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oligopolies with interdependent preferences

Marco F. Boretto, Fausto Cavalli and Ahmad K. Naimzada1

Abstract

Considering the Cournot oligopoly with interdependent preferences proposed in [5],
we analyze the effects of a change in the network of social interactions. Reconsid-
ering some of the main centrality measures proposed in the literature, we show how
intercentrality, Bonacich and Friedkin-Johnsen centrality measures can be related in a
network described by a general matrix of interaction. This allows showing under what
conditions a firm can benefit, in terms of equilibrium performance, from a change in
the weight of interaction with respect to one of its competitors. Extending the ap-
proach to the study of a uniform change in the behavior of all the firms, we show that
it is collectively beneficial only if the structure of social interaction is characterized by
a sufficient degree of homogeneity in terms of weight distributions.

Keywords: Cournot Game, Preference interdependence, Network, Centrality
measures, Comparative statics.
JEL: D43, C62, C70

1. Introduction

In recent years game theory has started incorporating increasingly more
elements of network theory2. Decisions of individuals are recognized as the out-
come of strategic interaction among the agents, but it becomes more and more
evident that the role played by social interaction can not be neglected. The
fact agents are part of a structure of interactions influence their preferences and
contribute to evolve them. Such a structure is often characterized by an ele-
vated level of complexity, which requires the investigation of synthetic measures
through which provide robust and reliable conclusions on the key economic ob-
servables. Among the mass of indexes proposed in the literature and tested on

1The authors are indebted to Prof. Paolo Bertoletti for his invaluable comments and
suggestions, and to the Professors in the Evaluation Committee for their comments during
the dissertation of the PhD Thesis of Dr. Marco Boretto. Both contributions helped to
improve the quality of the present contribution, which belongs to a research strand we are
pursuing on oligopoly modeling with interdependent preferences and follows the contributions
in [5] and [4].

2The literature on the topics of networks and of their application to games is too widespread
to provide any exhaustive literature review. We limit to refer the interested reader to the
survey by Jackson and Zenou [11].



empirical case studies, some centrality measures play a particular role as they
can be used to make explicit the effect of a network structure on the character-
ization of Nash equilibria in games or to describe elements connected to them.
As an example, Bonacich centrality measure [3], which basically represents the
overall relevance that a player has inside the network of social interaction, can
be used to concisely characterize the distribution of equilibrium strategies [7] in
network games. Moreover, Bonacich centrality measure can be used to evalu-
ate the contribution to the overall collective outcome that each player provides
thanks to the belonging to a structure of interaction characterized by symmetry,
giving rise to a new measure, called intercentrality measure, that identifies the
key player3 inside a network [2].

The introduction of a structure of social interaction in a game necessarily
dismisses the assumption of agents with independent preferences, namely of
agents whose utility function just depends on their own payoff [12, 13]. Individ-
uals, who in a setting with independent preferences would be characterized in
terms of selfish behavior, with interdependent preferences have a utility function
that positively or negatively depends on the payoff of a competitor, exhibiting
a so-called altruistic or spiteful behavior. The classic setting with interdepen-
dent preferences is often unsatisfactory in explaining the results of empirical
[1, 10, 6] and experimental evidence [9] of game theory, as the players’ choices
seem to lie above or below the corresponding Nash equilibrium, suggesting the
presence of some form of preference interdependence. Focusing in particular on
an experiment based on a Cournotian game, Friedman et al. [9] showed that the
evolution of players’ choices can significantly change from the earlier stages to
those later, with strategies that initially overrun the levels corresponding to the
classic Nash equilibrium and then evolve toward reduced production choices,
consistent with the emergence of some forms of implicit coordination.

In the present contribution we reconsider the Cournotian oligopoly model
with interdependent preferences introduced in [5] and we evaluate the effect of
changes in the interaction structure on its Nash equilibria, whose characteri-
zation in terms of Bonacich centrality measure has been studied in [4]. The
question of the emergence and survivability of social behaviors like altruism
and/or spitefulness is crucial to understand the possibility to explain phenom-
ena like those in the experiment by Friedman et al., and it is strictly related to
the performance of firms in terms of material profits. To this end, we aim at ad-
dressing two main questions: what are the effects of a change in the interaction
structure on the equilibrium performance of firms? As a consequence of this,
what kinds of social interaction structure can be favorable to the equilibrium
performance of firms?

To answer the two previous research questions we generalize to a broader
family of matrices (in particular, to the asymmetric case), describing the net-
work of interaction, the definition of the intercentrality measure, showing that

3More precisely, the player who removed from the network has the largest disruptive effect
on the aggregate collective output
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it can be expressed in terms of a combination of both Bonacich and Friedkin-
Johnsen centrality measures. Intercentrality can then be understood in terms
of the joint result of the relevance and of the influence of a firm in the market.
As a consequence, comparative statics with respect to a change of any weight
of interaction can be expressed through a relation involving the main theoret-
ical centrality indexes, namely Intercentrality, Bonacich and Friedkin-Johnsen
centrality measures, and the degree of competitiveness. This allows identifying
the situations in which an increase in either altruism or spitefulness results in a
beneficial effect for the equilibrium performance of a firm, in particular in terms
of its market share. Even if we do not study the way firms form or change their
network of social interaction, it is possible to see in the results we find a first,
raw suggestion for a “tit-for-tat” scheme in adapting the behavior of a firm with
respect to a competitor.

Going further, we show that a collective benefit for every firm is possible
from an increase of all the weights of interaction provided that the structure of
social interaction is “suitably homogeneous”, namely if the weight distribution
is sufficiently close to a uniform distribution.

The remainder of the paper is organized as follows. In Section 2 we summa-
rize the model and the main results collected in [5] and [4]. In Section 3 we prove
some general results on centrality measures. In Section 4 we study comparative
statics. Section 5 bears conclusions. Proofs are collected in Appendix.

2. The model

In this Section we briefly summarize the model under investigation, which
was proposed in [5], and the main result for the characterization of the Nash
equilibrium, as shown in [4], to which we refer for a complete description of the
model and for comments about the propositions reported in this Section.

The model consists of a family of games describing Cournotian oligopolis-
tic competitions in which firms have interdependent preferences. Games are
identified by Γ = (N , Si, vi), where N = {1, 2, . . . , N} is the set of players cor-
responding to the firms populating the market, which are assumed to produce
homogeneous goods, Si ⊂ [0,+∞) are the sets in which firm can choose their
output level qi and vi are the payoff functions related to each firm. In par-
ticular, the payoff function in Γ does not necessarily correspond to the profits
(hereinafter material payoffs) πi(qi, Q−i) = qi(p(Q)−c) that firms, facing identi-
cal constant marginal costs c, achieve if the market is characterized by a suitably
smooth inverse demand function p : I → [0,+∞), Q 7→ p(Q), with Q respec-
tively representing the aggregate output of the industry and Q−i = Q − qi. In
this case, game Γ would represent the classic Cournot game with profit maximiz-
ing firms. Conversely, we assume that firms’ utility function can also depend
(either positively or negatively) on the material payoffs of their competitors,
being them involved in a network of social interaction arising from their inter-
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dependent preferences (see [13] and [5]). In particular, utility vi is given by

vi(qi, q−i, B) = πi(qi, q−i) +

N∑
j=1,i6=j

βijπj(qi, q−i)

= qi(p(qi +Q−i)− c) +

N∑
j=1,i6=j

βij(qj(p(qi +Q−i)− c)),

(1)

where q−i ∈ [0,+∞)N−1 collects the output levels of all firms but the i-th
one and B is a hollow N × N matrix whose elements are weights βij , i 6= j,
which identify the extent and the kind4 of social interaction. With the pre-
vious utility function, the classic Cournot game corresponds to game Γ0 =
(N , Si, vi(qi, q−i, O)) = (N , Si, πi(qi, q−i)), obtained setting B equal to the null
matrix O.

