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Abstract

Admissibility, i.e. the deletion of weakly dominated strategies, is a highly
controversial solution concept for non cooperative games. This paper pro-
poses a complete theory of weak dominance and, contrary to almost all the
literature on this topic, it provides positive results on foundations of iterated
admissibility. The main contribution of this work is to show that (iterated)
admissibility can be justified once payoffs’ ties are seriously taken into con-
siderations and players optimise taking into consideration the information
provided by these ties, i.e. using strategic independent sets (Mailath at
al. 1993) and conditional dominance (Shimoji and Watson 1998). In par-
ticular we prove that (iterated) maximal simultaneous deletion of weakly
dominated strategies endogenously emerges as axiomatic characterization of
iterated admissibility. As a consequence of this result, the paper provides ax-
iomatic and Bayesian foundations of iterated admissibility, proves the logical
consistency of (iterated) admissibility as solution concept in game theory,
and that common knowledge of admissibility leads to iterated admissibility,
showing why previous attempts using cautious behaviour were ineffective.
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1 Introduction

“Iterated dominance is perhaps the most basic principle in game theory” (Ho
et al. 1998). Similar statements are easily found in old and recent economic
literature. Unfortunately, while strict dominance has sound foundations and
is generally accepted as basic criterion of rational behaviour, the idea that
no rational player will ever play a weakly dominated strategy, i.e. the role
of admissibility in game theory, is a matter of deep rooted discussion. While
admissibility is the basic criterion of rational behaviour in decision theory
(see e.g. Blackwell and Girshick 1954 and Ferguson 1967), among game
theorists there exist two opposite approach about the deletion of weakly
dominated strategies.

On one hand (for example Gale 1953, Herings and Vannetelbosch 1999,
Hillas 1990, Ho et al. 1998, Kohlberg and Mertens 1986, Luce and Raiffa
1957, Van Damme 1987 and 1992) admissibility is seen as a necessary con-
dition for any reliable solution concept in game theory.

On the other hand many authors (for example Abreu and Pearce 1984,
Borgers and Samuelson 1992, Dekel and Gul 1997, Pearce 1982, Samuelson
1992 and 1993, Samuelson and Zhang 1992) consider admissibility and, espe-
cially, iterated admissibility as intrinsically problematic. These authors show
that admissibility can conflict with non emptiness, that Bayesian, epistemic,
axiomatic and evolutive foundations to iterated strict dominance do not gen-
eralise to iterated weak dominance, and finally that common knowledge of
admissibility is incompatible with iterated admissibility (IA henceforth).

These results are particularly disturbing since IA has been extremely
useful to solve interesting problems in economic theory. For example it-
erated admissibility has been used by Moulin 1979 and 1986 to define the
concepts of dominance solvable game and of sophisticated equilibrium, which
have important applications for example in the literature on voting schemes
(Moulin 1979) and on auctions (Harstad and Levin 1985). Admissibility has
also been extremely useful in implementation theory (see for example Abreu
and Matsushima 1994 and Jackson et al. 1994). Furthermore, (iterated)
admissibility is a crucial criterion in many refinements of Nash equilibrium.
Finally it is worth to stress that admissibility is a crucial criterion in decision
theory (e.g. Ferguson 1967).

So far no justification of iterated deletion of weakly dominated strategies
in a conventional model of Bayesian optimisation and common knowledge
has been given, apart from the use of lexicographic probability systems
(Brandenburger 1992, Brandenburger and Keisler 2000, Stahl 1995, Veronesi
1994).

We believe that this is not the end of the story. Recently two papers
by Marx and Swinkels 1997 and Shimoji and Watson 1998 (SW henceforth)
have provided crucial insights on iterated admissibility. Building on these
contributions and on the research program proposed by Mailath et al. 1993



(MSS henceforth) on the informative structures embedded in normal form
games, it is possible to provide a sound comprehensive theory of iterated
weak dominance for non cooperative games. In particular we prove that
(iterated) maximal simultaneous deletion of weakly dominated strategies
endogenously emerges as axiomatic characterization of (iterated) admissi-
bility. As a consequence of this result this paper provides Bayesian and
axiomatic justifications for iterated admissibility exploiting payoffs ties, i.e.
the informative structures nested in normal form games. Moreover it shows
that (iterated) admissibility is logically consistent and thus that it can be
used as solution concept in game theory. Finally we prove that common
knowledge of admissibility leads to iterated admissibility, showing why cau-
tious behaviour is misleading as justification of iterated admissibility.

The main problems of (iterated) admissibility and the main idea of the
paper are illustrated in section 2 by means of an example. Section 3 pro-
vides the basic notation and definitions. Section 4 analyses the relationships
between strict and weak dominance by means of two characterization the-
orems, that illustrate the crucial role of information structures embedded
in normal form games, in particular of strategic information sets. These
results are used in section 5 to provide axiomatic foundations for iterated
admissibility as iterated maximal simultaneous deletion of weakly dominated
strategies. Then relying on this axiomatic foundation, section 6 shows that
weak dominance doesn’t conflict with reasonable axioms on solution con-
cepts of a game, thus replying to Abreu and Pearce 1984 “inconsistency”
theorem. Finally section 7 analyses the relation between iterative deletion
procedures based on cautious Bayesian optimisation and iterated admissibil-
ity, showing how it is possible to avoid Borgers and Samuelson 1992 negative
results. Some final remarks conclude the paper. In the paper there are no
difficult proofs, but to make the reading easier, all the proofs are in the
appendix.

