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1 Introduction

Tests of normality are routinely implemented for model-building purposes as well as to an-

swer substantive questions in economics and finance (see e.g. Affleck-Graves and McDonald,

1989; Cecchetti et al., 1990; Hutson et al., 2008). A case in point is the analysis of time-

reversibility (TR, henceforth) that hinges on the distributional properties of time series.

Broadly speaking, TR holds if the statistical properties of a time series are not affected

when it is observed in reverse time. Tests of TR have found several applications, including

the analysis of business cycle symmetry (see e.g. Ramsey and Rothman, 1996; DeLong and

Summers, 1986), the existence of Edgeworth price cycles in retail gasoline markets (Beare

and Seo, 2014; McCausland, 2007) and tests of the mixture-of-distribution hypothesis in

financial markets (Fong, 2003). Violations of TR arise for three main reasons: nonnormality

of the distributional form, nonlinearity of the regression function and nonconstancy of the

innovation variance (Cox, 1981). A time series that is not TR is called time-irreversible or

directional.

TR can be assessed relying on the coefficient of skewness and build a test of symmetry

of the r-th order difference of a time series (DeLong and Summers, 1986; Sichel, 1993).

Conventional tests of skewness have a long history in statistics and form the basis of omnibus

tests of normality (see e.g. D’Agostino and Pearson, 1973). The Jarque and Bera (1980, 1981)

procedure (JB, henceforth) is largely the most widely used test of Normality. There are at

least four issues related with the usage of the standard JB test, that extend also to tests of

symmetry based on the conventional coefficient of skewness. First, even for independently

and identically distributed (iid) random variables, the JB test is incorrectly sized and has

low power in small samples (see e.g. Jarque and Bera, 1987; Dufour et al., 1998; White and

MacDonald, 1980; Poitras, 2006). Second, it is based on the method-of-moments estimation

of the coefficients of skewness and kurtosis that is not robust to outliers (see e.g. Bastianin,

2020; Bonato, 2011; Kim and White, 2004; Brys et al., 2004; Thomas, 2009). Third, when

applied to serially correlated data, the sampling distribution does not coincide with that

derived for iid observations and correct implementation of the test involves either resorting

to a consistent estimator of the long-run covariance matrix (Bao, 2013; Bai and Ng, 2005;
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Bontemps and Meddahi, 2005; Lobato and Velasco, 2004; Richardson and Smith, 1993) or

relying on appropriate bootstrap or simulation methods (Dufour et al., 2003; Kilian and

Demiroglu, 2000; Psaradakis and Vávra, 2018). Fourth, the JB test requires the existence

of the eighth moment,1 which is not satisfied by commonly used distributions and might be

problematic in macroeconomic and financial applications, where there is often an issue of

moment failure (Chen et al., 2000; De Lima, 1997; Mittnik and Rachev, 1993; Loretan and

Phillips, 1994).

We consider a test of symmetry based on L-moments and its application to time series

data. Hosking (1990) showed that the shape of distributions can be described relying on

linear functions of expectations of order statistics, known as L-moments, that have a number

of advantages over standard moments. In fact, L-skewness and L-kurtosis are more robust

to outliers than conventional moments that raise the difference from the mean to the third

or fourth power. Moreover, L-skewness and L-kurtosis identify deviations from Normality

better than conventional moment-based measures. Lastly, L-moments uniquely characterize

a set of distributions that is larger than that for which conventional moments can be applied.

In fact, any distribution with finite mean is uniquely characterized by its L-moments, even

when conventional moments do not exist.

We make four contributions to the literature on tests of symmetry for dependent data.

First, we introduce the test based on L-moments (L-test, henceforth) due to Harri and

Coble (2011) in the time series econometrics literature.2 Second, we study the comparative

performance of tests of symmetry based on the coefficient of skewness and on L-moments in

an extensive set Monte Carlo experiments with sample size and data generating processes

aimed at mimicking the dataset typically analyzed in macroeconomics and finance. Third,

we introduce a bootstrap version of the L-test that is suitable for time series applications.

Fourth, in the empirical application we analyse the symmetry of business cycles for the G7

countries.

1For a test of skewness the requirement is that the sixth moment exists.

2Two exceptions are Darolles et al. (2009) who constructed measures of fund performance based on
L-moments and Bastianin (2020) who analyzed the performance of several robust measures of skewness
and kurtosis – including those based on L-moments – and applied them to a large monthly database (i.e.
the FRED-MD of McCracken and Ng, 2016). Notice however that none of these papers focus on testing
symmetry.
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Several studies are closely related to this paper. Kim and White (2004) and Bonato

(2011) deal with the estimation of skewness and kurtosis in the presence of outlying obser-

vations. Although these authors do consider robust measures of skewness and kurtosis, they

do not rely on L-moments. Thomas (2009) assesses the small sample behaviour of measures

of symmetry based on quantiles and L-moments with a Monte Carlo analysis, but does not

focus on time series data. Similarly, Harri and Coble (2011) introduce Normality tests based

on L-moments, but focus exclusively on iid samples. Kilian and Demiroglu (2000) study

the performance of the JB test for innovations in Vector Autoregressive and Vector Error-

Correction models. We follow Psaradakis (2003, 2016), who implemented a symmetrized

version of the sieve bootstrap of Bühlmann (1997) to improve the small sample accuracy of

symmetry tests. While this author considers a wide class of symmetry tests, he does not

investigate the performance of the L-test.