In [5] the problem of the existence and uniqueness of a Nash equilibrium to
game Γ was investigated, showing that it was possible by assuming that weights
fulfill the bound

Assumption 1. − 1
N−1 < βij < 1,

that demand function p is either an isoelastic demand function p(Q) = 1/Q or
it satisfies

Assumption 2. For any qi ∈ [0, Li], i ∈ N and for Q ∈
[
0,
∑N
k=1 Li

]
we have

p′(Q) < 0 and for any z ∈
[
0,
∑N
k=1 Li

]
we have{

p′′(Q)z + p′(Q) < 0,

−p′′(Q) z
N−1 + p′(Q) < 0,

(2)

and that the structure of interaction is described in terms of a P−matrix i.e.
when

Assumption 3. Matrix I +B is a P -matrix.

In particular, Assumption 1 guarantees that the aggregate output level of
the industry ranges from the output level of a monopoly (monopolistic limit) to
that of a competitive market (competitive limit), both indeed characterized by
inverse demand function p.

In addition to this, the characterization of a Nash equilibrium of Γ has been
investigated in [4]. In the next proposition we summarize the most relevant
results in view of the subsequent sections.

4In agreement with the literature about interdependent preferences we say that if βij > 0,
then firm i is altruistic with respect to firm j, if βij < 0 firm i is spiteful toward firm j, while
firm i is neutral toward firm j if βij = 0.
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Proposition 1. Let q∗ be an internal Nash equilibrium for game Γ = (N , Si, vi(qi, q−i, B)),
and let Q∗ be the corresponding aggregate equilibrium output of the industry.
Then there exists a vector ξ ∈ (0,+∞)N , which just depends on coefficients βij,
such that

q∗ = Q∗σ = Q∗
ξ

µ
, (3)

with µ =

N∑
i=1

ξi and where the aggregate equilibrium quantity satisfies

Q∗p′(Q∗) = (c− p(Q∗))µ, (4)

while vector ξ is defined by

ξ = (I +B)−1u, (5)

in which the i-th component represents a measure of the centrality of the i-th
firm in the network described by matrix B. Moreover, if the Nash equilibrium
is unique, Q∗(µ) is an increasing function.

3. Centrality measures

Expressions in (3), (4) and (5) show that Nash equilibria can be characterized
in terms of the Bonacich centrality measure ξ, which quantifies the relevance
that a firm has from being in the network of social interaction. It indeed depends
on the way the preferences of firm i directly depend on the material payoff of its
competitors, but it can be significantly altered by the indirect effects of other
firms’ preferences structure. The vector of centrality measures has a twofold
descriptive power. Firstly, the distribution of centrality measures determines
the ordering of firms with respect to their market share, describing how much
a firm is dominant inside the market. Moreover, through µ =

∑
ξi we are

able to quantify the degree of competitiveness characterizing the market, as it
determines where the equilibrium production of the industry places between the
monopolistic and the competitive limit.

Conversely, how much a firm is taken into account by its competitors (i.e.
its influence in the network of social preferences) can be described in terms
of Friedkin-Johnsen [8] centrality measure χ = (I + BT )−1u, which does not
directly affect the equilibrium quantities but, as we are going to show, it is
relevant to understand the effect of a change in the structure of interaction.
We stress that, as evident from Propositions 4 and 5 in [4], the performance of
firms and their ordering with respect to their relevance is in general independent
of that with respect to their influence, being coincided only in the case of a
symmetric network of social interactions.

To summarize, the Bonacich centrality of a firm quantifies the benefits/disadvantages
arising from the connections that a firm directly or indirectly has in the network
of social interaction and by the (altruistic or spiteful) kind of such interactions.
The Friedkin-Johnsen centrality measure quantifies the influence that a firm i
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exerts on all the other firms as a consequence of the direct or indirect social
connections that they have with firm i. It is clear that each measure describes
the role of a firm in the network of social interaction from a different point of
view. What is the outcome of the combination of both points of view?

In order to answer this question, we draw our attention to the intercentrality
measure, which was introduced by Ballester et al. in [2]. The intercentrality
measure has been proposed to identify the player providing in a network the
largest contribution to the aggregate outcome, namely the player whose removal
from the network would lead to the largest disruptive effect to the collectivity
performance. For a firm i, it is defined as the sum of firm i relevance (i.e.
Bonacich centrality) and of i’s contributions to the relevance of all the other
firms. For a firm j 6= i, such contribution can be quantified by supposing
to remove player i from the network (i.e. by setting βij = βji = 0 for any
j = 1, . . . , N) and by evaluating the difference between the centrality measure
achieved by player j when player i is in the network and when player i is
not in the network. Let B−i be the network obtained from B by removing any
interaction involving firm i and let ξj(B) and ξj(B−i) be the Bonacich centrality
of firm j in networks B and B−i. In what follows we will restrict to situations
in which (I +B)−1u and (I +B−i)

−1u both consist of nonnegative elements5.
The intercentrality of a firm i = 1, . . . N is then defined by

ρi = ξi(B) +

N∑
j=1,j 6=i

(ξj(B)− ξj(B−i)), (6)

and allows ordering players with respect to the contribution they exert toward
the whole set of players. The player with the largest ρi is usually addressed as
the key player.

In [2] the intercentrality measure is introduced for a symmetric matrix6

whose elements correspond to

ρi =
ξ2i
β̃ii
. (7)

In the next proposition we provide a new characterization of such measure for
a general network described by matrix B.

Proposition 2. Let B be a matrix that satisfies Assumptions 1 and 3 and for
which vectors (I +B)−1u and (I +B−i)

−1u are nonnegative. Then

ρi =
χiξi

β̃ii
, i = 1, . . . N. (8)

5In the general case, the identities proved in this contribution are still valid provided
that we consider also centrality measures with negative elements. However, in this case the
connection between the Bonacich index and the Nash equilibrium no more holds.

6Rephrased to the present model, the setting in [2] corresponds to a globally symmetric
spiteful scenario (i.e. in which the preferences of each firm negatively depend on the material
payoffs of all their competitors and βij = βji).
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The expression of ρi indeed coincides with that (7) when B is symmetric,
as in such case we have χi = ξi, namely the relevance of a firm in the network
is identical to its influence. The expression of ρi provided by (8) is then in
line with that in [2], but by removing the symmetry assumption on matrix B
(and hence the identity between relevance and influence of a firm), we obtain
a more neat social interpretation of the expression of ρi. As in (7), from (8) it
is immediately evident that, ceteris paribus, if a player has a larger Bonacich
centrality, it will contribute to a larger extent to the overall centrality of all
the players. However, differently from (7), in (8) it is explicitly specified the
role of the influence of player i in the network. The more a player is influential
on the collectivity (net of the feedback effect encompassed in β̃ii), the more
its “achieved centrality” (due to its role in the network) will contribute to the
overall centrality of the other players.

We then have that even if a player is central in the network but it is just a
few influential, its large centrality will minimally benefit the overall centrality
of players. The same occurs when a player has a large influence on the collec-
tivity but it has a small centrality: the resulting contribution to the Bonacich
centrality of the collectivity is small. Finally, we stress that since χi can be also
negative, we have that a player can have a negative intercentrality measure.
This is perfectly understandable: player i provides a negative contribution to
the Bonacich centrality of the collectivity, i.e., on average, the other players
would benefit from a removal of the player from the network.

The economic effects are a straightforward consequence of those social: since
the intercentrality represents the contribution to the Bonacich centrality of all
the firms, which in turns determines the market share and the degree of compet-
itiveness, it is evident that understanding how ρi changes is essential to study
the way the equilibrium is affected by the social interaction structure.

We show a possible scenario with respect to the distributions of the different
measures in the next example.

