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Abstract

This paper proposes tree main results that enable the estimation of high dimensional mul-
tivariate stochastic volatility models. The first result is the closed-form steady-state Kalman
filter for the multivariate AR(1) plus noise model. The second result is an accelerated EM
algorithm for parameters estimation. The third result is an estimator of the correlation of two
elliptical random variables with time-varying variances that is consistent and asymptotically
normal regardless of the variances evolution. Speed and precision of our methodology are
evaluated in a simulation experiment. Finally, we implement our method and compare its
performance with other approaches in a minimum variance portfolio composed by the con-
stituents of the CAC40 and S&P100 indexes.
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1 Introduction

Models for time series with time-varying variances and covariances have become very popular
in finance because they capture features that are typical of many asset returns, such as volatility
clustering and heavy tails. Two main econometric approaches emerged in the literature: ARCH-
type models (Engle, 1982; Bollerslev, 1986; Nelson, 1991) and stochastic volatility (SV) models
(Hull and White, 1987; Heston, 1993; Harvey et al., 1994; Alizadeh et al., 2002). ARCH-type
models have the advantage of being simple to estimate, while SV models are harder to implement
but are backed by financial theory.

For a long period of time, the multivariate versions of both models have been only moderately
successful since their estimation on realistically large portfolios of assets was not feasible. Indeed,
the number of parameters tends to grow more quickly than the number of observations (curse
of dimensionality) and the numerical maximisation of the likelihood function with respects to
hundreds or thousands of parameters using standard algorithms is deemed to fail.

For ARCH-type models a convincing solution to the curse of dimensionality was proposed by
Engle (2002) with his Dynamic Conditional Correlation (DCC) model. The multi-step estimation
approach proposed in that article allows the DCC model to be applicable to portfolios of hundreds
of assets in only few minutes of computation time on a PC. No equally successful model has been
introduced in the SV world. To the best of our knowledge, the only work that tries to solve the
curse of dimensionality in multivariate SV models is that of Chib et al. (2006). Indeed, the authors
of that article reduce the dimensionality using a factor model and carry out Bayesian estimation
of the unknown quantities using a combination of Markov Chain Monte Carlo and particle filters.
However, implementing their algorithm is rather complex and, by extrapolating the information
on computation times reported in the article, one can expect that on a modern workstation the
application of their method to 100 assets can take few hours.

In this work we derive three general results that can be jointly used to estimate high dimen-
sional multivariate SV models cast in linear state-space form such as the one in Harvey et al.
(1994, Sec. 3), from now on HRS, and a multivariate extension of the one in Alizadeh et al.
(2002), from now on ABD.

Let us call d the number of time series and n their (common) length. In a multivariate time
series set-up, the problem with the approaches of HRS and ABD is that quasi maximum-likelihood
(QML) estimation faces numerical issues and computation time exploding with the dimension.
Indeed, each pass of the Kalman filter implies, for every time point t ∈ {1,2, . . . , n}, sums, mul-
tiplications and an inversion of d × d matrices. Thus, for large d the computational burden
becomes too expensive. Furthermore, the typical quasi-Newton optimisers used to maximise the
log-likelihood function become very unstable when the number of parameters is very large (for a
portfolio with d = 100 assets the parameters to estimate are more than 10,000!).

Our solution to the aforementioned issues in estimating large HRS and ABD models is based
on three results. Firstly, we substitute the Kalman filter recursions with the steady-state Kalman
filter, which we obtain in closed-form for the multivariate AR(1) plus noise model (i.e., we derive
the analytical solution to the implied Riccati equation). This approximation does not harm the
asymptotic properties of the estimates of the parameters and reduces by a factor of n the number
of operations on the d × d matrices of the regular Kalman filter. Secondly, we design an expec-
tation maximisation (EM) algorithm based on the steady-state filter and smoother to be used in
substitution of quasi-Newton optimisers. Our algorithm is numerically very stable and, as any EM
algorithm, it moves very quickly towards a neighbourhood of the solution. Finally, we propose a
simple estimator of the correlation between returns that is consistent and asymptotically normal
regardless of the evolution of the variances, provided that the returns are drawn from elliptical
distributions with time invariant correlations. This last result allows the quick estimation of one
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of the two large covariance matrices of the multivariate SV models, which, as it will be clear later,
is only a deterministic transformation of the correlation matrix of the returns.

The paper is organized as follows: Section 2 contains the main results; Section 3 introduces
the two types of multivariate SV models (i.e., HRS and a multivariate extension of ABD) and
illustrates the use of our results to build the estimation procedure; Section 4 applies our procedure
to the returns of the CAC40 and S&P100 constituents and carries out a comparison with the DCC
model, the RiskMetrics methodology and with the historical covariance matrix approach in the
minimum variance portfolio framework; Section 5 concludes. The Appendix contains the proofs
of the theorems and other side-results.

2 Main results

2.1 Steady state Kalman filter and smoother

Consider the multivariate AR(1) plus noise process,

yt =αt + εt , εt ∼WN(0,Σε),
αt+1 = κ+φαt +ηt , ηt ∼WN(0,Ση),

(1)

where WN(µ,Σ) denotes a sequence of serially uncorrelated vectors with time-invariant mean
vector µ and covariance matrix Σ, κ is a vector of constants and φ is a scalar parameter taking
values in the closed interval [−1,1]. In what follows it is assumed that E(εtη

>
s ) = 0 for all

s, t ∈ {1, . . . , n}. All vectors and matrices in (1) have dimension d and d × d, respectively.
Let us name at the projection of the state vector αt onto the linear span of the observations

{y1, . . . ,yt−1},
at = P[αt |y1, . . . ,yt−1]

and Pt its mean squared error (MSE),

Pt = E[αt −at][αt −at]
>,

and assume thatα1 is a random vector with mean a1 and covariance matrixP1. Then, the Kalman
filter recursions for this model can be written as follows: for t = 1, 2, . . . , n,

Innovation : vt = yt −at ,

Innovation variance : Ft = Pt +Σε ,

Kalman gain : Kt = φPtF
−1
t ,

Prediction : at+1 = φat +Ktvt ,

Prediction error : Pt+1 = φ2Pt −φ2PtF
−1
t Pt +Ση.

