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Oligopoly model with interdependent preferences:
existence and uniqueness of Nash equilibrium1

Marco F. Boretto, Fausto Cavalli and Ahmad K. Naimzada

Abstract

We propose a model to describe and study the effect of social interdependent prefer-
ences in a Cournot oligopoly based on a game in which the utility functions of firms
depend on a combination of weighted profits of their competitors. If social interaction
is neglected, the model reduces to the classic Cournot game, diverting from it as the
role of social interaction becomes more and more relevant. Several synthetic measures
are proposed to summarize the overall behavior of the agents and some configurations
characterized by particular interactional structures are presented. Finally, the study
of the well-posedness of the proposed framework is investigated, in terms of the ex-
istence and uniqueness of Nash equilibria. To this end, we generalize the conditions
under which the existence and/or uniqueness of Nash equilibrium in classic game is
guaranteed for particular Cournotian oligopoly models without interdependent pref-
erences. In particular, we focus on two families of oligopolies, respectively consisting
of “concave” oligopolies and oligopolies with isoelastic demand function.

Keywords: Cournot Game, Preference interdependence, Network, Nash
Equilibrium, existence and uniqueness
JEL: D43, C62, C70

1. Introduction

Competition among firms in an oligopolistic market is inherently a setting
of strategic interaction. For this reason, the appropriate tool for its analysis
is game theory. In Cournot games, the players are the firms, each firm’s set
of simultaneous actions is the set of its possible outputs and each firm’s utility
is represented by its profit, namely players compete to achieve the maximum
possible profits [23, 14]. However, the economic literature also presents the-
oretical, empirical and experimental contributions that lead to reconsider the
classic Cournot model, mainly for two reasons. First, classic game theory, and

1The authors are indebted to Prof. Paolo Bertoletti for his invaluable comments and
suggestions, and to the Professors in the Evaluation Committee for their comments during
the dissertation of the PhD Thesis of Dr. Marco Boretto. Both contributions helped to
improve the quality of the present contribution, which belongs to a research strand we are
pursuing on oligopoly modeling with interdependent preferences. Subsequent research topics
on the subject will deal with the characterization of the properties of the Nash equilibrium
and its comparative statics.



so Cournot games, generally sets on the fundamental hypothesis that agents are
self-interested, i.e. aim to maximize their own material payoff and do not take
other’s state into consideration. According to this assumption, the theory pre-
dicts that selection forces favor absolute optimization (or rational) agents [12]
and that a different behavior from selfishness is doomed to extinction. Many
authors have argued these assumptions are not realistic and poorly descriptive
of an oligopolistic market, introducing instead the idea that it is interdependent
rather than absolute performance pivotal in the long run survival [1] and that
reality seems to suggest that agents acting in an oligopolistic market may not
just act in a selfish manner. Second, the classic game theory analysis predicts an
equilibrium outcome that rarely emerges in the experimental literature where
agents, instead, agree on equilibrium outputs that lie in an interval ranging from
the competitive (Walrasian) to the collusive (monopolistic) equilibrium. Ear-
lier experiments suggested that the strategic choices fall in the interval between
the Nash and the competitive equilibrium. Among the different experiments
on Cournot oligopoly that obtain this result, it’s worth mentioning those from
Apesteguia et al. [3, 4] and Offerman et al. [20]. However, in subsequent exper-
iments in which the number of stages of the game was significantly increased, it
was shown that the strategic production outputs gradually decrease towards a
collusive equilibrium, without even stop at the Cournot-Nash equilibrium. For
example, Friedman et al. [11] offer an interpretation of how groups of subjects
can learn their way out of dysfunctional heuristics and suggest elements for a
new perspective on the emergence of cooperation.

The literature on industrial and management economics offers also examples
of strong intra-group competitions in which one group has the objective to
maximize relative profits, that is the difference between its own profits and the
material profits obtained by the competing group[15, 19, 13, 2, 16], with the
effect of production choices that are above the Nash equilibrium level of the
classic Cournot competition.

The previous pieces of evidence deserve a reconsideration of the modeling of
Cournotian competitions, in order to provide possible theoretical explanations
of the emergence of equilibria diverting from that in the classic Cournot model.
Without any intention of providing an exhaustive review of the theoretical exist-
ing literature on the subject, we mention two seminal contributions that provide
modeling approaches to account for the emergence of monopolistic or Walrasian
equilibria from Cournotian competitions. For the former case, Cyert and De
Groot [8] proved that the existence of positive interests (spillovers) in the indi-
vidual utility deriving from the performances (profits) of the other agents can
provide the explanation for the emergence of a learning path driving firms from
non-cooperative equilibrium choices to cooperation. A similar approach has
been more recently carried out in [17] in which a game with partial cooperation
for resource exploitation is studied. On the contrary, Vega-Redondo [25] showed
that if firms pursue the maximization of the relative performances considering
the negative effects on the utility of the single player caused by the profits of
the competitors, Walrasian equilibrium emerges. In addition to these contribu-
tions, we mention the cases of partial ownership, partial equity interests [7] as
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examples of positive interdependence where the fortunes of potential competi-
tors are linked by a positive correlation among material profits, the case of a
Cournot duopoly in the presence or in the absence of cross-holdings, pointing
the attention to the externalities generated by the two firms [9].

However, the above-mentioned literature lacks a unitary theoretical approach
that is able to encompass the range of outcomes that arise in the experimen-
tal/empirical literature about oligopolistic Cournotian competitions. Our re-
search aims at proposing a framework that provides an alternative explanation
for the convergence towards equilibria ranging from those Walrasian to the collu-
sive one, included the classic Cournot-Nash. The approach we adopt is inspired
by the literature on interdependent preferences, in particular from the contri-
bution of Levine [18], in which a theoretical model is proposed with the goal
to explain the evidence from the data coming from economic surrogates such
as the ultimatum and contribution games among others. Levine’s model also
represents a novelty with respect to previous literature since it accounts for
both positive and negative spillovers of the opponents’ monetary payoffs on the
utility of each agent. He refers to each of these two scenarios as “altruism” and
“spitefulness”, respectively. Such an approach has been subsequently refined by
Sethi and Somanathan in [22], in which Levine’s model is refined by taking into
account the possibility of reciprocal behaviors for the agents.