Example 1. Distribution of centrality, influence and intercentrality
Let consider the 5× 5 matrix of negative weights

B =



0 −0.03 −0.1 −0.12 −0.01

−0.17 0 −0.05 −0.15 −0.1

−0.22 −0.23 0 −0.05 −0.01

−0.1 −0.1 −0.2 0 −0.06

−0.21 −0.05 −0.17 −0.12 0


(9)

which gives rise to the network shown in Figure 1. We report the matrix (I +
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Figure 1: Graphical representation of the network described by weight matrix B1 in (9)

B)−1 of the aggregate effects due to any order dependence of social preferences

(I +B)−1 =



1.0674 0.0822 0.1461 0.1513 0.0294

0.2604 1.0683 0.1432 0.2135 0.1237

0.3086 0.2741 1.0806 0.1381 0.0496

0.2134 0.1782 0.2602 1.0758 0.0871

0.3152 0.1387 0.2528 0.1950 1.0312


(10)

We also report the vector of relative centrality measures (σ), the row vector
of the aggregate effects due to any order dependence of social preferences of
the industry on each firm (χT ) and the row vector of intercentralities (ρT ),
respectively

σ =


0.1662
0.2036
0.2083
0.2043
0.2176

 , χ =


2.1651
1.7414
1.8829
1.7737
1.3210

 and ρ =


2.9947
2.9490
3.2252
2.9920
2.4761

 (11)

We note that, in general, the ordering of the relative centralities, of the
influences exerted by each firm and of intercentralities do not necessarily coin-
cide. For instance, given the previous network, firm 5 has the highest centrality
measure, but it is firm 3 the one with the highest intercentrality measure.

4. Comparative statics

The goal of the comparative statics is to investigate how a change in the
structure of interdependent preferences (i.e. a change in the weight matrix B)
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affects the equilibrium. It is clear how internal equilibria are actually character-
ized in terms of elements related to social interaction (the vector of centrality
measures ξ and the related measure µ of the degree of competitiveness) and
elements related to market interaction (the inverse demand function). In partic-
ular, the aggregate output level at the equilibrium depends on elements related
to both market and social interaction, while the way the industry performance
is distributed among firms just depends on the structure of interdependent pref-
erences.

The comparative statics of internal equilibria must then be studied in terms
of elements related to B̃ = (I + B)−1, to which we indeed have to add the
characterization due to the inverse demand function. We start focusing on the
role of the social interaction structure. Firstly, we investigate how measures
ξi, χi and ρi are affected by an increase of a weight characterizing the social
preferences of firm i.

Proposition 3. Let B be a matrix satisfying Assumptions 1 and 3 and to which
corresponds an internal Nash equilibrium and be 1 ≤ i, j ≤ N with i 6= j.
If we linearly increase7 coefficient βij, then ξi decreases, χi increases provided

that χiβ̃ji < 0 and ρi decreases provided that ρi > 0.

In the previous proposition we are assuming that firm i becomes less spiteful
or more altruistic toward firm j. The result regarding ξi is unambiguous: the
Bonacich centrality of firm i always decreases.
The behavior of χi is determined by the kind of influence that firm i has toward
the overall industry and toward firm j. If they are of the same kind, then the
overall influence of firm i toward the industry decreases as the direct influence
that firm j has on firm i increases.
Finally, if firm i exerts a positive effect on the centrality of all firms, if it becomes
less spiteful or more altruistic toward another firm, then such effect will decrease.
We stress that if firm i becomes more spiteful or less altruistic toward firm j,
we have the opposite behaviors, so that the centrality of firm i increases, its
influence increases provided that firm i has, toward the overall industry and
toward firm j, the same kind of influence and finally the negative effect on the
centrality of the overall industry will decrease.

In the next propositions we investigate what happens to the share σi of a
given firm and the degree of competitiveness µ.

Proposition 4. Let B be a matrix that satisfies Assumptions 1 and 3 and to
which corresponds an internal Nash equilibrium and be 1 ≤ i, j ≤ N with i 6= j.
If we linearly increase coefficient βij, then

σ′i = ξj(ξiχi − β̃iiµ) (12)

7Hereinafter, with linearly increase we mean that a coefficient increases as a linear function
like β(x) = β+ + x.
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and the market share σi increases provided that

ρi =
ξiχi

β̃ii
> µ. (13)

The first part of Proposition 4 focuses on what happens when the structure
of interaction of a given firm i changes, due to an increase in one of the weights
through which the preferences of such firm depend on the material payoff of
another firm. The main result is encompassed in condition (13), which clarifies
under what conditions the market share of a given firm increases if its spiteful-
ness decreases or its altruistic behavior becomes stronger We stress that in (13)
we find involved all the centrality measures that characterize the outcome of
the preference interaction structure at the equilibrium, namely the relevance of
firms ξ (and consequently the market share σ and the degree of competitiveness
µ), the influence χ and the intercentrality ρ. The behavior of the market share
of a given firm on increasing βij basically depends on a comparison of such
measures through a simple relation.

From condition8(13), we can infer that if the overall influence degree is neg-
ative (χi < 0), then the effect of an increase of altruism (or a decrease in
spitefulness) will result in a decrease of the market share of firm i inside the
market. Conversely, if χi > 0, then the market share of firm i can improve as
βij increases.

Condition (13) is very clear: increasing βij can result in a strengthening of
the position of firm i in the market only provided that its overall contribution
to the equilibrium of the industry is large enough. Moreover, the threshold at
which this occurs is larger as the degree of competitiveness is higher. This means
that if the aggregate equilibrium of game Γ is suitably close to the monopolistic
limit, it is more likely that the market share of firm i improves through an
increase in the degree of altruism (or a decrease in the degree of spitefulness)

From (13), the joint effect of the overall influence and of the relevance of
firm i has to be suitably large. Ceteris paribus, it is more likely for a firm
with a large (relative) centrality measure than for a firm with a small (relative)
centrality measure to have an improvement in the equilibrium performance with
a more altruistic behavior. We stress that condition (13) is independent on j,
namely the increase of a weight that defines the social preferences of firm i can
be toward any firm.

Conversely, the centrality measure of firm j determines the speed of increase
of the market share of firm i, as evident from (12), in which ξj is a multiplicative
coefficient of the positive term within brackets. In the opposite situation, i.e.
when condition (13) is violated, the role of the centrality measure ξj conversely
has a negative effect on the change of the market share of firm i. In fact, in such
case we have that the market share of firm i decreases faster as the firm is more
central.

8We recall that elements of ξ, the value of µ and the diagonal elements of matrix B̃ are
always positive.
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To summarize we can say that the more the overall industry gives relevance at
the equilibrium to firm i through the network of social interdependent prefer-
ences, the more an increase of altruism (or a decrease of spitefulness) can be
convenient to firm i, and vice-versa. In fact, in this latter case, if condition
(13) is violated, an increase in the market share σi realizes if firm i reduces any
weight describing its network of social interdependences, i.e. if it becomes less
altruistic or more spiteful.

Even if in the model under consideration the distribution of weights is kept
exogenous and the case in which firms can decide or change their social pref-
erences is not under investigation, the previous considerations open interesting
considerations in view of a possible endogenization and evolution of coefficients
βij . Proposition 4 shows that a firm can improve its performance at the equilib-
rium if it changes its social preferences in the following way: when the degree
χi with which the industry, as a whole, takes into account its performance is
sufficiently high, the firm can improve its performance by increasing the weight
it places on the material payoff of its competitors, while an improvement is ob-
tained by reducing βij when χi is low or even negative. It is easy to read in the
previous considerations a first, very prototypical and stylized, justification for a
“tit-for-tat” dynamical way to adjust social preferences.

Now we investigate the effect that an increase of the weight another firm
places on the material payoff of firm i has on the equilibrium performance of
firm i.

