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Abstract

Tax authorities around the world are increasingly employing data
mining and machine learning algorithms to predict individual be-
haviours. Although the traditional literature on optimal tax adminis-
tration provides useful tools for ex-post evaluation of policies, it dis-
regards the problem of which taxpayers to target. This study iden-
tifies and characterises a loss function that assigns a social cost to
any prediction-based policy. We define such measure as the difference
between the social welfare of a given policy and that of an ideal pol-
icy unaffected by prediction errors. We show how this loss function
shares a relationship with the receiver operating characteristic curve,
a standard statistical tool used to evaluate prediction performance.
Subsequently, we apply our measure to predict inaccurate tax returns
issued by self-employed and sole proprietorships in Italy. In our ap-
plication, a random forest model provides the best prediction: we
show how it can be interpreted using measures of variable importance
developed in the machine learning literature.
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1 Introduction

In recent years, economic research has increasingly shown interest in predic-
tion policy problems (Kleinberg et al., 2015). For example, the efficiency of
the teacher selection process can be improved by predicting which teacher
will add greater value (Rockoff et al., 2011); similarly, to design a policy
that can prevent shooting at school, it is essential to make a prior correct
identification of youths most at risk of violence (Chandler et al., 2011).

Prediction is crucial for the design of tax administration policies, but
the literature on this aspect is limited. In Belgium, tax authorities have
developed different predictive models that helped in reducing the tax debt
(OECD, 2019). These models are used to predict if a person or a company
will pay any withstanding debts within 14 days of receiving a phone call, or
after a later visit by a bailiff. In Canada, a comprehensive dataset was formed
linking taxpayers’ filing and assessment information, risk profiles, historical
audits, collections and appeal information (OECD, 2019). Based on such
data, machine learning algorithms are used to predict income and sales taxes
that small and medium enterprises should pay, or for attributing a risk score
to each taxpayer.

While prediction can improve the efficiency of any tax policy that which
is administered individually to taxpayers, it is particularly interesting in the
context of proactive policies. Designed to ex ante promote voluntary tax
compliance, these policies are being increasingly adopted by tax authorities
around the world (OECD, 2017, p. 54). These policies increase tax revenues
and may improve the relationship with taxpayers, also by avoiding some of
the costs typically associated to traditional reactive policies (such as tax
audits).

The characterization of an optimal prediction-based policy is different
from that of a standard tax administration policy. Keen and Slemrod (2017)
show that optimal tax administration policies, ranging from desk and field
audits to customer services, are those which balance their revenue effect
with their social cost. In particular, audits are correctly designed when, at
the margin, the additional revenue they provide (with respect to the case
where no audit is conducted) is exactly equal to the sum of public (e.g.
administrative) and private (e.g. compliance) costs.1 Hence, standard tax
administration policies are typically evaluated on an ex-post basis.

When prediction-based policies are taken into consideration, it is essential
to conduct an ex-ante evaluation of their efficiency. This efficiency depends

1Administrative costs typically include the costs to finance tax authorities, while com-
pliance costs are associated with the requirements of tax rules and procedures.
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not only on the expected frequency of both false negatives and false positives,
but also on the estimated loss of revenue and additional costs associated with
false negatives and false positives. Unlike a standard policy, a predictive
policy may be inefficient even if, for every action correctly undertaken, the
revenue exceeds the social costs. This can happen if a large cost is paid for
wrongly undertaken actions.

In the last few years, prediction methods have witnessed a substantial
boost in their performance, differentiation, and range of applications. Today,
machine learning approaches have become integral to the modus operandi of
firms globally, and their adoption by public bodies and researcher, including
economists (see Varian, 2014 and Kleinberg et al., 2015), has seen a surge. In
the machine learning literature, a general scheme of training and validation
allows the implementation and comparison of different predictive algorithms,
with penalised linear methods, decision trees, and neural networks being the
most common examples. Several different approaches to the measurement
of prediction errors have also been developed, but they typically compare
different machine learning methods from a methodological point of view,
instead than comparing the costs and benefits of specific policies based on
these methods.

This study makes two contributions. First, we identify a loss function that
assigns a social cost to each prediction-based policy; such cost is identified as
the distance from an ideal policy which optimally targets taxpayers, and its
minimization allows us to identify the optimal policy. Second, we apply the
loss function to the design of a policy based on the prediction of inaccurate
tax returns issued by self-employed and sole proprietorship taxpayers in Italy.

The paper is organised as follows. In Section 2, we derive the loss function
and we relate its interpretation to the theory of optimal tax administration
policies. In Section 3, we apply our approach to an Italian data set of tax
declarations. Although the best model (a random forest) is a ‘black box’,
in Section 4, we provide some insights on the interpretation of our results.
Section 5 concludes the study.

2 Optimal prediction-based policies

A predictive tax administration policy is activated towards a taxpayer i if
and only if pit ≥ τ , where pit ∈ [0, 1] is the estimated probability that a given
administrative intervention will be effective, and the threshold τ is chosen
by the tax authority. Therefore, a policy is characterised by a prediction
model to calculate pit and a threshold τ discriminating between targeted and
non-targeted taxpayers.