As t diverges, the sequence of covariance matrices Pt converges to the steady-state matrix P
that solves the algebraic Riccati equation,

P = φ2P −φ2P (P +Σε)
−1P +Ση, (2)

where P is symmetric positive definite1. The following result provides the closed-form solution
of equation (2) for the state-space form (1).

1When |φ|< 1, then the system is stable and the exponentially fast convergence to the steady-state holds because
of Result 3.3.1 in Harvey (1989). When φ = 1, then Result 3.3.2 in Harvey (1989) applies since the system is
controllable (eq. 3.3.4 in Prof. Harvey’s book) and observable (eq. 3.3.5 in the same volume) and these two properties
imply the properties of stabilisability and detectability, which, in turn, guarantee the exponentially fast convergence
to the steady-state.
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Theorem 1 (Riccati equation solution). Consider the system as in (1) with Ση positive semi-
definite and Σε strictly positive definite. Apply the Cholesky decomposition to Σε = MM> and
the eigen-decomposition to Q = M−1Ση(M−1)> = Ψ∆Ψ>, with Ψ matrix of eigenvectors and
∆= diag(δ1,δ2, · · · ,δd) diagonal matrix of eigenvalues.

Then the unique positive definite solution for P is

P =
1
2
MΨ

n

∆− I +φ2I +
�

(∆− I +φ2I)2 + 4∆
�

1
2
o

Ψ>M>. (3)

The knowledge of the steady-state solution leads to considerable computational savings since
some of the Kalman filter recursions become redundant (see discussions in Harvey, 1989; Durbin
and Koopman, 2001). The analytical expressions in (3) provides also the steady-state solutions
for F andK. Indeed, given (3), it follows immediately that the steady-state innovations variance
F is:

F = P +Σε =
1
2
MΨ

¦

∆+ I +φ2I + [(∆− I +φ2I)2 + 4∆]
1
2

©

Ψ>M>. (4)

Moreover the Kalman gain in the steady-state is

K = φPF −1 =
1

2φ
MΨ

¦

φ2I −∆− I + [(∆− I +φ2I)2 + 4∆]
1
2

©

(Ψ−1)>(M−1)>. (5)

Note that, while (3) and (4) are symmetric, the Kalman gain matrix (5) is non-symmetric in
general.

A nice consequence is that, at each step in time, one does not need to store the expressions
for Pt , Ft andKt , and the only Kalman recursions that need to be run are the updating equation
for the state vector and the innovation equation. This greatly simplifies the filtering process as
well as the smoothing process as shown in next section.

2.2 Approximate maximum likelihood estimation by EM

We used the steady-state matrices derived in the previous section to design an EM algorithm that
approximates the maximum likelihood estimator (MLE). The basic idea is using the steady-state
Kalman filter straight form the beginning of the time series instead of waiting the steady-state to
be reached by the regular Kalman filter after few step. For sufficiently long time series like the
ones generally used in finance this approximation should be harmless. Indeed, the asymptotic
behaviour of our approximate maximum likelihood estimation is the same as the one of exact
MLE when the convergence to the steady-state is exponentially fast (cf. footnote 1). As already
remarked in the previous section, using the steady-state Kalman filter greatly reduces the compu-
tational burden as the matrices P, K , F and F−1 become time-invariant and they are computed
only once for each iteration of the optimisation procedure (be it EM or Quasi-Newton).

This approach was advocated by Harvey (1989, p. 434), who named it Approximate Maximum
Likelihood (see also Harvey and Peters, 1990, p. 93). For example, for the local level model,
Harvey shows that the likelihood can be maximised numerically by choosing the signal-noise
parameter that minimises the sum of squared innovations (see Harvey, 1989, Section 8.3.3).
This approach, requiring the knowledge of the steady-state quantities, can also be implemented
using the so-called Expectation-Maximization (EM) algorithm. This is especially recommended
for large-scale systems, avoiding the issue of numerically maximizing the likelihood by Quasi-
Newton methods. The EM algorithm for the estimation of state space models is fully discussed
by Watson and Engle (1983); Koopman (1993); Durbin and Koopman (2001); Shumway and
Stoffer (2017). This iterative algorithm requires the implementation of the smoothing process
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(for the Expectation-step) and the updating of the parameters (Maximization step) involving the
smoothing quantities derived from the Expectation-step.

In high dimensions, the estimation of models in state space form using the EM algorithm
can be rather slow because of the multiple passes of the smoother, which involves many matrix
products, additions, inversions and the storage of a great number of large matrices. However,
the use of the closed-form steady-state Kalman filter greatly reduces the computational burden
also of the smoother, making the Expectation step much faster. Indeed, using the steady-state
matrices, the smoothing algorithm proposed by de Jong (1988, 1989) (see also Ansley and Kohn,
1985; Koopman, 1997) becomes: rn = 0, Nn = 0,

rt−1 = F
−1vt +L

>rt (6)

Nt−1 = F
−1 +L>NtL (7)

where L= φI −K, which can also be computed as

L=
1

2φ
MΨ

n

φ2I +∆+ I −
�

(∆− I +φ2I)2 + 4∆
�

1
2
o

(Ψ−1)>(M−1)>.