In the present contribution, we introduce a family of Cournotian games in
which the utility of a given firm does not necessarily coincide with its profits,
but can depend on the profits of the other firms. We allow for both positive and
negative spillovers of the material profits of the competitors on the utility of a
given firm, represented by interactional weights. The description of the market
side is kept general, while homogeneous constant marginal costs are taken into
account for all firms. After studying under which conditions the distribution of
weights describes economically relevant interactional structures and proposing
aggregated measures that portray particular interactional structures, we identify
some significant, simple examples of interdependent preferences distributions.
With the help of these, we show that the results from Friedman and Apesteguia
can be explained with particular interdependent preference structures, without
relying on coordination or learning arguments. Depending on how the pref-
erence interdependence will be structured, this model can result in different
equilibrium choices covering all the spectrum that goes from the Walrasian to
the monopolistic equilibrium. Finally, we show that classic general conditions
on price functions for the existence and uniqueness of Nash equilibrium can be
adapted to take into account preference interdependence, so that the proposed
framework is well-posed and allows for considering markets characterized by
popular demand functions, as those linear or isoelastic.

The present paper is meant to be the first step in the description and in-
vestigation of the effect of a structure of social interdependent preferences in a
Cournot oligopoly based on a game in which the utility functions of the firms
depend on a combination of weighted profits of their competitors. The follow-
ing steps are the characterization of the Nash equilibrium, the analysis of the
effects of interdependent preferences and the comparative statics of centrality
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measures at the equilibrium.
The remainder of the paper is organized as follows: in Section 2 we present

the model, in Section 3 we introduce some particular structures of interaction to
provide a setting to study the problem of existence and uniqueness of the Nash
equilibrium, in Section 4 we present existence and uniqueness results. Section
5 bears conclusions and in Appendix we collect proofs.

2. The model

We consider an oligopolistic market in which N firms, identified by an index
i ∈ {1, 2, . . . , N}, produce a homogeneous good and compete in choosing the
output level qi ≥ 0. Each firm faces linear cost function with identical constant
marginal cost c > 0. Prices are determined by the inverse demand function
p : I → [0,+∞), Q 7→ p(Q), where I is a suitable domain. We assume that p
is continuous on I, twice-differentiable and strictly decreasing on I ∩ [0, b) and
null on I ∩ [b,+∞), for some b ∈ R∪{+∞}. We collect output levels in a vector
q ∈ [0,+∞)N .

Each firm realizes a profit given by πi(qi, Q−i) = qi(p(Q)− c), where Q−i =
N∑

j=1,j 6=i

qj is the aggregate quantity produced by all firms but the i-th one and

Q = Q−i + qi is the aggregate output level of the industry. According to [22],
in what follows we refer to πi as the material payoff of firm i and we assume
that each firm has interdependent preferences that are described by the utility
function

vi = πi(qi, q−i) +

N∑
j=1,i6=j

βijπj(qi, q−i) (1)

where q−i ∈ [0,+∞)N−1 is the vector collecting the output levels of all firms
but the i-th one and βij are constant coefficients representing the network of
dependences among the agents’ preferences. Coefficient βij weights to what
extent preferences of firm i depends on the material payoff of firm j.

Introducing coefficients βii = 0 for i = 1, . . . , N, weights βij can be collected
in a hollow matrix B

B =


0 β12 β13 · · · β1N
β21 0 β23 · · · β2N
β31 β32 0 · · · β3N

...
...

...
. . .

...
βN1 βN2 βN3 · · · 0

 ,

which represents the adjacency matrix of a (possibly negatively) weighted di-
rected graph, in which the coefficient related to the edge connecting vertex i to
vertex j represents the (positive or negative) weight through which the utility
of firm i depends on the profits of firm j. We note that setting βii = 0 allows
dropping condition i 6= j in (1). The utility of each firm i is then affected by
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its own material payoff and by a linear combination of the material payoffs of
some of or all the other firms. We denote with Ei ⊂ {1, 2, . . . , N} \ {i} the set
of all firms whose material payoff affects the utility of firm i (i.e. βij 6= 0 if and
only if j ∈ Ei). Set Ei corresponds to the (first degree) neighborhood of node
i in the graph described by matrix B. To explicitly show that utility function
depends on coefficients βij , in what follows we write vi(qi, q−i, B).

The first evident consequence of preference interdependence is that, depend-
ing on the sign of βij , firm i can achieve the same utility by having smaller own
profits if the other firms with which it has interaction have larger (when βij > 0)
or smaller (when βij < 0) profits, since a part of the reduced utility coming from
own profits can be compensated by the utility coming from the material payoff
of other players, as a consequence of the interdependence of preferences.

Since p is a decreasing function, we have that weights βij have an opposite
effect on the marginal utility ∂vi/∂qi with respect to the effect on the utility vi.
As βij increases, ceteris paribus, the marginal utility of a firm decreases, while
the opposite occurs as βij decreases.