3



Selecting a prediction model involves choosing a method (i.e. an algo-
rithm) and a vector of (hyper)parameters, which are used to tune the algo-
rithm (examples will be provided in Section 3.2). In the increasingly impor-
tant field of supervised machine learning, the accuracy of prediction models
is typically assessed by analysing their performance in out-of-sample predic-
tion (Varian, 2014). Specifically, in a cross-validation procedure (Kleinberg
et al., 2015), the sample is iteratively split into a training and a testing sam-
ple. Figure 1 represents the bias-variance trade-off : as the complexity of
the prediction model increases, it becomes easy to reduce the in-sample bias.
However, the variance increases simultaneously; that is, the model specialises
on the specific sample and performs worse out-of-sample (overfitting). The
total prediction error includes both the bias and variance components, and
hence presents a U-shaped form with respect to the model complexity. The
optimal model is characterised by an intermediate level of complexity, for
which the total prediction error out-of-sample has been minimised.

Figure 1: Model complexity and prediction error.

The goal of the tax authority is to exclusively target taxpayers who, in
absence of the policy, would be non-compliant. Every prediction model can
generate both type I (false positive) and type II (false negative) prediction
errors. The false positive rate (FPR) denotes the share of compliant tax-
payers wrongly predicted as non-compliant, and it is equal to 1-TNR, where
TNR is the true negative rate (or ‘specificity’ in the machine learning litera-
ture). The false negative rate (FNR) is the share of non-compliant taxpayers
wrongly predicted as compliant, and it is equal to 1-TPR, where TPR is the
true positive rate (or ‘sensitivity’ in the machine learning literature).

Suppose that every administrative policy targeting a future non-compliant
taxpayer yields, on an average, an increase in social utility β, for example
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due to additional revenues.2 However, the policy entails, on an average, a
social cost for taxpayers (opportunity cost of using private resources, i.e. the
time devoted by taxpayers to deal with the tax authority’s requests) equal
to δ and an average administrative cost (e.g. wages paid to tax officers in-
volved in planning and implementing the policy) equal to γ. Let λ be the
shadow cost of raising a dollar of budget (i.e. the unitary cost of distortionary
taxation). Hence, a completely error-free intervention would generate social
welfare equal to a = β− δ− (1 +λ)γ per targeted taxpayer. We assume that
a > 0, so that every correctly targeted intervention produces an increase in
social welfare.3 We then define b = δ + (1 + λ)γ as the total cost of the
intervention, so that a = β − b = β − (δ + (1 + λ))γ.

Given a prediction model that assigns each taxpayer a probability of tax
evasion, we want to find a threshold τ that minimises the loss in social welfare
with respect to an error-free policy. Denoting the size of the population and
the number of non-compliant (positive) taxpayers by N and P , respectively,
this loss can be written as:

L(τ) = aFNR(τ)P + bFPR(τ)(N − P ) (1)

where the first term is the social loss derived from not targeting a share FNR
of non compliant taxpayers and the second is the loss derived from targeting
a share FPR of compliant ones. A necessary condition for the optimality of
τ is that L′(τ) = 0, that is:

FNR′(τ)

FPR′(τ)
= − b

a
· N − P

P
(2)

The right-hand side of Equation (2) is strictly negative given that P < N .
As τ increases, that is, as the rule becomes ‘stricter’ and the policy involves
less taxpayers, type I errors become less frequent (FPR decreases) while type
II errors become more frequent (FNR increases). Therefore, the condition
can be interpreted as providing a marginal rate of substitution between the
two types of errors. That is, for a given population – with a given share of
non-compliant taxpayers – τ is optimal if the ratio between the marginal rate
of change in the two errors is equal to the ratio of their weighted marginal
costs.

2Assuming β > 0 is equivalent to assuming, in the terminology of Keen and Slemrod
(2017), that the marginal social utility generated by every dollar of tax revenue is equal
to v′(g) > 1, where v′(g) is the social marginal utility of public goods and 1 is the social
marginal utility of private consumption.

3 We assume away the issue of initial budget, i.e. of administrative costs that need to
be covered in advance.
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2.1 Interpretation of the optimality condition

Equation (2) can be compared to the optimality condition for an adminis-
trative policy described by Keen and Slemrod (2017),4 where the elasticity
of reported income with respect to the policy equals a weighted sum of ad-
ministrative and compliance costs. To see the similarity, consider the case of
FNR′(τ)
FPR′(τ)

= −1, where a marginal increase in τ generates an increase in false
negatives which exactly offsets the decrease in false positives. In this case,
Equation (2) becomes:

P

N
β = b (3)

which compares the social benefit of the policy (left-hand side) to its costs
(right-hand side). The discount factor P

N
emerges from the degree of hetero-

geneity among taxpayers introduced by our model (with the policy ideally
focusing only on the P positive taxpayers).

When we drop the assumption that FNR′(τ)
FPR′(τ)

= −1; instead, we introduce

a novel dimension of policy (in)efficiency, that is, we consider a trade-off be-
tween false positives and false negatives in the policy implementation, which
represents this study’s main focus.