Therefore, given a set of structural parametersφ, Σε andΣη, the smoothing recursions quickly
deliver the desired results (refer to Chapter 4 of Durbin and Koopman, 2001, for an extensive
treatment of the filtering and smoothing approach for linear Gaussian state-space models).

Using the quantities provided by the Expectation-step, the Maximization step for the matrices
Σε and Ση can be carried out using the simple updating expressions (3.5), (3.6) and (3.7) of
Section 3 in Koopman (1993). More specifically, for model (1) these expressions can be restated
as follows:

Σε(ι + 1) = Σε(ι) +Σε(ι)ΘeΣε(ι) (8)

Ση(ι + 1) = Ση(ι) +Ση(ι)ΘrΣη(ι) (9)

where ι = 0, 1, . . . is the iteration index. Here, Σε(0) and Ση(0) are arbitrary covariance matrices
to be used as starting values,

Θr =
1
n

n
∑

t=1

(rtr
′
t −Nt), (10)

where rt and Nt are constructed as in (6) and (7), and

Θe =
1
n

n
∑

t=1

(ete
′
t −Dt), (11)

with
et = F

−1vt −K ′rt (12)

and
Dt = F

−1 +K ′NtK. (13)

Finally, the Maximization step for the vector of constants κ and the autoregressive parameter
φ is given by

κ(ι) =
1

n− 1

n
∑

t=2

(at|n −φat−1|n) (14)

φ(ι) =
Tr
�

∑n
t=2(I −PNt−1)LP +at|na

′
t−1|n −κ(ι)a

′
t−1|n

�

Tr
�

∑n
t=2P −PNt−1P +at|na

′
t|n

� , (15)
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where at|n = at +Prt−1. Note that (14) and (15) are, respectively, the partial derivative of the
likelihood function with respect to κ and to φ as shown in Appendix C.

Given that both the Expectation and Maximization steps make use of the steady-state quanti-
ties, this algorithm guarantees important computational gains (see Table 1).

In order to assess the speed and precision of our approach and to compare it to standard
MLE, we implemented few Monte Carlo experiments. We simulated sample paths of length n =
1000 from model (1) using Gaussian disturbances and random structural parameters generated
as follows:

• the common AR(1) coefficient φ was generated from a uniform distribution with support
[.85, .95];

• all constants in the vector κ were set to zero;

• both matrices Ση and Σε were correlation matrices generated by the following steps:

1. we generated a matrix A of uniform numbers on [0,1];

2. we computed the symmetric matrix B =AA>;

3. we extracted the eigenvalues and eigenvectors of B and built the matrix B̃ with the
same eigenvectors of B and with eigenvalues transformed as

λ̃ j = 1+ 29
λ j −λmin

λmax −λmin
,

where λmax, . . . ,λmin are the ordered eigenvalues of B;

4. finally, we set Σ equal to the correlation matrix obtained from the covariance matrix
B̃ .

We used the eigenvalue transformation at step 3 to keep the condition number of the covariance
matrices approximatively equal to 30 for any considered dimension and, thus, avoiding numeri-
cally non-invertible matrices.

Table 1 reports the timing (in seconds) and precision (in term of mean absolute error2) of our
EM-based approximate MLE for a range of dimensions d. For d ≤ 10 we report also the same
quantities for the regular MLE based on the full Kalman filter. The precision of the two methods
is comparable, but the computation time makes the classical MLE infeasible in high dimensions.3

2.3 Consistent estimation of correlations between processes with unknown
time-varying variances

In this section we show how to consistently estimate the correlation matrix of a vector process
such as those used in multivariate stochastic volatility models, regardless of the evolution law of
the volatilities.

Assumption 1. Consider the vector process xt , whose i-th element is X i t = Zi tσi t , for i = {1, . . . , d},
t = {1, . . . , n}, 0 < σi t <∞, and let Zi t be i.i.d. following a continuous d-dimensional elliptical

2Since the estimated covariances are correlations in the interval [0,1], we based our comparisons on the simple-
to-interpret mean absolute error (MAE) rather than on more typical matrix distances such as Frobenius.

3All simulations ran on a virtual machine with Intel Xeon CPU E5-2667 v3 @ 3.20GHz 8-core processor, 56.0 GB
RAM, running Microsoft R Open 3.5.1 (with Intel MKL) on Windows 10 Pro. The timing has been measured using
the microbenchmark package for R (Mersmann, 2018).
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Table 1: Comparisons of Kalman filter based MLE with the estimates obtained by our EM algorithm
on a multivariate local level model of dimension d with length n= 1,000.

Execution times (sec.) MAE Σε MAE Ση MAE φ MAE κ
d MLE EM MLE/EM MLE EM MLE EM MLE EM MLE EM
3 1.87 0.05 40 .060 .056 .072 .064 .008 .009 .029 .027
5 7.77 0.21 38 .061 .058 .069 .067 .008 .010 .029 .027

10 115.33 0.27 425 .060 .058 .069 .066 .006 .009 .029 .027
25 1.52 .060 .065 .005 .025
50 10.89 .056 .062 .004 .026

100 273.24 .058 .061 .004 .025
200 1250.25 .049 .052 .012 .023

distribution with zero median (and, thus, also zero mean when it exists) and correlation matrix
R = {ρi j}.4

Theorem 2. Under Assumption 1,

νi j := E sign
�

X i t X j t

�

=
2
π

arcsinρi j. (16)

Remark 1. Notice that the evolution of the scale parameters σi t can be of any kind: deterministic
or stochastic. The simple trick we exploit to get rid of the arbitrary scale parameters and estimate
the correlations is

sign(X i t X j t) =
X i t X j t

|X i t ||X j t |
=
(Zi tσi t)(Z j tσ j t)

|Zi tσi t ||Z j tσ j t |
=

Zi t Z j t

|Zi t ||Z j t |
= sign(Zi t Z j t).

