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Abstract

We reconsider the dynamic Cournot duopoly framework with homo-
geneous goods by Mamada and Perrings (2020), in order to highlight
the richness in its outcomes. In the model each firm is taxed propor-
tionally to its own emission only and charge functions are quadratic.
While Mamada and Perrings (2020) focus on the case of convex, and
partially on the case of concave, charge functions, we show that com-
pleting the analysis for concave functions it may happen that, with
the raise in the emission charges, the equilibrium production levels
for the two firms, which are directly proportional to their emissions,
increase, both with homogeneous and with differentiated products.
This highlights that, even in the absence of free riding possibilities,
too soft environmental policies can produce detrimental effects on the
pollution level, and thus the choice of the mechanism to implement
has to be carefully pondered.
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1 Introduction

In the past decades, environmental policies to control pollution have been
proposed in several works, such as Segerson (1988), Katsoulacos and Xepa-
padeas (1995) and Suter et al. (2008). In particular, some of them are based
on both charges and incentives, according to a comparison between the aggre-
gate emission level and the ambient standard, mainly in the case of non-point
source (NPS) pollution, like for instance in Ganguli and Raju (2012), Mat-
sumoto and Szidarovszky (2021) and Matsumoto et al. (2018), while other
ones are based just on charges, as it happens e.g. in Mamada and Perrings
(2020). Even if it would seem natural to expect that higher charges lower
the emission volume, sometimes counterintuitive outcomes may be observed,
especially in frameworks in which the aggregate pollution level is taken into
account. This occurs for instance in Ganguli and Raju (2012), where a
higher emission volume may come as a consequence of increased charges in
a Bertrand duopoly setting. Indeed, the framework in Ganguli and Raju
(2012) encompasses strategic interactions between firms both on the demand
side in the market and in regard to emissions in the environmental sphere.
The latter aspect leads to a public good game setting, which may give rise to
free riding possibilities. On the contrary, in the present work we prove that a
similar detrimental effect occurs in the framework by Mamada and Perrings
(2020), who propose a Cournot duopoly with homogeneous products where
the decisional mechanism is based on a gradual adjustment towards the best
response, and in which each firm is taxed proportionally to its own emis-
sion only. In more detail, Mamada and Perrings (2020) consider quadratic
charge functions, focusing on the case of convex, and partially on the case
of concave, charges. On the other hand, completing the analysis for concave
functions performed therein, we discovered a larger richness in the outcomes
of the model, since with the raise in the emission charges the equilibrium
production levels for the two firms, which are directly proportional to their
emissions, may increase when the environmental policy is too soft, both with
homogeneous and with differentiated products. We recall that the extension
to the case of differentiated products has been suggested in their concluding
remarks by Mamada and Perrings (2020).
The remainder of the paper is organized as follows. In Section 2 we present
the model with differentiated products, comparing it with the homogeneous
product framework in Mamada and Perrings (2020). In Section 3 we perfom
the model analysis. In Section 4 we conclude.
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2 The model

Following the duopoly formulation in Mamada and Perrings (2020), but sup-
posing that the goods produced by the two firms are differentiated, we assume
that in each time period t firm i ∈ {1, 2} maximizes the profit function

πi,t = (p− βqi,t − γqj,t)qi,t − cq2i,t − Ce
i,t (2.1)

where qi,t and qj,t are the output levels by firms i and j, respectively, with
i 6= j ∈ {1, 2}, and for the chock price p and the production costs c we sup-
pose that they are positive like in Mamada and Perrings (2020). In regard to
β and γ, as usual in the case of differentiated goods, we assume that |γ| < β :
if γ > 0 (resp. γ < 0) the two goods are substitutes (resp. complements),
while they are independent if γ = 0. We recall that the framework with ho-
mogeneous products is obtained as limit case with γ = β = k, where k is the
price-depressing effect of oligopoly. Cf. Singh and Vives (1984) and Motta
(2004) for further details.
Denoting by ε > 0 emissions per unit output, so that ui,t = εqi,t are emis-
sions by firm i ∈ {1, 2} at time t, Mamada and Perrings (2020) propose the
following quadratic formulation for emission charges