From the point of view of the machine learning literature, equation (2)
can be directly interpreted as a tangency condition on the receiver operating
characteristic (ROC) curve, a graphical plot that shows the performance of
a binary classifier system in repsonse to an increase in the discrimination
threshold τ (each point of the curve corresponds to a different value of τ).
This curve can be constructed as a plot of TPR versus FPR (Cali and Lon-

gobardi, 2015). Indeed, the slope of the ROC curve is TPR′(τ)
FPR′(τ)

: by replacing

FNR(τ) with 1-TPR(τ) in equation (2), this can be rewritten in terms of
the derivative of the ROC (see Figure 2) as

ROC ′ =
b

a

(
N

P
− 1

)
. (4)

The ROC curve always has a positive slope (as both TPR and FPR are
decreasing functions of τ) and it is usually represented as a concave function.
While it is not necessarily true that any given prediction method would yield
a concave ROC, this is a harmless assumption. Indeed, if there is an interval
[τ1, τ2] on which the ROC has a positive curvature, then the prediction for
any intermediate value, τ ∈ [τ1, τ2], can be improved by replacing it with a
convex combination of predictions calculated in τ1 and τ2. A consequence of

4See their Equation (27).
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the concavity of the ROC is that the loss function L is single-peaked, that is,
there cannot be multiple minima, and the above stated condition (Equation
4) is necessary and sufficient.
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Figure 2: The optimal threshold as a tangency point

It must be noted that an error free prediction would be such that TPR =
1 and FPR = 0, so it would correspond to the point (0, 1) in the ROC curve
plot. Therefore, minimizing the loss function (Equation (2)) corresponds to
minimizing a weighted distance from the ROC to (0, 1), with weights aP and
b(N − P ).

In practice, in order to minimise the loss function, the first step will be to
estimate the ratio b

a
. For example, Keen and Slemrod (2017) argue that, in

the United States, every dollar of revenue raised (which corresponds in our
model to β = 1), entails compliance costs of δ = 0.11 and administrative costs
of γ = 0.006. In presence of a shadow cost of λ = 0.2, we have b = 0.117 and
b
a

= 0.133. The second step will be to choose the model m and the threshold
τ ∈ [0, 1] that minimise the loss function:

min
m

min
τ∈[0,1]

Lm(τ). (5)

3 Application: prediction of tax reports

We apply the framework described above in the study of taxpayers’ response
to the Italian business sector studies (Studi di Settore, SDS). Within SDS,
small self-employed workers and sole proprietorships know the value of rev-
enues (i.e. the total value of sales) the tax authority presumes that these
businesses should report. Taxpayers also know that the probability to be
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audited is lower if their reported revenues are at least as high as this pre-
sumptive value.5 Taxpayers declaring at least the presumptive revenues are
defined as congruous, while those declaring less than the presumptive revenue
are non-congruous.

This institutional framework creates a strong incentive for taxpayers to
report exactly the presumptive revenues (‘bunching’ ). This may happen in
two cases. First, taxpayers whose true revenues are above the presumptive
ones can decide to report the latter to maximise post-tax income (bunching
from above). This is similar to what happens when taxpayers’ reports bunch
at kink points of the marginal tax schedule. A taxpayer may also decide to
report the presumptive revenues even if it is higher than the true one to avoid
the increased risk of audit, or to avoid the cost of providing evidence of the
true revenues (bunching from below). Both types of bunching are undesirable
– while the former represents a form of tax evasion, the latter goes against
the fairness of the tax system.

The presence of bunching calls for proactive, prediction-based policies
that can steer in advance tax reporting behaviour in order to reduce admin-
istrative costs associated with ex-post audits and potentially avoid a subse-
quent litigation process. To see why, consider that the individual thresholds
in the Italian SDS provide a legal weak presumption – for either the tax au-
thority or the taxpayer. On the one hand, an audited non-congruous taxpayer
will have to prove that the presumption does not apply to her case, for ex-
ample because her input productivity is lower than that presumed by SDS.
On the other hand, to audit a bunching (or any congruous) taxpayer, the
Italian tax authority adopts a different and costlier enforcement technology,
based on the traces generated by the paper trail, such as invoices issued and
payments made within the production process. Obtaining these traces can
be highly expensive for the tax authority, especially for firms selling goods
and services to final consumers rather than to other businesses.6 Hence, tar-
geting bunchers in advance allows the tax agency to direct actions at them
preemptively, thus increasing compliance without using costly audits.

5See Appendix A for a detailed description of how presumptive revenues are calculated.
It must be noted that the presumptive revenues can, to some extent, be manipulated by the
taxpayer. The presumptive revenues are the product of input productivities, as calculated
by the tax authority, and input quantities reported by the taxpayer (see Santoro and
Fiorio, 2011).

6‘In practice, it is relatively easy to cross-check tax returns to detect misreported
intermediate input sales because the buying firm has an incentive to record its expenses
to claim tax credits. In the case of final sales, the consumer has no incentive to keep a
receipt and therefore it is significantly harder to cross-check those transactions against
other information sources, especially when they are made in cash.’ (Almunia and Lopez-
Rodriguez, 2018).
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Italian SDS present only one example of a threshold-based tax auditing
strategy that results in strategic bunching. Almunia and Lopez-Rodriguez
(2018), for instance, consider Spanish firms that strategically bunch below
the eligibility threshold of e6 millions of reported revenues; this allows them
to avoid stricter tax enforcement implemented by a ‘Large Taxpayers Unit’,
with more – and highly experienced – auditors per taxpayer. One important
difference between the Italian SDS and the Spanish example is that, in the
former, the threshold can change across taxpayers, while, in the latter, it is
fixed at a same level for all firms. Additionally, in the Spanish case, there is
no discontinuity at the threshold in the enforcement technology – there is no
change in the legal reporting requirements and the legal procedures available
to process the information generated by business transactions.

In the next section, we will use several observable characteristics of tax-
payers at year t−1 to predict the bunching behaviour in year t. This approach
can be used by the revenue agency to implement proactive actions aimed at
fostering compliance.