Remark 2. The reader acquainted with copula theory has certainly noticed that the map between
ρi j and νi j is the same as the map between ρi j and Kendall’s rank correlation coefficients, τi j,
when the random variables are elliptically distributed (Lindskog et al., 2003). Indeed, it can be
proven that, under Assumption 1, the population τi j and νi j of the pair (Zi t , Z j t) coincide. This
result is relevant in large samples, because the computation of the sample Kendall’s τ can be quite
demanding: the most efficient way of computing Kendall’s τ is by using the algorithm of Knight
(1966), which is O(n log n), while the computational complexity of the sample version of νi j (see
equation (17) below) is only O(n).

Theorem 3. Let us define the sample mean sign

ν̂i jn :=
1
n

n
∑

t=1

sign(X i t X j t), (17)

and its sine transform

ρ̂i jn = sin
�π

2
ν̂i jn

�

. (18)

Under Assumption 1,

• ν̂i jn
a.s.
→ νi j;

•
p

n
�

ν̂i jn − νi j

� d
→N

�

0, 1− ν2
�

;

• ρ̂i jn
a.s.
→ ρi j;

4The i.i.d. hypothesis can be relaxed provided that the marginal distribution of the processes Zi t is continuous
and elliptical with correlation matrix R and that a law of large number and a central limit theorem apply.
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•
p

n
�

ρ̂i jn −ρi j

� d
→N

�

0,σ2
�

with

σ2 =
hπ

2
cos

�π

2
νi j

�i2
(1− ν2) = (1−ρ2

i j)
�

π2

4
− arcsin2ρi j

�

.

Thus, if two random variables are elliptically distributed, their correlation can be consistently
estimated, regardless of any form of heteroskedasticity, using a transformation of the average sign
of their product. This result is very useful in financial applications because when the variances
evolve as non-stationary processes (as numerous applications of GARCH and SV models to real
data seem to suggest) the sample correlation is an inconsistent estimator.

3 Multivariate stochastic volatility models

3.1 The Harvey-Ruiz-Shephard (HRS) model

The basic univariate SV model in discrete time is defined by

yt = σtζt , ζt ∼ NID(0,1),

logσ2
t = κ+φ logσ2

t−1 +ηt , ηt ∼ NID(0,τ2),
(19)

where yt is the time series of returns, NID denotes a normally independently distributed sequence
of random variables and κ, φ, τ2 are parameters.

Harvey et al. (1994) propose to linearise the above SV model by taking a log-of-square trans-
form of the first equation of (19) and approximate it with the Gaussian state-space form

log y2
t = logσ2

t + logζ2
t , logζ2

t ≈ NID(1.27,π2/2),

logσ2
t = κ+φ logσ2

t−1 +ηt , ηt ∼ NID(0,τ2).
(20)

and carry out numerical QML estimation using the Kalman filter.
Harvey et al. (1994) propose also the multivariate generalisation of the above model, which

can be written as
vt = ht + εt , εt ≈ NID(0,Σε),
ht = κ+Φht−1 +ηt , ηt ∼ NID(0,Ση),

(21)

where vt is a vector whose generic element is vi t = log y2
i t − 1.27, εt is a vector whose generic

element is εi t = logζ2
i t − 1.27, Φ is a diagonal matrix with φ1,φ2, . . . ,φd on the main diagonal,

Ση is a free covariance matrix and Σε is a covariance matrix whose generic i j-th element is given
by

¨

π2/2 if i = j,
∑∞

k=1
(k−1)!
(1/2)kkρ

2k
i j if i 6= j,

(22)

with ρi j denoting the correlation between ζi t and ζ j t , and (x)k := x(x + 1) . . . (x + k− 1).

3.2 The Alizadeh-Brandt-Diebold (ABD) model

Various authors (Jacquier et al., 1994; Andersen and Sørensen, 1997; Kim et al., 1998) argued
that, since the Gaussian approximation used in models (20)–(21) is poor, then QML estimation is
expected to be highly inefficient and severely biased in finite samples. Alizadeh et al. (2002) pro-
posed an alternative SV model that should overcome these issues. The measure of daily volatility
used in their model is the log-range of daily prices defined by

wi t = log
�

Pmax
i t − Pmin

i t

�

,
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where Pmax
i t and Pmin

i t denote the maximum and minimum price of asset i in the time span δt (which
throughout this paper is one trading day). If the evolution of the price within the time span δt is
well approximated by a Brownian motion, then the log-range has a distribution characterised by
the following first four moments5: mean= 0.43+ 1

2 logδt+ logσt , sd= 0.29, skewness= 0.17 and
kurtosis= 2.80 (cf. Alizadeh et al., 2002, Table I). Since skewness and kurtosis are close to those
of a Gaussian distribution, Alizadeh et al. (2002) expect their model to perform better than HRS’.