2 Iterated Admissibility in Game Theory: An Ex-
ample

Consider the game of figure 1, with n € IN.
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Figure 1

This game is easily solvable by iterative elimination of strictly dominated
strategies: the solution is the singleton (T,R).

The set of iteratively strictly undominated strategies has all the best
properties we can hope for a solution concept: it does not depend on the
order of deletion of the strategies (but see Dufwenberg and Stegeman 1999
for a significant correction), there are axiomatic, Bayesian and epistemic
foundations (Bernheim 1984, 1986, Pearce 1984, and Dekel and Gul 1997),
common knowledge of Bayesian rationality is equivalent to iterative deletion
of strictly dominated strategies (Tan and Werlang 1988), learning and evo-
lutionary arguments are sufficient to eliminate iteratively strictly dominated
strategies (Milgrom and Roberts 1991 and Samuelson and Zhang 1992).

Consider the sequence of games as n takes values in IN. The limit game
as n goes to infinity is pictured in figure 2.

T 1,1
M| 1,1
B 0,0

Figure 2

Strict admissibility is now ineffective to solve the game, since no strategy
is anymore strictly dominated. The obvious refinement of strict dominance
is weak dominance. But then none of the nice properties that characterize
iterated strict admissibility holds.

If player 1 removes B because it is weakly dominated by T, then L is
no more weakly dominated by R for player 2. Similarly if player 1 removes
simultaneously all her dominated strategies (M and B), then player 2 is in-
different between L and R. Finally if player 2 starts removing L, then B is no
more weakly dominated by T. Thus the result of the deletion of weakly dom-
inated strategies depends on the order of elimination. There are also logical
problem to provide axiomatic and Bayesian foundations to iterated admissi-
bility: “to the extent that “admissibility” can be made common knowledge,



it does not characterize iterated deletion of weakly dominated strategies, ...;
rather it characterizes rationalizability with caution” (Dekel and Gul 1997
p. 135). The game of figure 2 illustrates the intuition behind these “neg-
ative” results. Cautious behaviour means that each player should consider
everything as possible. Therefore player 1 should assign strictly positive
probability to each of player 2’s strategies and consequently player 1 should
play T. Then, if admissibility is common knowledge player 2 should assign
zero probability to M and B, but in the same time because of cautiousness,
2 should give all of 1’s strategies positive probability: “there is a limit to the
logical consistency of any solution concept for cautious strategic behaviour”
(Pearce 1982, p. 22). Even evolutionary models do not provide a founda-
tion for the elimination of weakly dominated strategies (see Samuelson 1993
and Samuelson and Zhang 1992, but also Marino 1997 and Marx 1999 for
positive results).

The standard conclusion is that it is not possible to find justification for
iterated admissibility as basic criterion for a solution concept in game theory.
In turn this implies that “the only standard refinement with a somewhat ap-
pealing epistemic characterization is that of trembling-hand perfection, and
then only for two-person games” (Dekel and Gul 1997 p. 164), a conclu-
sion with dramatic implications for the literature on refinements of Nash
equilibrium and for many applications.

This paper argues that this may not yet be the end of the story. Actu-
ally, the previous arguments simply show the problems of founding iterative
admissibility as common knowledge of cautious behaviour. The fact is that
cautious behaviour ignores payoffs’ ties; we believe instead that admissibility
can be understood just putting these ties at the core of the analysis, while all
previous papers on admissibility in normal form games do not exploit these
structures. This work shows that it is possible to find sound foundations for
TA using specific information structures of normal form games, the strategic
independent sets (SISs henceforth). According to the results of this paper,
the basic behavioral principles behind strict and weak dominance are the
same, i.e. standard Bayesian rational behaviour, but when there are pay-
offs’ ties there is additional useful information that rational players should
use, instead of ignoring it as done by the standard approach.

Consider the example of figure 2 to illustrate this simple basic idea.
The usual approach based on cautious Bayesian rational behaviour assumes
that player 2 has full support beliefs e.g. pao(T) = (1 — €)/2, (M) =
(1 —¢€)/2 and ue(B) = €, so that the weakly dominated strategy L is never a
cautious best reply. The approach of this paper instead uses SISs: the weakly
dominated strategy L is strictly dominated if the strategies are restricted to
{L, R} x{B}, where {L, R} x{ B} satisfies particular conditions that define a
strategic independent set for player 2. The key idea is to look for equivalence
between admissibility in the original game and strict admissibility in the
opportune restrictions. Then to justify (iterated) admissibility we simply



refer to the standard tools used to justify (iterated) strict admissibility,
connecting the restricted games to the original game. This line of research
follows MSS suggestion that the ideas developed in their papers can have
a productive role in the analysis of desirable properties of a normal form
solution concept, and build on SW notion of conditional dominance.