3.1 Data

We analyse a dataset provided by the Italian Revenue Agency, which contains
information on the reported income of the entire population of self-employed
and sole proprietorships residing in the regions of Lombardy (North), Lazio
(Centre), and Sicily (South), for the period between 2007 and 2011, included.
The dataset has a perfectly balanced panel structure, where each of the
662 241 individuals is observed in each of the 5 years, for a total of 3 311 205
observations. For each observation, many pieces of information are available,
summarised in 460 variables. These include

• demographic characteristics, such as age, gender, city and province of
residence, and number of open VAT positions;

• detailed content of the tax reports, including main revenues, costs, tax
bases, and the amount of tax due for three taxes – personal income tax
(IRPEF), value-added local tax (IRAP), and VAT;

• information about possible audits, including whether a taxpayer was
audited, the year and the amount ascertained and the outcome of the
audit – whether the audit discovered evaded amounts and whether the
taxpayer accepted to pay or a litigation was initiated;

• compliance with respect to SDS – congruity/non-congruity status.
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Figure 3: Observed audit probability for non-congruous and congruous tax-
payers.
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Note: The vertical line indicates a reported revenue equal to the presumptive one.

Two things emerge immediately from the data. First, Figure 3 shows
that, in line with the policy design, the objective probability to be audited is
higher for non-congruous than for congruous taxpayers. Moreover, at least
on a left neighbourhood of the threshold (non-congruous taxpayers), audit
probability is increasing in the percentage difference between reported and
presumptive revenues.7

Second, taxpayers bunch at the presumptive revenues (see Figure 4), as
expected. This is in line with previous evidence on the application of SDS
(Santoro and Fiorio, 2011). Figure 4 gives an idea of the frequency of the
bunching behaviour over the entire period: it shows a high frequency of
taxpayers who report revenues in the neighbourhood of their presumptive
value, for a specific bin size of 2%. Given that any bin size would be some-
what arbitrary, in the subsequent section we focus only on the prediction
of exact bunching – cases where the reported revenue is exactly equal to
its presumptive value. Table 1 displays the number and frequency of these
cases. Moreover, we will label as bunchers only the (24 101) exact bunch-
ers at strictly positive presumptive revenues, thus not considering taxpayers
having zero presumptive and reported revenues.

7The instability of dots further away from the threshold reflects the reduced numerosity
of taxpayers. The relatively low probabilities of audits at the left extremum might reflect
cases from which the agency has limited hope of getting revenues. Overall, evidence seems
to suggest that audit selection is indeed based, among other things, on a combination of
congruity status and other factors that presumably reflect the predicted profitability of an
audit.
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Figure 4: Deviation of tax returns from presumptive value
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Note: Given the histogram bin size of 0.02, the tallest bar represents all taxpayers whose
declared revenues are larger than the presumptive amount by no more than 2%. The
definition of ‘bunchers’ in our analysis is instead that the two amounts coincide.

Table 1: Bunching statistics

Total Bunchers Share
Year

2007 660019 6131 0.009
2008 657912 6335 0.010
2009 655954 4048 0.006
2010 656692 3891 0.006
2011 657696 3696 0.006

3.2 Prediction methods

We briefly describe the prediction methods we use in our application. Each
method is characterised by different parameters that tune the prediction al-
gorithm, typically referred to as hyperparameters. The choice of a prediction
method and that of the values for hyperparameters determines the prediction
model.

We start with two types of penalised linear models. This class of methods
extends OLS by reducing the number of relevant regressors. Specifically,
Lasso minimises

∑
i(yi − βXi)

2 + α
∑

b |βb|, while Ridge minimises
∑

i(yi −
βXi)

2 + α
∑

b β
2
b . A larger value of α – the only hyperparameter in this case

– corresponds to a stronger penalization, and both methods reduce to OLS
if α = 0. In our empirical exercise below, we test such models on different
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values of α (0.1, 0.01, 0.001), thereby attributing a widely different weight
to the penalization term.

Decision (or classification) trees are nonlinear models used to predict a
binary variable. In such models, a branching tree is constructed by auto-
matically and iteratively splitting the sample between observations with a
given variable larger or lower than a given value. The sample is ultimately
partitioned into a number of subsamples such that the impurity8 of each (i.e,
the dispersion of the outcome variable within the subsample) is minimised.
The depth (number of levels) of the tree is, in this case, our hyperparameter
of interest. For example, consider Figure 5 – the splitting rule is reported at
the top of each branching (non-leaf) node. The blue (red) colour represents
a higher (lower) ratio of bunchers within the node. In the following section,
we experiment with depths in the range from 1 to 10 (as we find that larger
depths result in overfitting).

x4?

x2? x7?

< 3.2 ≥ 3.2

< −2 ≥ −2 < 4.4 ≥ 4.4

Figure 5: An example of decision tree.

