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Abstract

This paper provides a general framework to analyze rational learn-
ing in strategic situations where the players have private information and
update their private priors collecting data through optimal experimenta-
tion. The theory of statistical inference for stochastic processes and of
Markovian dynamic programming is applied to study players asymptotic
behavior in the context of repeated and recurring games, proving con-
vergence towards Conjectural equilibria, an opportune generalization of
Nash equilibria for this kind of strategic situations. Since the main bulk
of the literature on rational learning regards convergence towards equilib-
ria of repeated games, the main contribution of this paper is to argue for
rational learning in recurring games, providing dynamic foundations for
equilibria of the one-shot game. The analysis focuses on the problem of
non stationary environment and on the problem of the correct specifica-
tion of the stochastic law which regulates players’ observations. In this
way the paper shows both the limitations and the possibilities of rational
learning models in game theory, in particular explaining when and why
consistency rather than merging is the correct notion of learning in games.
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Bocconi, Cambridge, Genova and Roma universities. I benefit from discussions with Pier
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I would like to thank an anonymous referee and the editor for their useful suggestions.



“If a man will begin with certainties,

he shall end in doubts,

but if he will be content to begin with doubts,

he shall end in certainties”

Francis Bacon “The Advancement of Learning”, Book I, Ch. 5.

1 Introduction

1.1 Background

Can decision-makers learn to make equilibrium choices through repeated expe-
riences? How can be described the behavioral patterns associated to long-run
outcomes of dynamic processes of learning? What can be learned from non-
equilibrium explanations of equilibrium? Questions like these form the research
agenda and provide motivation to study learning models. These basic problems
are not distinctive of strategic settings, game theory however provides powerful
techniques to study agents out-of-equilibrium behavior.

The research agenda of this work is the analysis of rational learning models
versus bounded rational learning models. The primary goal of this paper is to
construct a general framework to discuss rational learning models in strategic
situations where the players have private information and update their private
priors collecting data through optimal experimentation. Its core is the explicit
derivation from a model of repeated strategic interaction of the suitable setting
to study rational learning, focusing the analysis both on Bayesian updating and
on optimal experimentation. This task is pursued using powerful tools taken
from the asymptotic theory of statistical inference for stochastic processes and
from Markovian dynamic programming, so that the proof of convergence to
equilibria is straightforward and natural. The work is organized in two parts:
the first is negative and through an example shows the difficulties of bounded
rational learning models, the second is positive and argues for rational learning
models pointing out how to solve the problems faced by this approach. The
paper shows how to construct stationary environments even when the players
are learning and then (both for repeated and for recurring games) proves the
convergence of rational learning processes to steady states characterized as Con-
jectural equilibria (Gilli [29]). The construction of the model, the results and
their proof allow a comprehensive discussion and understanding of when and
why rational learning is a fruitful hypothesis. In this way it is shown when and
why consistency rather than merging is the correct notion of learning in games:
when convergence towards equilibria of the repeated game is considered, then
merge of opinions in the Blackwell and Dubins sense is crucial (theorem 1), when
the focus is on equilibria of the stage game, then consistency in the statistical
sense is crucial (theorem 2). The main bulk of the literature on rational learning
regards convergence to equilibria of the repeated game, but very few papers an-
alyze the processes of convergence towards equilibria of the stage game, usually
assuming either myopic players or incomplete information. The hypothesis of



myopia is particularly ill suited to learning contexts, since myopic agents have
no reason to learn, while the limitation to incomplete information games ob-
scures the crucial role of stationarity and of consistency in recurring games, as
shown in section 5 and 6 of this paper. The main contribution of this paper
then is to argue for rational learning in models of recurring games, providing
dynamic foundations for equilibria of the one-shot game, via an explicit model
of repeated games.

1.2 Outline

How to model learning is the basic question faced by the literature in this field.
An obvious answer is through Bayesian updating. This means that

1. the agents have a well specified statistical model, which means

a set of signals correlated to s.o.n.

a likelihood function which regulates the probability of the signals
given the true s.o.n.

(e) a set of possible choices
2. the priors are updated using Bayes rule.

As Jordan [39] e Nyarko [53] have shown, the hypothesis of Bayesian learning is
not actually restrictive in the sense that any stochastic process of beliefs can be
generated as the outcome of Bayesian updating choosing the statistical model in
an opportune way. Instead, the truly important distinction is between rational
(or sophisticated Bayesian) and bounded rational (or naive Bayesian) learning
models. This crucial dichotomy depends on the subjective specification of the
likelihood function: in rational learning models the decision-makers use the cor-
rect function to update their beliefs, while in bounded rational learning models
the agents have an incorrect view of the random process that governs beliefs’
updating. The relationship between the actual situation and its subjective rep-
resentation by the learning agents is crucially important since the asymptotic
properties of stochastic processes, and thus the effectiveness of any learning
algorithm, are highly situation dependent (see e.g. Yamada [63]).

A classic example of naive Bayesian learning is fictitious play: Bayesian
learning results in fictitious play dynamics when the players have beta prior
distributions and analyze past observations as if their opponents’ play were
governed by a fixed, albeit unknown, probability distribution, even if actually
the players’ behavior is changing through time just because of learning (see e.g.
Eichberger [17] and Fudenberg and Levine [25] chapter 2). This case illustrates
some of the problems with this approach, in particular lack of convergence and
repeated foolish behavior, since the players do not change their assumptions on
the stochastic behavior of their opponents even when they face overwhelming



evidence that their model of the stochastic setting is wrong. Indeed in naive
Bayesian learning models the agents are updating their probability evaluations
but they are not learning since they are not changing their theories even when
they face increasing falsifying evidence.

In rational learning models the agents are learning about parameters of a
distribution through repeated application of Bayes theorem using a correctly
specified likelihood function. The rational learning approach faces two main dif-
ficulties. A first basic problem is that attempts to predict opponents’ behavior
can change the probability of future strategies and this influences agents’ learn-
ing possibilities, in particular the likelihood functions. Therefore the stochastic
process of strategies (and thus of signals) may be non stationary: in a learning
process there is every reason to suppose that the relationship between observ-
able and payoff relevant variables will not be stationary, even if the underlying
environment is stationary. And in a non-stationary environment it is not clear
if sequential revision of beliefs can lead to more accurate predictions and thus
to equilibria. This will be called the problem of non stationary statisti-
cal model. The second crucial problem is that the agents are given likelihood
functions which are a correct description of the data generating process resulting
when these likelihood functions are actually used. Since each agent’s specifica-
tion of the likelihood function is correct given her own specification and those
of all other agents, these situations are Nash equilibria of a grander game. Thus
rational learning models need to justify the assumption of perfect understanding
of the stochastic environment by the learning agents. Actually on one hand the
best argument for rational learning is its optimality, but on the other hand this
is also the best argument against it since it doesn’t explain how this optimal
procedure is discovered by the players. This will be called the problem of
correct theory.

The generality of the model used in this work allows to tackle the above
two main problems of rational learning. This paper provides sufficient but tight
conditions to obtain a stationary statistical model where it is possible to apply
the classic tools of stochastic dynamic programming (see e.g. Hinderer [32])
and of statistical inference for stochastic processes (see e.g. Basawa and Rao
[4]). The problem of correct theory is more tricky to face since by definition
the explanation of learning of the rational learning procedure is outside its
domain. Therefore it is not possible to offer such explanation explicitly, but
this paper provides a model where the players’ comprehension of their stochastic
environment does not look very demanding.

The results of this work allow to conclude that the reasons for using rational
learning models are essentially two. First, at the moment there exists no formal
precise definition of what is learning in a substantial sense: at the best there is
just a theory of beliefs’ updating, but naive Bayesian learning is unconvincing.
Second, the knowledge of possible rest points of rational learning processes is
useful when the precise characterization of substantial learning is unknown. As
I show in this and in related papers (Gilli [30] and [31]), such steady states are
situations where no player receives information contradicting her conjectures,
called Conjectural equilibria (CE). This is a notion of stable behavior for game



theoretic frameworks, which I have argued is the correct notion of equilibrium
for games with signals (see Gilli [29], and for related considerations Battigalli
[5], Gilli [26], Battigalli and Guaitoli [6], Battigalli et al. [7], Dekel et al. [14],
Kalai and Lehrer [41], Fudenberg and Levine [24], Rubinstein and Wolinsky
1995, Sandroni and Smorodinsky [59], Sorin [62]). The results of this paper
provide independent reasons to rely on CE as the right equilibrium notion for
games with private information.