3 Notation and Definitions

The subscript i refers to player ¢ € N, —i to the N \ {i} players, A(-) and
A°(-) are respectively the set of all probability measures on - and its interior.
A normal form game (NFG) G is defined as follows:

G := (Ui(s), s€S)Y,,  where:

e S is the set of pure strategy profiles s,%; := A(S;) is the set of player
1’s mixed strategy, and X is the set of mixed strategy profile. With the
usual abuse of notation denote by 5; also the set of degenerated mixed
strategy that concentrate all probability measure on a pure strategy.
Finally 3(A) is the set of mixed strategies with carrier A C S

e U;: A(S) — IR is player #’s expected utility function;
e N is the set of players.

Assume that the sets N and S are finite, where N and S denote both the
set and the number of elements. Many of the following results crucially
depend on this assumption. In particular this assumption allows to define
the set of all NFGs precisely. Fix a finite number of player N and their pure
strategies S. Then the space of NFGs over this form is given by G, and we
take G = RV*Y where for € G, z(i,s) is the payoff to player i under
strategy s.

Consider a given G = (U;(s),s € S)Y,. The restriction of a normal
form game G to A C A(S), denoted by G4, is:

G = (Ui(s),s € AL,y

Therefore the restriction of a game is obtained reducing the set of random
strategy profiles to a subset of A(S).

Note that the analysis is not restricted to reduced normal forms, as MSS
do: the following results hold for any NFG (I am grateful to Jean Francois
Mertens for having pointed out to me the relevance of this fact).

The specific solution concept we analyse in this paper is the following:

Definition 1 The set of iteratively weakly undominated strategies
IWUS for a game G € G is so defined:

WD(G) := x;enWDi(G), where WD;(G) := Ni»oW DHG),



with WDY(G) :=8; and for t>1
WDHG) :={s; e WDI"HG) | B 0; € X(WDI"HG)) such that
(1) Ui(oi,s—;) > Ui(si,8—;) for every s_; € WD:I(G)
(11) Ui(oi,5_3) > Ui(si, s—i)  for some s_; € WD'1(G) }.

The set of iteratively strictly undominated strategies ISUS for a
game G € G is defined similarly to IWUS using the sets SDY(Q) instead of
W DYG) and with strict inequalities.

W D'(G) and W D(G) are respectively the set of admissible and of iteratively
admissible strategies of a game G.

Note that in definition 1 it is assumed that at each stage all weakly
dominated strategies are simultaneously deleted. This definition of TA is
the most common, but it might seem arbitrary, theorem 3 however will
provide a justification for its use.

The following standard existence result is presented because non empti-
ness is a necessary condition for logical consistency of a solution concept.

Proposition 1 In every game G € G, there exists a finite number K € IN
such that Yn > K WDMG)=WD;,(G) #0 for everyi € N.

Proof: see the appendix. ©

4 Strategic Independent Sets, Strict and Weak Dom-
inance

The main results of this section are implied by the analysis of SW, even if
they were independently developed. SW provide a general theory of con-
ditional dominance based on the notion of augmented normal form games,
but exactly because of this wide scope, they briefly mention weak domi-
nance, without providing any characterisation result as we do. In particular
they connect weak dominance to normal form information sets, while, as
our results make clear, the most effective notion to use is that of SISs. The
specific reason of this effectiveness is that IA as well as SISs refer to each
single player, while normal form information sets refer to all players jointly
(but note that in games satisfying Marx and Swinkels 1997 TDI condition,
SISs and normal form information sets coincide). In this section we show
that weak dominance is equivalent to SW conditional dominance when we
use SISs as restrictions (theorem 1), and therefore that IWUS is a particu-
lar version of the set of strategies surviving iterated conditional dominance
(theorem 2). Some of the following results follow from SW main result. This
notwithstanding, we prefer to propose our original proofs because they are
simpler since we don’t have to deal with general augmented normal form
games.



Roughly the definition of SIS for player ¢ says that a set of strategy pro-
files X; x X_; is strategically independent for player ¢ if ¢ can make decision
over X; conditional on X_; independently of decisions over X; conditional
on S_; \ X_;. Unfortunately MSS definition is unduly restrictive, since they
limit 4’s choice set to pure strategies: while it is not restrictive to assume
X_; C S5_;, since from #’s point of view whether the opponents choose be-
tween pure or mixed strategies is irrelevant (see Pearce 1984 lemma 2),
player 4’s choice’s possibilities are different if she can mix, as the example
of figure 3 will show.

Definition 2 In the game G = (U(s),s € S)¥, the set X (i) C T; X S_; is
strategically independent for player i if

X()=X; x X
and Vr;,s; € X;, 3t; € X; such that
Ui(ti,s—i) = Ui(ri, s—) Vs_i € X_;

Ui(ti,s—i) = Ui(si,s—) Vs—; €5\ X

In a NFG G, the family of all strategic independent sets for player i is
denoted by X(i,G).

Thus if X (i)™ is strategically independent for 4, there is a (mixed) strat-
egy t; in XM that is equivalent, from i’s point of view, to r; if her opponents
choose X_; and to s; if they do not. Hence, if ¢ has beliefs ;_; over S_; with
v—; and £_; being #’s beliefs conditioned on X_; and S_;\ X_;, then when r;
is optimal given y_; and s; is optimal given £_;, #; is optimal given ;. In
other words a set of strategy profiles X; x X_; is strategically independent
for player 7 if ¢ can make decision over X; conditional on X_; independently
of decisions over X; conditional on S_; \ X_,;.