The rest of the paper is organized as follows. Section 2 discusses the two tests of

symmetry considered in our contribution and their bootstrap implementation. Section 3

presents the simulation study. Section 4 is devoted to the empirical application and Section

5 concludes. An Appendix completes the paper.

2 Symmetry tests and their bootstrap implementation

2.1 Symmetry test based on the coefficient of skewness

Let {Xt}Tt=1 be a time series with mean µ and r-th central moment µr = E [(x− µ)r].The

coefficient of skewness is defined as:

SK =
µ3

σ3
=

E [(x− µ)3]

E [(x− µ)2]3/2
(1)

For symmetric distributions µ3 = 0 and SK = 0. Moreover if Xt is iid normally distributed,

a test of symmetry is based on the squares of the sample skewness coefficient, ŜK:

τ̂3 = T
ŜK

2

6

d→ χ2
1 (2)

3



The null hypothesis of the test, H0 : SK = 0, is rejected whenever τ̂3 is greater than the

upper critical value of a χ2
1.

2.2 Symmetry test based on L-moments

The first four L-moments of a random variable are (Hosking, 1990):

`1 =

∫ 1

0

Q(u)du (3)

`2 =

∫ 1

0

Q(u)(2u− 1)du (4)

`3 =

∫ 1

0

Q(u)(6u2 − 6u+ 1)du (5)

`4 =

∫ 1

0

Q(u)(20u3 − 30u2 + 12u− 1)du (6)

where Q(α) be the quantile function. Much like conventional moments, L-moments uniquely

characterize statistical distributions. Thus, `1 and `2 can be regarded as measures of location

and scale. Population L-skewness (SKL, for r = 3) and L-kurtosis (KRL, for r = 4) are

defined as ratios of L-moments, `r/`2 for r = 3, 4. Table 1 shows that for a standard Normal

variate SKL = 0 and KRL = 0.1226. Since |`r/`2| < 1 for r ≥ 3, SKL and KRL are

bounded on the unit interval. This property makes their interpretation somehow easier than

conventional skewness and kurtosis that can take arbitrarily large values.

A test of the null of symmetry H0 : SKL = 0 relies on the squares of ŜKL (Harri and

Coble, 2011; Hosking, 1990):

τ̂3,L =
ŜK

2

L

(0.1866T−1 + 0.8000T−2)

d→ χ2
1 (7)

2.3 Bootstrapping tests of symmetry

The asymptotic distributions of τ̂3 and τ̂3,L – shown in Equation (2) and (7), respectively

– depend crucially on the assumption that the underlying data are iid. To accommodate a

wider class of data generating processes and in particular serially correlated and persistent

variables, we propose to rely on a bootstrap approximation of the null sampling distribution
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of τ̂3 and τ̂3,L.

Following Psaradakis (2003, 2016) we rely on a symmetrized version of the sieve boot-

strap of Bühlmann (1997) to estimate the null sampling distribution of our symmetry tests.

The idea underlying the sieve bootstrap is to approximate the unknown data generating pro-

cess with an autoregressive model of order p, AR(p). Once the model parameters have been

estimated, they are used to generate residual-based replicates of the observed data. Since

we are interested in an approximation of the null sampling distribution of the symmetry

tests, we rely on a variant of the bootstrap algorithm that resamples from the symmetrized

empirical distribution function of residuals from fitting the AR(p) model to the data. Details

about the implementation of the the bootstrap procedure are presented in Section A of the

Appendix.

3 Simulation study

3.1 Experimental design

Given the prominence of Vector Autoregressive models in macroeconometrics, we focus on

autoregressive models of order 1, AR(1), with different degrees of persistence3:

yt = ρyt−1 + εt for ρ = 0.0, 0.5, 0.9 (8)

To investigate the size of different tests we rely on εt
iid∼ N(0, 1) as well as on differ-

ent symmetric parametrizations of the Generalized Lambda Family (GLF). Table 1 high-

lights that the GLF encompasses symmetric (S1-S3) and asymmetric (A1-A4) distribu-

tions (Ramberg and Schmeiser, 1974). The distribution is defined by its quantile function:

Q(u) = λ1 +
[
uλ3 − (1− u)λ4

]
/λ2. We select seven members of the GLF, that are considered

also by Bai and Ng (2005) and Psaradakis and Vávra (2018). Symmetric distributions S1-S3

– used to investigate the size of tests – all have kurtosis in excess of the Normal distribution.

Similarly, distributions A1-A4 have increasing degree of skewness and excess kurtosis. More-

3The time needed to absorb half of a unit shock, or “half-life” (HL), is a widely used measure of per-
sistence. For an AR(1) model HL = log(2)/ log |ρ|, therefore given ρ = 0.5, 0.9 we have HL = 1, 6.6 time
periods.
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over, recall that a test of symmetry based on the standard coefficient of skewness requires

to have six finite moments, while S3, A2 and A4 possess less than six moments.

All results are based on errors standardized to have zero mean and unit variance. We

consider three different sample sizes – 40, 160 and 480 – that would correspond to 40 years of

yearly, quarterly or monthly data. We use 100 burn-in observations to minimize dependence

of the AR process on initial conditions and rely on 199 bootstrap samples.