Accordingly to (1), the preferences of each firm are influenced by two levels
of interactions in which firms are involved. If we neglect interdependence among
preferences, the utility function is affected by the market interaction among firms
through profits (actually, in this case vi exactly corresponds to the profits): at
this level, firms are not individually involved, but each of them influences the
final price just depending on the quantity they decide to produce, and not
based on the firm’s identity. If firm i and firm j 6= i produce the same amount
q of good, the influence they exert on the price determination is exactly the
same. The network of interdependent preferences introduces an additional level
of interaction, in which each firm is possibly involved in a way that is different
from that of the other firms. At this level, we can say that firms are involved in a
network of social interactions, through which each firm has its own neighborhood
of firms with which it interacts and to which it is linked, with the neighborhood
set possibly ranging from an empty set to the whole industry. Similarly, for each
firm i, we have a set of firms whose social preferences depend on the material
payoff of firm i. The configurations of outgoing and ingoing links due to social
preferences can be, in principle, asymmetric. In an extreme case, the preferences
of a firm can be affected by the material payoff of all the other firms and, at
the same time, its material payoff may not influence the utility function of any
of the remaining firms. And, indeed, vice-versa.
Moreover, each firm can behave in a completely heterogeneous way with respect
to each firm with which it interacts. Such heterogeneity is described by the size
and the sign of each weight βij , whose absolute value then describes the degree
of social interaction of firm i toward firm j. The sign of βij identifies the kind of
social interaction firm i has toward firm j. To this end, according to the way the
agents’ behavior is identified in the literature about interdependent preferences,
we say that firm i is respectively altruistic, selfish and spiteful toward firm j
if βij > 0, βij = 0 and βij < 0, respectively. We stress that such expressions
are not intended to connote a moral or psychological involvement of firms, but
they are simply borrowed from the literature about interdependent preferences
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([18, 22]). In what follows, when we say that firm i is, for instance, altruistic
toward firm j we mean that the preferences of firm i are socially linked to the
material payoff of firm j and that the spillover of the material payoff of firm j
on the utility of firm i is positive, without entering into details of the reasons
for which such spillover is positive.

The distribution of weights βij , j = 1, . . . , N characterizes the social inter-
action of firm i toward the whole industry, as well as the distribution of weights
βij , i = 1, . . . , N characterizes the social interaction that the industry has to-
ward a given firm j. In some cases, it can be useful to summarize these two sets
by means of a couple of synthetic measures. To this end, we identify each ele-
ment of vector2 Bu as the overall outgoing degree of social interaction. Element
(Bu)i corresponds to the i-th row summation of elements of the weight matrix
B, i.e. it aggregates all the weights that firm i places on the material payoff of
its competitors. Similarly, we identify each element of vector uTB as the over-
all ingoing degree of social interaction. In this case, element (uTB)j provides
the j-th column summation of elements of weight matrix B, i.e. it aggregates
all the weights that all the firms in the industry place on the material payoff
of a given firm j. We stress that identical synthetic measures can correspond
to completely different weights’ distributions, so in most cases they just allow
capturing the average, outgoing or ingoing, degree of social interaction.
The following example shows the above-mentioned elements.

Example 1. (A general network of social interactions)
We consider the 7× 7 weighted matrix B

B =



0 0 0 0 0 0 0

−0.2 0 0.5 0.2 0 −0.5 0

0.2 0.3 0 0.7 0.5 0.9 0

−0.5 0.4 0.2 0 −0.3 0.7 0

−0.1 −0.15 −0.19 0 0 −0.1 0

−0.02 −0.18 −0.12 −0.13 −0.09 0 0

0 0 0 0 0 0 0


, (2)

which gives rise to the network shown in Figure 1, where the number (in red)
on each node corresponds to a firm. A directed/oriented link or edge between
two nodes i 6= j depicts the dependence of the utility of firm i on the material
payoff of firm j 6= i, represented by βij 6= 0. The network is oriented in the sense
that each arrow indicates the direction along which such dependence realizes.
The interdependence between two firms can realize in two ways: it can be
unidirectional (in this case the number of links connecting two firms is unique
and directed from a node to another one, e.g. as in the case of firms 4 and 5)

2With u ∈ RN we denote the vector whose components are ui = 1, i = 1, . . . , N .
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Figure 1: Graphical representation of the network described by weight matrix B in 2

or not (in this case we have a couple of links, e.g. as in the case of firms 3 and
5). In the network of Figure 1, the weight that quantifies the extent of the link
between firm i and j is reported above the edge connecting node i to node j,
and corresponds to coefficient βij which represents the magnitude of the “social
interest” of player i towards player j.
Each row of matrix B collects the weights that the corresponding firm gives to
the opponents’ profits. For example, if we focus on the first row (firm 1) we can
see that it represents a self-interested firm which opponents profits’ weights are
all equal to zero, so that the utility of such firm coincides with its own material
profits.
A different situation is depicted by the second row where firm i = 2 considers
in its own utility also the material payoff of the competitors, placing on them
both positive and negative weights. For example, firm 2 weights negatively the
profits of firm 1 (β21 = −0.2) while evaluates positively the profits of firm 3
(β23 = 0.5). In this case the utility of firm 2 is diminished when firm 1’s profits
increase, and increased when firm 3’s profits grow up.

As we already noted, the graph is oriented. For example, the first node
(N = 1) has no outgoing but five ingoing links with different signs and weights.
This situation perfectly depicts the case, we mentioned above, of a self-interested
firm, which nonetheless contributes to some of the opponents’ utility.
Moreover, if we compare node 1, node 3 and node 7 we can note that the number
of outgoing and/or ingoing edges is very different and it can be used as a first
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indication of the level and kind of social interaction of the firm. Firm 7 has no
social interactions with the other firms, as its preferences do not take into ac-
count the profits of the other firms and its profits are not taken into account in
the utility of any of the other firms. The unique channel of interaction of firm 7
with the other firms is the market. Conversely, firm 1 is involved in the network
of social interaction. Even if its preferences do not take into account the profits
of the other firms, its profits do affect the preferences of all the other firms.
Finally, firm 3 is completely involved in the network of social interactions, with
both outgoing and ingoing links with the other firms. Its utility derives from
a combination of its own profits and a fraction of the profits of every other its
opponent. If we look at the column vector Bu = [0, 0, 2.6, 0.5,−0.54,−0.54, 0]T

resulting from each row summation, we can interpret each element as indicating
the overall outgoing degree of social interaction of the corresponding firm. A
positive value represents a firm as being on average altruistic, a negative value
as being on average spiteful and a value equal to zero as being on average self-
interested.
A clarification over the terminology used might be useful. For socially altruistic
on average, we mean a firm that positively binds its own utility to the material
payoff of others; however, a firm may evaluate differently two different firms, in
the sense it can be altruistic towards the first one and spiteful towards the other.
Let consider firm 1 and firm 2 which can be defined as generally self-interested.
Although their social degree coincides the two firms are indeed very different, on
average. Looking at the solely outgoing degree on average might be misleading.
In this case firm 1 is actually self-interested towards each competitor, while firm
2 is self-interested only on average.
The same line of reasoning can be applied to the comparison between firm 3
and 4. They both act altruistically on average, but the former is always acting
altruistically with all its opponents while the latter only on average. Another
interesting insight of the composition of matrix B is given by the comparison
between firm 5 and firm 6, which both have the same social degree of spiteful-
ness and both act as spitefully towards each competitor, weighting however in
different ways the profits of each of their competitors. For this reason, it makes
sense to identify the general attitude (or degree) of a firm towards its opponents.