To illustrate how definition 2 works, consider the game of figure 3 where
only 1’s payoffs are reported.
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Figure 3

If player 1 is restricted to SISs of the form X (1) C S; x S_; as in MSS
definition 2, then the only strategic independent set for player 1 trivially is
S1 % S_1, while if player 1 can choose mixed strategies, then e.g. {(1/2)A @
(1/2)B, C} x {v} is a strategic independent set for player 1, since

Ui((1/2)A® (1/2)B, s1) = Ui((1/2)A® (1/2)B, s-1) Vs-1 € X1 = {7}

Ul(C, 8_1) = Ul(O, 8_1) Vs_1 € X_1= {’y}
Ul((l/Q)A D (1/2)3, 8_1) = Ul(C, 8_1) Vs_1 €54 \X_1 = {0[,,@},

i

where 5" @ (1 — z) s” is the distribution that put probability z on s" and
(1 —z) on s”. Indeed our definition is coherent with MSS aim in providing
their definition, since “there is a strategy £; in X; that is equivalent, from ¢’s
point of view, to r; if his opponents choose X_; and to s; if they do not” (MSS
p. 279). This generalisation is moreover coherent with the requirement of
invariance as specified in the notion of stable equilibria (see e.g. Kohlberg
and Mertens 1986). According to the following theorem, weak and strict
dominance are related through the notion of strategic independent set; this
relation is the basic ingredient of all subsequent results.

Theorem 1 In every game G € G, for each player i € N, a strategy s,
is weakly undominated if and only if it is strictly undominated in GX@ for
every X (i) € X(i,G).

Proof: see the appendix. ©
The terminology used in definition 3 is taken from SW (the expressions
used in the previous version of this paper has been abandoned).

Definition 3 For any game G € G, the set of iteratively conditionally
undominated strategies on X(G) is so defined:

Q(X(G)) = XiGNQi(X(i7G))7 where QZ(X(Za G)) = thOUDg(X(ia G))a
with UDY(X(i,G)) :== S;, and fort>1
UDL{(X (i, @) := {s; € UD!"N(X(i,G)) | VX (i) € X (i, GUPT XDy 5, € SDIHGF¥ D)),

Roughly, (iterated) conditional dominance on X(G) requires the use of (it-
erated) strict admissibility for each possible game restricted to a SIS (or in
SW to a generic restriction).

Now we are able to characterise iterated admissibility as iteratively con-
ditionally undominated strategies on SISs.

Theorem 2 For every game G € G WD(G) = Q(X(G)).



Proof: see the appendix. ©

Note that it is difficult to apply the definition of iteratively conditionally
undominated strategies on X' (G) since the enumeration of all SISs is usually
extremely complex. Therefore this is not an operationally relevant defini-
tion, but it is extremely useful as auxiliary construction to justify iterated
admissibility.

5 Axiomatic Foundations of Iterated Admissibil-
ity

The previous sections have shown that the most effective way of founding
iterated admissibility is to consider it as iterated conditional dominance on
strategic independent sets. Thus we can justify [A using the tools developed
to found iterated strict dominance. In particular we use the framework of
Bernheim 1986 to provide axiomatic foundations for IWUS.

Definition 4 A solution concept is a correspondence from the set of all
normal form games to the set of possible strategies:

T:G—>— S

Therefore a solution concept associates with each game G € G the strategy
profiles arising from some theory of (rational) choice. Moreover let T;(G) be
the projection of T(G) into the i-th subspace

Ti(G) = {s; € Si|(ss,5-;) € T(G) for some s_; € S_;},

i.e. T;(G) represents the choices that ¢ might make according to the solution
concept 7', given a NFG G. Indicate with 7_;(s;, T'| X (7)) the set of strategy
profiles for player other than ¢ given that 7 chooses s;, that the players are
restricted to X (i) and that they play according to the solution concept T

T_i(55, T|X (i) := {5_s € S_i|(si,5-3) € T(GTD)}.
Finally, let F;[P;] be i’s best reply correspondence to P; € A(S_;).

Axiom 1 Conditional Bayesian rationality: for any game G, for any
player i, for any strategic independent set X (i) = X; x X_;, there exists a

mapping
0; : T;(G) — A(X_;) such that Vs; € TH(G) s; € Fi(0;(s;)).

Bayesian rationality demands that each player selects a best reply to some
probabilistic beliefs about opponents’ choices. Axiom 1 requires that a so-

lution concept satisfies Bayesian rationality in every strategic independent
set of a given NFG . Note that player 7’s beliefs can differ between SISs.

10



This is surely a novelty of this axiom with respect to the standard axiom
of Bayesian rationality, but it is clearly coherent with the meaning of SIS.
As MSS write “the requirement of sequential rationality does not seem very
different from a general requirement that if a decision only matters given
some subset of the strategy profiles for the remaining players, then that
decision should be optimal relative to some conjecture over those strategy
profiles. These are precisely the situations characterised by strategic inde-
pendence. Rational players should exploit strategic independence in their
decision making, even when the strategic independence is not due to an
extensive form information set or subgame” (p.288). Actually the recent
work by Battigalli and Siniscalchi 1999 on epistemic foundations of solution
concepts for extensive form games suggest that the most effective way of
modelling beliefs in games augmented for SISs is by means of conditional
probability systems, where the players condition their beliefs to X (i).