The model of Alizadeh et al. (2002) for the generic asset i can be easily cast in linear state
space form as

wi t − 0.43−
1
2
δt = logσi t + εi t , εi t ≈ NID(0,0.292)

logσi t = κi +φi logσi,t−1 +ηi t , ηi t ∼ NID(0,τ2).

It is simple to write the multivariate version of the model, however the exact computation of
how the correlation between two (Brownian) prices translates into correlation between two log-
ranges is rather involved. We solved this problem by simulation and found that a degree 10
polynomial only with even exponents provides an excellent approximation (see Appendix 2.3).
The multivariate version of the ABD model is

wt = ht + εt , εt ≈ NID(0,Σε),
ht = κ+Φht−1 +ηt , ηt ∼ NID(0,Ση),

(23)

where κ and Φ are as above, the generic element of wt is wi t − 0.43− δt/2, the i-element of ht

is logσi t , Ση is a covariance matrix of unknown quantities and the i j-th element of matrix Σε is
given (approximately) by

0.292
�

0.7447ρ2
Wi j + 0.5738ρ4

Wi j − 1.1100ρ6
Wi j + 1.0524ρ8

Wi j − 0.2609ρ10
Wi j

�

, (24)

with ρWi j correlation between the two Brownian motions driving the prices of assets i and j.
Empirical applications of GARCH and SV models tend to find a high persistence of the condi-

tional volatility. For SV models this translates into estimates of φi in a left neighbourhood of 1
(cf. Harvey et al., 1994, Table 2). For this reason and, more importantly, to reduce the number
of parameters to estimate, in our applications we consider only SV models in which κ = 0 and
Φ = Id (the same constraints are used in the multivariate model of Harvey et al., 1994, Sections
3–6).6

3.3 Estimating large SV models

If the volatility of returns is not mean-reverting, as in the case Φ= Id , then the sample correlation
of returns is not consistent for the population correlation, but our estimator based on signs is
still consistent. Thus, our procedure for estimating the two SV models when log-volatilities are
random walks is the following:

1. estimate the returns’ correlation matrix using (17)–(18);

2. transform the estimated correlations using (22) for the HRS model or (24) for the ABD
model;

5In the following formulae we assume that the volatility σt is annualised and that δt is measured in years (gen-
erally, if δt is one day its value is set to 1/252 since there are approximately 252 trading days per year).

6We estimated the above models also without constraints on κ and φ but we always obtained estimates of φ
extremely close to 1 and of κ virtually equal to zero for all its elements. These results are available upon request.
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3. run the EM algorithm using only updating equation (9) until convergence;

4. run the classical or the steady-state smoother using the estimated parameters to obtain
inference for the in-sample log-volatilities ht and their out-of-sample predictions.

Alternatively, if a model with mean-reverting volatilities is preferred, then our results can be
applied only under the constraint that all log-volatilities share the same persistence: φi = φ for
i = 1,2, . . . , d. In this case the procedure becomes:

1. estimate the returns’ correlation matrix using either sample correlations or (17)–(18);

2. transform the estimated correlations using (22) for the HRS model or (24) for the ABD
model;

3. run the complete EM algorithm until convergence;

4. run the classical or the steady-state smoother using the estimated parameters to obtain
inference for the in-sample log-volatilities ht and their out-of-sample predictions.

4 Applications

4.1 Minimum variance portfolios

We applied our estimation procedure to the HRS and ABD models using two different baskets fo
stocks. The first one is composed by 38 stocks belonging to CAC40 index (we had two exclude a
couple of stocks whose time series were too short for the analysis); the second includes 88 stocks
in the S&P100 index (again, we excluded 12 stocks because their time series were too short or
for the particularly odd behaviours of their prices).7

For CAC40 stocks, we used the time span [2009-03-27]–[2018-03-27] as estimation sample
and [2018-03-28]–[2019-03-28] as evaluation window, while for S&P100 stocks we used the
interval [2008-03-14]–[2017-03-13] for estimation and [2017-03-14]–[2018-03-14] for evalua-
tion. We decided to evaluate the SV models on two different time-spans and stock indexes as a
robustness check.

The performance of the two SV models is assessed using a minimum variance framework. In
particular, we use the models fitted on the estimation window to produce one-step-ahead predic-
tions of the covariance metrics of the stock returns over the evaluation window. These matrices
are used to build a minimum variance portfolio updated on a daily basis. The realized variance of
the portfolios over the one-year evaluation window is the quantity we rely on for the assessment
(the smaller, the better). The same criteria are applied to three alternative methods to obtain
minimum variance portfolios:

Fixed: a static portfolio based on historical covariances computed using the estimation window;

RM: a daily updated portfolio based on the RiskMetrics approach, which predicts one-step-ahead
covariances using the recursion

σi j,t+1 = λσi j,t + (1−λ)yi t y j t ,

with yi t and y j t representing the returns and λ= 0.94;

7Closing prices, daily minima and maxima were downloaded from FactSet.
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DCC: a daily updated portfolio based on the covariance matrices produced by a DCC model fitted
to the estimation window (we used the R package rmgarch by Ghalanos (2019)).

The computation times of our procedure and of the DCC are comparable: less than 20 seconds
for the CAC40 and slightly more than a minute for the SP1008. Figure 1 depicts the recursive
volatilities of the portfolios with CAC40 stocks as a function of the time t. The recursive volatility
is computed as

volt =

�

1
t

t
∑

s=1

r2
s

�1/2

,

where rs is the portfolio return at time s. The top panel of Figure 1 refers to unconstrained
minimum variance portfolios, while for the portfolios in the bottom panel short-selling was not
allowed.