Let consider the row vector uTB = [−0.62, 0.37, 0.39, 0.77, 0.11, 1] resulting
from each column summation. Each of its values indicates the ingoing social
degree of interaction, i.e. how each firm in the network is taken into account
on average in the opponents’ utilities. For example, the first element indicates
that firm 1 is on average negatively considered in the opponents’ utility. On the
opposite side, the second element indicates that firm 2 positively contributes,
on average, to its opponents’ utilities. Finally, the last element identifies a firm
that, on average, does not contribute to its opponents’ utilities.

Each firm tries to maximize its own utility by choosing the quantity to
produce. Such setting can be described by a game Γ = (N , Si, vi(qi, q−i, B)),
whereN = {1, 2, . . . , N} is the set of players, Si ⊂ [0,+∞) is the set of strategies
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of each player i and function vi defined in (1) is the utility function for the i-th
firm, for i ∈ N . A particular case among the games belonging to Γ is the classic
Cournot game, namely game Γ0 = (N , Si, vi(qi, q−i, O)) = (N , Si, πi(qi, q−i))
obtained setting B equal to the null matrix O. In Γ0 firms choose the quantity
to produce in order to maximize material payoff, i.e. profits.

As already discussed, the first straightforward effect of considering interde-
pendent preferences is that we can identify an additional channel of interaction
among firms, along with the usual market interaction. Such latter channel is
the unique one that is present in the classic Cournot game Γ0 and establishes
a “global”, market-related, form of interaction among all firms, mediated by
the common inverse price function through the aggregate output level. Interde-
pendent preferences establish another, possibly local or even one-to-one form of
interaction, described by the distribution of coefficients βij . As such coefficients
divert from 0, game Γ diverts from Γ0, with the role of social interaction that
becomes more and more relevant as |βij | increase.

3. Relevant structures of social interaction

As it will become evident in what follows, the general framework described
by game Γ allows for the description of a wide range of situations. In order to
simplify and improve the economic interpretation of the analytical results that
will be provided in the remainder of the thesis, it is convenient to introduce some
simplified scenarios, which are characterized by networks of social interactions
with particular structures.

The first and simplest structure we consider consists of “homogeneous”
weight distribution. This corresponds to an economic scenario in which firms
are assumed to be identical with respect to their information about their com-
petitors and identical with respect to the way such knowledge influence their
preferences. In this setting, the preferences of all firms are affected by the profits
of any one of their competitors by the same extent β. The matrix describing
the network of social interactions is then B = β(U − I) where U is the N ×N
matrix whose elements are equal to 1, and I is the N ×N identity matrix. For
example, if N = 3 we have the following 3× 3 matrix

B =

0 β β

β 0 β

β β 0

 (3)

to which corresponds the network described in Figure 2.

The present scenario is very unsophisticated and it is even inappropriate
to speak about a “structure” of social interaction, because of the very regular
distribution of weights. However, it deserves some investigation as it allows
casting a first glance at the possible equilibrium configurations described by
game Γ.
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Figure 2: Graphical representation of the network described by weight matrix B in 3

Proposition 1. Let us consider an oligopoly for which the network of social in-
teraction is described by a matrix B in which βij = β for any i 6= j, 1 ≤ i, j ≤ N.
Let p be an inverse demand function for which game Γ = (N , Si, vi(qi, q−i, B))
has a unique internal equilibrium q∗(β) for any β in (−1/(N − 1), 1).

We have that as β → 1− the aggregate equilibrium output level Q∗(β) con-
verges to the equilibrium output level Q∗M of a monopoly in which p is the inverse
demand function.

We have that as β →
(
− 1
N−1

)+
the equilibrium aggregate output level Q∗(β)

converges to the aggregate equilibrium output level Q∗C of a competitive market
in which p is the inverse demand function.

Moreover, on increasing β in (−1/(N − 1), 1) we have that the aggregate
equilibrium output level Q∗(β) is a continuous function that monotonically varies
from Q∗M to Q∗C .

An oligopoly is usually described as a market structure dominated by a few
firms and characterized by an intermediate degree of competition, lying between
monopoly (just one firm, minimum competition degree) and perfect competition
(many firms, maximum competition degree). The family of games Γ considered
in Proposition 1 describe oligopolies that provide a continuum of outcomes (iden-
tified by the industry output levels) that range between such extremal outcome
levels. As weights β approach 1, the setting with interdependent preferences
tends to describe the setting in which a social planner coordinates the agents’
production in order to maximize the aggregate industry profits and just look-
ing at the aggregate output level at the equilibrium corresponds to that of a
monopoly market. Similarly, as weights β approach −1/(N − 1), the aggregate
output level at the equilibrium corresponds to that of a competitive market.

In game Γ, the transition between the monopolistic and competitive mar-
kets (aggregate) equilibria do not (only) occurs on increasing the number of
suppliers populating the market, but it takes place, for any given number of
firms, as the distribution of weights describing interaction among firms decrease
from the uniform distribution β = 1 to the uniform distribution β = − 1

N−1 .
We stress that even such a very simplified setting is able to represent all the
possible situations, in terms of aggregate equilibrium outcomes, ranging from
the monopolistic limit to the competitive limit scenarios.
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The previous proposition also provides two intrinsic bounds on weights βij ,
leading to the following assumption

Assumption 1. − 1
N−1 < βij < 1,

so that, with coefficients in such range, we can compare the aggregate Nash
equilibrium of any game Γ to the (aggregate) output levels of a monopoly and
of a competitive market, as it guarantees the following result, in which Q∗M and
Q∗C are defined in Proposition 1.