Subsequently, we experiment with random forests. The principle behind
such algorithms is exactly the same as decision trees; however, whereas in the
discussion above one tree only was constructed and used to predict elements
of the test sample, random forests comprise a pool of trees. Specifically, the
random forest algorithm can be described as follows (see Figure 6). First,
ntree samples of equal size are randomly drawn from original data. Second,
a decision tree is trained on each of these samples, with the following mod-
ification: at each node, the best split is chosen among a random subsample

8A typical impurity measure is the Gini impurity. Given a set of n observations sub-
divided into K classes, its Gini impurity can be calculated as 1 −

∑K
k=1 p

2
k, where pk is

the frequency of class k (hence
∑K

k=1 pk = 1). Thus, the impurity is equal to zero when
all observations are of a same class, and it is maximised (taking a value of 0.5 in the case
K=2) when all classes are equally frequent.
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of mtry predictors. Third, a prediction is made for new data by aggregating
the predictions of the ntree trees using the majority vote criterion. It was ob-
served empirically that this strategy makes random forest more robust than
decision trees, in particular to overfitting (Breiman, 2001; Friedman et al.,
2001). mtry and ntree (together with the number of levels) are hyperparam-
eters. As highlighted by Friedman et al. (2001) (p. 596), random forests
suffer little from overfitting when employing larger trees; while we still find
that limiting the depth slightly improves performance, we will test far larger
values than those with decision trees, up to 40.

Figure 6: An example of random forest.

With both decision trees and random forests, the most relevant param-
eters are the number of nodes or branches. Given a tree with L levels
l = 0, . . . , L − 1, each of them includes as many as 2l nodes, and hence
the number of terminal nodes will be at most 2L−1. The predicted bunch-
ing probability for every taxpayer is the frequency of bunchers within the
terminal node to which the taxpayer belongs.

Finally, we consider neural networks. Currently, this is arguably consid-
ered the most successful machine learning method, both in academia and
in the industry, owing to its versatility. A neural network can be seen as a
series of layers of regressions (logistic regressions, for instance), in which the
output of a layer is the input of the following layer. The advantage of neural
networks is their extreme flexibility – weights between the different neurons
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(nodes) of the network vary by adapting to the training. However, their
disadvantage lies in the unfeasibility to interpret their content, whereas de-
cision trees and related methods, as we shall see, give us an intuition about
the basis of the selection rule. Neural network can be made more or less
complex by changing the structure of the hidden layers. For example, in
our exercise below, the label (7, 7, 7, 7, 7) will denote a neural network with
five hidden layers, each composed of 7 nodes. With neural networks, the
predicted probability of bunching is given by the output of the last level.
In a neural network, many different aspects can be tuned; however, in the
next section, we mostly focus on the interplay between the number and size
of the hidden levels and the prediction ability of the model.9 Hence, the
hyperparameters of the model will consist of the sequence of the sizes of its
hidden layers, such as (7, 7, 7, 7, 7) in the exercise below. We will test neural
networks with varying numbers of levels – from 1 to 7 – of varying size –
from 1 to 7. Indeed, given the available data, larger models tend to easily
result in overfitting.

3.3 Optimal prediction

We now proceed to analysing the performance of the models described in the
previous section when applied to our empirical exercise.

First, we show how the in-sample (‘training’) and out-of-sample (‘pre-
diction’) errors change across models, as measured with the area under the
ROC (AUC) – a standard approach in the machine learning literature. In
Figure 7, each marker corresponds to a different model – the resulting curve
is the empirical counterparty of the ‘Total error’ displayed in Figure 1.10 Im-
portantly, such measure aggregates the prediction error across all possible
thresholds.11

In order to apply the method presented in Section 2.1 to identify the
optimal policy, we first need to select a proper value for the ratio b

a
(as P and

N are instead determined empirically: in our case, P is the average number
of bunchers over the observed time span). Recalling that a = β−b, this ratio
depends ultimately on the comparison between β, i.e. the additional social

9In particular, all the neural networks we train are composed of dense layers (given the
heterogeneity of the data, and the absence of space or time dimensions), and all use the
standard ReLU activation function.

10Recall that variables referring to year t−1 are used to predict the bunching behaviour
in year t. Hence, we cannot predict the bunching behaviour for the first year included in
our sample (2007).

11See Appendix B for another possible measure of prediction quality, the pseudo-R2

statistics, that is, the ratio between the mean squared error and the variance in the data.
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Figure 7: Prediction error as measured by AUC
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Figure 8: Prediction error as measured by L.
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Note: equivalent of Figure 7 obtained when evaluating models based on L and b
a = 0.5.

utility that every administrative action can generate, and b, i.e. the social
cost (administrative + private) of that action. Some back-of-the envelope
calculations suggest that a plausible value for b is around e1,000,12 and a
plausible value of β is in the range between e2,000 and e5,00013, so that

12Proactive policies are delivered through customer services and often consist of a one-
to-one relationship between a tax officer and the taxpayer. Suppose that this involves 10
hours of working time for each of the two parties, and that each hour is worth 50 e: under
these hypotheses, b = 50× 10× 2 = 1000 e.

13Consider bunchers from above (tax evaders); since, in Italy, 60% to 70% of self-reported
income is evaded (MEF, 2019) and bunchers report e20,000 of taxable income, on an
average, if their propensity to evade matches the average, then their income evasion would
total to approximately e30,000. With an average tax rate of 33%, this roughly corresponds
to e10,000 of evaded taxes. Given that the prediction can be used to implement ‘soft’
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the ratio b
a

should be in the interval (0.25, 1). Second, for each model m, we
calculate τ ∗m finding the minimum value of the loss function.