Next axiom places additional restrictions on the maps 6;, whose existence
(for any X (i)) is guaranteed by axiom 1.

Axiom 2 Conditional consistency: for any game G, for any player i,
for any strategic independent set X (i) € X(i,G), for any strategy s; € T;(G)

[0:(s:)](T—s(s4, T| X (7)) = L.

This axiom requires that the players in every strategic independent set of
G do not attribute positive probability to any opponents’ choices which are
not coherent with the solution concept 7.

Finally a solution concept T is acceptable (Bernheim [4] uses the word
admissible instead of acceptable, but here we need to change terminology
to avoid confusion) under a certain set of axioms if it satisfies those axioms.
Moreover let 7(G) :={s € S|s € T for some acceptable T(G)}.

Theorem 3 Under azioms 1 and 2, for any game G, T(G) = WD(G).
Furthermore W D is acceptable.

Proof: see the appendix. ©

Therefore theorem 3 provides an axiomatic characterisation of iterated
admissibility as maximal simulataneous deletion of iterated weakly domi-
nated strategies, i.e. this order of deletion endogenously emerges as ax-
iomatic characterization of IA. This is an important results for at least
four reasons. First, the economists who apply admissibility to solve specific
problems actually use maximal simultaneous deletion of weakly dominated
strategies (see e.g. Abreu and Matsushima 1994, Jackson et al. 1994, Moulin
1979 and 1986). Second, even if order is not an issue in decision theory, the
complete class theorem, a crucial result in statistics, refers to maximal dele-
tion of weakly dominated strategies (see e.g. Ferguson 1967 p. 58). Third,
the first proponents of this criterion for game theory (e.g. Gale 1953 and

11



Luce and Raiffa 1957) consider maximal simultaneous deletion. The same
is true for more recent advocates of this criterion as a tool to refine solu-
tion concepts ( see Blume et al. 1991, Herings and Vannetelbosch 1999,
Van Damme 1987 and 1992). Finally, in “limit” games this particular order
generates the same solution of iterated strict admissibility applied to games
in the sequence (see the example of figures 2 and 1). Thus strict and weak
dominance are connected in an effective and “continuous” way.

6 Consistency of (Iterated) Admissibility as Solu-
tion Concept

Abreu and Pearce 1984 proved that weak dominance may conflict with non
emptiness, but to reach this result they use an axiom which allows non si-
multaneous and non maximal deletion of weakly dominated strategies. This
section shows how order dependence is exploited by Abreu and Pearce to
conclude that “the results here rule out [weak] dominance as a satisfac-
tory criterion: it conflicts with non emptiness, a truly innocuous axiom”
(p. 173). We instead prove that iterated admissibility as axiomatized in
section 5 does not conflict with non emptiness, and thus that it can be used
as useful criterion for solution concepts in game theory.

In their paper Abreu and Pearce refer to both extensive and normal
form games because they also consider subgame perfection. Since we are
not directly interested in this topic, we re-propose their axioms and their
result for normal form games only.

Abreu and Pearce propose the following axioms.

Axiom 3 Non emptiness: for any game G € G,
T(G) # 0.
Axiom 4 Abreu and Pearce axiom A3 (i): for any game G € G,
T(G) C WDYG).

Axiom 5 Abreu and Pearce axiom A3 (ii): for any game G € G, and
for every set A such that WDY(G) CAC S

T(GY) = T(G) N A.

The first axiom means that the solution concept is well defined for every
NFG, the second means that the solution concept must satisfy admissibility
(a similar axiom is often used in decision theory, see for example axiom 5 p.
291 in Luce and Raiffa 1957), while the third requires that a solution concept
should not be affected by the deletion of one or more weakly dominated
strategy.

12



The following result is Abreu and Pearce proposition 1, and shows that
the previous intuitive requirements on a solution concept are mutually con-
tradictory.

Proposition 2 There exist no solution concept T satisfying azioms 3, 4
and 5.

Proof: See the appendix. O

The problem at the root of Abreu and Pearce inconsistency result was
clearly known to Kohlberg and Mertens 1986 (p. 1014-1015), who tackle the
problem assuming instead of axioms 3 an 4 that for all games G € G, and
for every set A such that WDY{(G) CAC S

(G4 C T(@),

where T(G) denotes a strategically stable set of equilibria of G. Applied
to the game of figure 4, this condition implies {a1, as} x {ad} C T(G) and
thus the set of strategically stable equilibria may contain non admissible
strategies.

ac | ad | be | bd
;| 1,111,1{1,0{1,0
ay0,0]1,110,0[1,1

Figure 4

This paper follows a different path, since we want to argue for (iterated)
admissibility. Consider the following specification of axiom 5:

Axiom 6 For any game G € G
TGP = T(G)nWD'(G).

Axiom 6 restricts axiom 5 to hold for simultaneous maximal deletion of
weakly dominated strategies, i.e. for admissible strategies as characterized
by theorem 3.

Now we are able to show that (iterated) admissibility is a satisfactory
criterion in the sense of Abreu and Pearce 1984.

13



Proposition 3 Azioms 3, 4 and 6 are mutually consistent.