Proposition 2. Let us consider an oligopoly with a unique, internal Nash equi-
librium and for which the network of social interaction is described by a matrix
B that satisfies Assumption 1. Then Q∗M < Q∗ < Q∗C , where Q∗ is the unique
aggregate equilibrium output level.

In terms of aggregate output levels (and hence of the degree of competitive-
ness), games Γ allow for a continuous transition between two extreme market
situations. Accordingly, we can address such two extreme situations as the
“monopolistic limit” and the “competitive limit” of sequences of games Γ.

We highlight that, in the case of a duopoly, Assumption 1 provides −1 <
βij < 1 and we find the same symmetric bound on weights that are used in [22]
and in the literature strand about oligopolies ([7]). In general situations, the
bound provided by Assumption 1 is asymmetric, with potentially larger positive
than negative weights in absolute value.

Without any intention of providing an exhaustive review of all the possible
particular structures, we mention three alternative configurations of interaction
between firms. The second configuration of the network we consider is obtained
setting βij = βi ∈ (−1/(N − 1), 1) for i, j = 1, . . . , N and i 6= j. In such setting
we have that each firm has a homogeneous behavior with respect to all the other
firms in the industry, but the behavior of each firm can be different with respect
to that of the other firms. This corresponds to an economic scenario in which
each firm, due to the complexity of the framework and/or since it lacks of dis-
tinctive information concerning each (or at least some) of its competitors, is not
able to develop an articulated and heterogeneous network of social interactions.
So it consequently behaves in the same way with respect to all its competitors
(we can say that it interacts with the remainder of the industry). However, firms
are assumed to be possibly heterogeneous, so that they can be either uniformly
altruistic, selfish or spiteful toward any other firm j, with a constant degree of
social interaction. Summarizing, such a configuration is characterized by firms
that are heterogeneous but each of them homogeneously takes into account all
its competitors.

The third configuration we consider is described in terms of the transposed
matrix of the previous case. This structure is obtained setting βij = βj ∈
(−1/(N − 1), 1) for i, j = 1, . . . , N and i 6= j. In such setting the information
endowment and knowledge about each firm is very elevated and shared among
all firms, so that all firms consider a given firm in the same way, and they
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consequently behave in the same way with respect to it, but the behavior of
each firm can be different with respect to that of the other firms. All firms j
have the same social preferences toward a given firm i, being either uniformly
altruistic, selfish or spiteful toward the firm i, with a constant degree of social
interaction. However, preferences toward firm i can be different from those
toward firm k.

In the last possible configuration of the network the overall outgoing degree of
social interaction is the same for all firms, i.e. vector Bu has identical elements.
In this case no restriction is imposed on each weight βij ∈ (−1/(N − 1), 1), the
summation of each row just has to provide the same value. All firms have, on
average, the same overall degree of altruism or spitefulness (or they can even be
selfish), but the way the social preferences of firm i are influenced by material
profits of firm j can be different on varying i and j.

4. Existence and uniqueness of Nash equilibria with interdependent
preferences

We want to generalize the conditions under which the existence and/or
uniqueness of Nash equilibrium in classic game Γ0 is guaranteed for particu-
lar Cournotian oligopoly models without interdependent preferences. To this
end, following e.g.[21, 26, 6] we consider two settings, respectively consisting of
“concave” oligopolies (i.e. for which assumptions on the inverse demand func-
tion and network of interdependent preferences guarantee the concavity of the
utility function) and oligopolies with isoelastic demand function, as an econom-
ically relevant crucial example of a setting that provides a game in which the
best response functions are not monotonic.

We start considering the family of oligopolies for which the payoff function
is concave. In such setting, to guarantee the uniqueness of the equilibrium, it
is necessary to introduce a bound on the maximum possible strategy chosen by
the agents. On the contrary, without such assumption, it is possible to see that
multiple equilibria can occur even without interdependent preferences (see e.g.
[21]). To this end, we introduce the capacity limit Li > 0 for each firm i ∈ N ,
which represents the maximum output level that each firm is able to supply.
For more details about such aspects we refer to [21, 6].

To provide a suitably rich family of oligopolies that both include relevant
examples and at the same time for which existence and uniqueness of the Nash
equilibrium is guaranteed, we introduce some assumptions on the inverse de-
mand function p and on coefficients βij . In what follows, the set of the oligopolies
that fulfill the following Assumptions will be identified with O.

Assumption 2. For any qi ∈ [0, Li], i ∈ N and for Q ∈
[
0,
∑N
k=1 Li

]
we have

p′(Q) < 0 and for any z ∈
[
0,
∑N
k=1 Li

]
we have{

p′′(Q)z + p′(Q) < 0,

−p′′(Q) z
N−1 + p′(Q) < 0.

(4)
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The previous condition is the generalization to the case of interdependent pref-
erences of decreasing marginal revenue condition p′′(Q)qi + p′(Q) < 0, which
is given for concave oligopolies without preferences’ interdependence (see [26]),
corrected to account for the contribution of interdependent preferences. We re-
mark that the former condition in (4) is always fulfilled for a concave function,
while the latter one is always fulfilled for a convex function. Finally, Assumption
2 is fulfilled for a linear demand function and it’s worth noting that the former
condition in (4) is increasingly less restrictive as N increases.