1.3 Related literature

The problems outlined before are studied considering Imperfect Monitoring
Games (IMG). These are an effective generalization of strategic and extensive
form games, where the information received by each player depends on the
strategy profile played, so that there is a role for active learning policies. These
strategic models actually are normal form games with signal functions which
represent players’ private signals as function of players’ strategies. An overview
of recent developments on strategic settings with private signals is Kandori [43],
while the relationship between IMG and extensive form games is the object of
Gilli [27].

The most direct predecessors of this paper are Kalai and Lehrer and Nyarko
works on learning to play Nash and correlated equilibria (Kalai and Lehrer
[40], Nyarko [52]), although I consider a more general setting. Other related
papers are Jackson and Kalai [34] and [35], Jackson et al. [36], Jordan [37]
and [38], Koutsougeras and Yannelis [45], Nyarko [50], [51], [54] and [55]. These
works consider (incomplete information) strategic form games and (private) pri-
ors defined on the set of types and outcomes, showing when and how opportune
stochastic processes converge to Correlated or Nash equilibria of the (true) stage
game. The approach I follow in this paper is different since I allow for imperfect
and private monitoring, while I do not explicitly consider the players’ types:
this would only complicate the setting without adding any generality since in-
complete information games with private priors can easily be incorporated in
my setting. Recently there have been many important contributions which from
different perspectives stress the restrictions of the rational learning models & la
Kalai and Lehrer: Miller and Sanchirico [47], Nachbar [48] and [49], Sandroni
and Smorodinsky [60], Young and Foster [65]. Since these papers refer to Kalai
and Lehrer [40] rational learning model, their focus is on the hypothesis of ab-
solute continuity of players’ beliefs and on repeated games. In particular they
can apply their results to recurring games only assuming a zero discount factor,
which implies myopic behavior and thus eliminates any incentive to experiment.
My contribution in understanding restrictions and generality of rational learn-
ing is different and complementary, since I focus especially on recurring games
and consequently on the assumptions which guarantee consistency of asymptotic
beliefs, not on merging and thus on absolute continuity.

The paper is organized as follows. Section 2 illustrates the main points by
means of an example, showing the problems with bounded rational learning



models. Section 3 provides the basic definitions and the model of repeated
strategic interaction. Section 4 adapts Kalai and Lehrer main result to this more
general setting. Section 5 provides the detailed construction of the recurring
game. Section 6 studies the convergence towards equilibria of the stage game.
Section 7 concludes with final remarks.

2 An Example

The aims of this example are to show the role of Imperfect Monitoring Games
and of Conjectural Equilibria to study learning and to illustrate the problems
with Bounded Rational Learning Models

Consider the extensive form game of figure 1:

z,0 4,4 4,4 0,z

Figure 1

This situation can easily be represented as an IMG, where nature chooses
between the matrix L and R and each player receives a signal as a function of
strategy profile played. To simplify suppose that the signals coincide with the
outcomes, which are public knowledge (figures 2 and 3).
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Figure 2

Ay | Dy Ay | Dy
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Dy m? | m! Dy m? | m!
Figure 3

Suppose x = 0 and consider the strategy profile (D;, Ds,w), where w €
{L, R} is the unknown state of nature: this situation is never a Bayes-Nash
equilibrium since with common prior at least one of the players must choose A;.
However, suppose that player 1 believes w = L with probability less than 1/4
and sy = Dy with probability 1, that player 2 believes w = L with probability
greater than 3/4 and s; = D; with probability 1. Then for both players is
rational to play D;. Moreover the signals received by the players when they
play (D1, D) do not contradict their conjectures on the true state of nature.
Therefore this situation is a (Conjectural) equilibrium of the IMG: each player
is rational and there is no incentive to change behavior. Moreover the infinitely
repeated strategies (Dy, Dy) are part of a Conjectural equilibrium also for the
repeated IMG, even if there are many other Conjectural equilibria for positive
discount factor. Note that in equilibrium the players agree to disagree on their
subjective probability evaluations of the true state of nature (see Aumann [3]).

Now suppose that x = %—e with € = o(n?) and that the players are interested
in the outcomes of the IMG and not of the repeated game, i.e. consider a
recurring game.

Assume that the players are uncertain about the opponent’s mixed strategy
A; and the true state of nature and that they believe that the opponents’
play corresponds to a sequence of i.i.d. random variables with a
fixed but unknown probability distribution A; € A{A4;, D;}), i.e. the
players believe that the probability law which regulates the opponent’s behavior
is stationary. Therefore using Bayesian inference the players’ posterior has a
density with respect to the prior, proportional to the likelihood function they
use:

A (A7) (1= A (4;)"
Jo A (A7) (L= X5 (A7) i(d)y)
where ¢ is the number of times A; has been observed by ¢ in n observations,
A;(A;) € [0,1] is the probability j gives to strategy A;, and p; are i’s beliefs on

1)



opponent’s mixed strategy A; € A(A4;, D;). In particular suppose each player
has the following subjective probability evaluations

mNA) <P =p  wm(D)=3/4 pa(l)=1/4,

i.e. each player has an uniform distribution on opponents’ mixed behavior
(full support) and different prior on the true state of nature. From these uniform
distribution we derive the following players’ beliefs on opponents’ pure strategies
(the assessments using Fudenberg and Kreps [20] and [21] terminology):

Bi(4;) = / N (A duy (0y) = / Ni(Ay) dry = 1/2.

Suppose that both players have a zero discount factor. Then both players will
play A;, which is the unique myopic best response to the above evaluations.
Consequently they observe m® from which they infer the opponent’s behavior
but not the true state of nature. Hence they update u;(A;) € A({4;,D;}) using
(1) and therefore the second period beliefs are such that

Bild)=2/3 wm(D)=3/4 pa(L)=1/4,

Then both players will play D;, which is the unique myopic best response to
the above evaluations. Consequently they observe m! from which they infer the
opponent’s behavior but not the true state of nature. Then the third period be-
liefs are such that both players will play A;, starting the above iteration again.
Then for any n € N, the players’ behavior is a perfectly correlated alternation
between (A, A>) and (D;, Ds), such that the players’ will never agree on the
probability of the true state of nature. Two facts are worth noting. First, the
players’ strategies are perfectly correlated: even if they choose simultaneously
and independently, the correlation may endogenously develop as result of cor-
related observations and because of imperfect monitoring it can asymptotically
persist even if the agents play independently (see Lehrer 1991). Second, the
players behavior does not correspond to a sequence of i.i.d. random variables,
i.e. the players have a misspecified model of the stochastic law that regulates the
stochastic process of the signals they are observing. Note that in the long run
the finite sequence of observed signals {m!, m% m!, m®, -} has negligible prob-
ability according to the supposed stochastic model with i.i.d. random draws.
This notwithstanding the players do not change their model persisting in their
foolish behavior.

In this imperfect monitoring game, a player may try to discover the oppo-
nent’s behavior and the true state of nature through experimentation. In other
words a player with a strictly positive discount factor can rationally give up
some utility today in order to have useful information for utility maximization
tomorrow (see section 5). Surely this behavior is extremely important in learn-
ing contexts, however there are very few works where rational players use active
learning strategies to learn about the component game, since all the papers
mentioned in the introduction consider strategic form games where by defini-
tion there is perfect monitoring and thus no role for experimentation. Two



exceptions are Jackson and Kalai [34] and [35], however they limit their analy-
sis to Bayesian games. Fudenberg and Kreps [20] and [21] and Fudenberg and
Levine [23] consider experimentation in extensive form games, however they use
bounded rational learning models.

3 The Model

3.1 The Stage Game

Let A(:) be the set of all probability measure on (-) and ®;cnA(Y;) is the set
of all independent probability measure on x;cnY;. The players repeatedly play
a fixed stage game, described by an imperfect monitoring game.