Table 1: Error distributions

λ1 λ2 λ3 λ4 SK KR SKL KRL Moments

N(0,1) — — — — 0.00 3.00 0.00 0.12 ∞
S1 0.0000 -1.000000 -0.0800 -0.0800 0.00 5.99 0.00 0.20 12

S2 0.0000 -0.397912 -0.1600 -0.1600 0.00 11.61 0.00 0.23 6

S3 0.0000 -1.000000 -0.2400 -0.2400 0.00 126.90 0.00 0.27 4

A1 0.0000 -1.000000 -0.0075 -0.0300 1.52 7.46 0.21 0.18 33

A2 0.0000 -1.000000 -0.1009 -0.1802 2.00 21.11 0.16 0.23 5

A3 0.0000 -1.000000 -0.0010 -0.1300 3.16 23.75 0.39 0.22 7

A4 0.0000 -1.000000 -0.0001 -0.1700 3.88 40.73 0.41 0.23 5

Notes: Notes: N denotes the standard Normal distribution, while S1-A4 are members of the Generalized Lamba Familiy (GLF)
with parameters λ1, λ2, λ3, λ4. SK = skewness, KR = kurtosis, SKL = L-skewness, KRL = L-kurtosis. “Moments” indicates
the number of finite moments of each distribution. GLF have been standardized to have zero mean and unit variance.

3.2 Size

The size of symmetry tests based on the standard coefficient of skewness and on L-skewness

are investigated comparing the Monte Carlo rejection frequency against the nominal size of

the test set to 5%. Table 2 shows results based on the asymptotic distribution of tests when

these are applied to simulated raw data. For the Normal distribution we see that both tests

have empirical size close to the nominal level only when the AR parameter does not exceed

0.5. In the remaining cases both tests are highly oversized and their performance deteriorates

as the degree of excess kurtosis (i.e. moving from S1 to S3) and/or the serial correlation

increases. All in all, Table 2 highlights that implementing the two tests of symmetry based on

their asymptotic distribution is not advisable when data feature serial correlation or excess

kurtosis.

In Table 3 we investigate the size of tests when their null sampling distribution is ap-

proximated with the bootstrap procedure highlighted in Section 2.3. Overall, we see that
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Table 2: Size: empirical rejection frequency of tests of symmetry – Asymptotic distribution

Skewness, τ̂3 L-Skewness, τ̂3,L

T ρ N(0,1) S1 S2 S3 N(0,1) S1 S2 S3

40 0.0 0.0370 0.2382 0.3744 0.4865 0.0380 0.1502 0.2442 0.3083

0.5 0.0460 0.1942 0.3013 0.3764 0.0691 0.1712 0.2492 0.2993

0.9 0.0971 0.1081 0.1512 0.2072 0.1842 0.2252 0.2492 0.3123

160 0.0 0.0551 0.3904 0.5756 0.7017 0.0541 0.1612 0.2683 0.4024

0.5 0.0741 0.3193 0.4855 0.6306 0.0691 0.1832 0.2963 0.3894

0.9 0.2412 0.3363 0.3664 0.4374 0.3283 0.3994 0.4154 0.4665

480 0.0 0.0450 0.5125 0.6567 0.7928 0.0521 0.1882 0.2943 0.3934

0.5 0.0771 0.4505 0.5986 0.7447 0.0701 0.2092 0.3073 0.4254

0.9 0.3303 0.4535 0.5345 0.6116 0.3864 0.4595 0.5115 0.5516

Notes: T denotes the sample size, while ρ is the autoregressive parameter. N(0,1) denotes the standard Normal distribution,
while S1-S4 are the distributions belonging to the Generalized Lambda Family shown in Table 1. A well sized test should have
empirical rejection frequency close to its nominal size that in this case is 0.05. Results based on 999 simulations.

the symmetrized sieve bootstrap dramatically improves the performance of tests that now

feature empirical rejection frequencies close to the 5% nominal level. Much like for the results

based on the asymptotic distributions, both tests tend to be slightly oversized as the degree

of excess kurtosis and or the serial correlation increases. Moreover, the empirical rejection

frequency gets closer to the 5% nominal level as the sample size increases.

Table 3: Size: empirical rejection frequency of tests of symmetry – Sieve Bootstrap

Skewness, τ̂3 L-Skewness, τ̂3,L

T ρ N(0,1) S1 S2 S3 N(0,1) S1 S2 S3

40 0.0 0.0290 0.0671 0.0581 0.0721 0.0390 0.0691 0.0621 0.0761

0.5 0.0480 0.0601 0.0521 0.0581 0.0531 0.0551 0.0631 0.0571

0.9 0.0791 0.0601 0.0490 0.0541 0.0791 0.0791 0.0751 0.0761

160 0.0 0.0561 0.0400 0.0480 0.0440 0.0551 0.0420 0.0480 0.0761

0.5 0.0661 0.0430 0.0430 0.0661 0.0681 0.0450 0.0450 0.0681

0.9 0.0731 0.0450 0.0531 0.0631 0.0681 0.0561 0.0621 0.0661

480 0.0 0.0591 0.0511 0.0420 0.0370 0.0571 0.0651 0.0621 0.0450

0.5 0.0591 0.0470 0.0480 0.0450 0.0571 0.0581 0.0521 0.0511

0.9 0.0541 0.0460 0.0591 0.0581 0.0581 0.0470 0.0531 0.0511

Notes: T denotes the sample size, while ρ is the autoregressive parameter. N(0,1) denotes the standard Normal distribution,
while S1-S4 are the distributions belonging to the Generalized Lambda Family shown in Table 1. A well sized test should
have empirical rejection frequency close to its nominal size that in this case is 0.05. Results based on 999 simulations and 199
bootstrap samples.