Concerning the admissible distributions of weights, Assumption 1 just pro-
vides a first restriction on the economically relevant values of βij . However, the
resulting set of weights is still too wide to guarantee the existence and/or unique-
ness of the Nash equilibrium of Γ. If we applied to game Γ the assumption that
in the literature of games on networks allows obtaining existence and unique-
ness of the Nash equilibrium (see [5]), we would impose ρ(B) < 1. However,
the family of oligopolies described by games obtained adopting such condition
would be too restricted. For instance, it would be not possible to consider a
sequence of games Γ approaching the monopolistic limit, as in such case we must
necessarily have ρ(B) > 1 in a neighborhood of the limit. Moreover, we stress
that the above-mentioned condition is applied in the literature to a situation in
which βij ≤ 0.

As it is evident in the proofs of the following propositions and accordingly to
the literature, the problem of studying the existence and uniqueness of the Nash
equilibrium of Γ can be rephrased into a linear complementarity problem (from
now one, LCP) (see e.g. [21, 24]). For an LCP, well-posedness is guaranteed
if the matrix associated with the corresponding problem is a P -matrix, i.e. a
matrix in which all the principal minors are strictly positive (for a survey about
P -matrices we refer to [24]). As we can see from the proofs of the following
propositions, the matrix associated to the linear complementarity problem aris-
ing from the optimization problem related to the Nash equilibrium of game Γ
is the matrix I +B. This leads to the assumption

Assumption 3. Matrix I +B is a P -matrix.

The previous Assumption can be seen as a generalization of assumption ρ(B) <
1 (as such condition, when− 1

N−1 < βij ≤ 0, guarantees that I+B is a P -matrix)
and has basically the same economic interpretation: local complementaries have
to be small enough to avoid the emergence of a non-finite equilibrium solution.
The first relevant consequence of Assumption 3 is that I + B is an invertible
matrix, which will play a key role in the characterization of the internal Nash
equilibrium in terms of the inverse of I + B. In addition, it bears several
interesting properties that allow studying (and characterizing) the family of
oligopolies in O. For example, starting from a game in O it is possible to
vary coefficients with continuity to obtain Γ0, which indeed belongs to O. This
guarantees that any oligopoly in O can be studied by considering a continuous
family of oligopolies in O with progressively larger coefficients, always starting
from the purely selfish scenario. In particular, if an oligopoly of N firms belongs
to O, all the oligopolies obtained rescaling the coefficients of some (possibly one
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or even all) firms by any coefficient β ∈ [0, 1] will describe oligopolies belonging
to O. Moreover, if an oligopoly of N firms belongs to O, also the oligopolies
obtained removing one firm has to belong to O.

Now we consider the existence and uniqueness of Nash equilibrium in the
case of concave oligopoly.

Proposition 3. Under Assumptions 1-3, game Γ has at least a Nash equilibrium
q∗ with q∗i ∈ [0, Li]. If q∗i < Li for each i ∈ N , then the equilibrium is unique.
Moreover, in the particular case of the linear demand function, game Γ always
has a unique Nash equilibrium.

The previous Assumptions guarantee a setting for which the Nash equilib-
rium exists, and if it belongs to [0, Li)

N , it is also unique (this is the case in
which the capacity limit of no firms coincides with its equilibrium output level).

Assumption 3 is a suitable setting also for “non-concave” oligopolies, as for
example in the relevant case of the isoelastic demand function.

Proposition 4. Under Assumptions 3, if p(Q) = 1/Q, game Γ has a unique
Nash equilibrium q∗.

We stress that the equilibrium provided by the previous proposition can be
also a boundary equilibrium, and this just depends on the network of social
interactions among firms.

5. Conclusions

We introduced an oligopolistic market in which N firms produce a homoge-
neous good and compete in choosing the output quantity given the individual
interdependent preferences structure described by a utility function that de-
pends both on the individual profits and on a linear combination of the profits
of some of or all the other firms. The introduction of an interdependent pref-
erences structure provides a framework that is able to, simultaneously deal,
in the individual utility function, with both positive and negative effects due
to the material payoffs of the other players. This provides a generalized set-
ting that allowed us to encompass in a unified setting all the effects evidenced
by the experimental literature, exposed in the introduction of the paper, in
terms of the outcome of the game. In fact, even considering a very prototypical
and simplified scenario, this setting proved to be capable to describe a wide
range of situations. Considering a homogeneous weight distribution (i.e matrix
B = β(U − I)) we characterized families of games both in the case of uniform
positive interdependence (altruistic preferences) and the case of uniform nega-
tive interdependence (spiteful preferences) for which volumes of production are
coherent with different market forms, ranging fluidly from the monopolistic (as
the uniform distribution of weights converges to the 1) to the competitive limit
(as it converges to the − 1

N−1 ), passing through the classic Cournot oligopoly.
We considered a network in which the weights the single firm places on oppo-
nents’ material payoffs are the same in order to represent a scenario in which
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the single firm does not discriminate between its opponents but treats each
competitor the same way. We also considered the case of a network in which is
the industry that homogeneously behaves toward each single firm, namely the
weights the whole industry places on the single firm’s material payoffs are the
same. Finally, we considered a preference structure in which the firms behave
on average the same way, namely the summation of their social weights are the
same.
Moreover, we showed how the proposed approach provides a reliable framework
to work with whose behavior, with respect to the existence and uniqueness
of Nash equilibrium, is in line with the classic oligopoly modeling without in-
terdependence of preferences. Assumption 2, on the inverse demand function,
together with Assumptions 1,3, on the coefficients of interdependence, allowed
us to prove the existence and uniqueness of the Nash equilibrium for families
of oligopolies (i.e. oligopolies described by a game in which the utility function
is concave) that include classic and relevant examples, such as the case of con-
cave oligopolies and the case of isoelastic demand functions. Concerning the
admissible distributions of weights, Assumption 1 provides the first restriction
on the economically relevant values of coefficients βij that is not sufficient to
guarantee the existence and/or uniqueness of the Nash equilibrium of the game
with interdependence of preferences. Therefore, we rephrased the problem of
studying the existence and uniqueness of the Nash equilibrium into a linear
complementarity problem which guarantees the well-posedness of the matrix,
associated with the corresponding problem, as it satisfies the condition to be a
P -matrix. We showed that if I + B is a P -matrix it bears several interesting
properties that allow studying (and characterizing) the family of oligopolies by
considering a continuous family of oligopolies with progressively larger but suit-
able coefficients. In particular, P -matrix assumption is actually a generalization
of the ρ(B) < 1 condition that it is often imposed in game theory on networks
for the existence and uniqueness of the Nash equilibrium.