Proposition 5. Let B be a matrix that satisfies Assumptions 1 and 3 and to
which corresponds an internal Nash equilibrium and be 1 ≤ i, j ≤ N with i 6= j.
If we linearly increase coefficient βji, then

σ′i = ξi(ξiχj − β̃ijµ) (14)

and the market share σi increases provided that

χjξi >
β̃ij
µ
. (15)

The condition (15) under which σi increases is structurally very similar to
that related to the first part of the proposition, and again results in a comparison
of χj , ξi and µ. However, in this case, the discriminant is how much influential
is firm j in the network of social interactions. The more firm j is influential,
the more the weight that such firm gives to the material payoff of firm i will
positively affect the equilibrium performance of firm i.

In line with (13), for the validity of condition (15), also in the present case
the greater is the centrality measure of firm i, the smaller is the level of influence
that must characterize firm j. Finally, in line with (12), from (14) we have that
the greater is the centrality measure of firm i, the faster will increase the market
share of firm i when (15) holds.
To summarize we can say that the more the overall industry gives relevance at
the equilibrium to firm j through the network of social interdependent prefer-
ences, the more an increase of altruism (or a decrease of spitefulness) of firm j

11



Figure 2: Graphical representation of the network described by weight matrix B in (16)

toward firm i can be convenient to firm i, and vice-versa. In fact, once more,
in this latter case, if condition (15) is violated, an increase in the market share
σi realizes if firm j reduces the weight through which it is linked to firm i, i.e.
if firm j becomes less altruistic or more spiteful toward firm i. We deepen the
description of the results of Proposition 5 in the next example.

Example 2. Comparative statics: a general case
Let consider the following 5× 5 matrix

B =



0 −0.03 0.26 0.99 0.46

−0.14 0 0.61 0.96 0.07

0.38 0.38 0 0.28 0.41

0.73 −0.03 0.89 0 −0.02

0.21 0.58 0.54 0.31 0


(16)

which gives rise to the network shown in Figure 2. We report the matrix that
encompasses the aggregate effects due to any order dependence of social prefer-
ences, namely

(I +B)−1 =



2.4124 0.2617 2.9176 −2.7191 −2.3786

1.7755 1.1569 2.5497 −2.9615 −2.0023

−1.0866 −0.3358 0.1532 1.2049 0.4846

−0.7550 0.1308 −2.2194 1.8450 1.2850

−0.7156 −0.5852 −1.4862 1.0661 2.0008


(17)

We also report the column vector of the (absolute) centrality measures (ξ) and
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(a) (b)

Figure 3: Figure 3(a) shows firms’ market shares given the variation in the coefficient β12. In
Figure 3(b) we report the monotonicity relation in terms of ρ1 and increasing values of the
coefficient β12 (blue line). Figure 3(b) also reports the graph of the degree of competitiveness
µ for increasing values of the coefficient β12 (dark dashed line).

of the relative centrality measures (σ), respectively

ξ =


0.4940
0.5182
0.4204
0.2864
0.2799

 and σ =


0.2471
0.2593
0.2103
0.1433
0.1400

 (18)

Finally, we report the row vector (χT ) of aggregate effects due to any order
dependence of social preferences of all the firms in the industry on each com-
petitor

χT =
[
1.6307 0.6284 1.9148 −1.5646 −0.6105

]
(19)

The goal of this example is to show the possible behaviors of market share
σi of a firm when the firm gives more relevance to the material payoff of one of
its competitors, and when one of its competitors increases the relevance given
to the i-th firm material payoff.
In general, the relative centrality measure of firm i (σi = ξi∑N

i=1 ξi
) decreases if

any of its social weights βij , with j 6= i, tends towards 1. In other words, acting
more altruistically towards any of its opponents tends to disadvantage the firm
in terms of centrality. Conversely, if any of its opponent j 6= i tends to increase
the weight of the material payoff of firm i into its utility (βji, j 6= i), firm i’s
centrality measure will increase.
As an example of this, we let coefficient β12 increase in the interval [−0.03, 1]
to see what effect this may have, initially, on the relative centrality measure of
firm 1 (blue line) and then on all its opponents, in primis on firm 2 (red line).
Figure 3(a) shows that an increase in the altruism of firm 1 towards one of its
opponents (in this case firm 2) has the direct effect to monotonically decrease
the market share of firm 1 but also to decrease the market share of firm 2. We
then let coefficient β34 increase in the interval [0.28, 1] to see what effect this
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(a) (b)

Figure 4: Figure 4(a) shows firms’ market shares given the variation in the coefficient β34. In
Figure 4(b) we report the monotonicity relation in terms of ρ3 and increasing values of the
coefficient β34 (yellow line). Figure 4(b) also reports the graph of the degree of competitiveness
µ for increasing values of the coefficient β34 (dark dashed line).

may have, initially, on the relative centrality measure of firm 3 (yellow line)
and then on all its opponents, in primis on firm 4 (purple line). As before, we
chose β34 since it allows for a greater interval of variation compared to the other
coefficients of firm 3.
We note that an increase in the altruism of firm 3 towards firm 4 has the di-

rect effect to monotonically increase the market share of firm 3 and the indirect
effect to increase the market share of firm 4. Particularly interesting is the fact
that for values of β34 in the interval [0.387, 0.417] firm 3, which for β34 = 0.28
realized fewer profits than firm 1 and firm 2, is the firm with the highest profits,
in the network.

If χi > 0, there exists the possibility that an increase in the altruistic level
of firm i towards some of its opponent has the effect to increase the relative cen-
trality of firm i in the network. The higher χi is the smaller the initial market
share firm i needs to own in order to have a positive effect due to an increase
in one of its weights βij . The more central in the network is firm i, the more
is probable that, even for a small but positive level of altruism exerted by the
industry at the aggregate level towards i, an increase of the level of altruism
towards one of its opponents has the effect to increase its centrality in the net-
work. Conversely, the smaller firm i’s relative centrality is the more probable,
even for high level of aggregate altruism of the industry towards i (χi), the effect
of a decrease in the centrality of firm i (σi) is.
Given the low degree (χ1 = 1.18), with which the industry as a whole takes into
account the performance of firm 3, the increase of its evaluation of the mate-
rial payoff of firm 2 in its utility has the effect to decrease its centrality in the
network. Given the low influential role played by firm 1 in the network, an in-
crease in the coefficient β12 also negatively affects the equilibrium performance
of firm 2. We stress the fact that the main contribution to the centrality of
firm 1 is due to the feedback effect β̃11. Instead, given the high degree χ3, with
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which the industry as a whole takes into account the performance of firm 3, the
increase of its evaluation of the material payoff of firm 4 in its utility has the
effect to increase its centrality in the network. Given the influential role played
by firm 3 in the network, an increase in the coefficient β34 also positively affects
the equilibrium performance of firm 4. We stress that in this last scenario the
feedback effect on firm 3 is very small (β̃33 ≈ 0.15) .

To show how the role of influence and centrality are both essential to un-
derstanding comparative statics of the characterization of the market share at
the Nash equilibrium, we study the following structures for which the effect of
a change in coefficients βij is unambiguous. Recalling Propositions 4 and 5 in
[4], when the ordering of firms with respect to influence is the reversed one of
that with respect to the centrality.

Proposition 6. Let B be a matrix that satisfies Assumptions 1 and 3. Assume
βij = βi for i = 1, . . . , N and i 6= j and that q∗ is an internal Nash equilibrium.
Then σi decreases if βi increases and increases if βj , j 6= i increases.

Conversely, assume βij = βj for i = 1, . . . , N and i 6= j and that q∗ is an
internal Nash equilibrium. Then σi increases if βj increases and decreases if
βi, j 6= i increases.

In the former scenario depicted in Proposition 6 we have that if a firm
becomes more altruistic or less spiteful, its market share always decreases. This
in particular also holds for the most central firm: the reason is that, recalling
Proposition 4 in [4], it is also the least influential, and the joint effect of them
is too small. In the latter scenario, the situation is instead the opposite one.

The next example focuses on a particular situation of the scenario investi-
gated in Proposition 6.