Proof: see the appendix. ©

Note that all previous axioms and proofs work as well if WD(G) in-
stead of WD'(G) is considered. Therefore from this point of view there is
no logical distinction between admissibility and iterated admissibility, the
crucial point is the order of deletion, endogenously justified by axioms 1
and 2 and by theorem 3. Proposition 3 shows that (iterated) admissibil-
ity not only has axiomatic foundations, but solves Abreu and Pearce 1984
“impossibility” theorem.

7 Cautious Bayesian Optimisation and Iterated Ad-
missibility

Bernheim 1984 and Pearce 1984 in their seminal work on rationalizability
propose different equivalent versions of their solution concept. In particular
they show the equivalence between iterative procedures and a definition in
terms of fixed point of a correspondence. Moreover they show that correlated
rationalizability (rationalizability henceforth) is equivalent to iterated strict
admissibility. Since it is well known that cautious Bayesian optimisation is
equivalent to admissibility (Pearce 1984 and Blackwell and Girshick 1954),
can we conclude that a cautious version of rationalizability is equivalent to
iterated admissibility? As we show in this section, the answer is positive if
we consider the iterative definition of rationalizability, negative (Bérgers and
Samuelson 1992) if we consider the equivalent definition of rationalizability
as maximal fixed point of a sort of best reply correspondence. In this section
we will show that it is possible to provide an opportune generalisation of
Bernheim and Pearce approach so to encompass iterated admissibility as
maximal fixed point of the opportune best reply correspondence. Thus we
show how to avoid the negative result by Borgers and Samuelson 1992.

Definition 5 The set of rationalizable strategies R for a game G € G
is: R(G):= x;enRi(G), where

Ri(G) := N1 RYG), RY)(G):=S; and for t>1

RUG) := {s; € S;| ;i € A(R;H(G)) such that s; € F;(w;)}

Similarly the set of cautious rationalizable strategies R for a game
G € G is: R(G):= x;enRi(G), where

Ri(G) := N1 R(G), RY(G):=5; and for t>1

RUG) = {s; € S| i € A°(R'(G)) such that s; € Fi(us)}.
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The following result follows from well known theorems both in the game
and in the decision theoretic literature.

Proposition 4 For every game G € G
R(G) = SD(G) and R(G)=WD(G).

Proof: see the appendix. ©

An alternative definition of (cautious) Bayesian rational behaviour under
common knowledge of (cautious) Bayesian rationality requires to consider
the largest set R’ (R') for which

1. if ¢ thinks her opponents will choose a strategy in R’ (in R with

—1

strictly positive probability), then 7 will play in R (E;);
2. any choice in R} (R)) is a best response to a (full support) belief on
R, (R_).

This idea has been formalized by Bernheim 1984 by means of the operator
A and by Bérgers and Samuelson 1992 by means of the operator A.

Definition 6 For any game G € G let the mappings A : S —-— S and
A:S —— S be defined for any B C S by

A(B) := Xi]\;1{3i €S| 3 i € A(B—;) such that s; € Fi(p;)}
K(B) = Xg\él{si € S; | = i € AO(B_Z') such that s; € Fz(/vbz)}

Define recursively
A¥(B) := A(A*1(B)) where A%(B)
A (B) .= AR (B)) where R°(B)

B and
B.

Clearly for any game G € G
R(G) = Mg=1A%(S)  and  R(G) = N1 A*(S).

The following definitions of R’ and R try to model the same idea behind
R and R, i.e. the characterisation of the set of strategies that each (cautious)
rational player can choose under common knowledge of (cautious) Bayesian
rationality.

Definition 7 For any game G € G, define R'(G) as the mazimal set B
satisfying B = A(B), similarly define R’(G) as the mazimal set B
satisfying B = A(B).

cs
cs

A minimal consistency requirement is the coincidence between the two
alternative definitions in terms iteration (definition 5) and of maximal fixed
point (definition 7). This is what is actually proved by Bernheim, but un-
fortunately this is not true for cautious behaviour, as shown by Bérgers and
Samuelson 1992:
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Proposition 5 For any game G € § R'(G) = R(G) # 0. On the other
hand, there exist games G € G such that

1. R(G) =10;
2. there exist fired points of A, but none of them is mazimal;
3. R(G) # R(G).

Proof: See the appendix. ©

The reason of this discrepancy between iterated Bayesian rationality
and iterated cautious Bayesian rationality lies in the different mathematical
properties of the two operators A and A in terms of monotonicity. The oper-
ators A and A seems very similar, but they do not share a crucial property,
monotonicity, which is at the root of the negative results on IA derived in
Borgers and Samuelson 1992 and thus of the difficulties in founding iterated
weak dominance in terms of cautious Bayesian behaviour.

Proposition 6 The operator A is monotone, i.e. A C B = A(A) C
A(B), while the operator A is not monotone.

Proof: See the appendix. ©

Should we conclude, as Borgers and Samuelson do, that the existence of
a justification for IA is unlikely?

We don’t think so: this result shows that it is not possible to found
TA simply adjusting for cautious behaviour the arguments used for iterated
strict dominance. The reason lies exactly in the paradox stressed by Pearce
1982 p. 21-22 and illustrated in this paper in section 2: in the game of figure
2, if it is common knowledge that the players choose admissible strategies,
then player 2 can rationally choose L, which is not admissible. On the other
hand, if there is the slightest doubt about what the players might choose,
they must play admissible strategies, but this removes all doubt. This sim-
ply states that A is not monotone. Therefore if we look for justification
of iterated admissibility in terms of common knowledge of (some version
of) Bayesian rationality, we should consider a different construction. Till
now, game theorists have referred to lexicographic probabilities (see Blume
et al. 1991, Brandenburger 1992, Brandenburger and Keisler 2000, Stahl
1995, Veronesi 1994), but the previous sections show that it is possible to
justify TA also in terms of standard Bayesian rationality using the infor-
mative structures embedded in the definition of NFGs. This suggest that
the attempt of Borgers and Samuelson may be newly formulated using a
different operator defined in terms of strategic independent sets.