In Section C of the Appendix we repeat the analysis focusing on residuals of AR(p)

models, with p selected relying on the Akaike Information Criterion. In this case, the perfor-

mance of the tests is not sensitive to the degree of persistence of the data, in that they are
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filtered with the AR(p) model. Besides that, results mimic what we have seen for the raw

data. When the error distribution features excess kurtosis (S1-S3), the implementation of

the symmetry tests using asymptotic critical values leads to empirical rejection frequencies

well above the 5% nominal level. When the null distributions are approximated with the

symmetrized sieve bootstrap both tests are well sized.

To sum up, the analysis carried out in this section highlights that symmetry tests based

on L-moments are appropriate both for serially correlated time series and autoregressive

residuals if an appropriate bootstrap procedure is used to approximate their distributions

under the null.

3.3 Power

To study the power of tests we rely on four asymmetric distributions. As shown in Table

1, distributions A1 to A4 have increasing degree of asymmetry and excess kurtosis. As

documented in the previous section, both tests are oversized when relying on their asymptotic

distributions, therefore we present only results based on bootstrap critical values.

The power analysis is summarized in Table 4 and Figure 1. The test based on L-skewness

has always more power than the test based on the conventional skeweness coefficient. Power

gains from L-moments are highest in smaller samples and increase as the degree of excess

kurtosis and asymmetry rise. Section C of the Appendix suggests that these conclusions

carry over to AR(p) residuals.

4 Empirical application: the symmetry of business cy-

cles of the G7 economies

One way to implement a test of TR is to focus on the symmetry of the distribution of the

r-difference of a time series (DeLong and Summers, 1986; Sichel, 1993). This form of TR

is known as lag reversibility (see e.g. Tsay, 1992; Paparoditis and Politis, 2002) and implies

that the joint distributions of (Yt, Yt−r) and (Yt−r, Yt) are equal for all t and all r = 1, 2, . . .

In the presence of lag reversibility, ∆rYt = Yt−Yt−r has a symmetric distribution and hence
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Table 4: Power: empirical rejection frequency of tests of symmetry – Sieve Bootstrap

Skewness, τ̂3 L-Skewness, τ̂3,L

T ρ A1 A2 A3 A4 A1 A2 A3 A4

40 0.0 0.4815 0.1772 0.7818 0.7508 0.6346 0.2803 0.9880 0.9910

0.5 0.2022 0.0901 0.2993 0.2683 0.3253 0.1602 0.7157 0.7157

0.9 0.0581 0.0541 0.0440 0.0621 0.0781 0.0741 0.0791 0.0901

160 0.0 0.9419 0.5205 0.9099 0.8759 0.9990 0.7538 1.0000 1.0000

0.5 0.7207 0.3253 0.7568 0.7197 0.9139 0.5215 0.9990 0.9980

0.9 0.1091 0.1061 0.1221 0.1461 0.1261 0.1181 0.1662 0.2182

480 0.0 0.9960 0.8118 0.9610 0.9239 1.0000 0.9990 1.0000 1.0000

0.5 0.9790 0.7247 0.9399 0.9019 1.0000 0.9640 1.0000 1.0000

0.9 0.2112 0.1572 0.3473 0.3303 0.2723 0.2242 0.5395 0.5826

Notes: T denotes the sample size, while ρ is the autoregressive parameter. N(0,1) denotes the standard Normal distribution,
while S1-S4 are the distributions belonging to the Generalized Lambda Family shown in Table 1. Higher rejection frequencies
indicate higher power. Results based on 999 simulations and 199 bootstrap samples.

P (∆rYt > 0) = P (∆rYt < 0) = 1
2
.

The concept of TR has been widely used in the analysis of business cycles to investigate

the so-called Mitchell–Keynes hypothesis, which posits that expansions are more gradual

than recessions (see e.g. Neftçi, 1984; DeLong and Summers, 1986; Ramsey and Rothman,

1996; Sichel, 1993). We focus on quarterly real GDP for the G7 economies over the period

1970:Q1-2019:Q4. We analyse whether ∆ryt = ln(GDPt/GDPt−r) for r = 1, . . . , 4 is TR.4

Table 5 shows that, consistently with the Mitchell–Keynes hypothesis, the sample skew-

ness of real GDP growth is negative for all countries except UK. Interestingly, if we omit

the single largest observation in absolute value, ŜK turns negative also for UK, which is

expected, given that the low degree of resistance to outliers is a feature of conventional mo-

ments (see e.g. Brys et al., 2004). On the contrary, ŜKL for UK preserves its sign even when

omitting the largest observation in absolute value.

In Table 5 we also present the p-values of tests of symmetry based on ŜK and ŜKL

for ∆yt as well as the Holm-Bonferroni p-values for the joint null hypothesis that the dis-

tributions of ∆rYt for r = 1, . . . , 4 are symmetric. We have consistent evidence against

symmetry only for Japan. On the other hand, we can reject the null of symmetry for Italy

when using the test based on ŜK, but not when relying on ŜKL. A robustness analysis

using monthly Industrial Production data – shown in Section C of the Appendix – provides

4Data sources and further results are presented in Sections B and C of the Appendix.
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Figure 1: Power: median empirical rejection frequency of symmetry tests – Sieve bootstrap