Example 3. Comparative statics of scenarios in Proposition 6
Let consider the 5× 5 matrix

B =



0 −0.17 −0.17 −0.17 −0.17

−0.13 0 −0.13 −0.13 −0.13

−0.04 −0.04 0 −0.04 −0.04

0.15 0.15 0.15 0 0.15

0.16 0.16 0.16 0.16 0


(20)

which gives rise to the network shown in Figure 5. The main feature of matrix
B is that each firm i evaluates the opponents’ material payoff the same way in
its own utility, either positively or negatively.
We report the matrix (I + B)−1 of the aggregate effects due to any order de-
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Figure 5: Graphical representation of the network described by weight matrix B in (20)

pendence of social preferences

(I +B)−1 =



0.9710 0.1204 0.1308 0.1600 0.1619

0.0921 0.9803 0.1036 0.1267 0.1282

0.0308 0.0319 0.9962 0.0424 0.0429

−0.1412 −0.1462 −0.1589 0.9821 −0.1967

−0.1524 −0.1578 −0.1715 −0.2098 0.9782


(21)

We compute the column vector of the centrality measures ξ and the column
vector of relative centrality measures σ, respectively

ξ =


1.5441
1.4308
1.1440
0.3391
0.2867

 and σ =


0.3254
0.3016
0.2411
0.0715
0.0604

 (22)

and the row vector of the aggregate effects due to any order dependence of social
preferences of the industry on each firm i = 1, 2, · · · , N made by the column
summations of matrix B̃

χT =
[
0.8002 0.8285 0.9002 1.1014 1.1145

]
(23)

We let coefficients β1j , with j 6= i to increase in the interval [−0.0725, 0.3] to see
what effect this may have, initially, on the relative centrality measure of firm
1 (blue line) and then on all its opponents. Firm 1 represents an interesting
case since it is, a priori, the most central firm in the network (ξ1 = max(ξ) =
1.5441), given the highest overall outgoing degree of spitefulness in the network
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(a) (b)

Figure 6: Figure 6(a) shows firms’ market shares given the variation in coefficient β1j , with
j 6= i. In Figure 6(b) we report the monotonicity relation in terms of ρ1 and increasing
values of the coefficient β1,j (blue line). Figure 6(b) also reports the graph of the degree of
competitiveness µ for increasing values of the coefficient β1,j (dark dashed line).

((Bu)1 = max((Bu)) = −0.29), but is the less influential firm in the network
(χ1 = min(χ) = 0.8002). The blue line in Figure 6(a) shows that a linear
increase in the level of altruism exerted by firm 1 towards all firms (β1j) has the
direct effect to decrease its centrality in the network and therefore the market
share. Note that firm 1 is initially spiteful, and as β1j increases, it becomes less
and less spiteful, turning into the most altruistic firm on (0.17, 0.3). The market
share lost by firm 1 is then redistributed among all its opponents whose profits
firm 1 evaluates in its utility the same way.

We then consider the 5× 5 matrix

B =



0 −0.04 0.07 0.22 0.26

−0.23 0 0.07 0.22 0.26

−0.23 −0.04 0 0.22 0.26

−0.23 −0.04 0.07 0 0.26

−0.23 −0.04 0.07 0.22 0


(24)

which gives rise to the network shown in Figure 7. The main feature of matrix
B is that firm i’s material payoff is considered with the same weight in each of
its opponents’ utility, either positively or negatively.
We report the matrix (I + B)−1 of the aggregate effects due to any order de-
pendence of social preferences

(I +B)−1 =



0.9155 0.0211 −0.0413 −0.1546 −0.1926

0.1212 0.9865 −0.0488 −0.1828 −0.2278

0.1356 0.0279 1.0207 −0.2045 −0.2547

0.1616 0.0332 −0.0651 1.0383 −0.3037

0.1704 0.0350 −0.0686 −0.2570 1.0312


(25)
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Figure 7: Graphical representation of the network described by weight matrix B in (24)

We compute the column vector of the centrality measures ξ and of market shares
σ

ξ =


0.5481
0.6483
0.7250
0.8644
0.9111

 and σ =


0.1483
0.1754
0.1961
0.2338
0.2465

 (26)

and the row vector of the aggregate effects due to any order dependence of social
preferences of the industry on each firm i = 1, 2, · · · , N made by the column
summations of matrix B̃

χT =
[
1.5043 1.1037 0.7970 0.2394 0.0525

]
. (27)

Vector σ shows that firm 1 is the least central while is firm 5 the one to own
the largest market share. Looking at vector χ, we note that firm 1 is the most
influential while firm 5 is the least one in the network.
As shown in Figure 8(a) by increasing homogeneously the influence of firm 1

over its opponents the market share also increases, to the point that firm 1, from
being the least powerful oligopolist in the market, becomes the most central.
The previous pattern is confirmed by looking at firm 5 situation shown in Figure
9(a). Increasing the influence of firm 5 into its opponents’ utility preserves its
leadership in the network.

In general, it is not possible to have monotonicity results in a completely
heterogeneous structure. The unique unambiguous situation is that in which all
firms are spiteful, as shown in the next proposition.

Proposition 7. Assume that all firms are spiteful or selfish with respect to all
the other firms, then if |B1| ≥ |B2| we have ξ1 ≥ ξ2 and χ1 ≥ χ2.
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(a)

Figure 8: Figure 8(a) shows firms’ market shares given the variation in coefficients βj1, with
j 6= i.

(a)

Figure 9: Figure 9(a) shows firms’ market shares given the variation in coefficients βj5, with
j 6= i.

The following example reports a situation described by Proposition 7.
We move from the study of the effects on a single individual of the change of

a single weight to the investigation of the effects on the collectivity of the change
in the collective behavior. To this end, we first need to focus on what happens
to the degree of competitiveness as the social preference structure changes.

Proposition 8. Let B be a matrix that satisfies Assumptions 1 and 3 and to
which corresponds an internal Nash equilibrium and be 1 ≤ i, j ≤ N with i 6= j.
If a given βij linearly increases, the degree of competitiveness µ increases pro-
vided that χj < 0, or, equivalently, if ρj < 0. If all coefficients βij linearly
increase, the degree of competitiveness µ decreases.

From Proposition 8 we have that a firm takes into account more and more the
material payoff of a firm j in its utility, the degree of competitiveness embedded
in the game increases if firm j has a negative influence.

As predictable, when all the players become more altruistic or less spiteful,
the degree of competitiveness decreases.
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Now, the main question is: when is a collective change of the social preference
structure beneficial to every firm? This is clarified in the next proposition for
two relevant inverse demand functions.

Proposition 9. Let B be a matrix that satisfies Assumptions 1 and 3 and
to which corresponds an internal Nash equilibrium and let p(Q) = max{a −
QB, 0} or p(Q) = 1/Q. Then as all βij linearly increase, the profits of all firms
simultaneously increase provided that the distribution of firms with respect to
centrality is suitably close to the uniform distribution.

The previous proposition shows that a beneficial effect in terms of the
achieved profits is possible provided that firms are suitably “homogeneous” in
terms of their relevance at the equilibrium.
We deepen the investigation through the next example.