In both cases (unconstrained and constrained) the HRS model performs extremely well with a
recursive volatility, which is very close to that of the DCC-based portfolio. The ABD model, on the
contrary, seems to produce the worst performing portfolios. The behaviour of the RiskMetrics-
based portfolio is rather odd, being among the worst when unconstrained and among the best
under no short-selling constraints.

Figure 2 reports the results of the same portfolio strategies applied to the S&P100 stocks. In
this case the DCC-based portfolio is the clear winner, but the HRS is performing almost as well.
The ABD is the worst performing model and, again, the RiskMetrics-based portfolio performs very
poorly in the unconstrained case and extremely well if no short-selling constraints are imposed.

The partial conclusions we can draw from these applications are: in a minimum variance
portfolio framework,

• the HRS and the DCC seem to perform similarly even though the former is a constant con-
ditional correlation model and the latter a dynamic conditional correlation model;

• the multivariate ABD model performs poorly on both datasets and portfolio types;

• the RiskMetrics-based strategy performance is bad when the minimum variance portfolio is
unconstrained and good under no short-selling constraints;

• the fixed portfolio based on the historical covariance lays persistently in the middle of the
ranking.

4.2 Common factors in the evolution of the volatilities

One advantage of multivariate SV models over GARCH-DCC is that using the former one obtains
an estimate of the covariance structure of the (log-)variance processes. This information can be
used in several ways, but probably the most relevant is to reveal the presence of common factors
in the evolution of volatilities. Furthermore, we can also exploit this information to understand
why HRS and ABD perform so differently.

Figure 3 represents the correlation matrices of the log-variance processes for the two models.
All correlations are non-negative, but the correlations of ABD are much weaker than those of HRS.
Thus, according to the ABD model, volatilities tend to evolve in rather idiosyncratic ways, while
the HRS model suggests strong co-movements among stock volatilities. The eigenvalues of these
two matrices are represented in Figure 4: for the HRS model the first 4 principal components

8All computations ran on a virtual machine with Intel Xeon CPU E5-2667 v3 @ 3.20GHz 8-core processor, 56.0
GB RAM, running Microsoft R Open 3.5.1 (with Intel MKL) on Windows 10 Pro. The timing refers to the elapsed time
returned by the R function system.time().
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Figure 1: CAC40: recursive volatilities of the portfolios over the evaluation window. The plot
on the top refers to unconstrained minimum variance portfolios, the bottom plot to minimum
variance portfolios with non-negative weights (no short-selling).
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Figure 2: S&P100: recursive volatilities of the portfolios over the evaluation window. The plot
on the top refers to unconstrained minimum variance portfolios, the bottom plot to minimum
variance portfolios with non-negative weights (no short-selling).
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Figure 3: Graphical representation of the correlations in the estimated matrices Ση: the correla-
tion of the HRS model are above the main diagonal, while those of the ABD model are below the
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explain 90% of the total variance, while for the ABD model 21 components are needed to achieve
the same result.
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Figure 4: Percentage of variance explained by the first principal components.

Finally, for each SV model Figure 5 depicts the volatility index produced by using the first
eigenvector of the estimated Ση matrix as a portfolio of the 88 individual smoothed and pre-
dicted (one-step-ahead) volatilities. Both indexes are compared with the well-known VIX index
as published on the Cboe website. The index based on the HRS model (top of Figure 5) is very
close to the VIX but it enhances the peaks as, for example, in the last part of year 2008 and in the
second half of year 2011. The index built on the ABD model has a different scale and shows a
growing volatility over the years 2012–2018, which is not witnessed by the VIX and the HRS-based
index.

We tried to understand why the ABD model seems to perform so poorly. Our conjecture is
that the approximation of intra-day price movements with a Brownian motion is not very sharp.
This conjecture is supported by the plots in Figure 4.2, where we try to represent the relationship
between log of volatility and log-ranges for the Amazon stock. The left panel of that figure depicts
the log of absolute returns and log-ranges, while the right panel shows the daily return standard
deviation and the mean daily log ranges computed over periods of 30 days. The relations in
both plots are quite far from their theoretical version: Ewt = 0.43 + logσt , where wi t is the
daily log-range and σt is the daily standard deviation. A deeper investigations on the quality
of approximation of the ABD model to the empirical behaviour of stock log-ranges goes beyond
the scope of this paper; however the issue should be addressed in future works because few
adjustments based on the actual empirical behaviour of log-ranges could make their approach
improve significantly also in the multivariate context.

5 Conclusion

We proposed a computationally efficient way to estimate large multivariate AR(1)-plus-noise mod-
els and, in particular, large multivariate local level models. This result was achieved by showing
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Figure 5: VIX index and volatility indexes built using the first principal component of the smoothed
and one-step-ahead predicted volatilities in models HRS (top) and ABD (bottom).
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Figure 6: Empirical relationship between the log of standard deviation and the expectations of
log-returns of the Amazon stock. The left panel depicts log-ranges as a function of the square roots
of absolute returns. The right panel depicts mean daily log-ranges computed over 30-day periods
as a function of the log of daily returns standard deviations computed over 30-day periods.

how to solve the Riccati equation implied by the steady-state Kalman filter and by proposing an
EM algorithm that exploits the steady-state smoother to estimate the numerous unknown param-
eters of the model. Furthermore, we proposed a consistent and asymptotically normal estimator
of the correlation between two random sequences, whose variances are free to evolve in arbitrary
ways. We exploit our results to estimate high dimensional stochastic volatility models of two
types: the model of Harvey et al. (1994) (HRS) and the model by Alizadeh et al. (2002) (ABD).
We applied the two models to minimum-variance portfolios composed by the constituents of the
CAC40 and of the S&P100 indexes, and compared their performance to those of portfolios built on
historical covariances, RiskMetrics predictions and DCC-GARCH predictions (Engle, 2002). De-
spite being a constant conditional correlation model, the HRS model shows a performance that is
very close to that of the DCC model, while the ABD model tends to perform poorly. Furthermore,
the covariance matrix of the log-volatility processes produced by our estimation approach allows
the investigation of the factor structure of the time-varying volatilities, or stated differently, the
identification of common features in the volatility of volatility.