Ce
i,t = bui,t +

1

2
du2

i,t, (2.2)

with b > 0 and d ∈ R, that we will consider, too. Since the marginal

emission charge is given by
dCe

i,t

dui,t
= b+dui,t , it may be increasing or decreasing

according to the sign of d. In particular, if d is negative, the condition

0 < qi,t <
−b

εd
(2.3)

is needed to guarantee the positivity of the marginal emission charge.
Like in Mamada and Perrings (2020), we assume that, due to an adjustment
capacity constraint, firms adjust the output level according to (the size and
the extent of) the difference between their best response and their current
output level with a reactivity parameter λ ∈ (0, 1), so that

qi,t+1 = qi,t + λ(Ri(qj,t)− qi,t) (2.4)

where Ri(qj) is the best response function of firm i to the output qj produced
by firm j. Notice that there is no adjustment when λ = 0, while adjustment
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is complete and instantaneous when λ = 1. See Bischi et al. (2010) for dy-
namical aspects connected with oligopoly models. Although overadjustment,
given by λ > 1, is possible, Mamada and Perrings (2020) disregard such even-
tuality and we will stick to their choice, too.
From the FOC coming from the maximization of (2.1) we find

Ri(qj,t) =
p− γqj,t − bε

2(β + c) + dε2
(2.5)

as best response function for i 6= j ∈ {1, 2}, which is well defined when
2(β+c)+dε2 6= 0.We will maintain such assumption along all the manuscript,
even when not explicitly mentioned, so that the unique (symmetric) Nash
equilibrium is given by

(q∗1, q
∗

2) =

(

p− bε

2(β + c) + dε2 + γ
,

p− bε

2(β + c) + dε2 + γ

)

. (2.6)

In the case of homogeneous goods, the Nash equilibrium becomes

(q̄1
∗, q̄2

∗) =

(

p− bε

3k + 2c+ dε2
,

p− bε

3k + 2c+ dε2

)

. (2.7)

In order to ensure the positivity for (2.7), in Mamada and Perrings (2020)
it is supposed that p > bε and that 3k + 2c + dε2 > 0. Nonetheless, also
the framework with p < bε and 3k + 2c + dε2 < 0 is admissible. We will
obtain the results for the latter case in Subsection 3.2, as corollaries of the
findings for the corresponding heterogeneous good framework with p < bε

and 2(β + c) + dε2 + γ < 0, while in Subsection 3.1 we will focus on the case
with p > bε and 2(β + c) + dε2 + γ > 0, which generalizes the framework
analyzed in Mamada and Perrings (2020). We stress that all such condi-
tions have to be considered jointly with the constraints coming from (2.3)
at the Nash equilibrium. Focusing for instance on the condition, considered
by Mamada and Perrings (2020), for the positivity of the denominator of
(2.7), i.e., on d > −3k+2c

ε2
, it is satisfied for every d > 0, in which case Ce

i

in (2.2) is convex, for i ∈ {1, 2}, as well as for d ∈
(

−3k+2c
ε2

, 0
)

, that is,
when Ce

i is concave, but production variations lead to emission charge vari-
ations close to those that we would have in the linear case, corresponding to
d = 0. Notice also that the Nash equilibrium in (2.7) fulfills the right con-

straint in (2.3) if d ∈
(

− b(3k+2c)
εp

, 0
)

and the latter condition is stricter than

d ∈
(

−3k+2c
ε2

, 0
)

under the therein maintained assumption p > bε. Hence,
in such case, (2.3) is satisfied by the Nash equilibrium for the homogeneous
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good setting if d ∈
(

− b(3k+2c)
εp

, 0
)

. In Section 3, taking into account (2.3), we
will derive similar conditions for the heterogeneous product case under the
various assumptions on the parameters, considering then what happens in
the limit case in which products are homogeneous.
Supposing that firms partially adjust their output level toward the best re-
sponse according to (2.4) with λ ∈ (0, 1), when inserting (2.5) therein we
obtain the dynamical system







q1,t+1 = q1,t + λ(R1(q2,t)− q1,t) = q1,t + λ
(

p−γq2,t−bε

2(β+c)+dε2
− q1,t

)

q2,t+1 = q2,t + λ(R2(q1,t)− q2,t) = q2,t + λ
(

p−γq1,t−bε

2(β+c)+dε2
− q2,t

) (2.8)

whose only steady state is given by the Nash equilibrium in (2.6), and which
coincides with the model (2) on page 373 in Mamada and Perrings (2020)
for γ = β = k.