Definition 1 An Imperfect Monitoring Game (IMG) is defined as follows:
G(’?) = (Na Sia Us, Uz)

where:

N is the set of players,

e S; is the set of player i’s pure strategies; moreover S := X;enS;, A; 1=
A(Sl) and A := ®i€NAi;'

e u; : A(S) = R is player i’s von Neumann-Morgenstern utility function,
so that: w;(p) = Ey[ui(s)], p€ A(S);

e 1, : S — M; is player i’s signal function: n;(3) is the signal privately
recetved by i when the strategy profile § played. The information on oppo-
nents’ behavior revealed by a signal m; depends on the functional form of
n; and on the strategy played by i. This means that the players have an
incentive to experiment to discover new information (active learning).

As usual the subscript —¢ denotes the js different from ¢ and (—i,4) a complete
profile.
To simplify the analysis I make the following structural assumptions:

Assumption 1 The analysis is restricted to the subclass of finite IMGs, that
is the sets N, S;, M; are finite.

Let p;[p] € A(M;) be the probability measure induced on M; by u € A(S):
then because of assumption 1 p;[u](m;) := Z{Sl'ﬂi(s):mi} 1(s).

Assumption 2 The signal is defined to contain aoll of the information player i
recetves about opponents’ choices. Therefore

pilsisp—i] = pilsi, i) = (s, p—i) = wilsi, ply).

This assumption means that each player receives her payoff after the stage game
and that each player knows her own move.



3.2 The Repeated Game

To allow learning and to analyze asymptotic behavior, suppose that the IMG is
played infinitely many times and that at the end of every period t each player
i observes a stochastic outcome m!, which is drawn from the finite set M;
according to the probability distribution p;[], where p € A(S) is the unknown
players’ behavior. To analyze such situation, I need to generalize the usual
notions defined for repeated games.

A history for player ¢ is an infinite sequence of elements of i’s signals; the
set of such sequences will be denoted by H;. Formally:

H; := |J H! where

HY := {0}, andforany t>1 H}:=H? x M"

where the superscripts t and (¢) denote period ¢ and the ¢-fold Cartesian product
of the sets respectively. Hence a history at time ¢ for player ¢, h, is the private
information received by player i in the periods up to t.

A pure superstrategy for player ¢ specifies the strategy to select after each
possible history. Therefore the set of pure superstrategies for player ¢, F3, is
so defined: f; € F; if and only if f; := {fH(hi™)}2, with fi:H!™' » S,
Define F} as the set of player ¢ times ¢ superstrategies: F} := {f}|ff : H'™' —
Si}. Thus F; = XienFY, or f; € F; if and only if f; : H; — S;. The
definition of mixed and behavior strategies in this context requires some care,
as was first noticed by Aumann [2]. In fact the set of pure superstrategies,
being the Cartesian product of countably many copies of S;, has the cardi-
nality of the continuum (see Kolmogorov and Fomin [44]). If we think of a
mixed superstrategy as a random device for choosing a pure superstrategy, then
the following construction follows immediately (see Aumann [2]): a mixed su-
perstrategy is a random variable from a sample space into the space of pure
strategies. Consider an abstract probability space (£2,.4,~), then player i’s set
of mixed superstrategies @; is defined as follows: ¢; € ®; if and only if
¢ = (#h)2, with ¢ : Qx HI™" — S; where ¢¢(-,h} ") : @ — S; is mea-
surable. The set of behavior superstrategies for a player i, B;, is similarly
defined, asking however for an additional restriction: b; € B; if and only if
by = (bh)g2, with bt : Q x HI™' — S; where bi(-,h!™") : Q@ — S; is measur-
able and b(-,ht™"),  bI(-,h]~") are mutually independent random variables
Vt # 7, Vht, hI. Therefore B; C ®;.

The outcome at time ¢t for player i, O!(f), is the message received by
i at t as a function of the strategies played at ¢ according to the superstrategy
profile f. The definition is inductive: OP(f) :=h? and

Vt>1 O(f) = mlf(0°(f), -, O ()] € Mi.

The sequence of outcomes for player ¢ up to period ¢ determines the outcome
path at time ¢ for player i, P/(f):



ViE€F, Vt>0 PNf):={0[(f)} sy € HY x MD.

=0

Finally, the infinite sequence of private histories faced by ¢ defines the outcome
path for player ¢:

Pi(f) :={Ol(H}Z € M := H) x M} x MZ x--- .

When f is omitted, these expressions should be interpreted as “realization” of
the mapping considered. For example P; € M i(oo) is a realization of the outcome

path P;(f).
The payoff function U; : A(F') — R for this repeated game is:

Ui(z) == E, iéﬁui(ft(Pt‘l(f))) for x € A(F) and 6 €[0,1).

Summing up, a Repeated Imperfect Monitoring Game (RIMG) is defined
by

Now suppose that the players’ horizon time is finite and denoted by 7. Then
the previous notation should be changed substituting T for co, and G7(d,9) :=
(Fy1,Upr, N) denotes the finitely repeated IMG. In the following analysis I
will also study players’ beliefs and behavior as T goes to infinity. To this aim
it is useful (see lemma 2 in the appendix) to consider an increasing sequence
of finitely repeated IMGs, obtained increasing the horizon time 7: G7(4,71) C
GT+1(8,m) C --- C G*®(4,n). To obtain this increasing sequence, I make the
following assumption:

Assumption 3 There exists a null element, denoted by (), which is added to the
elements previously defined to obtain: F;r C F;, and U; T = U;. This means
that 0 € M;, 0 € S;, n;(0) = O, that the generic element of the superstrategies
sets becomes: fir = (f2, -, fL,0,0,--) € F; and that w;(§)) = 0.

Remark: assumption 3 obviously implies ®; 7 C ®; and B;r C B;
Before further constructions, I sum up the notation introduced so far.

NOTATION
Expression Meaning
N set of players
S; set of player i’s pure strategies
A() set of probability measures on -
u; : A(S) = R player ¢’ utility function
S = M; player i’ signal function
H; = U2 H! set of possible histories for player ¢
F; = x4enF! set of possible superstrategies for player i
P;,, B; set of i’s mixed, behavioral superstrategies
O!(f), PHf) | outcome, outcome path at time ¢ for player i
U :A(F) > R ’s utility function for the repeated game.

10



3.3 The Stochastic Dynamics of Beliefs and Behavior

Let (F, F,x) be a probability space , where F is the set of pure superstrategies,
F the Borel g-algebra of F' and x € A(F) a generic probability measure on
F. Assumption 1 and the Tychonov product theorem (see e.g. Kuratowski
[46]) imply that F is a compact metric space in the product topology and
thus A(F) is a compact metric space if endowed with the weak topology and
with the metric being the Prohorov metric (see Billingsley [8]). Then consider
the probability space (Mi(oo),Hi,Pi). The construction of this probability
space involves some steps. Let P; € Mi(oo) be a possible outcome path for
player ¢ and define for each ¢t € N a mapping Z; : M (00) M; such that

Zy(P;) := O, that is Z; is the projection of P; on its ¢ lelement. Consider the
class HY ¢ on51sting of the cylinders, that is of the sets of the form {P; €
M (Z, (P, -+, Zu,(P;)) € C}, where k is an integer, (t1,---,t) is a k-
tuple in N and C belongs to the Borel o-algebra generated by Ml(’”) Then it
is possible to prove (see e.g. Billingsley [9]) that H¢ is a field such that H; is
the o-field generated by it. Therefore, since the Z; are measurable functions on
(Mi(oo),?—[i), if P is a probability measure on H;, then {Z;};cn is a stochastic
process on (M i(oo) , Hi, P). Now consider the probability distribution inductively

defined according to the following rules: ps© (hY) =1 and

ve>1 PEO(RIT p) = PLED (RIT1) [/ z(df)).
{FIPH(fi foi)=hi"" my}

It is immediate to check that P;’(tl), ey Py are a system of probability dis-
tributions satisfying the Kolmogorov’s consistency conditions. Therefore there
exists a probability measure Pi on H; such that the stochastic process {Z; }ien
on (M(Oo) H;,Pi) has the P ’(tl) ceey 5(t) a5 its finite-dimensional distribu-
tions.