Appendix

Proof of Proposition 1. The utility function is

vi = qi(p(qi +Q−i)− c) + β

N∑
j=1,i6=j

(qj(p(qi +Q−i)− c))

from which we have that marginal utility is

∂vi
∂qi

= p(Q)− c+ qip
′(Q) + βQ−ip

′(Q) (5)

Since we are considering the aggregated output level at an internal equilibrium
q∗, first order condition necessarily requires ∂qivi = 0, Thanks to this and
summing the right hand side of (5) for i = 1 to N we obtain

Qp′(Q)− N

(N − 1)β + 1
· (c− p(Q)) = 0, (6)
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By assumption, if β > 0 the previous equality is solved by a unique Q∗(β) > 0
for any β > 0. We have that limβ→1− Q

∗(β) is then the solution to Qp′(Q) =
c− p(Q), which is exactly the output level of a monopoly with inverse demand
function p(Q). Conversely, if β < 0, we have that limβ→− 1

N−1
Q∗(β) is then

the solution to c = p(Q), which is exactly the output level of a competitive
market in which the inverse function is p(Q). Concerning the monotonicity of
Q∗(β), let us introduce function fβ(Q) defined by the left hand side of (6).
Since Q∗(β) is a maximum point, we have fβ(Q∗(β)) > 0 for Q < Q∗(β) and
fβ(Q∗(β)) < 0 for Q > Q∗(β). In particular, since p is strictly decreasing, we
have p(Q∗(β))−c > 0 for Q < Q∗(β) and p(Q∗(β))−c < 0 for Q > Q∗(β). This
means that if β1 > β2,noting that N/((n − 1)β + 1) decreases as β increases,
fβ2

(Q) > fβ1
(Q) > 0 for Q < Q∗(β1), which implies that the solution to

fβ2(β) = 0 must fulfill Q∗(β1) < Q∗(β2).

Lemma 1. Let B be an invertible matrix that fulfills Assumption 1 and assume
that ξ = (I +B)−1u is componentwise nonnegative. Then uT (I +B)−1u > 1.

Proof. Let N be the size of B. Thanks to Assumption 1, we have that ρ(I+B) =
K < N , so ρ

(
I+B
N

)
< 1 and we can use series expansion

(I +B)−1 =

+∞∑
n=0

(
I − I +B

N

)n
1

N

We then have

uT (I +B)−1u = 1 + uT
(
I − (I +B)

N

)
(I +B)−1u

= 1 + uT
(
I − (I +B)

N

)
ξ = 1 + uT

(
I

(
1− 1

N

)
− B

N

)
ξ

Elements in uT
(
I
(
1− 1

N

)
− B

N

)
are given by

1− 1

N
−

N∑
i=1,j 6=i

βij
N

> 1− 1

N
−

N∑
i=1,j 6=i

1

N
> 0

so uT
(
I
(
1− 1

N

)
− B

N

)
ξ > 0. This allows concluding.

Proof of Proposition 2. Since by assumption we know that a unique internal
equilibrium q∗ exists, marginal utility must vanish at it, having

∂vi
∂qi

= p′(Q∗)q∗i + p(Q∗)− c+

N∑
j 6=i

βijp
′(Q∗)q∗j = 0,

or, in vector form,

p′(Q∗)q∗ + (p(Q∗)− c)u+ p′(Q∗)Bq∗ = 0⇔ (I +B)q∗ =
c− p(Q∗)
p′(Q∗)

u.
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Since the solution to the previous system is unique, we must have that matrix
I +B is invertible, so we can write

q∗ =
c− p(Q∗)
p′(Q∗)

(I +B)−1u,

and, aggregating, we obtain

Qp′(Q)− uT (I +B)−1u · (c− p(Q)) = 0.

Thanks to Lemma 1, we have that uT (I + B)−1u > 1, and hence from simple
geometrical considerations similar to those concluding the proof of Proposition
1 we have that the solution to the last equation must lie between Q∗M to Q∗C .

Proof of Proposition 3. We start noting that Assumption 2 guarantees the con-
cavity of the utility function of each player. The existence of a Nash equilibrium
is then a consequence of Nikaido-Isoda Theorem (see e.g. [10]) for more details).
Now assume that for equilibria there hold qi < Li for all i ∈ N .

We find the best response function of the i-th firm, for a given vector of
strategies q−i. In principle, we have to distinguish three cases:

a) ∂qivi(0) ≤ 0: since vi is strictly concave on [0, L], in this case it is also
strictly decreasing it attains its maximum at qi = 0;

b) ∂qivi(Li) ≥ 0: in this case the concavity of vi guarantees that vi is strictly
increasing and hence it attains its maximum at qi = Li;

c) in the remaining situations Assumption 2 guarantees the existence and

uniqueness of a solution to equation p′(zi+Q−i)zi+p(zi+Q−i)−c+
∑N
j=1 βijp

′(zi+
Q−i)zj = 0, since the right-hand side is strictly decreasing on (0, L), positive
for zi → 0+ and negative for zi → L−.