Our proposal represents a good alternative to the popular DCC model. The advantages of
using large multivariate SV models instead of DCC-GARCH type models are manifolds: the prop-
erties of SV models are more intuitive and easier to derive, discrete time SV models are natural
counterparts to those continuous time SV models used in the financial literature, the direct esti-
mation of the covariance matrix of the volatility components opens the field to many interesting
applications that are not so immediate in the DCC-GARCH world.
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Appendix

A Computing the correlations between log-ranges

Alizadeh et al. (2002, Table I) provide the first two moments of the univariate log-range, however
they do not consider multivariate models and, thus, do not compute the correlation of log-range
pairs relative to two correlated Browninan motions. Instead of trying to get an exact formula
that, as in equation (15) in Alizadeh et al. (2002), can be represented only as an infinite expan-
sion, we approximated the function mapping the Brownian motion correlations in the log-range
correlations by simulation and regression. As it will appear our approximation is very accurate
for working with real data.

Since the behaviour of two log-ranges generated by two correlated Brownian motions is sym-
metric with respect to the sign of the correlation (i.e., the behaviour of the two log-ranges will
be stochastically the same for ρW and −ρW , where ρW is a positive correlation between the
two Brownian motions), we based the simulations on a grid of only positive correlations (i.e.,
ρW = 0.10, 0.20, . . . , 0.90, 0.91, . . . , 0.99). For the simulations, we assumed that the volatility is
constant over one day of trading and sampled the continuous paths of the Brownian motions on
a grid of 1,000 points. This was repeated 1,000,000 times and the correlation between the two
log-ranges was estimated using the sample correlation.

Table 2: Estimated correlation of two log-ranges, ρε, as a function of the correlation of two
Brownian motions, ρW .

ρW 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
ρε 0.00 0.01 0.03 0.07 0.13 0.21 0.31 0.43 0.57 0.75 0.77 0.80 0.82 0.84 0.86 0.89 0.91 0.94 0.97 1.00
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We regressed the estimated log-range correlations on the even powers of the Brownian motion
correlation from 2 to 10. Furthermore, we imposed to the regression function to pass through
the origin by eliminating the intercept and we imposed to the function to pass through the points
(−1, 1) and (1,1) by constraining the regression coefficients to sum to one. The constrained least
squares solution for the regression coefficients is

β̃ = (X>X)−1X>y −
ι>(X>X)−1X>y − 1

ι>(X>X)−1ι
(X>X)−1ι,

where ι is a conformable vector of ones.

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
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0

ρW

ρ ε

Figure 7: Approximating function that maps the correlation of two Brownian motions into the
correlation of the two resulting log-ranges.

Figure 7 shows the almost perfect fit (the R2 is numerically 1) of the estimated function to the
log-range correlations obtained by simulation. Thus, the correlations between daily returns can
be accurately mapped into correlations between daily log-ranges using the following formula

ρε = 0.7447ρ2
W + 0.5738ρ4

W − 1.1100ρ6
W + 1.0524ρ8

W − 0.2609ρ10
W . (25)

B Proof of Theorem 1

The transformation ỹt =M−1yt allows the re-parametrization of the system (1) as

ỹt = α̃t + ε̃t , ε̃t ∼WN(0,I)
α̃t+1 = φα̃t + η̃t , η̃t ∼WN(0,Q)

(26)

where Q =M−1Ση(M−1)> is a symmetric positive definite matrix. The Riccati equation for the
Kalman prediction error variance of the transformed system (26) in steady-state is

P̃ = φ2P̃ −φ2P̃ (P̃ + I)−1P̃ +Q, (27)
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that can be rewritten as:
φ2P̃ ((P̃ + I)−1P̃ − I) + P̃ =Q, (28)

Since [(P̃ + I)−1P̃ − I] = −(P̃ + I)−1 then (28) simplifies to

−φ2P̃ (P̃ + I)−1 + P̃ =Q (29)

Now consider the decomposition P̃ = ΨGΨ ′, where G = diag(g1, g2, · · · , gd). Note that,
(P̃ + I) = Ψ(I +G)Ψ ′. Hence, it holds

−φ2P̃ (P̃ + I)−1 + P̃ = Ψ
�

−φ2G(I +G)−1 +G
�

Ψ>.

It follows from (29) that P̃ shares the same eigenvectors of Q. Moreover, the eigenvalues of P̃
can also be expressed as combination of the eigenvalues of Q. Indeed, the relation between the
generic i-th eigenvalue of P̃ and the i-th eigenvalue ofQ can be expressed through the following
quadratic equation:

gi −
φ2 gi

1+ gi
= δi.

This equation has two different solutions for gi. However, the only strictly positive solution (for
δi > 0) is:

gi =
δi +φ2 − 1+

p

(δi +φ2 − 1)2 + 4δi

2
As a consequence we can write the algebraic Riccati solution as:

P̃ =
1
2
Ψ
�

∆− I +φ2I + ((∆− I +φ2I)2 + 4∆)
1
2

�

Ψ> (30)

Note that, since gi are strictly positive for any δi > 0, then the algebraic Riccati solution
is also strictly positive definite. Finally, one obtains the result as in (3) through the following
transformation P =MP̃M>, which is also positive definite.