Example 4. Collective effects of a collective increase of altruism
Let consider the 5× 5 matrix

B =



0 −0.1467 −0.0061 −0.0858 0.0086

−0.1323 0 −0.0272 0.1520 −0.2224

0.1391 −0.1852 0 −0.1602 −0.0236

−0.0472 −0.1801 −0.2298 0 0.2271

0.2231 −0.2648 −0.1599 −0.0284 0


(28)

that describes a scenario in which there is homogeneity in the firms’ centralities,
i.e. the row summations are all equals.
Let us consider a perturbation matrix B0, given by

B0 =



0 0.0879 −0.0043 0.0854 0.0870

0.0580 0 0.0909 0.0530 0.0285

0.0394 −0.0076 0 0.0689 0.0956

0.0931 0.0759 0.0689 0 0.0579

0.0483 0.0247 0.0657 0.0087 0


(29)

whose network is represented in Figure 10
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Figure 10: Graphical representation of the network described by weight matrix B0 in (29)

The goal is to study the behavior of profits of the firms in the network
described by B + αB0 + β(U − I) where α ≥ 0 and β ranges from 0 to a
suitable maximum value. Matrix B + αB0 is an initial network consisting of
a perturbation of the homogeneous scenario given by B. The larger is α, the
greater is the degree of heterogeneity encompassed in B + αB0. Moreover, we
stress that heterogeneity also increases as β grows up.
We report the matrix (I+B+αB0)−1 of the aggregate effects due to any order
dependence of social preferences both for values of α ≈ 0.1 and α ≈ 0.5

(I +B + 0.1B0)−1 =



1.0274 0.0380 −0.0015 −0.0093 −0.0881

0.0283 1.0282 −0.0747 −0.2123 0.2625

−0.1561 0.1787 0.9921 0.0532 −0.0370

0.0123 0.0616 0.1296 0.9937 −0.2818

−0.2865 0.2546 0.0784 −0.0239 1.0779


(30)

and

(I+B+0.5B0)−1 =



1.3765 −0.3380 0.3257 −0.3799 −0.5892

−0.1079 1.0563 −0.5071 −0.3181 0.5270

−0.1637 0.2730 0.9412 −0.2279 −0.2156

−0.2129 −0.2370 0.0550 1.1698 −0.5539

−0.6241 0.2638 −0.3827 0.1523 1.3931


(31)

We report the vector of centrality measures (ξ), for values of α ≈ 0.1 and
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(a) (b)

Figure 11: Profits for each firm in the network described in Figure 10 for increasing values of
β (i.e. increasing the degree of altruism) given a linear demand function (in Figure 11(a)) and
given an isoelastic demand function (in Figure 11(b)) for value of the perturbation parameter
α ≈ 0.1

α ≈ 0.5, respectively

ξ0.1 =


0.9666
1.0320
1.0309
0.9154
1.1005

 , ξ0.5 =


0.3952
0.6502
0.6071
0.2210
0.8023

 (32)

We note that the values in ξ0.1 are suitably close, representing an initial situation
in which the firms own almost the same market share, while the values in ξ0.5
are much more sparse. We run the experiment for both the linear demand (for
parameters’ values of a = 2, b = 1) and the isoelastic demand function. In both
cases we set marginal costs c = 1.

Proposition 9 shows that linearly increasing each coefficient βij of the matrix
B, the profits of all firms simultaneously increase provided that the distribution
of firms with respect to centrality is suitably close to the uniform distribution
and matrix B satisfies 1-3.

In Figure 11(a) and Figure 11(b) we report achieved profits for the scenario
with the perturbation parameter α = 0.1. We note how all firms’ profits are
increasing as β increases.

Conversely, if the initial distribution of centralities is too heterogeneous,
there is no chance for a firm with a low centrality to increase its profits by
increasing its altruism toward the industry, as evident from Figure 12(a) and
Figure 12(b), related to the case with α ≈ 0.5

5. Conclusions

The comparative statics analysis provided has highlighted the crucial role
that the elements, characterizing the social interaction structure, play on the
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(a) (b)

Figure 12: Profits for each firm in the network described in Figure 10 for increasing values of
β (i.e. increasing the degree of altruism) given a linear demand function (in Figure 12(a)) and
given an isoelastic demand function (in Figure 12(b)) for value of the perturbation parameter
α ≈ 0.5

equilibrium. Among these elements we focused on the vector of centrality mea-
sures ξ, known in the literature as the Bonacich centrality index, on the degree
of competitiveness of the market µ, the vector of the degree of influence χ that a
single firm exerts in the network of social interactions, known in the literature as
the Friedkin-Johnsen centrality measure, and the vector of intercentrality mea-
sure ρ which identifies in a network the player providing the largest contribution
to the aggregate outcome, which in this case is represented by the aggregated
utility. The contribution of each element to the equilibrium, in terms of market
share and/or profits, has been studied in order to understand the reasonableness
of an individualistic behavior or a collusive one. For instance, a given firm i can
improve its individual performance, in terms of market share, at the equilibrium
by increasing the weight it places on the material payoff of its competitors if the
degree χi is sufficiently high or by reducing βij when χi is low or even negative.
Even if in the proposed model the distribution of weights is kept exogenous
and the case in which firms can decide or change their social preferences is not
under investigation, it is easy to read in the previous considerations a first, very
prototypical and stylized, justification for a “tit-for-tat” dynamical way to ad-
just social preferences in order to achieve higher market share. Moreover, we
investigated the effects on the industry of the change in the collective behavior.
Comparative statics shows that a beneficial effect in terms of the achieved prof-
its is possible provided that firms are suitably “homogeneous” in terms of their
relevance at the equilibrium.
To conclude, the provided local analysis allows us to suggest a unitary answer
to the question of what drives, in the first stages of the game, the individual
participant in Friedman laboratory experiment. That is, given the interaction
structure of the game, how it is possible for a player to individually increase
its performance. Simultaneously, the global analysis can explain why, from a
certain stage of Friedman’s laboratory experiment, emerges a decision behavior
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that is fundamentally collective, passing from a heuristic that tries to improve
the performance of the single player to a heuristic that tries to improve the per-
formances of all the players, simultaneously. Friedman himself concludes that,
in a triopoly context, the change from an individualistic heuristic to a collec-
tive one is facilitated when players interact, in groups or as a whole, in a more
homogeneous social structure. In line with Friedman’s conclusions, we showed
that an increase in the collective performance, in terms of profits, is possible
when the industry acts more altruistically, given that the interaction structure
is characterized by less heterogeneity as possible between the players.

The results of the proposed model then offers the possibility to observe
a sequence of static “snapshots” that can potentially describe the dynamical
evolution observed in experiments. The next step of the present research strand
is to introduce dynamics into the model, with a particular focus on the way
the agents can adapt their preferences, i.e. on the way the structure of social
interaction evolves. Just to fix ideas, a possible approach could consist of a
gradient-like adjusment mechanism for β coefficients, in which agents, on the
basis of a profitability signal, modify their social interaction structure to improve
their preformance. However, such mechanism should take also in account some
kind of reciprocity, namely should depend on the behavior of the competitors,
in line with the approach, carried on in a static framework, in [13].

Appendix

Proof of Proposition 2. The proof is essentially the same as that of Theorem 3
in [2]. From the definition of ρi in (6) we can write

ρi = ξi +

N∑
j=1,j 6=i

N∑
k=1

(β̃jk − β̃−i,jk) = ξi +

N∑
j=1,j 6=i

N∑
k=1

β̃jiβ̃ik

β̃ii

We have

ρi = ξi +

N∑
j=1,j 6=i

β̃ji
∑N
k=1 β̃ik

β̃ii
= ξi +

N∑
j=1,j 6=i

β̃jiξi

β̃ii
= ξi

1 +

N∑
j=1,j 6=i

β̃ji

β̃ii


which allows concluding.

Proof of Proposition 3. Let Az = I + B + zE and A = I + B, where E is a
matrix in which the unique non-null element is (E)ij = 1. Let ei the i-th vector
of the euclidean basis of RN . We recall that

dA−1z
dz

(0) = −A−1 dA
dz

(0)A−1 = −A−1EA−1

In what follows we drop the evaluation at z = 0: we implicitly mean that all
the involved functions depend on z and are evaluated at z = 0.

We have ξi = eTi A
−1u, so ∂ξi/∂z = −eTi A−1EA−1u = −β̃iieTj ξ = −β̃iiξj .

Since both β̃ii and ξj are positive, we conclude ∂ξi/∂z < 0.

24



We have χi = uTA−1ei, so ∂χi/∂z = −uTA−1EA−1ei = −χiβ̃ji, which
allows concluding.