Figure 8 is the equivalent of Figure 7 when adopting our loss function L
as a measure of fit; it shows the prediction error, as measured by L for the
best performing model (i.e. calibration of hyperparameters), and threshold
within each method. Table 2 summarises the results of our exercise. It shows,
for each year in our sample and each prediction method analyzed, which
hyperparameters characterise the best performing model. It also shows how
each of these models performs with respect to the other methods, displaying
the resulting value for the loss function L, in the case of a = 2, 000, b = 1, 000.
For reference, the welfare benefits of an ideal policy with perfect prediction
are in the range between 6 and 12 Me, depending on the number of actual
bunchers in that year. As highlighted by the results reported in Table 2,
different methods result in markedly different policy effectiveness levels. The
last two columns provide the threshold τ characterizing each model and the
resulting share of targeted subjects. For instance, for a random forest trained
to predict bunching in 2011, the loss function is minimised when considering
25 levels and adopting a threshold of τ = 0.4; this implies that all taxpayers
with an individually estimated probability of bunching larger or equal than
this value should be targeted. This model results in 0.67% of taxpayers being
targeted.

Results are reasonably stable across years. Random forests are the best
performing models in all years; in particular, they significantly outperform
neural networks. Decision trees, while ranking behind random forests, as ex-
pected, perform relatively well – for relatively shallow configurations. Linear
models are quite clearly outperformed by the previously mentioned models;
this holds to a limited extent for Lasso with low α (the best performing
Lasso), and to a larger extent for logit and Ridge (see also the significant
difference between the value of L of these models and that of the others).

It is worth observing that the share of targeted subjects is low (consis-
tently with the low observed frequency of bunching) and heterogeneous across
models. In particular, best performing models tend to result in a larger share
of targeted taxpayers, while some models (e.g. logit and ridge in 2009) do
not lead to targeted taxpayers. In a context characterised by the rarity of
the bunching behaviour, if the predictive algorithm is not efficient, then best
option might not even be to target any taxpayer.

In general, there is no mechanical relationship between the threshold and

policies (e.g. nudging) rather than actual audits, it seems reasonable to consider a recovery
rate between 20% and 50% of evaded taxes, that is, a β in the range between e2,000 and
e5,000.
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the share across models. Within the same model, increasing the threshold will
necessarily reduce the share of targeted taxpayers; however, different models
will result in different distributions of individual predicted probabilities, of
which the share represents the cumulative density function computed at the
given threshold.

Table 2: Best hyperparameters and prediction results, by year and method

method alpha depth levels L (ke) Threshold Share (%)
year

2008 forest 30 350 0.300 1.169
2008 dectree 8 4900 0.571 1.016
2008 neural 7 5251 0.364 1.047
2008 lasso 0.001 6202 0.576 1.066
2008 logit 6701 1.000 1.255
2008 ridge 0.100 6701 1.000 1.255

2009 forest 40 237 0.400 0.745
2009 dectree 8 4056 0.333 0.583
2009 neural 7,7,7,7,7 4410 0.485 0.574
2009 lasso 0.001 4727 0.281 0.560
2009 logit 12050 1.000 0.000
2009 ridge 0.001 12050 1.000 0.000

2010 forest 35 224 0.400 0.698
2010 dectree 8 3369 0.333 0.592
2010 neural 7,7,7,7,7 3608 0.296 0.590
2010 lasso 0.001 3843 0.370 0.569
2010 logit 3866 1.000 0.572
2010 ridge 0.010 3866 1.000 0.572

2011 forest 25 230 0.400 0.672
2011 dectree 8 3370 0.321 0.620
2011 neural 7,7,7,7,7 3553 0.334 0.604
2011 lasso 0.001 3915 0.400 0.539
2011 logit 4078 1.000 0.687
2011 ridge 0.010 4078 1.000 0.687

Note: ‘alpha’, ’depth’, ‘levels’: method–specific hyperparameters (see Section 3.2).
‘Threshold’: threshold value for being targeted by the policy, resulting in the lowest value
of loss function. L: corresponding value of the loss function (thousands of euros). ‘Share’:
corresponding share of targeted taxpayers.
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4 Interpretation

One might be tempted to believe that correlations between the variable to be
predicted and the predictors, as well as the measures of variable importance
provided by statistical packages, might lead to inferring something about the
model underlying the data (Mullainathan and Spiess, 2017).

However, Mullainathan and Spiess (2017) argue that one of the problems
in finding an underlying model is the intrinsic instability of the prediction,
which they see as an Achilles heel. Indeed, on the one hand, ‘the very ap-
peal of these algorithms is that they can fit many different functions’; on the
other hand, it often occurs that a same variable assumes a different impor-
tance in different partitions of the data, so that there are few stable patterns
of predictors. The authors illustrate instability by showing that predictors
selected by a LASSO regression change significantly from one random sample
to another in the same data set mainly because the predictors are correlated
to each other.

There are good reasons to believe that this instability problem is less
severe with random forest models. In such models, variable importance can
be measured with the Mean Decrease Impurity (MDI) proposed by Louppe
et al. (2013). This is calculated in two steps. First, at the node level, the
impurity decrease is computed as the difference between the impurity of
the node and the weighted sum of the impurities of the two children nodes
(weights are the frequencies of observations within each child node). Second,
this measure is aggregated at the tree level by summing across all nodes
employing the same variable and at the forest level by averaging over all
trees. The resulting number is a measure of the variable’s importance for
prediction. Hence, a variable is more important if (i) it is used in many
nodes, (ii) such nodes are located close to the root, (iii) in their children
nodes, the impurity decreases significantly. The impurity of each node can be
measured in different ways, but the Gini impurity index is typically used for
the purpose. While we expect variable importance computed on single trees
to have a high variability across trees of a random forest, MDI is averaged
over all trees, and hence is likely to be more stable.