Note that by definition of outcome path to calculate Pﬁ;(t) player ¢ should
know the IMG she is playing: the superstrategies actually played by —i de-
pend on the private information they receive during the play, which in turn is
a “structural” function of the superstrategies played. If ¢ is uncertain about
the game she is playing, then Pﬁ;(t) can be thought of as a conditional proba-
bility given G, and a probability measure on G, the set of all IMGs satisfying
assumptions 1 and 2, can be introduced. Because of assumption 1, for a fixed
number of players N and of pure strategies S, G = RV*% x RV* where for
(y',y") € G, y'(i, s) is the payoff to player 7 under strategy profile s and y" (7, s)
is the signal to player ¢ under strategy profile s. Therefore I can consider a prob-
ability measure p; € A(G) by referring to the probability space (R"™, B",p;),
where B" is the family of Borel sets of R™. Then I can derive the marginal
SO0t | py) = JoPi Y (ht| @) pi(dG). Therefore

;(t € A(H}!) includes both the structural uncertainty about the imperfect
monitoring game ¢ is playing, and the strategic uncertainty about opponents’

probability of hf, given p;:

11



behavior. In what follows I will omit p; since I intend to focus on strategic un-
certainty, but the analysis could trivially include structural uncertainty at the
cost of further complicating the notation.

Summing up, the objective situation as faced by player ¢ is described
by a stochastic process {O!(f)}22, with probability law P¢.

Now, consider the subjective situation of player ¢, given this stochastic
environment. Player ¢ wish to maximize U; w.r.t. ¢; € ®;, but she is uncertain
about opponents’ behavior ¢_; € ®_;. To maximize utility the uncertainty rel-
ative to the opponents’ random behavior ¢_; is equivalent to the uncertainty
about opponents’ pure superstrategies: see the example of section 2 and Pearce
[57] lemma 2. Therefore from i’s point of view the set of the states of the word
is represented by F_; and thus a Bayesian player ¢ is endowed with a prior
belief & € A(F_;), where the probability space (F_;, F—;,&) is constructed
deriving the marginal distributions from (F, F,z). This subjective assessment
may exhibit correlation, but this does not contradict the fact that the actual
strategy choices are independent. This correlation is due to i’s uncertainty: even
if ¢ believes that the opponents choose their strategies independently, she may
feel that they have common characteristics which partially resolve the strategic
uncertainty. Moreover as shown in example 2, the correlation may endogenously
develop as the result of correlated observations and because of imperfect mon-
itoring it can asymptotically persist even if the agents play independently (see
Lehrer 1991 and the example of section 2).

Consider the information player ¢ collects by playing. Her beliefs are updated
at time ¢ using this information, i.e.

P (f=i, fi)- (2)

Note that this information depends on f;, i.e. on i’s behavior. Moreover consider
f—i: even the opponents’ strategic choices depend on player ¢ superstrategy since

foio= LGSR = (P . 3)

As a consequence of expressions (2) and (3), player i’s beliefs depend on f;
for two different reasons:

1. f; takes part in determining the information that ¢ receives at each stage,
i.e. P} is a function of f;, as shown by expression (2). This aspect regards
the “informative links between periods”, that generate the possibility
of experimentation, i.e. of active learning behavior;

2. f; takes part in determining the information that ¢’s opponents receive
at each stage, i.e. P!, is a function of f;, as shown by expression (3). I
will refer to the second aspect using the label “strategic links between
periods” since it is connected to players’ behavior in repeated games.

During the play, ¢ is refining her information about opponents’ behavior
(passive learning), but the actual amount of information obtained depends on
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the superstrategy followed (active learning). For a fixed f; construct the natural
filtration of the stochastic process given by the outcome path:

FLilfi) = o(P{(f=i, £1)),

where ¢(X (w)) denotes the g-algebra generated by the random variable X (w).
Intuitively F¢,(f;) represents all the possible information about opponents’ su-
perstrategy that ¢ could collect at ¢ following the dynamic superstrategy f;.
In fact o(X (w)) consists precisely of those events A for which, for each and
every w, player i can decide whether or not A has occurred, i.e. whether
or not w € A, on the basis of the observed value of the random variable
X. Formally a filtration {F!,} is an increasing sequence of sub-c-algebras
of F_j, ie.  FLfi) C F2,(f;) C--- C F_;, and the natural filtration of a
stochastic process {O%(f;)}; is the filtration generated by it in the sense that
FLi(f) = 0(09, -, 0). Finally, define  F3(f,) i= 0(Uyen FLi(f1)) C Fos.
Then, for a fixed fi, Pi(f—i, fi) := {ONf-i, fi)}ren is a stochastic process
adapted to the natural filtration {F*,(f;)}, because by definition O!(f_;, f;) is
Ft,(fi)-measurable. Therefore for every t and for every A € F_; there exists
a version of the conditional expectation E[xa(f—:)|F%;(fi)], where x4 is the
indicator function for the set A. Indicate such a version with &![f;](A); then
& fi] € A(F_;) is a regular conditional probability distribution (Theorem 8.1 of
Parthasarathy [56]). As the notation stress, such a probability measure depends
on f;. This probability measure represents the updated beliefs of player i at
time ¢, given that she is following the superstrategy f;.

The discussion of this section can be summmarized in the following assump-
tion, where SUPPJ-] denotes the support of a probability measure:

Assumption 4 Bayesian rationality: In the RIMG
1. every player 1 € N chooses ¢; € ®; if and only if
3 € A(F_;): Vfi € SUPPlg)] fi € argmazsicr, Ee,Ui(f], f-i)-

2. every player i« € N updates her beliefs &; according to the following expres-
ston:

Vi€ F;, YAeF_;, VteN  Efil(A) = Elxa(f-i)|FL(f)]-

Remark: part 1 of assumption 4 is meaningful since U; is continuous and F;
compact, part 2 because of the existence of a regular conditional probability.

4 Convergence to Conjectural Equilibria of the
Repeated Imperfect Monitoring Game

The result presented in this section is a simple extension to RIMG of Kalai and
Lehrer [40] main result, and it is included for completeness.
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The notion of Conjectural equilibrium (CE) is meant to model a situation
where rational players have learnt everything they can learn given their access
to information in equilibrium. Rational players could be wrong in their conjec-
tures on opponents’ behavior because of lack of observations, but each player’s
conjecture on what is observable is correct and, although they have private in-
formation and private priors, players’ behavior and conjectures are mutually
consistent in the sense that what actually happen is coherent with each player’s
experience (see the example). A comprehensive discussion of this concept is in
Gilli [29]. Now consider the specification of this general notion for RIMGs.

Definition 2 A Conjectural Equilibrium for ¢« RIMG G*(4,7) is a super-
strategy profile ¢3 € ® such that for each player i € N, there exists a belief
& € A(F_;) such that for any superstrategy in the support of ¢; the following
two conditions hold

fi € argmazgcr, Ee Ul fir f-) (4)
i _ pi
P(Ezyfi) B P((i’—iyfi) (5)

where (x,y) denotes the product of the probability measures x and y.
Remarks:

1. (4) is a condition of dynamic Bayesian rational behavior, therefore very
different forms of behavior are coherent with this condition: learning and
teaching, rewarding and punishing, building reputation, and so on;

2. (5) is the equilibrium condition: each player has perfect foresight of the
stochastic process of her own signals as induced by the players’ equilibrium
behavior, while nothing is assumed about forecasts of out-of-equilibrium
signals;

3. a Nash equilibrium is a particular case of CE where there is perfect fore-
sight of opponents’ behavior in and out-of-equilibrium;

4. CE in repeated games are called Subjective equilibria (Kalai and Lehrer
[41)).

Given two probability measures o and f on the same o-field H, a is abso-
lutely continuous with respect to 3 if and only if VA e H B(4) =0 =
a(A) = 0. Moreover let ||-|| be the norm of the sup in the space of all probability
measures on the same o-algebra H;:  ||P! —Pi|| := supp,ey, |Pi(P) —Pi(P;)).