We have ρi = (eTi A
−1ueTi A

−1u)/(eTi A
−1ei), so

∂ρi
∂z

=
(−eTi A−1EA−1ueTi A−1u− eTi A−1uuTA−1EA−1ei)eTi A−1ei + eTi A

−1ueTi A
−1ueTi A

−1EA−1ei
(eTi A

−1ei)2

=
(−β̃iiξjχi − ξiχiβ̃ji)β̃ii + ξiχiβ̃jiβ̃ii

(β̃ii)2
= −ξjχi

β̃ii

Proof of Propositions 4,4 and 8. Let Az = I +B + zE and A = I +B.
Without loss of generality, we can focus on what happens to component 1.

Let e1 the first vector of the euclidean basis of RN . We recall that

dA−1z
dz

= −A−1z
dAz
dz

A−1z = −A−1z EA−1z ⇔
dA−1

dz
= −A−1EA−1

From

ξ̄1(z) =
ξi(z)∑N
k=1 ξk(z)

=
eT1 A

−1
z u

uTAzu

we have

dξ̄1
dz

(0) =
−eT1 A−1EA−1uuTA−1u+ eT1 A

−1uuTA−1EA−1u

(uTA−1u)2
(33)

We consider the case in which the unique non-null element is (E)ij = 1, with i 6=
j. It is easy to see that A−1u = ξ(0), eT1 A

−1uuT = ξ1(0)uT , eT1 A
−1E = β̃1ie

T
j

and uTA−1u = µ, so we have that the numerator of the previous expression
can be rewritten as (we drop evaluation at z = 0)

−β̃1ieTj ξµ+ ξ1u
TA−1Eξ = −β̃1iξjµ+ ξ1u

TA−1Eξj

Since uTA−1ei = χi, we have that the right hand side in the last expression
can be rewritten as

−β̃1iξjµ+ ξ1χiξj (34)

from which we can obtain the corresponding conditions.
The case of E = U − I can be obtained by summing all terms in (34). We

have

N∑
i=1

N∑
j=1,j 6=i

(−β̃1iµ+ ξ1χi)ξj =

N∑
i=1

(−β̃1iµ+ ξ1χi)(µ− ξi)

=

N∑
i=1

−β̃1iµ2 + ξ1χiµ+ β̃1iµξi − ξ1χiξi

= −ξ1µ2 + ξ1µ
2 + β̃

T

1 ξµ− ξ1χT ξ
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which allows concluding.
For the comparative statics on µ, we have

dµ

dz
= −uTA−1EA−1u

If the unique non-null element of E is (E)ij = 1, we have

dµ

dz
= −χjξi

If E = U − I, we have

dµ

dz
= −χT (µu− ξ) = χT ξ − µ2

Noting that both the sum of the elements of χ and ξ provides µ we can conclude
that the previous difference is always negative.

Proof of Proposition 6. For both cases considered in the current proposition, we
have already computed the values of ξi and µ in the proof of Propositions 4 and
5 in [4], so we refer to it for the related expressions.

We study the first scenario, in which B is such that βij = βi for i 6= j, i, j ∈
N . The goal is to study the sign of

∂
(

ξi∑N
k=1 ξk

)
∂βi

=

∂ξi
∂βi

(∑N
k=1 ξk

)
− ξi

∑N
k=1

∂ξk
∂βi(∑N

k=1 ξk

)2
We have

∂ξi
∂βj

=

−
N∑
k=1

βi
(1− βi)(1− βk)

1 +

N∑
k=1

βk
1− βk

= −

βi
(1− βi)(1− βj)2

(
1 +

N∑
k=1

βk
1− βk

)
− βi

(1− βi)(1− βj)2
N∑
k=1

1

1− βk(
1 +

N∑
k=1

βk
1− βk

)2

=

βi
(1− βi)(1− βj)2

(N − 1)(
1 +

N∑
k=1

βk
1− βk

)2 > 0
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As a consequence we can compute

N∑
k=1

∂ξk
∂βi

=

1

(1− βi)2

1+

N∑
k=1

βk
1− βk

− 1

(1− βi)2
N∑
k=1

1

1− βk1+

N∑
k=1

βk
1− βk


2

=

1

(1− βi)2

1+

N∑
k=1

βk
1− βk

−
N∑
k=1

1

1− βk


1+

N∑
k=1

βk
1− βk


2

=
(1−N)

(1− βi)2
(

1 +

N∑
k=1

βk
1− βk

)2

The derivative of the relative centrality index of firm i with respect to βi is
then

∂


ξi
N∑
k=1

ξk


∂βi

=
X

Y
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where

X =

(1−N)

(
1 +

N∑
k=1

βk
1− βk

− βi
1− βi

)

(1− βi)2
(

1 +

N∑
k=1

βk
1− βk

)2 ·

N∑
k=1

1

1− βk

1 +

N∑
k=1

βk
1− βk

−


1

1− βi
−

βi
1− βi

N∑
j=1

1

1− βj

1+

N∑
k=1

βk
1− βk


(1−N)

(1− βi)2
(

1 +

N∑
k=1

βk
1− βk

)2

=
(1−N)

(1− βi)2
(

1 +

N∑
k=1

βk
1− βk

)2 ·



1+

N∑
k=1

βk
1− βk

− βi
1− βi


N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

−

 1
1−βi −

βi
1−βi

N∑
j=1

1

1− βj

1+

N∑
k=1

βk
1− βk




in which the first factor is negative and

Y =


N∑
k=1

1

1− βk

1 +

N∑
k=1

βk
1− βk


2

> 0 (35)
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The sign of the fraction is then provided by

−

1+

N∑
k=1

βk
1− βk

− βi
1− βi


N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

+

 1
1−βi −

βi
1−βi

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk



= −

βi
1−βi

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

+ 1
1−βi −

1+

N∑
k=1

βk
1− βk

− βi
1− βi


N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

=

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

(
− βi

1−βi − 1−
N∑
k=1

βk
1− βk

+
βi

1− βi

)+ 1
1−βi

=

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

(
−1−

N∑
k=1

βk
1− βk

)
+ 1

1−βi

= 1
1−βi −

N∑
k=1

1

1− βk
< 0

Similarly, the derivative of the relative centrality index of firm i with respect to
βj is

∂ ξi
N∑
k=1

ξk

∂βj
=
X

Y
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where Y is defined by (35) while

X =

βi
(1−βi)(1−βj)2

(N−1)1+

N∑
k=1

βk
1− βk


2 ·

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

−

 1
1−βi −

βi
1−βi

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

 (1−N)

(1−βj)2

1+

N∑
k=1

βk
1− βk


2

=
1

(1−βj)2
(N−1)1+

N∑
k=1

βk
1− βk


2

 βi
1−βi ·

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

+

 1
1−βi −

βi
1−βi

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk




Simplifying X/Y we have

∂ ξi
N∑
k=1

ξk

∂βj
=

N − 1

(1− βj)2(1− βi)

(
N∑
k=1

1

1− βk

)2 > 0

Now we consider the second part of the proposition, in which B is such that
βij = βj for i 6= j, i, j ∈ N . Note that we can write C = BT = D + ubT , where
D and b are respectively a diagonal matrix in which dii = 1− βi for i ∈ N and
a vector with bi = βi for i ∈ N . We indeed have (I + C)−1 = ((I + B)−1)T

and applying again Sherman-Morrison formula we can write (I+C)−1 = D−1−
D−1ubTD−1

1+uTD−1b
. It is easy to see that the elements of D−1buTD−1 are given by

aij =
βj

(1−βi)(1−βj) while 1 + bTD−1u = 1 + bTD−1u = 1 +

N∑
j=1

βj
1− βj

We have ξ = D−1u − D−1buTD−1u
1+uTD−1b

and uT ξ = uT (I + C)−1u = uT ((I +
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B)−1)Tu = uT ((I +B)−1)u