Sample size = 40

A1 A2 A3 A4
0

0.2

0.4

0.6

0.8

1

%
 R

ej
ec

tio
ns

Skewness
L-Skewness

Sample size = 160

A1 A2 A3 A4
0

0.2

0.4

0.6

0.8

1

Sample size = 480

A1 A2 A3 A4
0

0.2

0.4

0.6

0.8

1

 = 0.0  = 0.5  = 0.9
0

0.2

0.4

0.6

0.8

1

%
 R

ej
ec

tio
ns

Skewness
L-Skewness

 = 0.0  = 0.5  = 0.9
0

0.2

0.4

0.6

0.8

1

 = 0.0  = 0.5  = 0.9
0

0.2

0.4

0.6

0.8

1

Notes: the three plots in the upper panel show the median empirical rejection frequency of symmetry tests for each sample
size and distribution. The three plots in the lower panel show the median empirical rejection frequency of symmetry tests for
each sample size and autoregressive parameter, ρ. Blue bars denote the test based on the standard coefficient of skewness (τ̂3),
while gray bars identify the test based on L-skewness (τ̂3,L). Higher rejection frequencies indicate higher power. See notes to
Table 4.

further evidence against the symmetry of the Japanese business cycle, moreover it also pro-

vides evidence against TR for the US. All in all, the Mitchell–Keynes hypothesis seems to

be strongly supported only for Japan.

5 Conclusions

Our Monte Carlo simulations show that symmetry tests based on L-moments have more

power than tests based on the conventional coefficient of skewness. We also highlight that

tests of symmetry can be applied to serially correlated and persistent time series, provided

that an appropriate bootstrap algorithm is implemented to simulate their distributions under

the null hypothesis. In fact, asymptotic results for iid data cannot applied to time series
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Table 5: Symmetry test - real GDP

Skewness L-Skewness

Country ŜK r = 1 r = 1, . . . , 4 ŜKL r = 1 r = 1, . . . , 4

Canada -0.2182 0.4645 0.1041 -0.0286 0.4975 0.3203

France -0.4897 0.1982 0.4324 -0.0016 0.9710 1.0000

Germany -0.6645 0.3914 0.0841 -0.0121 0.8068 1.0000

Italy -0.7051 0.0541 0.0000 -0.0199 0.7157 0.1522

Japan -1.6380 0.0581 0.0000 -0.1421 0.0851 0.0080

UK 0.1448 0.7838 0.0721 -0.0372 0.5155 0.1001

US -0.2985 0.4925 0.3844 -0.0425 0.3934 0.4765

Notes: the table shows the coefficient of skewness (ŜK) and L-Skewness (ŜKL) for ∆yt and the p-values of tests of symmetry.
The null hypothesis of the test is that the distribution of ∆ryt = ln(Yt/Yt−r) is symmetric, where Yt is real GDP. We report
the Bonferroni p-value for the joint null hypothesis that the distributions of ∆ryt for r = 1, 2, . . . are symmetric.

data in that they yield badly sized tests. A byproduct of our paper is to extend the results

of Psaradakis (2003, 2016) showing that the symmetrized version of the sieve bootstrap he

envisaged works well also for tests based on L-moments.

In the empirical application symmetry tests are a tools to investigate Mitchell–Keynes

business-cycle hypothesis for the G7 countries. We have made a link between the analysis

of the symmetry of business cycles and tests of TR in the form of lag reversibility. While

in our application we have used the Holm-Bonferroni correction as a way to control for the

family-wise error rate in multiple comparisons, a more detailed analysis of these is left for

future research. Similarly, we believe that the investigation of an omnibus test of normality

based on L-moments, as well as the application of our methods to test for the presence of

Edgeworth price cycles in retail gasoline markets might deserve some attention.
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Bühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli, 3(2):123–148.

Cecchetti, S. G., Lam, P.-S., and Mark, N. C. (1990). Mean reversion in equilibrium asset

prices. American Economic Review, 80(3):398–418.

Chen, Y.-T., Chou, R. Y., and Kuan, C.-M. (2000). Testing time reversibility without

moment restrictions. Journal of Econometrics, 95(1):199–218.

Cox, D. R. (1981). Statistical analysis of time series: Some recent developments. Scandina-

vian Journal of Statistics, 8(2):93–115.

D’Agostino, R. and Pearson, E. S. (1973). Tests for departure from normality. empirical

results for the distributions of b2 and
√
b1. Biometrika, 60(3):613–622.

Darolles, S., Gouriéroux, C., and Jasiak, J. (2009). L-performance with an application to

hedge funds. Journal of Empirical Finance, 16(4):671–685.

De Lima, P. J. (1997). On the robustness of nonlinearity tests to moment condition failure.

Journal of Econometrics, 76(1-2):251–280.

DeLong, J. B. and Summers, L. H. (1986). Are business cycles symmetrical. In Gordon, R. J.,

editor, The American Business Cycle: Continuity and Change, pages 166–178. University

of Chicago Press.

12



Dufour, J.-M., Farhat, A., Gardiol, L., and Khalaf, L. (1998). Simulation-based finite sample

normality tests in linear regressions. The Econometrics Journal, 1(1):154–173.

Dufour, J.-M., Khalaf, L., and Beaulieu, M.-C. (2003). Exact skewness–kurtosis tests for

multivariate normality and goodness-of-fit in multivariate regressions with application to

asset pricing models. Oxford Bulletin of Economics and Statistics, 65:891–906.

Fong, W. M. (2003). Time reversibility tests of volume–volatility dynamics for stock returns.

Economics Letters, 81(1):39–45.

Harri, A. and Coble, K. H. (2011). Normality testing: two new tests using L-moments.

Journal of Applied Statistics, 38(7):1369–1379.