We then have

BRi(q−i) =

 0 if ∂qivi(0) ≤ 0
Li if ∂qivi(Li) ≥ 0
zi otherwise

(7)

Any equilibrium with qi < Li for all i ∈ N must fulfill

qi
∂vi
∂qi

= qi

p′(qi +Q−i)qi + p(qi +Q−i)− c+

N∑
j 6=i

βijp
′(Q)qj

 = 0 (8)

and

∂vi
∂qi

= p′(Q)qi + p(Q)− c+

N∑
j 6=i

βijp
′(Q)qj ≤ 0 (9)

Conditions (8) and (9) can be equivalently rewritten as
q ≥ 0

qT
(
q + p(Q)−c

p′(Q) u+Bq
)

= 0

q + p(Q)−c
p′(Q) u+Bq ≥ 0
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Let us introduce y = −p(Q)−c
p′(Q) , so the previous system is

q ≥ 0
qT (q − yu+Bq) = 0
q − yu+Bq ≥ 0

y = −p(Q)−c
p′(Q)

Note that the first three conditions describe a linear complementarity problem,
in which the pattern of solution q (i.e. the position of null vs. non-null com-
ponents) is independent of y. Thanks to Assumption 3, for each y > 0, there
exists a unique solution q (different from the null vector) to such problem in
which we have either qi > 0 or qi = 0 for each i = 1, . . . , N .

Let B̃ be the matrix in which the ith row and column are made by null
elements if qi = 0 while the remaining elements are those of B. Note that
I + B̃ is a P matrix and hence it is invertible. Let ũ be a vector in which the
ith element is null if qi = 0 while the remaining elements are equal to 1. We
stress that B̃ just depends on the distribution of degrees of interaction, and
not on demand function and marginal costs. Note that the last problem is now
equivalent to {

q − yũ+ B̃q = 0

y = −p(Q)−c
p′(Q)

so we can write q = −p(Q)−c
p′(Q) (I + B̃)−1ũ. Summing we obtain

Qp′(Q) = (c− p(Q))uT (I + B̃)−1ũ

in which the right-hand side is a strictly increasing function, while the left-hand
side is decreasing, since its derivative is p′(Q)+Qp′′(Q), which is indeed negative
if p is concave, but it is negative as well when p is convex thank to Assumption
2. This guarantees the uniqueness of Q. If in addition qi > 0, we have that

the solution can be written as q = −p(Q)−c
p′(Q) (I+B)−1u=−p(Q)−c

p′(Q) ξ. Multiplying

both sides by uT we have Q = −p(Q)−c
p′(Q)

∑N
j=1 ξi, which, combined with the

relation for q, allows concluding.

Proof of Proposition 4. Utility function is

vi = qi

(
1

Q
− c
)

+

N∑
i=1

βijqj

(
1

Q
− c
)

=
1

Q

(
qi − cQ+

N∑
i=1

βijqj(1− cQ)

)
The null vector can not be the Nash equilibrium, as p is not defined for Q = 0.
It is easy to see that a Nash equilibrium can not have more than N − 2 null
components. In fact, by contradiction, without loss of generality, let us assume
that qi = 0 for i > 2, so that we have

vi = qi

(
1

q1 + q2
− c
)

+ βi,−iq−i

(
1

q1 + q2
− c
)
, i = 1, 2
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and

∂v1
∂q1

=
−cq21 − 2cq1q2 − β12q2 + q2 − cq22

(q1 + q2)2
,

∂v2
∂q2

= −β21q1 − q1 + cq21 + cq22 + 2cq1q2
(q1 + q2)2

If q2 > 0, we have two possibilities: v1 is strictly decreasing if 1− β12 − cq2 < 0
or it is concave and unimodal. In the first case, the best response is q1 = 0,
but the best response to q1 = 0 can not be q2 > 0 (utility function v2 is strictly
decreasing in this case). So we necessarily need that q1 and q2 are strictly
positive at the equilibrium.

In the general case, marginal utility is

∂vi
∂qi

= − qi
Q2

+
1

Q
− c−

N∑
j=1

βij
qj
Q2

=
1

Q2

−cQ2 +Q− qi −
N∑
j=1

βijqj


so its sign is determined by the sign of the second degree polynomial ∂qivi(qi) =

−cq2i −2cqiQ−i− cQ2
−i+

∑N
j=1(1−βij)qj , which represents a concave parabola,

strictly decreasing for qi ≥ 0. We then have two possibilities for the best re-
sponse

• BRi(q−i) = 0, in which case we necessarily have ∂qivi(0) ≤ 0

• BRi(q−i) > 0

so at a Nash equilibrium q we must have a couple of relations similar to (8) and
(9), so we can again write the equilibrium condition as

q ≥ 0

qT
(
q + p(Q)−c

p′(Q) u+Bq
)

= 0

q + p(Q)−c
p′(Q) u+Bq ≥ 0

Let us introduce y = −p(Q)−c
p′(Q) = Q− cQ2, so the previous system is

q ≥ 0
qT (q − yu+Bq) = 0
q − yu+Bq ≥ 0
y = Q− cQ2

Note that the first three conditions describe a linear complementarity problem,
in which the pattern of solution q (i.e. the position of null vs. non-null com-
ponents) is independent of y. Thanks to Assumption 3, for each y, there exists
a unique solution q (different from the null vector) to such problem in which
we have either qi > 0 or qi = 0 for each i = 1, . . . , N. However, y > 0, as
otherwise qT (q − yu + Bq) = 0 would have the unique null solution, which is
not consistent with y > 0 and would provide Q = 0, which is impossible as p is
not defined at Q = 0.
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Let B̃ be a matrix in which the ith row and column are made by null elements
if qi = 0 while the remaining elements are those of B. Note that I + B is a P
matrix and hence it is invertible. Let ũ be a vector in which the ith element is
null if qi = 0 while the remaining elements are equal to 1.

We indeed have{
u− yũ+ B̃u = 0
y = Q− cQ2 ⇔

{
q = y(I + B̃)−1ũ
y = Q− cQ2

from which Q = yuT (I + B̃)ũ = yµ. The last equation can be rewritten as

Q

µ
= Q− cQ2 ⇔ µ =

1

1− cQ

since Q 6= 0. The previous equation has a unique solution since µ > 1. This
follows from Lemma 1 noting that µ = uT (I + B̃)−1ũ = ûT (I + B̂)−1û in
which B̂ is the submatrix obtained from B̃ by removing all the rows/columns
for which qi = 0 and û is a constant unitary vector with as many elements as
the non-null components in q.
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