3 Analysis

We split the analysis of the model described by (2.8) according to the sign of
the numerator N and of the denominator D of the Nash equilibrium in (2.6):
in particular, in Subsection 3.1 we consider what occurs when they are both
positive (Case N > 0, D > 0), as done in Mamada and Perrings (2020) for
the setting with homogeneous products, while in Subsection 3.2 we focus on
the scenario in which both of them are negative (Case N < 0, D < 0).

3.1 Case N > 0 , D > 0

In the present subsection, we focus on the case

p− bε > 0, 2(β + c) + dε2 + γ > 0. (3.1)

With reference to (2.6), since for i ∈ {1, 2} it holds that

∂qi
∗

∂b
=

−ε

2(β + c) + dε2 + γ
,

∂qi
∗

∂d
=

−(p− bε)ε2

(2(β + c) + dε2 + γ)2
, (3.2)

the next result about comparative statics immediately follows:

Proposition 3.1 Under (3.1), in regard to (q∗1, q
∗

2) in (2.6) it holds that, for
i ∈ {1, 2}, q∗i decreases when b or d increase.
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This result, highlighting the efficacy of the environmental policy described by
the emission charges in (2.2) under (3.1), holds true also in the homogeneous
product framework in Mamada and Perrings (2020), due to the assumption
made therein about the sign of the numerator and of the denominator of the
Nash equilibrium in (2.7).
On the other hand, under different conditions on the parameters (cf. (3.4)),
we will find in Subsection 3.2 that opposite outcomes arise in regard to b

and d. The same is true also with respect to parameter ε, connected with the
produced pollution level, too, as an increase in it describes the transition for
firms to more polluting technologies. The proof is omitted for brevity’s sake.
In relation to the model dynamic outcomes, we have the following result
about the stability of the Nash equilibrium:

Proposition 3.2 Under (3.1), (q∗1, q
∗

2) is admissible according to (2.3) for

d > − b(2β+2c+γ)
εp

. If this is the case, it is globally asymptotically stable for

System (2.8) when d > −2β+2c−γ

ε2
.

Proof. We investigate the system stability by using the well-known Jury
conditions

(i) det(J) < 1, (ii) 1 + tr(J) + det(J) > 0, (iii) 1− tr(J) + det(J) > 0,

where

J =

[

1− λ −λγ

2(β+c)+dε2

−λγ

2(β+c)+dε2
1− λ

]

is the Jacobian matrix for (2.8), and det(J), tr(J) denote its determinant and

trace, respectively.1 Thus, we have det(J) = 1 − 2λ + λ2
(

1 − γ2

(2(β+c)+dε2)2

)

and tr(J) = 2− 2λ. Hence, (iii) reads as

1−
γ2

(2(β + c) + dε2)2
> 0. (3.3)

Since λ ∈ (0, 1), conditions (i) and (ii) are then always fulfilled. Condition
(3.3) can be rewritten as (2(β + c) + dε2 − γ)(2(β + c) + dε2 + γ) > 0,
which implies that 2(β + c) + dε2 − γ > 0, since we are supposing that
2(β + c) + dε2 + γ > 0. Observing that, under (3.1), the conditions in (2.3)

lead to d > − b(2β+2c+γ)
εp

> −2β+2c+γ

ε2
, the desired conclusion follows. �

1Notice that, differently from d, parameter e plays no role on the stability of the Nash
equilibrium, being not present in J.
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We stress that we have analyzed the system stability because a compara-
tive statics result is economically grounded if the considered equilibrium is
asymptotically stable and thus orbits converge towards it after a transient
period.
Considering the homogeneous product setting, the stability condition d >

−2β+2c−γ

ε2
becomes d > −k+2c

ε2
, in agreement with the result on page 374

in Mamada and Perrings (2020), which highlights the stabilizing role of d
on (q̄1