Hosking, J. R. (1990). L-moments: analysis and estimation of distributions using linear

combinations of order statistics. Journal of the Royal Statistical Society. Series B, pages

105–124.

Hutson, E., Kearney, C., and Lynch, M. (2008). Volume and skewness in international equity

markets. Journal of Banking & Finance, 32(7):1255–1268.

Jarque, C. M. and Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and

serial independence of regression residuals. Economics Letters, 6(3):255–259.

Jarque, C. M. and Bera, A. K. (1981). Efficient tests for normality, homoscedasticity and

serial independence of regression residuals: Monte Carlo evidence. Economics Letters,

7(4):313–318.

Jarque, C. M. and Bera, A. K. (1987). A test for normality of observations and regression

residuals. International Statistical Review, pages 163–172.

Kilian, L. and Demiroglu, U. (2000). Residual-based tests for normality in autoregressions:

asymptotic theory and simulation evidence. Journal of Business & Economic Statistics,

18(1):40–50.

Kim, T.-H. and White, H. (2004). On more robust estimation of skewness and kurtosis.

Finance Research Letters, 1(1):56–73.

13



Lobato, I. N. and Velasco, C. (2004). A simple test of normality for time series. Econometric

Theory, 20(4):671–689.

Loretan, M. and Phillips, P. C. B. (1994). Testing the covariance stationarity of heavy-tailed

time series: an overview of the theory with applications to several financial datasets.

Journal of Empirical Finance, 1(2):211–248.

McCausland, W. J. (2007). Time reversibility of stationary regular finite-state Markov

chains. Journal of Econometrics, 136(1):303–318.

McCracken, M. W. and Ng, S. (2016). FRED-MD: A monthly database for macroeconomic

research. Journal of Business & Economic Statistics, 34(4):574–589.

Mittnik, S. and Rachev, S. T. (1993). Modeling asset returns with alternative stable distri-

butions. Econometric Reviews, 12(3):261–330.
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A Symmetry tests and bootstrap implementation: fur-

ther details

A.1 Estimation of conventional skewness

Given a sample of size T , {x}Tt=1, SK is estimated as follows:

ŜK1 =
1

T

T∑
t=1

(
xt − µ̂
σ̂

)3

(1)

where µ̂ = T−1
∑T

t=1 xt and σ̂ =
√
T−1

∑T
t=1 (xt − µ̂)

2
.

If Xt is iid normally distributed, then:

√
T ŜK

d→ N(0, 6) (2)

Tests of symmetry are often based on the squares of ŜK:

τ̂3 = T
ŜK

2

6

d→ χ2
1 (3)

The null hypothesis of the test,H0 : SK = 0 is rejected whenever τ̂3 is greater than the upper critical value

of a χ2
1 (i.e. χ2

1(0.99) = 6.6349, χ2
1(0.95) = 3.8415 and χ2

1(0.90) = 2.7055).

A.2 Estimation of L-moments

L-moments can be generally defined as:

`r =
1

r

r−1∑
j=0

(−1)
j

(
r − 1

j

)
E (Xr−j:r) for r = 1, 2, . . . (4)

The expectation of an order statistics, E (Xj:r), can be written as (David and Nagaraja, 2017):

E (Xj:r) =
r!

(j − 1)!(r − j)!

∫ ∞
−∞

xF j−1(x) [1− F (x)]
r−j

f(x)dx

=
r!

(j − 1)!(r − j)!

∫ 1

0

uj−1 [1− u]
r−j

Q(u)du (5)

Substituting (5) in (4) and rearranging, we get:

`r =

∫ 1

0

P ∗r−1(u)Q(u)du (6)

2



where P ∗r (u) =
∑r

j=0 p
∗
r,ju

j and p∗r,j = (−1)r−j
(
r
j

)(
r+j
j

)
. Notice that P ∗r (u) is the r-th shifted Legendre

polynomial, related to the Legendre polynomial by P ∗r (u) = Pr(2u − 1). L-moments can be estimated by

sample L-moments. These are defined as:

ˆ̀
r =

r−1∑
j=0

p∗r−1,jbj where bj =
1

n

n∑
i=1

(i− 1)(i− 2) . . . (i− j)
(n− 1)(n− 2) . . . (n− j)

xi:n (7)

An estimator of L-skewness is thus given by: ŜKL = ˆ̀
3/ˆ̀

2.

To build their test of normality based on L-moments Harri and Coble (2011) start from the following results

in Hosking (1990):

ŜKL√
(0.1866T−1 + 0.8000T−2)

d→ N(0, 1) (8)

A test of the null of symmetry H0 : SKL = 0 relies on the squares of ŜKL:

τ̂3,L =
ŜK

2

L

(0.1866T−1 + 0.8000T−2)

d→ χ2
1 (9)

A.3 Bootstrapping tests of symmetry

Suppose that we observe a sample of data {yt}Tt=1 whose data generating process can be written as:

yt − µ =

∞∑
j=1

φj (yt−j − µ) + εt (10)

where {φj}∞j=1 is a square-summable sequence, µ ≡ E(yt) and εt is an iid symmetrically distributed random

variable. Notice that Equation (10) encompasses a large set of stochastic processes, including Autoregressive

Moving Average (ARMA) models. Moreover, it is worth pointing out that the symmetry of the distribution

of yt is implied by the symmetry of the distribution of the error term εt.

The idea underlying the sieve bootstrap is to approximate the unknown data generating process in

Equation (10) with a Autoregressive model of order p, AR(p), where the autoregressive order increases

slowly with the sample size.