Definition 8 For any game G € G let the mapping A[X] : S —-— S be
defined for any B C S by

A[X)(B) := x¥1{si € §; | VX (i) € X(i,G) I s € A(B_; N X_;)
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such that s; € Fy(p;).}

Definition 9 For any finite normal form game G € G, define R”(G) as the
mazimal set B C S satisfying B = A[X](B).

Theorem 4 For any finite normal form game G € G
R(G)=R'(G) #0.

Proof: See the appendix. O

8 Conclusion

This paper shows that that the paradoxes in justifying iterated admissi-
bility stem from the assimilation of weak dominance to cautious Bayesian
behaviour, while if admissibility is interpreted as conditional dominance on
SISs, then it is possible to provide sound foundations. The failure so far
in the research of sound justifications for iterated admissibility depends on
the fact that in the previous analysis normal form games has been treated
as undifferentiated thing, while MSS have shown that the payoffs’ structure
provides information, which can be useful to define rational behaviour, as
clearly shown by the seminal paper of SW. In other words we argue for a
change of perspective: admissibility not as cautious behaviour, but as be-
haviour conditional on SISs. This means to take payoffs’ ties seriously. The
paper shows that the basic behavioral principles behind strict and weak
dominance are the same, i.e. standard Bayesian rational behaviour, but
when there are payoffs’ ties there is additional useful information that ra-
tional players should use, instead of ignoring it as done by the standard
approach based on cautious behaviour.

The principal topics omitted in this paper are the epistemic and evolutive
foundations for the iterative elimination of weakly dominated strategies.
Epistemic foundations are analysed in the recent paper by Brandeburger and
Keisler 2000 where they use lexicographic decision theory, while an analysis
of the possible evolutive foundations of iterated admissibility is in Marino
1997 and in Marx 1999. In our future works we will test the approach of
this paper trying to provide epistemic foundations for iterated admissibility
using Battigalli and Siniscalchi 1999 hierarchies of conditional probability
systems conditional to strategic information sets.
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9 APPENDIX

9.1 Notation and Definitions

First the standard proof of non emptiness and thus of logical consistency of
iterated admissible strategies

Proposition 1 In every finite game G € G, there exists a finite number
K € IN such that Vn > K WD} G) =WD;(G) # 0 for everyi € N.

Proof: the proof is by induction. First since S; # (), then WD?(G) is not
empty. Suppose that W D!} (G) # @ and that W D}(G) = §. Then for every
s; € WD! 1(G) there exists a 0; € (W D! '(G)) such that conditions ()
and (73) in definition 2 hold. Thus for any s_; there exists no maximum of U;
on WD! (@) and this is impossible since U; is continuous and W D! '(G)
compact. Therefore WD!™(G) # () implies WD}(G) # @ and thus V¢ €
IN WDHG) # 0. Moreover by definition WDY(G) D WD}G) D ---. Since
S; is finite, there exists a K € IN such that WDX (G) = W DY(G) for every
t > K. Thus for any n > K WDMG) =WD;(G) #0. ©

A generalisation of this proof to compact strategy sets with continuous
payoff functions is in Moulin 1986 (lemma 1, p. 58), while a simple example
of non existence with discontinuous payoff functions is in Luce and Raiffa
1957 p. 317.

9.2 Strategic Independent Sets, Strict and Weak Dominance

Now we prove the two characterization theorems, which are crucial for all
the further results.

Theorem 1 In every game G = (Uy(s),s € S)X, € G, for each player
i € N, a strategy s, is weakly undominated if and only if it is strictly un-
dominated in GXO) for every X (i) € X(i,G).

Proof: Fix a NFG G = (U;(s),s € S)X,, and a player i € N.
IF: we need to prove that

VX (i) € X(i,G) s;€ SDHGYY) = s;€ WD}(G).
Consider the contrapositive of this implication:
s; @WDHG) = 3X(i)€ X(,G): s; & SDHGXD),

If s; is strictly dominated in G, then the implication is trivially true for
X (i) = S; x S_;. Therefore suppose that s; is weakly but not strictly dom-
inated. Then there exists a strategy o) and a non empty set of opponents’
strategy profile S'_i C S5_; such that

UZ'(SZ',S_Z') = Ui(Ug,S_i) Vs_; € g_i
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Ui(si,5_3) < Ui(oh,5-;) Vs_; & S_;. (1)
Consider the set X ()™ = {s;,01} x S_;\ S_; = X} x X_;: by construction

Ui(si,s—i) = Us(si,5-3)  Vs_i € X_i(= S_;\ 5_y)