∗, q̄2
∗) in (2.7). Together with the constraints coming from (2.3) dis-

cussed in Section 2, we can conclude that (q̄1
∗, q̄2

∗) is stable and admissible for

d > max{− b(3k+2c)
εp

,−k+2c
ε2

}. Notice that − b(3k+2c)
εp

> −k+2c
ε2

for bε < p
(

k+2c
3k+2c

)

,

in which case the Nash equilibrium is always stable when it is admissible ac-
cording to (2.3). More generally, in the case of differentiated products, it
holds that the stability threshold found in Proposition 3.2 is not admissible
according to (2.3), i.e., − b(2β+2c+γ)

εp
> −2β+2c−γ

ε2
, when bε < p

(

2β+2c−γ

2β+2c+γ

)

. Un-

der (3.1), the latter condition could be fulfilled when the two products are
substitutes, while it is granted in the case of complements or of independent
goods. In such positive eventualities, the comparative statics results reported
in Proposition 3.1, which show that the environmental policy described by
the emission charges in (2.2) is effective in reducing pollution under (3.1), are
robustly grounded from an economic viewpoint, since the Nash equilibrium
is a global attractor.

3.2 Case N < 0 , D < 0

In the present subsection, we focus on the case

p− bε < 0, 2(β + c) + dε2 + γ < 0, (3.4)

in which the following results about comparative statics (see Proposition 3.3)
and on the system dynamic behavior (cf. Proposition 3.4) hold true:

Proposition 3.3 Under (3.4), in regard to (q∗1, q
∗

2) in (2.6), it holds that,

for i ∈ {1, 2}, q∗i increases when b or d increase.

Proposition 3.4 Under (3.4), (q∗1, q
∗

2) is admissible according to (2.3) for

d < − b(2β+2c+γ)
εp

. If this is the case, it is globally asymptotically stable for

System (2.8) when d < −2β+2c−γ

ε2
.

The result in Proposition 3.3, which is an immediate consequence of the
positive sign of the partial derivatives in (3.2), highlights that the environ-
mental policy described by the emission charges in (2.2) is detrimental under
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(3.4), since such scheme makes pollution increase in correspondence to the
Nash equilibrium. That finding is robustly grounded from an economic view-
point when the Nash equilibrium is a global attractor and, after a certain
transient period, all orbits converge towards it. Accordingly, we studied its
stability in Proposition 3.4, whose proof follows similar steps to those used
to check Proposition 3.2. In particular, the stability condition d < −2β+2c−γ

ε2

comes from (3.3), while the admissibility condition d < − b(2β+2c+γ)
εp

follows

from (2.3). Depending on the relative position of the two thresholds, pa-
rameter d may play a destabilizing role on the system stability, or (q∗1, q

∗

2)
may be stable for all the admissible values of d. It is easy to show that the
former case can occur just when the two products are complements (i.e.,
γ < 0), since with substitutes or with independent goods it always holds

that −2β+2c−γ

ε2
> − b(2β+2c+γ)

εp
under (3.4). Recalling that in the homogeneous

good framework it holds that γ = β = k > 0, in such case the system is
always stable under (3.4) and thus Proposition 3.3, showing the inefficacy of
the considered environmental policy, is economically grounded when dealing
with homogeneous products, too.
Noticing that (3.4) can be fulfilled just for negative values of d, in which case
Ce

i in (2.2) is concave, we can summarize Propositions 3.3 and 3.4 by saying
that, focusing on an equilibrium which attracts all orbits, and which is hence
dynamically meaningful, we have proven the inefficacy of the environmental
policy described by the emission charges Ce

i in (2.2), under suitable parame-
ter configurations for which Ce

i is concave and emission charges increase too
slowly with production.

4 Conclusions

In the present contribution we have shown that, even when each firm is taxed
proportionally to its own emission only and thus no free riding possibilities
can arise, too soft environmental policies may produce detrimental effects
on the pollution level, implying that the choice of the mechanism to im-
plement has to be carefully pondered. In particular, we have obtained the
above counterintuitive result completing the analysis performed in Mamada
and Perrings (2020) by dealing with parameter configurations not considered
therein, in order to let emerge the richness of interesting outcomes hidden in
the dynamic Cournot duopoly model with quadratic emission charges pro-
posed in that work.
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