C Proof of the maximization steps

Koopman and Shephard (1992) derives the score vector of Gaussian state-space models. Here,
bearing in mind that Θ = {Σε;Ση;κ;φ}, the log-likelihood function for model (1) can written as
in their eq. 2.1 by considering this modification:

Q(Θ,Θ∗) = −1
2

∑n
t=1{log |Σε(Θ)|+ log |Ση(Θ)|}−

−1
2

∑n
t=1 Tr

�

Σε(Θ)−1{yty
′
t − yta

′
t|n −at|ny

′
t +at|na

′
t|n +Pt|n}

�

−

−1
2

∑n
t=1 Tr[Ση(Θ)−1{at|na

′
t|n −at|nκ

′ −φat|na
′
t−1|n−

−κa′t|n +κκ
′ +φκa′t−1|n −φat−1|na

′
t|n +φat−1|nκ

′ +φ2at−1|na
′
t−1|n+

Pt|n −φPt−1,t|n −φPt,t−1|n +φ2Pt−1|n}]

(31)

In the steady-state the quantities in (31) converge as follows: at|n = at + Prt−1; Pt|n =
P −PNt−1P ; Pt,t−1|n = PL′(I−Nt−1P ). Now, differentiating (31) with respect to, respectively,
κ and φ, one has:
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n
∑

t=1

{a′t|n −κ
′ −φa′t−1|n}Ση(Θ)

−1 (32)

and
∑n

t=1 Tr[{at|na
′
t−1|n −κa

′
t−1|n −φat−1|na

′
t−1|n+

+Pt,t−1|n −φPt−1|n}Ση(Θ)−1]
(33)

Imposing these to zero, and considering the quantities in steady-state, one obtains (14) and (15).

D Proof of Theorem 2

For the proof of Theorem 2 we need the following results. The symbol Ep(µ,Σ,φ) denotes a p-
dimensional elliptical distribution with location vector µ, scale matrix Σ and characteristic func-
tion φ.

Theorem 4 (Representation of an elliptically distributed random vector). Let x be a p-dimensional
random vector; then x is distributed as Ep(µ,Σ,φ) with rank(Σ) = k ≤ p if and only if there is a
random variable R ≥ 0, independent of the k-dimensional random vector u uniformely distributed
on the unit hypersphere {z ∈ Rk|z>z = 1} and a p× k matrix A with AA> = Σ, such that

x
d
= µ+ RAu.

Proof. For the proof see Cambanis et al. (1981) or the monografy by Fang et al. (1987).

Theorem 5 (Distribution of the product of two standard normal variables). Let (X , Y ) be a bivari-
ate normal random vector with zero means, unit variances and correlation coefficient ρ. Then, the
probability density function of Z = X Y is

fZ(z) =
1

π
p

1−ρ2
exp

�

ρz
1−ρ2

�

K0

�

|z|
1−ρ2

�

,

for −∞< z <∞, where K0(·) denotes the modified Bessel function of the second kind of order zero:

K0(x) =

∫ ∞

0

cos(x sinh t)d t =

∫ ∞

0

cos(x t)
p

t2 + 1
d t.

Proof. See Nadarajah and Pogány (2016).

Corollary 6. If (X , Y ) are jointly normally distributed with zero means, unit variances and corre-
lation ρ, then the probability Pr(Z > 0) = Pr(X > 0 ∧ Y > 0) + Pr(X < 0 ∧ y < 0) is given
by

∫ ∞

0

fZ(z)dz = 1−
arccos(ρ)

π
=

1
2
+

arcsin(ρ)
π

.

We are now in the condition to prove Theorem 2.

Theorem 2. Let (X , Y ) be jointly elliptically distributed with zero location and scale matrix given
by

Σ=
�

1 ρ
ρ 1

�

.
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If (X , Y ) are jointly normal, then the result is just an application of the Corollary 6:

E[sign(X Y )] = Pr(X Y > 0)− Pr(X Y < 0) = 2 Pr(X Y > 0)− 1=
2
π

arcsin(ρ).

Theorem 4 generalizes this result to all continuous elliptical random variables. Indeed, in our
case (bivariate with zero location and unit scale), the representation of that theorem specializes
to

�

X
Y

�

= RAu= R

�

1 0
ρ

p

1−ρ2

�

�

cos(U)
sin(U)

�

,

with U uniformly distributed on [0,2π). Since the random variable R is positive (almost surely),
the signs of X and Y do not depend on R:

Pr(X > 0∧ Y > 0) = Pr (RAu> 0) = Pr (Au> 0) = Pr
�

R̃Au> 0
�

=
1
2
+

arcsin(ρ)
π

,

where R̃ is the random variable that makes the elliptical distribution Gaussian (R̃ is half-normally
distributed).

E Proof of Theorem 3

The first point of Theorem 3 is just an application of the strong of large numbers, since νi j =
E sign(X i t X j t) is finite.

The second point is an application of the classical central limit theorem, as

Var[sign(X i t X j t)] = E sign(X i t X j t)
2 + [E sign(X i t X j t)]

2 = 1− ν2
i j.

The third point is an application of the continuous mapping theorem, being the sin a contin-
uous function.

The fourth point obtains using the delta method.

23


	DEMS-WP-copertina.pdf
	hdsv1.pdf

