) (0.048) (0.222) (0.184) (0.171)
NOH × post −0.179∗∗∗ −0.158∗∗∗ −0.151∗∗∗ −1.723∗∗∗ −1.625∗∗∗ −1.895∗∗∗

(0.047) (0.059) (0.054) (0.376) (0.311) (0.287)

Observations 2,240 3,360 4,480 2,240 3,360 4,480
R2 0.316 0.346 0.340

Note: Dependent variable: decision to follow (followi,t) for columns 1 to 3 (probit marginal

effects), payoffs for columns 4 to 6 (OLS coefficient estimates). Standard errors are clustered

at the group level. Each column provides the result of the estimation on a subset of phases.

Treatments UNB and AGG are excluded. ***p< 0.01, **p< 0.05, *p< 0.10.

followi,t = β0+β1rsunst + β2sbasei,t

+β3NOHi + β4postt + β5NOHi × postt
+β6info starti + εi,t (13)

Table 6 shows the estimation results for Equation 13. The positive and
highly significant coefficient for post indicates that, as already observed in Figure
6 (left), the sunspot is played more frequently as the game progresses. The
differential effect of transitioning to the second phase is captured by the negative
and significant sign of the interaction coefficient (“post × NOH”). It proves
that nudging has an important effect on the decision to follow the sunspot, and
consequently on payoffs: it increases average payoffs by at least $ 1.62.

In light of this, we can now better assert the importance of the hints:

Result 7. Sunspot specific nudging results in more subjects starting
to follow the sunspot, and hence in a positive welfare effect.
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This result once more emphasizes the difference between generic information
on other players’ actions – which we have seen, in Result 3, actually hinders
coordination – and sunspot specific hints.

4.5 Network analysis

Next we examine more in depth the influence of the network structure on the
actions of partipants. In order to do so, we focus on the UNB design, in
which participants could be assigned to nodes in the network with more or
fewer connections (corresponding respectively to A and C or B and D in Figure
3b). Specifically, we refer to nodes A and C, who have two incoming and two
outgoing connections each, as central nodes, and to the two other nodes as
peripheral nodes, borrowing from the social network literature (Hojman and
Szeidl, 2008). Each central node has a central and a peripheral neighbor: each
peripheral node only has a central neighbor.

In examining the BASE treatment, we included in Equation (10) a dummy
variable for whether the neighbor played the sunspot in the previous period,
and we had seen in Table 3, column (5), that it was not significant. The UNB
treatment allows us to improve our analysis in two directions. First, we can
check whether central nodes exhibit a different behavior than peripheral nodes.
Second, we can compare the importance attributed to central versus peripheral
nodes.

We answer the first research question by just enriching Equation 10 with a
dummy which is 1 if a node is central and 0 otherwise. The result is shown in
column (1) of Table 7: the coefficient for central is positive but not significant.

As to the second question, in order to answer it we need to restrict our anal-
ysis to those nodes which have two neighbors – that is, to central nodes. We can
then discriminate between information coming from the peripheral node (e.g.
A receiving information from B in Figure 3b) and that coming from the other
central node (e.g. A receiving information from C). The results are presented
in Table 7 column (2). Similarly to the balanced network, subjects don’t seem
to imitate their peripheral neighbor. But, they do pay attention to their central
neighbor: the coefficient on fneighCi,t−1 is positive and statistically significant.
Two interpretations of this result are possible. The first is that, as observed
by Corazzini et al. (2012), subjects fail to account for repeated information –
i.e., for the fact that their “second” neighbor in turn receives information from
themselves. A complementary explanation is that, as observed by Battiston and
Stanca (2015), subjects tend to attribute more importance to neighbors who are
themselves better connected in the network. Whatever the case, central nodes
seem to have a crucial role in pushing their group towards the adoption of the
sunspot signal as a coordination device.
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Table 7: Analysis of network position

By network position Restricted to central

(1) (2)

rsuns 0.027∗ −0.001
(0.014) (0.028)

sbase 0.132∗∗∗ 0.075∗∗

(0.036) (0.032)
central 0.109

(0.080)
follow 1 0.218∗∗

(0.087)
fneighP 1 0.029

(0.037)
fneighC 1 0.100∗∗

(0.042)
t 0.010∗∗∗ 0.005

(0.002) (0.003)
t2 −0.0001∗∗∗ −0.00003

(0.00001) (0.00003)
info start −0.092 −0.029

(0.101) (0.070)

Observations 960 456

Note: Marginal effects from probit estimation with clustered standard errors at the group

level. Dependent variable: decision to follow the sunspot. ***p< 0.01, **p< 0.05, *p< 0.10.

5 Conclusions

The study of sunspot equilibria has long been a topic of interest for economists.
It then becomes an interesting empirical question to ask whether there is support
for their existence. A limited stream of literature has approached the issue
through experimental studies. Inspired by it, we designed an experiment in
which information flows over a social network. By manipulating the amount
and type of information obtained by subjects, we are able to better analyze the
factors behind the birth of a sunspot equilibrium.

Several aspects of interaction over social networks have been studied exper-
imentally in the literature. In particular, some studies (Farrell, 1988; Cooper
et al., 1992) have looked at coordination games, and at how the availability of
communication devices allows nodes to reach efficient equilibria. Meanwhile,
the literature on opinion formation has studied experimentally network games
in which the only available communication device is the ability to observe one’s
neighbors’ past actions (Corazzini et al., 2012; Battiston and Stanca, 2015).
In this paper, we bridge the two streams by analyzing a game of coordination
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in which imitation can possibly affect choices. We then analyze the interplay
between such local information – that is, obtained from the network – and the
alternative coordination device represented by the sunspot signal.