Let T be one of the symmetry tests we consider, then its asymptotic distribution under the null

hypothesis is estimated relying on the following bootstrap algorithm:

1. Select the order p of an AR(p) with the Akaike Information Criterion

2. Get the estimates of the coefficients ρ̂1, . . . , ρ̂p of the AR(p) model yt − µ̂ =
∑p

j=1 ρj (yt−j − µ̂) + ut

where µ̂ is the sample average of yt.

3. Construct the residuals ût = (yt − µ̂)−
∑p

j=1 ρ̂j (yt−j − µ̂) for t = p+ 1, . . . , T

3



4. Draw a random sample
{
ubt
}T
t=1

from the empirical distribution function of ũt where:

ũt =


ût if t = p+ 1, . . . , T

−ût if t = T + 1, . . . , 2T − p

5. Generate bootstrap replicates
{
ybt
}T
t=1

relying on:

ybt − µ =

p∑
j=1

φ̂j
(
ybt−j − µ

)
+ ubt

6. Construct the bootstrap analog of T , denoted as Tb, applying the test of symmetry to the bootstrap

time series
{
ybt
}T
t=1

7. Repeat steps 4-6 a large number of times to obtain a sample of size B: {Tb}Bb=1

The empirical distribution of {Tb}Bb=1 is used to as a bootstrap approximation of the null sampling

distribution of T . The bootstrap p-values can be computed as pb = B−1
∑B

i I(|Tb| > |T̂ |) where T̂ is the

observed value of T and I(·) is the indicator function taking unit value if the condition in brackets is satisfied.

The bootstrap test rejects the null of symmetry if pb > α where α ∈ (0, 1) is the nominal level of the test.

Equivalently, we reject the null of symmetry if T̂ exceeds the (dB(1− α)e)-th order statistic of {Tb}Bb=1.

B Empirical application: data sources

We have sourced real GDP and Industrial Production (IP) for G7 countries (i.e. Canada, France, Germany,

Italy, Japan, UK, US) from the Main Economic Indicators database maintained by the OECD. We measure

as GDP by Expenditure in Constant Prices (Index 2015=100, Seasonally Adjusted) Canada, France US, UK,

Germany for G7 countries. Real GDP series cover different sample periods. For Canada, France, Germany,

UK, US data span 1970:Q1-2019:Q4 (200 observations); for Italy 1981:Q1-2019:Q1 (156 observations); for

Japan 1994:Q1-2019Q4 (104 observations). Data on IP span January 1961-December 2019 (708 observations).

In both cases we focus on ∆ryt = ln(Yt/Yt−r) where Yt is either real GDP or IP.
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C Additional tables and figures

Table C1: Size: empirical rejection frequency of tests of symmetry for residuals – Asymptotic
distribution

Skewness, τ̂3 L-Skewness, τ̂3,L

T ρ N(0,1) S1 S2 S3 N(0,1) S1 S2 S3

40 0.0 0.0350 0.2302 0.3744 0.4725 0.0450 0.1451 0.2402 0.3063

0.5 0.0330 0.2282 0.3734 0.4695 0.0470 0.1461 0.2352 0.2953

0.9 0.0350 0.2262 0.3744 0.4464 0.0430 0.1411 0.2262 0.2923

160 0.0 0.0511 0.3734 0.5796 0.7027 0.0551 0.1562 0.2593 0.3924

0.5 0.0470 0.3804 0.5766 0.7057 0.0561 0.1562 0.2653 0.3904

0.9 0.0490 0.3784 0.5746 0.7017 0.0591 0.1592 0.2653 0.3944

480 0.0 0.0430 0.5115 0.6577 0.7898 0.0501 0.1872 0.2943 0.3894

0.5 0.0430 0.5125 0.6547 0.7888 0.0511 0.1872 0.2923 0.3834

0.9 0.0470 0.5115 0.6627 0.7868 0.0531 0.1902 0.2883 0.3834

Notes: T denotes the sample size, while ρ is the autoregressive parameter. N(0,1) denotes the standard Normal distribution,
while S1-S4 are the distributions belonging to the Generalized Lambda Family shown in Table 1 of the paper. A well sized test
should have empirical rejection frequency close to its nominal size that in this case is 0.05. Results based on 999 simulations.
Tests are applied on the residuals of an AR(p) model where p is selected with the Akaike Information Criterion.

Table C2: Size: empirical rejection frequency of tests of symmetry for residuals – Sieve
Bootstrap