ξi =

1
1−βi

−

N∑
k=1

βk
(1− βi)(1− βk)1+

N∑
k=1

βk
1− βk



= 1
1−βi −

1
1−βi

N∑
k=1

βk
1− βk

1+

N∑
k=1

βk
1− βk

= 1
1−βi

1−

N∑
k=1

βk
1− βk

1+

N∑
k=1

βk
1− βk


= 1

1−βi ·
1

1+

N∑
k=1

βk
1− βk

We note that uT ξ provides the same result for B and BT . We have

∂ξi
∂βi

= 1
(1−βi)2 ·

1

1+

N∑
k=1

βk
1− βk

− 1
1−βi ·

1
(1−βi)21+

N∑
k=1

βk
1− βk


2

= 1

(1−βi)2

1+

N∑
k=1

βk
1− βk


·

1− 1
1−βi ·

1

1+

N∑
k=1

βk
1− βk



=

(1−βi)

1+

N∑
k=1

βk
1− βk

−1

(1−βi)3

1+

N∑
k=1

βk
1− βk


2

and
∂ξi
∂βj

= − 1
1−βi ·

1
(1−βj)21+

N∑
k=1

βk
1− βk


2
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which allows writing

∂ξj
∂βi

= − 1
1−βj ·

1
(1−βi)21+

N∑
k=1

βk
1− βk


2

We need to evaluate the sign of

∂

 ξi
N∑
k=1

ξk


∂βi

=

∂ξi
∂βi

(
N∑
k=1

ξk

)
− ξi

N∑
k=1

∂ξk
∂βi(

N∑
k=1

ξk

)2 =
X

Y

where Y is provided by (35). We have

N∑
k=1

∂ξk
∂βi

= − 1

(1−βi)2

1+

N∑
k=1

βk
1− βk


2

N∑
k=1,k 6=i

1

1− βk

+ 1

(1−βi)2

1+

N∑
k=1

βk
1− βk


·

1− 1
1−βi ·

1

1+

N∑
k=1

βk
1− βk



+

(1−βi)

1+

N∑
k=1

βk
1− βk

−1

(1−βi)3

1+

N∑
k=1

βk
1− βk


2

= − 1

(1−βi)2

1+

N∑
k=1

βk
1− βk


2

N∑
k=1

1

1− βk
+

1

(1− βi)2
(

1 +

N∑
k=1

βk
1− βk

)

= 1

(1−βi)2

1+

N∑
k=1

βk
1− βk



−
N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

+ 1


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which allows obtaining

X =

(1−βi)

1+

N∑
k=1

βk
1− βk

−1

(1−βi)3

1+

N∑
k=1

βk
1− βk


2 ·

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

− 1
1−βi ·

1

1+

N∑
k=1

βk
1− βk

· 1

(1−βi)2

1+

N∑
k=1

βk
1− βk



−
N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

+ 1



=

(1−βi)

1+

N∑
k=1

βk
1− βk

−1
·


N∑
k=1

1

1− βk

−

−

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

+1



1+

N∑
k=1

βk
1− βk



(1−βi)3

1+

N∑
k=1

βk
1− βk


3

=

(1−βi)

1+

N∑
k=1

βk
1− βk




N∑
k=1

1

1− βk

−


N∑
k=1

1

1− βk

−
1+

N∑
k=1

βk
1− βk

+

N∑
k=1

1

1− βk

(1−βi)3

1+

N∑
k=1

βk
1− βk


3

=

(1−βi)


N∑
k=1

1

1− βk

−1

(1−βi)3

1+

N∑
k=1

βk
1− βk


2

=

N∑
k=1, 6=i

1

1− βk

(1−βi)3

1+

N∑
k=1

βk
1− βk


2 > 0

Similarly, we have

∂ ξi
N∑
k=1

ξk

∂βj
=

∂ξi
∂βj

(
N∑
k=1

ξk

)
− ξj

N∑
k=1

∂ξk
∂βi(

N∑
k=1

ξk

)2 =
X

Y
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where Y is provided by (35) and

X = − 1
1−βj ·

1
(1−βi)21+

N∑
k=1

βk
1− βk


2 ·

N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

− 1
1−βj ·

1

1+

N∑
k=1

βk
1− βk

1

(1−βi)2

1+

N∑
k=1

βk
1− βk



−
N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

+ 1


= − 1

1−βj ·
1

(1−βi)21+

N∑
k=1

βk
1− βk


3 ·

(
N∑
k=1

1

1− βk

)

− 1

(1−βj)(1−βi)2

1+

N∑
k=1

βk
1− βk


2

−
N∑
k=1

1

1− βk

1+

N∑
k=1

βk
1− βk

+ 1



= −

N∑
k=1

1

1− βk

(1−βj)(1−βi)2

1+

N∑
k=1

βk
1− βk


3 +

N∑
k=1

1

1− βk

(1−βj)(1−βi)2

1+

N∑
k=1

βk
1− βk


3

− 1

(1−βj)(1−βi)2

1+

N∑
k=1

βk
1− βk


2 < 0

Proof of Proposition 9. Let p(Q) = a−bQ. Using (4), the aggregate equilibrium
is

Q∗ =
µ(a− c)
b(µ+ 1)

so profits can be written as

πi =
ξi(a− c)2

b(µ+ 1)2

Assume that B = B̄+Z + βE, where E = U − I, B̄ is matrix with off-diagonal
constant elements and Z is an hollow matrix whose off-diagonal elements de-
scribe the departure of elements of matrix B from the homogeneous weights
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distribution in B̄. We assume that B̄ = β̄(U − I) is chosen in such a way the
elements of Z have zero mean.

Computing the derivative of profits with respect to β we have

π′i =
(a− c)2(ξ′i + µξ′i − 2ξiµ

′)

b(µ+ 1)3

The monotonicity of π′i is determined by the sign of ξ′i + µξ′i − 2ξiµ
′. Let

ξ̄ = (I + B̄ + βE)−1u, µ̄ = uT ξ̄, ε = ξ − ξ̄ and µε = µ− µ̄, we have

ξ′i + µξ′i − 2ξiµ
′ = (ξ̄ + εi)

′ + (µ̄+ µε)(ξ̄ + εi)
′ − 2(ξ̄ + εi)(µ̄+ µε)

′

= ξ̄′ + µ̄ξ̄′ − 2ξ̄µ̄′ + ε′i + µεξ̄
′ + µ̄ε′i + µεε

′
i

−2(ξ̄µ′ε + εiµ̄
′ + εiµ

′
ε)

We know that

ξ̄ =
1

(N − 1)β̄ + 1
, µ̄ =

N

(N − 1)β̄ + 1

from which

ξ̄′ = − N − 1

((N − 1)β̄ + 1)2
, µ̄ = − N(N − 1)

((N − 1)β̄ + 1)

and hence

ξ̄′ + µ̄ξ̄′ − 2ξ̄µ̄′ =
(N − 1)2(1− β̄)

((N − 1)β̄ + 1)3

To have ξ′i + µξ′i − 2ξiµ
′ > 0 we then need∣∣∣∣ε′i + µεξ̄

′ + µ̄ε′i + µεε
′
i − 2(ξ̄µ′ε + εiµ̄

′ + εiµ
′
ε)

∣∣∣∣< (N − 1)2(1− β̄)

((N − 1)β̄ + 1)3

We note that all the elements related to ε and their derivatives depend with
continuity on the elements of Z, so, provided that Z is suitably small in some
norm, the previous inequality holds.

Now let p(Q) = 1/Q. Using (4), the aggregate equilibrium is

Q∗ =
µ− 1

cµ

so profits can be written as

πi =
ξi
µ2

The derivative of πi with respect to β is then

π′i =
µ(ξ′iµ− 2ξiµ

′)

µ4
.

Repeating the last part of the proof for the linear case we obtain a similar
conclusion.
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