Concerning our application to Italian data, Figure 9 shows, in yellow
cells, the 20 most important predictors (those with a higher MDI) for the
best performing model (see Table 2) in each year. We can note that 11
variables in our sample are among the best predictors across all 4 years
analysed; these variables include bunching, the level of presumptive and that
of reported revenues, the level of reported gross income and tax base, total
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compensations, and total costs.14 While the remaining variables appear for
some years only, there is still a strong overlap (only 31 variables appear in
the top twenty at least once).

Figure 9: Most important variables per year

2008 2009 2010 2011

Age
Bunching

Congruity status
Cost of purchased services

Costs for raw materials
Deductible VAT 1
Deductible VAT 2
Deductible VAT 3

Gross VAT
Gross VAT on domestic tax base

Gross domestic VAT base
Gross income 1
Gross income 2

IRAP due
Local income tax base

Miscellaneous production costs
National income tax base

Presumptive revenues
Production costs

Reported revenues
Revenues gap

Sector Q
Total VAT-relevant purchases

Total compensations
Total costs

VAT due
VAT revenues

VAT revenues net of exports 1
VAT revenues net of exports 2

Value added
Value of capital goods

Note: yellow cells denote the 20 most important features in the best performing model for
each year. Importance is measured according to MDI, employing the Gini impurity index.

Essentially, importance is a measure that does not provide information
about the profile of the targeted population. To start with, one would like
to know not only whether a variable is important for prediction, but also
the sign of the correlation (if any) with the outcome variable. Some more
insights can be gained by comparing descriptive statistics for most important
predictors between the whole population and the targeted one.

In Table 3, in addition to the MDI, we report, for the subset of the 11
stable predictors emerging from Figure 9, the average values within the entire
population (All), within the population of actual bunchers, and within the
population of bunchers as predicted by the best performing model for year
2011.

14Recall that all predictors refer to year y − 1, where y is the year for which bunching
is predicted.
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Table 3: Analysis of prediction results – important variables

Importance 2011
All Actual Predicted

Bunch 0.24 0.01 0.79 0.84
Gross income 1 0.02 25537.54 63950.45 67053.76
Gross income 2 0.02 27052.80 64027.06 67120.25
Local income tax base 0.03 29944.97 66728.58 69478.17
National income tax base 0.02 29945.73 66729.46 69479.10
Presumptive revenues 0.02 85384.00 83383.00 86373.98
Reported revenues 0.02 100794.06 83140.63 86076.72
Revenues gap 0.14 -15410.06 242.37 297.27
Total compensations 0.02 76306.73 83863.35 86705.21
Total costs 0.02 52202.77 19961.34 19670.24
VAT revenues 0.01 104335.57 74135.38 76593.53

Note: data for year 2011. Features importance: MDI employing the Gini impurity in-
dex, with the best performing model. Figures are computed within the entire population
(All), within the population of actual bunchers, and within the population of bunchers as
predicted by the best performing model.

The profile of actual bunchers, as opposed to the entire population, is
mainly characterised by a higher level of bunching, lower reported costs and
revenues, and higher income, while having similar values of presumptive rev-
enues. A comparison with the Predicted column shows that each of these
characteristics is clearly captured by the prediction model. It is tempting
to provide a comprehensive interpretation of this evidence. Recall that pre-
sumptive revenues can be reduced by underreporting costs. Hence, taxpayers
with higher revenues and inputs (costs) can manipulate their declaration of
the latter, thus decreasing presumptive revenues.15 By bunching, they will
also underreport revenues. Since, for each euro of underreported costs, pre-
sumptive revenues decrease by more than one Euro (see Appendix A), this
strategy will allow bunchers to reduce the tax base with respect to the true
one.

The complexity of interactions defining the profile of predicted bunchers
using a random forest cannot be represented graphically. Still, interactions
highly influencing the prediction are likely to be featured in the first levels of a
decision tree trained on the same data as the random forest. Figure 10 shows
the first three levels of the best performing decision tree for year 2011 (see
Table 2). The persistence of bunching is confirmed; for taxpayers who were
not bunching in the previous year and operate in the public services sector,

15This can explain the similarity of Presumptive revenues between bunchers (83 383e)
and the whole population (85 384e).
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a positive or mildly negative revenue gap also appears to be a predictor of
bunching; the public services sector is also a relevant predictor of bunching
for taxpayers who were bunching in the previous year. This is in line with
the literature stressing the relevance of the traceability of operations for
compliance decisions (Almunia and Lopez-Rodriguez, 2018) – public services
are purchased by final consumers, and therefore are not traceable.

Figure 10: First 3 levels of the decision tree for year 2011

Clearly, machine learning algorithms are developed, and compared, with
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the aim of delivering the best possible prediction using the available data,
regardless of the interpretability of results or their consistency with an a
priori model. In the Italian case considered, for instance, the outcome of the
prediction, and the ultimate goal of the tax authority, is first and foremost
a list of taxpayers predicted to be bunchers. Still, our example shows how
some machine learning techniques also provide interesting insights about the
prediction process, which can also be considered to ehance our knowledge on
the economics of tax evasion.