Skewness, τ̂3 L-Skewness, τ̂3,L

T ρ N(0,1) S1 S2 S3 N(0,1) S1 S2 S3

40 0.0 0.0360 0.0410 0.0410 0.0330 0.0380 0.0561 0.0601 0.0621

0.5 0.0350 0.0501 0.0541 0.0410 0.0410 0.0541 0.0611 0.0651

0.9 0.0340 0.0460 0.0571 0.0511 0.0410 0.0621 0.0701 0.0591

160 0.0 0.0511 0.0380 0.0430 0.0430 0.0631 0.0410 0.0490 0.0691

0.5 0.0561 0.0420 0.0450 0.0440 0.0631 0.0470 0.0511 0.0681

0.9 0.0501 0.0390 0.0521 0.0420 0.0631 0.0440 0.0621 0.0741

480 0.0 0.0651 0.0450 0.0430 0.0320 0.0521 0.0571 0.0601 0.0460

0.5 0.0591 0.0501 0.0440 0.0320 0.0601 0.0561 0.0611 0.0440

0.9 0.0551 0.0531 0.0430 0.0310 0.0551 0.0571 0.0661 0.0430

Notes: T denotes the sample size, while ρ is the autoregressive parameter. N(0,1) denotes the standard Normal distribution,
while S1-S4 are the distributions belonging to the Generalized Lambda Family shown in Table 1 of the paper. A well sized test
should have empirical rejection frequency close to its nominal size that in this case is 0.05. Results based on 999 simulations and
199 bootstrap samples. Tests are applied on the residuals of an AR(p) model where p is selected with the Akaike Information
Criterion.
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Figure A1: Power: median empirical rejection frequency of symmetry tests for residuals –
Sieve bootstrap
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Notes: the three plots in the upper panel show the median empirical rejection frequency of symmetry tests for each sample
size and distribution. The three plots in the lower panel show the median empirical rejection frequency of symmetry tests for
each sample size and autoregressive parameter, ρ. Blue bars denote the test based on the standard coefficient of skewness (τ̂3),
while gray bars identify the test based on L-skewness (τ̂3,L). Tests are applied on the residuals of an AR(p) model where p is
selected with the Akaike Information Criterion.
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Table C3: Power: empirical rejection frequency of tests of symmetry for residuals – Sieve
Bootstrap

Skewness, τ̂3 L-Skewness, τ̂3,L

T ρ A1 A2 A3 A4 A1 A2 A3 A4

40 0.0 0.3844 0.1231 0.6647 0.6496 0.5596 0.2302 0.9670 0.9700

0.5 0.3934 0.1411 0.6567 0.6667 0.5586 0.2322 0.9590 0.9670

0.9 0.4074 0.1411 0.6306 0.6486 0.5435 0.2292 0.9249 0.9399

160 0.0 0.9329 0.4815 0.8989 0.8599 0.9970 0.7467 1.0000 1.0000

0.5 0.9349 0.4835 0.8999 0.8619 0.9980 0.7528 1.0000 1.0000

0.9 0.9329 0.4975 0.8979 0.8559 0.9980 0.7487 1.0000 1.0000

480 0.0 0.9930 0.8048 0.9600 0.9279 1.0000 0.9990 1.0000 1.0000

0.5 0.9960 0.8068 0.9640 0.9319 1.0000 0.9990 1.0000 1.0000

0.9 0.9960 0.8088 0.9590 0.9279 1.0000 0.9980 1.0000 1.0000

Notes: T denotes the sample size, while ρ is the autoregressive parameter. N(0,1) denotes the standard Normal distribution,
while S1-S4 are the distributions belonging to the Generalized Lambda Family shown in Table 1 of the paper. Higher rejection
frequencies indicate higher power. Results based on 999 simulations and 199 bootstrap samples. Tests are applied on the
residuals of an AR(p) model where p is selected with the Akaike Information Criterion.

Figure A2: Real GDP (% Annualized growth rate) – boxplot
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Notes: for each country the figure represents the sampling distribution of real GDP growth rate with a boxplot. The line in the
middle of the box is the median, while the dot is the sample average. The size of the box is proportional to the interquartile
range (IQR), namely the distance between the 75-th (Q0.75) and 25-th percentile Q0.25. The bottom (top) external line, known
as whisker, is drawn in correspondence of Q0.25−IQR (Q0.75 +IQR). Numbers outside the two whiskers represent the number
of observations lower (greater) than the bottom (top) whisker.
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Table C4: Symmetry test - Industrial Production

Skewness L-Skewness

Country ŜK r = 1 r = 1, . . . , 4 ŜKL r = 1 r = 1, . . . , 4

Canada -0.2173 0.0921 0.0150 -0.0275 0.1371 0.0631

France -3.7781 0.4665 1.0000 0.0028 0.9419 1.0000

Germany -0.1220 0.6957 0.0000 -0.0150 0.5185 0.0601

Italy -0.1400 0.7347 1.0000 -0.0045 0.8408 1.0000

Japan -2.3414 0.0931 0.0000 -0.0910 0.0180 0.0541

UK -0.2071 0.7207 1.0000 -0.0439 0.1812 0.5435

US -0.9273 0.0120 0.0000 -0.0595 0.0280 0.0000

Notes: Notes: the table shows the coefficient of skewness (ŜK) and L-Skewness (ŜKL) and the p-values of tests of symmetry.
The null hypothesis of the test is that the distribution of ∆rYt = ln(Yt/Yt−r) is symmetric, where Yt is Industrial Production.
We report the Bonferroni p-value for the joint null hypotheis that the distributions of ∆rYt for r = 1, 2, . . . are symmetric.

Hosking, J. R. (1990). L-moments: analysis and estimation of distributions using linear combinations of

order statistics. Journal of the Royal Statistical Society. Series B, pages 105–124.
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Figure A3: Industrial production (% Annualized growth rate) – boxplot
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Notes: for each country the figure represents the sampling distribution of the growth rate of Industrial Production with a
boxplot. The line in the middle of the box is the median, while the dot is the sample average. The size of the box is
proportional to the interquartile range (IQR), namely the distance between the 75-th (Q0.75) and 25-th percentile Q0.25. The
bottom (top) external line, known as whisker, is drawn in correspondence of Q0.25 − IQR (Q0.75 + IQR). Numbers outside
the two whiskers represent the number of observations lower (greater) than the bottom (top) whisker.
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