Theorem 1 Let ¢ and (&1,---,&n) be vectors of strategies representing the ac-
tual choice and the beliefs of the players. Suppose that for every player i, ¢ is
absolutely continuous with respect to &. Then players’ behavior will converge to
a Conjectural Equilibrium of the RIMG, in the sense that for every player i

||Pé§i,fi)('|Pzt) - f¢_i,fi)('|13it)|| —rt—s00 0 Pé¢_i,fi) —a.e; (6)
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PROOF: it follows from Blackwell and Dubins [10] main result and it is a version
of Kalai and Lehrer [40] main result for this more general setting: the details
are in Gilli [31]. ©

Remark: the hypothesis of absolute continuity is quite strong, but it is a
condition of rational learning, since when not satisfied players’ subjective
view of their stochastic environment is misspecified. In Kalai and Lehrer [42]
there is a comprehensive discussion of this assumption in connection with results
about merging. Recently there have been many contributions explaining why
this assumption is restrictive: see Miller and Sanchirico [47], Nachbar [48] and
[49], Nyarko [55], Sandroni [58], Young and Foster [65]. The problem is that in
this context absolute continuity is endogenous since we are asking for a property
which connects beliefs and behavior, which in turn are connected because of
optimization: there is kind of fixed point argument involved in the hypothesis
of absolute continuity of theorem 1, as expected in an assumption of rational
learning.

5 The Construction of a Recurring Game

In this section I want to study the inferential problem faced by a player who
wishes to learn opponents’ behavior in the stage game. To this aim, I need
to sterilize the strategic links that characterize the repeated games. This is
obtained constructing a recurring game (RG), a type of repeated interaction
involving different players at each time. We shall think of the stage game as
having N roles, and for each role i € N ther exists a population C; of agents,
who are eligible to play that role (see Jackson and Kalai [34] and Young [64]).

In this paper to construct a RG, I consider a specific model of anonymous
repeated interaction with random matching adapted from Fudenberg and Levine
[23], but the framework can easily be used to study similar models. In this
section I consider a finite players’ horizon T and consequently I truncate the
repeated game at 7. The reason to assume a finite T' will become apparent
in the following pages: if T is infinite, then proposition 2 does not hold and it
would be impossible to specify a rational learning model for recurring games.
In this section 7" will be omitted to avoid further complications in notation, but
the reader must be aware that in this section every variable depends on the
length T of players’ horizon. By contrast note that ¢ refers to a period t in the
life of the player, i.e. t € {0,---,T}.

To study the convergence, if any, to equilibria of the stage game we need to
explain why the strategic links are absent. Consider a RIMG where a population
with a continuum of identical agents with total mass one is associate to each
player. In every period there is a random matching of the agents randomly
drawn from different populations. Each agent recalls what happened in her
previous encounters without knowing anything about the experiences of her
current opponents. Thus within each population we can distinguish different
types according to their personal past history. Because of these hypotheses the
probability to be matched with the same opponents, and therefore the possibility
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of influencing their behavior, is negligible and this very unlikely event is not
detectable. Therefore there are no strategic links, while the informative links
are still present. Let G(n) be the component game.

The precise characteristics of the model (the matching model and proposition
2 are borrowed from Fudenberg and Levine [23]) are the following:

1. A population with a continuum of agents with mass equal to 1 corresponds
to each player of G(n), that is each population is isomorphic to [0, 1];

2. there exists a double infinite sequence of periods: ---,—1,0,1,--;

3. in each time in every population there are 1/T new agents, in each gen-
eration there are 1/T agents while 1/T agents of age T die: every agent
lives T periods and the mass of population is stationary;

4. in every period each agent is randomly and independently extracted from
her population, and with probability 1/7" is matched with agents of age ¢.

5. each agent of population ¢ in every period observes a private signal m;,
which is a function of the strategy profile played in that particular match-
ing, i.e. m; = n;(s);

6. the agents’ behavior can be described by the following function:
Vie N Vj; € [0, 1] fji : Hji - S,

where j; denotes the agent j € [0,1] of population ¢ € N. The agents
choose a pure dynamic strategy, if more than one superstrategy is opti-
mal, then one is selected according to some unspecified mechanism. This
notwithstanding the average population’s behavior is described by a mixed
superstrategy.

In this model the players rationally ignore the strategic links between pe-
riods, so that the only temporal connections are the informative links. Conse-
quently the superstrategy followed by i’s opponents f_; = {f.}1, is seen
by @ as a sequence of the stage game strategies, chosen by players acting on
the basis of information that ¢ can not influence. Therefore from 4¢’s point of
view f_;={s’,},. In this RG the behavior of player i’s opponents can be
represented as the following sequence:

fj—i = {S§_i}f:07 (7)

where j_; := [jp]ps, With jp € [0,1] and k € N \ {¢}. (An agent of) player i
knows that the sequence of opponents’ strategies is a function of their specific
past experience, but she can not distinguish the history characterising oppo-
nents’ types, because of the hypotheses on the information the agents have
when they are playing. Otherwise player ¢ would be interested in h;_, also, and
thus in opponents’ superstrategies. In other words, player i’s strategic uncer-
tainty regards the opponents’ choice of a superstrategy, that is the choice of
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a fj. € Fy for all k # ¢. But ¢ can not distinguish among different agents in
the same population: i’s actual opponents are the —i’s populations and thus
i’s uncertainty should regard the average behavior of opponents’ populations,
because it is the opponents’ average behavior which is payoff relevant. Aver-
aging among ji € [0, 1] for each k # 4, the sequence (7) of opponents’ strategic
choices becomes {At }T, € AUTY.

Therefore in this setting the set of the states of the word for player ¢ is
A(_Z;H) : player i faces the sequence of realizations {s;}7 ., that she imper-
fectly observes through the signal function #;, and from the succession of signals
{mt}E, she want to derive information on the true state of the world, i.e. on

the true unknown probability law {\ ;}Z, € AT

governing opponents’ population behavior. But, and this is the crucial prob-
lem, this probability law is non stationary, because in general \* ; depends
on t. This fact poses a very serious inferential problem to the player facing the
time series of the signals trying to predict the future behavior of the stochastic
process {st ;}1,. Eventually the problem could be unsolvable, since there could
be too few observations: the true unknown A, depends on ¢, but any agent
of player ¢ has only a single ohservation for each period and if there are no
links between past and future the problem is statistically unsolvable. In other
words there would be only T+ 1 observations to infer T+ 1 stochastic variables.
This is a very serious problem for rational learning models which use correctly
specified statistical models: if the likelihood functions are not stationary, then
there is no correct way to solve the statistical inferential problem and thus there
exists no rational learning model. To allow the players to solve this inferential
problem either we introduce some intertemporal restriction on the time series
in order to reduce its time heterogeneity or we give up the construction of ra-
tional learning models considering misspecified but plausible learning processes,
as usually done. Using Jackson et al. [36] terminology, rational learning in
RG requires a representation of the stochastic process of players’ behavior as
a learnable pattern, even if not necessarily stationary. To obtain this result, I
borrow the use of steady state assumptions from Fudenberg and Levine [23].
Proposition 1 shows that the assumption of a steady state in the updating pro-
cess of each population’s average history is sufficient to generate a stochastic
process which is extremely well behaved: the succession of opponents’ strategies
faced by 7 becomes an exchangeable sequence of random variables, and thus De
Finetti theorem applies and the stochastic process of opponents’ behavior has
an unknown but time invariant probability law A_; € A_;.

At each time ¢ it is possible to associate to each history hj the percentage
of agents in populations & having experienced that particularly history. If we
indicate such percentages by 6% (hy), with 6% € A(Hy), this gives the proportion
of types hi at period t in population k¥ € N. Note that 6" € @;enA(H;)
depends on the ¢ played and thus I will write 6[¢)].

Proposition 1 For every ¢ € ®, if 6![¢] is independent from t, then the true
A is also independent of t.
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PROOF: see the appendix. ¢

Counsider the dynamic law d : @;enA(H;) = ®ienA(H;), which regulates
the updating of the average experience in the populations for a given super-
strategy profile ¢, where d[f];(h;) indicates the fraction of population ¢ with
history h; after the matching, given that the populations’ average history was
6: dl6];(h?) = 1/T

dlf]i(hi,ni(si,s-4)) =0, if Vf; € SUPPl¢;]  s; # fi(hi)
dlfli(hiymi) = 8;(hs) Y dilfi) 3 [T 6 (s6)]  otherwise,

{filfi(hi)=s:} {s=ilmi(fi(hi),s—i)=m:i} k#i
where 8} (s;) is defined according to equation (8). Note that a steady state of
the updating process of populations’ average experience is a fixed point of d.
Now it is possible to conclude that such a steady state exists.