5 Concluding remarks

The framework proposed in this study integrates the traditional theory of
optimal tax administration with an approach to individual prediction, which
is increasingly important for tax authorities around the world. This approach
aims at maximizing social welfare, which is measured via the loss function
L, and results in an optimal prediction-based policy that is characterised
by a profiling algorithm and an expected welfare impact. This approach
is agnostic as to which supervised machine learning algorithm is used and
allows a comparison between the prediction ability of different methods and
hyperparameters values.

The tax evasion literature typically focuses on models where causal links
between a set of independent variables and a dependent variable are hypoth-
esised and, sometimes, validated empirically. Even when empirical evidence
exists in support of these links, the use of these models for prediction can
become ineffective. A characterisation of the entire underlying model of tax
evasion to a reasonable degree of realism requires reliable measures of be-
havioural aspects such as ‘limited computation abilities, misperceptions, hy-
perbolic discounting, non-standard preferences’ (Alm, 2018). It would be a
very complex model to define, and empirically calibrating its components
would be a daunting task, especially in a field in which detailed empirical ev-
idence is scarce (tax evasion is most often hidden from authorities). Hence, it
is almost unfeasible to base predictions on theoretical and empirical insights
coming from the tax evasion literature. Machine learning approaches employ
data-driven methods that are less sensitive to the availability of variables;
if there is a stable relationship between observable variables and the out-
come of interest, then such a relationship can be identified and exploited for
prediction.

The acceptance of an inductive data-driven approach does not imply giv-
ing up the interpretability of predictions. In this study, we have presented
examples of how insights can be derived from trained machine learning mod-
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els. These models implicitly define a profile of targeted individuals that can
be further investigated using the existing literature as a benchmark.

We believe that our approach can be applied to the design and imple-
mentation of the entire range of tax administration policies. Our empirical
application focuses on a proactive policy aimed at incentivizing the taxpayer
to adopt a given tax behaviour in the future. However, the approach we
describe also applies to standard reactive policies, implemented after the
taxpayer has exhibited a given tax behaviour. Tax verification activities are
far from being mechanisms that smoothly and efficiently uncover tax eva-
sion, as typically postulated in theoretical models. Instead, they are socially
costly activities, which include administrative costs as well as monetary and
opportunity costs for involved taxpayers. Predicting the reaction of taxpay-
ers targeted by reactive policies can improve the efficiency of these policies.
For example, prediction can allow the tax authority to focus on audits yield-
ing higher additional revenues (Beer et al., 2019) and on more effective debt
collection policies.
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A Business sector studies

Since 1998, Italy has adopted a system called ‘Studi di settore’ (SDS), which
literally translates to ‘Business Sector Studies ’, to analyze the tax behaviour
of taxpayers reporting annual revenues not higher than e5,000,000 in their
economic activity. The Revenue Agency (RA) collects information on struc-
tural variables (e.g., size of offices and warehouses, location, sector of activ-
ity, main characteristics of customers and providers, etc.) and on accounting
variables (inputs and costs). On the basis of structural variables only, the
RA divides taxpayers into C clusters. In any given year t, and within each
cluster Ic, with c = {1, 2, ..., C}, it then selects a group of taxpayers that
are believed to be reliable. Then, for each cluster, the RA estimates on such
taxpayers the relationship:

Ri,t−3 = β′c,t−3xi,t−3 + εi,t−3 (6)

where Ri,t−3 is the value of revenues reported by taxpayer i at time t−3, xi,t−3
is the J × |Nc| matrix of inputs at time t − 3, and εi,t−3 is an idiosyncratic
error. βc,t−3 is a J ×1 vector of unknown productivity parameters for cluster
c,: its estimation – using standard linear regression techniques – is denoted
as bc,t.

Taxpayers are provided with a freely downloadable software, called Gerico,
where the value of each element of bc,t is reported. In other words, although
the productivity vector is exogenous to the taxpayer, she is allowed to analyse
it while reporting her own vector of inputs to declare, xi,t. This means that
the presumptive revenues can be manipulated, although a normality analysis
is performed so that too low values of xi,t cannot be costlessly reported.

Hence, presumptive revenues for the taxpayer i belonging to the popula-
tion of active taxpayers in cluster c and tax year t are calculated as:

Ri,t = b′c,txi,t.

A taxpayer is defined as congruous if she reports revenues which are at
least equal to the presumptive one, and non congruous in the opposite case.
The main difference between these two statuses is the following:

• a non congruous taxpayer has a higher probability to be audited, since
the tax authority can ask her to justify why she has reported lower–than
presumptive revenues – the burden of proof being onto the taxpayer;

• a congruous taxpayer has a lower but still non-zero probability to be
audited: for instance, she can be audited if the tax authority has other
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evidence on her possible evasion coming from cross-examination of ac-
counting books, from on-site audits, from the analysis of her bank or
credit card accounts, and so on.

Thus, whilst congruous taxpayers can be audited by the tax authority us-
ing only the evidence provided by other methods, non congruous taxpayers
can be audited using either business sector studies or other methods, re-
sulting in a higher audit objective probability for non-congruous taxpayers.
These rules are well known, which suggests that the subjective probability
to be audited is also likely to decrease if (at least) presumptive revenues are
reported.

B Additional material

Since the prediction error varies across thresholds, also the R2 varies. In
Figure 11, we plot the prediction error using the R2 when the threshold is
fixed at a level such that the share of predicted and actual bunchers are the
same.

Figure 11: Prediction error using R2
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