This is, to the best of our knowledge, the first study showing evidence of the
importance of local interaction in sunspot equilibria. It does so by bridging the
experimental literature on sunspots with the literature on social networks. Our
design allows us to manipulate the amount and type of messages that subjects
receive, and hence determine their importance in the realization of sunspot
equilibria.

Our results confirm that the sunspot signal is an effective coordination de-
vice, and that subjects spontaneously rely on it increasingly over time. However,
we also find out that generic information on other players’ actions can crowd out
the sunspot signal, reducing the propensity of subjects to rely on it, and hence
reducing payoffs. Vice-versa, messages which explicitly refer to the sunspot sig-
nificantly increase the salience of the sunspot, and thus enhance coordination.
We also find that the way in which people are connected matters for their ability
to exploit sunspot equilibria: in particular, more connected subjects emerge as
“endogenous leaders” (in the spirit of Andreoni et al., 2017), and play a stronger
role in driving the adoption of the sunspot signal as a coordination device.

This study opens new avenues for future research. The importance of nodes’
centrality in explaining coordination is an insight with important implications,
and calls for a more in depth exploration of how the network topology influ-
ences coordination when individuals can observe their neighbors’ behavior. In
addition, for simplicity, our study analyzed two perfectly identical assets, but
the determinants of sunspot equilibria in the presence of asymmetric and/or
more than two assets, and their interaction with the network structure, are also
important issues left to investigate.
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A Additional material

A.1 Screenshots

Figure 8: End of phase summary

B Session design

Within each session, the phases with information and those without information
were alternated, according to the scheme in Table 8

The specific kind of information depended on the treatment: for instance in
the BASE design it was local information, based on the network in Figure 3a.

The decision to have sets of base values shared amoung pairs of groups –
but vary across paris of groups – represented a tradeoff between maximizing
comparability in the between-subjects design, and increasing variability of the
base values themselves. Notice that some sessions only had 4 or 5 groups; in
the latter case, one group was actually unpaired.
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Table 8: General structure of sessions

Group
1 2 3 4 5 6

Random base values
A B C

Phase Condition
1 Info Info Info
2 Info Info Info
3 Info Info Info
4 Info Info Info
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C Robustness tests

Table 9: Main determinants of choice - OLS estimation

(1) (2) (3) (4) (5)

Constant 0.619∗∗∗ 0.445∗∗∗ 0.381∗∗∗ 0.280∗∗∗ 0.248∗∗∗

(0.014) (0.017) (0.021) (0.020) (0.035)
rsuns 0.009 0.020 0.013 0.020∗ 0.010

(0.013) (0.012) (0.012) (0.012) (0.018)
sbase 0.087∗∗∗ 0.090∗∗∗ 0.090∗∗∗ 0.086∗∗∗ 0.077∗∗∗

(0.004) (0.004) (0.003) (0.003) (0.005)
follow 1 0.254∗∗∗ 0.283∗∗∗

(0.016) (0.026)
fneigh 1 0.006

(0.026)
t 0.004∗∗∗ 0.009∗∗∗ 0.003∗∗∗ 0.004∗∗∗

(0.0003) (0.001) (0.0003) (0.0004)
t2 −0.0001∗∗∗

(0.00001)

Observations 2,880 2,880 2,880 2,844 1,104
R2 0.170 0.235 0.242 0.291 0.324

Note: OLS estimation with clustered standard errors at group level (equivalent of Table 3).

Dependent variable: followi,t. ***p< 0.01, **p< 0.05, *p< 0.10.
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D Further results

Table 10: Cross-treatments comparison: interactions

(1) (2) (3)

rsuns 0.010∗ 0.012∗∗ 0.010∗

(0.006) (0.006) (0.006)
sbase 0.098∗∗∗ 0.098∗∗∗ 0.098∗∗∗

(0.010) (0.010) (0.011)
follow 1 0.274∗∗∗ 0.290∗∗∗ 0.279∗∗∗

(0.019) (0.048) (0.048)
t 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.001)
t2 −0.00005∗∗∗ −0.00005∗∗∗ −0.00005∗∗∗

(0.00001) (0.00001) (0.00001)
info start −0.037 −0.037 −0.039

(0.024) (0.024) (0.024)
UNB −0.024 −0.042∗ −0.016

(0.027) (0.023) (0.020)
AGG −0.083∗∗ −0.046∗∗ −0.068∗∗

(0.040) (0.019) (0.033)
NOH 0.041∗ −0.072∗∗ 0.021

(0.025) (0.033) (0.018)
t × UNB −0.001 −0.001

(0.001) (0.001)
t × AGG 0.001 0.001

(0.001) (0.001)
t × NOH −0.002∗∗∗ −0.002∗∗∗

(0.001) (0.001)
follow 1 × UNB −0.020 −0.013

(0.039) (0.038)
follow 1 × AGG −0.010 −0.022

(0.039) (0.037)
follow 1 × NOH 0.025 0.032

(0.031) (0.030)

Observations 9,480 9,480 9,480

Note: Additional specifications of cross-treatment comparisons (see Table 4). Marginal

effects from probit estimation with clustered standard errors at group level. Dependent

variable: followi,t. ***p< 0.01, **p< 0.05, *p< 0.10.
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