Proposition 2 In RG, for every finite T and for every ¢r € P, there exists
a steady state 07 € A(Hr) of the updating process of the proportion of private
experiences, and therefore a corresponding stationary 07(ér] € A.

PROOF: see the appendix. ¢

Remark: this result requires T finite, otherwise the fixed point does not exist;
for this reason I should first consider T finite, and then take the limit for T — oo
before of considering ¢’s asymptotic behavior.

Now consider player i’s conditional beliefs at time ¢, £[f;] : Hf —
A(F_;). According to lemma 1 (see the appendix) it is possible to state that
for every player’s beliefs ££[f;] there exists a sequence {3, [f:]}7_, such that

Vt, Vr ByTIfi]: HE x HI_ = A(S;_,). (8)

7

Averaging as j;, takes values in [0, 1] and knowing that the agents play indepen-
dently, equation (9) becomes

Vi VT BYT[fi] HEx A(HT,) — A(A).

This means that at time ¢ player i’s forecasting of opponents’ behavior at
7 depends on their average experience at 7. Now if we consider a steady state
in the space A(H_;), i.e. a constant 8_; € A(H_;), and the players are aware
of it, then it is possible to model player i’s beliefs as a sequence of probability
measure on opponents mixed strategies, conditional to ¢’s information :

WA HE = A(AL), where Vr l[f] = 67 [£:)(0-,).

This means that in a steady state the average behavior of a population at time
T does not depend on its average history at that particular time, and thus when
the players are aware of this their beliefs on this average behavior do not depend
on opponents’ experiences but only on personal information. Note that even in
this stationary case the informative links between periods do not disappear.

This discussion can be summed up in the following assumption, which ac-
cording to proposition 2 is meaningful:
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Assumption 5 Rational learning: in the recurring game the players solve
their inferential problem about other populations’ strategic choice believing to
be, and indeed being, in a steady state O € A(Hp). Thus player i’s beliefs are
modelled through the following sequence of conditional probability measures

pilfi] s HE = A(AL), where V7 pl[fi] == BUTIfi1(0-5).

These beliefs are updated using the correct likelihood function, i.e. the multino-
mial distribution.

Remark: Assumption 5 is the hypothesis of rational learning for the recurring
game. In particular according to this assumption the players believe to face, and
indeed are facing, a fixed time invariant probability distribution of opponents’
strategies 6" .7 € A, being uncertain of what the true distribution is. In
other words this assumption guarantees that the stochastic process of signals
observed by each player is exchangeable and thus learnable: the players apply
De Finetti representation theorem to make statistical inferences. Note that this
assumption actually has two parts: the first states that the stochastic process of
opponents’ strategies is stationary, the second that the players are aware of this
stationarity. Both parts are necessary to define players beliefs as uf € A(A_;)
and to update them using the multinomial distribution.

6 Convergence to Conjectural Equilibria of the
Imperfect Monitoring Game

To study players’ asymptotic behavior I should let players’ lifetime to go to
infinity, and then consider players’ behavior in the last periods of their life.
The analysis is complicated by the fact that the existence of a steady state -
and thus of a well defined inferential problem - depends on T finite, while the
analysis of players’ asymptotic behavior requires a T big enough; this is the
reason to consider a double limit: first T — oo, then t — oo. This approach is
justified by lemma 2 in the appendix, which uses the fact that by assumption
3 {G%(§,n)}r is an increasing sequence of games or, using Fudenberg and
Levine [22] definition 3.2, that GT'(d,7) is a restriction of G*°(§,7). Lemma 2
implies that the limit game and the infinitely repeated game are “equivalent”.
As a consequence I can identify G*°(d,7) with the limit game for 7" — oo and
I will omit the index oo to mean a limit point for T — oco. Therefore when I
speak of a limit point of a sequence, I mean as t — oo, given that T has gone
to infinity.

At time ¢ player ¢ has observed ¢ signals mj,---,m}, which is a partial
realization of the stochastic process {n;(s’;,sf)},, that depends on a fixed
time invariant probability distribution of opponents’ strategies. The aim of the
following constructions is to reduce this complex inferential problem to a simpler
standard statistical decision problem with a set of possible states of nature, a
set of actions, an observable random variable and a well defined ordering on
the set of possible outcomes. In what follows I consider each probability space
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endowed with the topology of the weak convergence in measure. Let construct
in the usual way the probability space (A_;, B_;, ;) where B_; is the Borel
o-field generated by A_;. Player i at each period t observes a signal which
can be thought of as the realization of the stochastic process formed by the
following sequence of random variable defined on an abstract measurable space
(A mb:QxS; = M;, whereml(w,s;) is player ¢’s signal received at t
when she plays s;. The probability law of this stochastic process is determined
by the following random variable:

pPi A—i X SZ e d A(Ml), i.e. P(mf = ml) = pi(mi|si,)\_i).

If we fix player i’s strategy s;, then the following stochastic process is ob-
tained:  mmifs;]: @ = M; with probability law determined by the following
random variable: p; : A_; — A(M;), where p; is defined as follows:

VA, €A VmpeM;  pi(mt[si] = miA_) = > Ai(s_q).

{s—ilmi(ss,5-:)=m;i}

Therefore A(M;) is the “parameter space”, such that for every p;, € A(M;)
there is a probability measure P, on A under which the {/!} are independent
with common distribution P, ({w € Q|t[s;](w) = m;}) = pi(mi|r=;). Now
construct the probability space (A(D;),S_;, fi;) where S_; is the Borel o-field
generated by A(M;) and VA € S_;  pi(A4) = pi({A=i|pi(m[si]|A-i) € A}).
Lemma 3 in the appendix shows that j; € A(M;) is a well defined probability
measure. Define Py, as the probability measure induced on the sample path by
the prior ji; € A(M;) such that VA € A Py (4) = fA(Mi)Pﬁi (A) i (dp;).
Finally to construct a statistical decision problem I need a well defined ordering
on the set of possible outcomes. According to assumption 2 the signal contain all
of the relevant information, hence the problem of player i’s optimal behavior can
be addressed considering just her uncertainty on A(M;). For any a_; € A(S_;),
define v;(s;, pi(+|85,—;)) := us(ss, —;). Thus v; : S; x A(M;) — R, and this
payoff function is well defined since assumption 2 guarantees that wu;(s},a’ ;) #
(s, a)) = pi(-|sh, o) # pi(-|sY, ;). In this way to each player
i at each time t can be coupled a well defined statistical decision problem (see
Ferguson [18]), where:

e A_, is the set of states of nature,

e S; is the set of actions,

o S; x A(M;) is the set of outcomes,

e v; is the utility function defined on the set of outcomes,
e M; is the set of observable random variable,

e p; € A(M;) is the unknown probability law of the random variable 1nt[s;] €
M;, that depends on the true unknown state of nature A_;,

20



o fl:H! — S, is the set of strategies.

If we consider the dynamic problem then each player ¢ faces a sequential statis-
tical decision problem, where at each time she should decide whether and how
to experiment in order to collect information about the true unknown state of
nature 8, € A_;. This problem can be solved using the techniques of Marko-
vian stochastic dynamic programming (see Hinderer [32]). Preliminary is the
construction of the relevant filtration for the Bayesian inferential problem. Let
fi = {58!} be fixed and consider the following stochastic process: {m¢[5]}.
Denote the natural filtration generated by this stochastic process by {S%,(fi)}
where  S!(f;) == o(mI[5]] : T =1,---,t). By construction, {mf[5!]} is a
stochastic process adapted to the filtration {S%;(f;)}. Then, for every fixed
superstrategy f; and V¢, there exists a version of the conditional expectation

ELf(A) := Elxa(p)ISLi(f)] VA€ S 9)

Note that (10) defines a regular conditional probability distribution (see
Parthasarathy [56]). Moreover by definition it[f;] is a function of f;, because
the information player ¢ can collect during the play depends on her dynamic su-
perstrategy (active learning). With the obvious abuse of notation, the objective
function of player ¢ can be written as follows:

T
B Ui(fi,Aoi) = B Y 8'0i(FH(BH(D), piCIEH(PHE)) Ai) =2 Ep Vil fi, pi)-

t=1

In our model of recurring games individual actions provide information about
the opponents’ behavior as well as current reward. Therefore usually there is a
trade-off between current reward and information which may be useful in the
future. This problem can be described using the techniques of stochastic dy-
namic programming. Since the only connection between periods occurs through
the beliefs, the decision problem of player ¢ can be formulated as a Markovian
stochastic dynamic programming problem with state space A(A(M;)). There-
fore the value function V;(-) is the solution of the classic Bellman equation (see
Blackwell [11], Theorem 7 and in general Hinderer [32]):

Vi(iis) = mawses; [(1=0)Epvil(si, pi(-[55,02,)) + 6 > ps(milss, 0-) Vi (-|mi))]

mq

where fi;(-|m;) is the posterior given the signal m;. Two of the most influential
papers on this topic for situations with one decision maker are Easley and Kiefer
[16] and Aghion et al. [1]. Unfortunately their results are not directly applicable
to game theoretic contexts (the following notation is mine). In particular Easley
and Kiefer assume (Assumption A.4) that the decision maker belief has a density
continuous in m;, s;, A_; and that the supports of these densities are the same for
all (s;,A_;) € S; x A_;, hypotheses generally not satisfied in a game theoretic
framework. On the other hand Aghion et al. assume (assumption A.2) that
the signal function is continuous in (s;, A_;), which is not true in my model.
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Luckily using the formal tools of their appendix it is not difficult to show that
their approach can be applied to the problems I study in this paper, as I do
in lemma 6 in the appendix proving that asymptotically a rational agent will
maximize her short run utility. According to this theorem the dynamically
optimal choices of the players, as t goes to infinity, are going to maximize their
best forecast of their short run utility. This happens because, while the benefit
to increase information is diminishing, the experimentation costs in terms of
unobtained short run payoff remains constant. Therefore eventually the short
run utility maximization becomes predominant.

Then using these tools I can prove the convergence of players’ behavior to
a CE of the component game, using a classic result on consistency of Bayes
estimates.

A strategy profile is a CE of an IMG if the signals induced by such a profile
do not contradict the players’ beliefs that rationalize their choices.

Definition 3 A Heterogeneous Conjectural Equilibrium for an imperfect
monitoring game G(n) is a strategy profile X' € A such that for each player
it € N, for any strategy in the support of X, there exists a belief p; € A(A_;)
such that the following two conditions hold

8; € arg maws;ui(si, ts) (10)
Vm; € M; pi({A—i € A_i|pi(malsi, A=) = pi(mylsi, AL} = 1. (11)

Remark: This definition of CE is weaker than the usual one, since it allows
different beliefs to be used to rationalize each pure strategy in the support of
0;. As theorem 2 will show, this is the opportune notion for model of recurring
games where players are randomly matched with one another and observe only
the results of their own match.

Theorem 2 In the recurring game if the players’ prior beliefs gives strictly
positive probability to any possible opponents’ strategy, then with Py, probability
one all limit points of the players’ dynamic choices belong to the support of an
Heterogeneous Conjectural Equilibrium of the component game.

PROOF: see appendix B. ©
Remarks:

1. in each population the agents play pure superstrategies, nevertheless the
convergence is to HCE in mixed strategies. According to the random
matching model, different agents in the same population play different
pure strategies because of different experiences, even if any individual
pure strategy is justified by a belief that is not falsified in equilibrium;
thus an HCE is obtained averaging among the agents in each population;

2. the weak topology used in this paper has the fewest open sets of any
natural topology, so it is fairly easy for a Bayes’ estimates to be consistent;
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3. the results on the consistency property of Bayes’ estimates applies to the
recurring game without further conditions both because the priors have
full support and because the game is finite. Hence there are not the
inconsistency problems of the infinite dimensional case: if the underlying
probability mechanism allows an infinite number of possible outcomes,
then the Bayes’ estimates can be inconsistent, even if the true state of
nature belongs to the prior’s support (see Diaconis and Freedman [15] for
a comprehensive discussion on the consistency of Bayes estimates);

4. for recurring games the correct notion of learning is consistency, while for
repeated game is merging. For a thoughtful discussion of the relations
between these two notions of interpersonal consensus see Schervish and
Seidenfeld [61].

7 Concluding Remarks

The main results of this paper regard the convergence of rational learning pro-
cesses towards Conjectural Equilibria. But I don’t believe the relevance of this
paper regards this equilibrium concept. I believe, instead, that the core of the
paper is the generality of the approach in the construction of rational learning
models. This generality has many interesting implications. First, it allows to
specialize the results to more specific settings. For example, the theorems of this
paper show that rational learning processes converge to Self-Confirming Equi-
libria in extensive form games and to Nash Equilibria in normal form games.
Second, it clears up the crucial distinction between Bayesian learning (assump-
tion 4) and rational learning (assumption 5). Finally, it makes possible to discuss
the main problems of rational learning, i.e. the problems of non stationary en-
vironment and of correct theory. This is the specific topic of these concluding
remarks.

The first half of assumption 5 regards the problem of non stationary en-
vironment. Although the assumption is restrictive, it is not unreasonable in
this context. Indeed the inferential problem posed here is a classical induction
problem, for revision of beliefs is just the process of learning from data and it
is well known that induction is sensible only if the universe is stationary: “If

. the past may be no rule for the future, all experience becomes useless and
can give rise to no inference or conclusion” (Hume [33]). I am not claiming that
this assumption is realistic or that this is the true way used by the agents to
learn. What I want to emphasize is that it is necessary to make this kind of
assumptions if we want to study rational learning in this context. Otherwise
the inferential problem is statistically unsolvable and the same assumption of
rational learning would prevent the players from learning, giving rise to a mu-
tually contradictory model. As Hume himself argues, it is not possible to show
empirically that the assumption of stationary environment is true, it must be
assumed a priori: “It is impossible ... that any arguments from experience can
prove this resemblance of the past to the future, since all these arguments are
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founded on the supposition of that resemblance” (ibidem). In other words, if
we refuse to assume stationary stochastic processes at some level and at a cer-
tain degree, we need to change the way the players learn, but until inductive
and rational learning is considered, some form of intertemporal restriction is re-
quired. Otherwise, if the original opinions are based on independence of signals
any possibility of learning through experience is excluded, because the latter, by
definition, requires that the original opinions will not be modified on the basis
of any observation of results. This general principle is at work in the context
of repeated games also: interdependence of observations is obtained since op-
ponents’ superstrategies do not change over time and the players recognize it
since we assume absolute continuity of actual behavior with respect to players’
beliefs.

The second half of assumption 5, however, leaves us with the uncomfort-
able hypothesis of players’ perfect comprehension of their stochastic setting,
the problem of correct theory. In other words the assumption that the stochas-
tic environment is stationary and that this is known, leaves it open to ask how it
can be learned. But this is not a question that can be solved explicitly within a
rational learning approach since by definition rational learning takes for granted
that the players perfectly understand their stochastic environment. Note more-
over that even naive Bayesian learning does suffer from the same problem, since
the bounded rational approach doesn’t explain how the agents have constructed
their model of their stochastic environment, which is anyway hopelessly incor-
rect and systematically falsified by the available evidence. Anyway the problem
is open for sure, although I think that it is more reasonable to assume that
the players know the general characteristics of their stochastic environment,
rather than the exact specific behavior of their opponents as in Nash equilibria,
or that they are systematically wrong in their perceptions of the qualitative
characteristics of their environment as in bounded rational learning models.

To provide a provisional answer to the general question of when rational
learning is the correct approach to use, I propose the following interpreta-
tion. Under assumption 5 the world described by a recurring game can be
thought of as a society where a standard of behavior for each possible role
(player /population) has evolved through time, and the members of this society
wish to learn these standards in order to maximize their lifetime utility. Even
if the members of this society would know the actual laws that generate these
standards through the individual self interested behavior, they can not have all
the information required to calculate them at each temporal stage: their only
chance of learning then is the past as a guide for the future. Therefore they
approach this problem in a inductive way. Personally I think that it is more rea-
sonable to assume that the players perfectly know their stochastic setting when
this is stationary, than to assume they have an incorrect model which is never
revised even when they face overwhelming falsifying evidence. More generally,
the model of this paper shows that a rational man must have some theoretical
views about the nature of the things he is learning about, for example whether
the stochastic process of observable events is exchangeable. Then the problem is
how to model the revision of these theories, a topic for future works. Until such

24



model is not available, I think the best approach is to avoid clearly incorrect
theories, i.e. to use a rational learning approach.
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A Convergence to Conjectural Equilibria of the
Imperfect Monitoring Game

First consider the two propositions that allow to construct a learnable pattern
for the recurring game.

Proposition 3 For every ¢ € ®, if 6'[¢] is independent from t, then the true
X is also independent of t.

PROOF: fix ¢. At each time ¢ the statistical distribution of possible plays of s},
for population k € N is given by 6}*[¢;], which is uniquely defined as follows:

Ok [6x)(sn) = > aelfe) > 6w, (12)

{frlfe(hz)=sz} {Rx|fr(hr)=sz}

with 8} [¢] € Ax. For T finite, then also Fr and Hr are finite and thus the
summations in (9) are well defined.

By definition in such a context 6}/[¢r](sk) is the true probability of si be-
ing played at time ¢t in a match of the anonymous repeated game with random
matching, given that the population of player k is following the average/mixed
superstrategy ¢r. Therefore equation (9) implies that if V& 6} is independent
from ¢, then even the actual probability distribution of play #'t[¢] € A is inde-
pendent from t. ©

Now we prove that such a steady state exists.

Proposition 4 In RG, for every finite T' and for every ¢r € P, there exists
a steady state O € A(Hr) of the updating process of the proportion of private
experiences, and therefore a corresponding stationary 0%7(ér] € A.

PROOF: let T be finite and remember that by assumption 1 G(5) is finite. The
steady state is a fixed point of the function d, but this function is polynomial
and thus trivially continuous. Moreover by definition A(Hr) is a compact and
convex set. Therefore the usual fixed point theorems imply that there exists
a fixed point of d and thus a steady state f7 € A(Hr). Then proposition 1
implies that VT finite, V¢, there exists a stationary .(¢r) € A. ©

Lemma 1 provides a useful alternative representation of mixed strategies.

Lemma 1 Every time t mized strategy ¢t : Q x Hit_1 — S; can be represented
by a function ¢%: HI™' — A(S;), with the obvious abuse of notation.

PROOF: see Chakrabarti [13], lemma 3.2 ©
Now a result crucial to connect the limit game with the infinitely repeated game.

Lemma 2 The following expressions hold:

1. Ure Hir=H;, Uro Fir=F, U, ®ir = ®;;
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limr_ o0 Ui = Uy

for each limit point 8., of {67 }r, 0.

o €A
for each limit point p; oo of {ftiT}r, thico € A(A_;);

for each limit point ji; oo of {ftiT}r, fi,0 € A(A(M;));

S ™ e e

if ¢ are er-equilibria of GT(8,1) with e — € and ¢ — ¢, then ¢ is an
e-equilibrium of G*(8,n). Moreover if ¢ is an e-equilibrium of G*(3,n),
there exists sequences {¢r} and {er}, with ep — € and ¢7 — ¢, such that
o1 is an er-equilibrium of GT (4,n).

PROOF: expressions 1 and 2 are an immediate consequence of assumption 3.
Moreover each limit point considered in the lemma exists, because all the sets
involved are compact. Therefore expressions 3, 4 and 5 follow trivially from
A, A(A_;) and A(A(M;)) compactness (in the weak topology). Finally note
that U, r is continuous at infinity in the sense of Fudenberg and Levine [22]
definition 4.1, that is: limr—eo sup|Uir(fr) — Uiz (fr)] =0 for all fr, fr
with the first T strategies equal. Therefore proposition 6 of the lemma follows
from Fudenberg and Levine [22] Limit Theorem. ©

Now a result of logical consistency for the construction of the proof of con-
vergence.

Lemma 3 ji; is a well defined probability measure.

PROOF: i; is a well defined probability measure if
VAe S_; {/\_Z|ﬁl(ml[81]|)\_z) S A} e B_;

but this is implied by the facts that S_; and B_; are the Borel o-fields generated
respectively by A(M;) and A_; and that g; is linear and continuous in A_;. ©

The following two lemmas are well known and therefore their proof is omitted
(see e.g. Chung [12]).

Lemma 4 For every f; € F; and for every A € S_;, the stochastic process
{i4[fi1(A)}s is a dominated martingale relative to ({St,(fi)}, fi)-

Lemma 5 The following results hold for all i € N and for each f; € F;:
VAe S_; PE)(A) =m0 B°[fi](4) Py, ae.
VAe S [ [fil(A) = ElxalSZ(f)] - Pp ae.
i[fi] =imoo B°[fi]  weakly and P, a.e.
Then the crucial lemma for convergence to equilibria of the stage game.

Lemma 6 For all players i € N let f; = {st}. Then with Py, probability one
all limit points of { fi} mazimise Epeo[s,]vi(ss, pi(-15:,0";))-

i
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PROOF: see Aghion et al [1], theorem 2.5. Note that it is possible to apply
this theorem because in this setting v; is continuous in (s;, p;) and assumption
(B) of p.644 is also satisfied because F; is compact in the product topology
(by Tychonov product theorem) and U; is continuous in f;. Now consider the
signal function: #; is defined on S; x S_; but it can be extended to the domain
S; x A(M;) in the following way:

A ni(8) if (si, pi) = (81, pi(-]5:,05_,

M (8, pi) = { X( : otl(lerwis)e ( . )
where §;_, is the probability measure assigning point mass at 5_; and X is a
null element. Then it is immediate to see that 7; is Borel measurable in (s;, p;)
and it is easy to check that this is all I need for the proof of theorem 2.5 in

Aghion et al. [1] (see theorem A.4 and A.6 in the appendix). ©
Finally the main result on convergence to CE of the IMG

Theorem 3 If i; € A°(A(M,)), then in the anonymous RIMG with random
matching with Py, probability one all limit points of the players’ pure super-
strategies belong to the support of an Anonymous Conjectural Equilibrium of
the component game.

PROOF: fix a generic ¢ € N, consider an optimal f; € F; and let §; be
a limit point of f;. Because of assumption 1, there exists a finite time
such that, possibly along a subsequence, Vt, > £ sf" = §;. Counsider a
subsequence converging to 5;: under the assumptions done, for each possible
9, € Ay, {ml [sf"]}tnzf is a sequence of independent random variable
with unknown common distribution p;. But then we are in the classical case
of Bayesian inference: (A_;,B_;) 1is the space of probability related to the
state of nature, {m}"[s{"]}, >; = {Mmi"[5]}, >; is a sequence of finite valued
random variable (“the observations”) defined on an abstract space (€2,.4). The
probability law of mf" Vt, > t is the following unknown random variable:
pi s A — A(M;), where A(M;) is the “parameter” space, such that for every
pi € A(M;) there is a probability measure P, on A under which the {i}} are
independent with common distribution

P ({w € Qmglsi](w) = mi}) = pi(malA=s).

Therefore under each A_; € A_; the {rh}"[s{"]}, ; are identically and indepen-
dently distributed with common distribution p;(-[A_;) and fi; is the prior on the
Borel o-field of A(M;), S—;.

Now define j5; := p;(-|6"_;) for the true §'; € A_;. Then we know from the
classical theorems on the consistency of the Bayes’ estimates (see e.g. Freedman
[19] theorem 1) that if M; is finite, then (p;, ;) is consistent if and only if
pi € SUPP[ji;]. Consistency here means that the conditional probability ji![f;]
will converge weakly to a °[f;] (lemmas 4 and 5) such that

pPlfild{pi=pi}) =1 Ppae.
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By assumption fi; € A°(A(M;)) and thus (p;, f1;) is consistent. But this means
that a.s. each limit point 5; of f; belong to the support of a CE because by
definition of fi; there exists a p; € A(A_;) corresponding to °[f;] such that:

pi({A=ilpi(-15i, A=) = pi([5:,62)}) =1 Ppae.
Moreover lemma 6 and the definition of v; imply that with P, probability one
3; € argmax ui(-, ).

Finally note that since by definition Py, (A4) = [, P, f1i(dp;), then P, (4) =1
implies P, (4) =10
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