Ui(aé,s_i) = Ui(ag,s_i) Vs_; € X—i(: AS_i \ S—i)Ui(5i73—i) =
Ui(ol,s—;)  Vs_; & S\ X_; (i.e. Vs_; € S_;)andthereforeX(i) ¥
is a strategic independent set for player i. Then because of inequality (1),
s; is strictly dominated in GX®.
ONLY IF: we need to prove that

s, e WDHG) = VX(i) e X(i,G) s € SDHGYD),

Consider the contrapositive of this implication: suppose that there exists a
strategic independent set for player ¢ X (i) = X; x X_; such that s; is strictly
dominated in GX®). Thus there exists a o/ € A(X;) such that

UZ'(O';,S_Z‘) > UZ'(SZ',S_Z') Vs_; € X_; (2)

but then in order to satisfy the definition of strategic independent set, the
strict inequality (2) implies that the following equality should hold

U0, 5-i) = Ui(si,5-4) Vs—i €S-\ Xy,
hence s; is weakly dominated in G. ©

Theorem 2 For every game G € G WD(G) = Q(X(G)).

Proof: The proof is by induction. Fix a NFG G. Theorem 1 trivially implies
that WDYG) = UDY(X(G)). Thus we need to prove that WD!~1(G) =
UD'"YX(G)) implies W D}(G) = UD}(X(G)).

First we want to show that

WD Y @) =UD"H(X(G)) = UDYX(G)) CWDYG), i
WD Y G) =UD"H(X(G)) = [seUDYX(Q)) = sc WDYG)],
or using the contrapositive of the second implication
WD Y G) =UDTH(X(G) = [s¢gWDHG) = s g UDY{X(Q))].

Therefore suppose that for a generic player ¢ € N s; is weakly domi-
nated at stage ¢. Then if s; is strictly dominated at stage ¢, the impli-
cation does trivially hold, since UD*(X(G)) C SD*G). Therefore suppose
that s; is weakly but not strictly dominated. Then there exists a strategy
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ol € S(WDIHG)) = S(UDIH(X(i,G))) and a non empty set of oppo-
nents’ strategy profile $_; C WDt 1(@) = UD'H (X (45,G)) such that

Us(si,5-4) = Uz( y8—i) Vs_; € S'—z'

Ui(si, s—i) < Uiloh,s_s) Vs_; & 5_;. (3)
Then consider the set X (i) = {s;, 0/} xS_;\8_; = X; x X_;: by construction

Ui(siy5-i) = Ui(si, 5-¢) Vs_; € X_;

Ui(ag,s_i) = Ui(Ué,S_i) Vs_; € X_;

Ui(siys—i) = Usloh,s_5) Vs_i @ S_i\ X_; (i.e. Vs_; € 5_;)

and therefore X (4) is a strategic independent set for player 4 in GUP G (@),

ie. X(i) € X(,GUP' X)) Moreover because of inequality (3) s; is
strictly dominated in GX ) at stage ¢, therefore by definition s; ¢ UD(X (i, G)).
Now we want to show that

WDYG) =UD"YX(G)) = WDYG)CUDYX(G)), i.e.

WD'"YG)=UD" Y (X(G)) = [s€e WDYG) = s UDYX(Q))],
or using the contrapositive of the second implication

WD'"YG)=UD" (X(G)) = [s¢UD'(X(G)) = s¢gWDG)].
Therefore suppose that there exists a strategic independent set for player ¢
X(i) = X; x X_; € X(i,GUP"THX (@) guch that s, is strictly dominated
in GX(®. Note that by the induction hypothesis X; C (W D! '(G)) and
X_; CWD'H(G). Thus there exists a o € X; such that

UZ'(O';,S_Z‘) > UZ'(SZ',S_Z') Vs_; € X_; (4)

but then in order to satisfy the definition of strategic independent set, the
strict inequality (4) implies that the following equality should hold

Ui(0},5-;) = Ui(siys—i) Vs_; € S_;\ X_; CWD'!,

hence s; is weakly dominated in G at stage ¢t. ©
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9.3 Axiomatic Foundations of Iterated Admissibility

Now we can provide the axiomatic characterization of iterated admissibility.

Theorem 3 Under azioms 1 and 2, for any game G, T(G) = WD(G).
Furthermore W D is acceptable.

Proof: First note that according to theorem 2 we can rewrite the statement
as requiring 7(G) = Q(X(G)). Moreover lemma 3 of Pearce 1984 or theo-
rem 5.2.1 of Blackwell and Girshick 1954 allow to rewrite the definition of
conditionally undominated strategies as follows:

UD;(X(i,G)) = {si € Si[VX (i) € X(i,G)Ip—; € A(X_;) : 5; € Fi(p-i)}
(5)

and
UDMX(i,G)) = {s; € Si|VX (i) € X(i,GVP"(¥C@NIp_, € A(X_,) : 5, € Fy(p_y)}-

Thus proposition 1 and theorem 2 imply that there exists a K € IN such
that Yn > K UD™"(X(G)) = Q(X(G)).

First we will show that WD is acceptable under axioms 1 and 2. Since
for any NFG G, trivially Q(X(G)) C UD*(X(G)), (5) implies that axiom 1
is plainly satisfied. Now suppose that W D does not satisfy axiom 2: then in
a NFG G there exists a player i, a strategic independent set X (i) € X (i, G),
and a strategy s; € Q(X(G)) such that

Ap—i € A(1—i(s;, WD|X (1)) with s; € Fi(p—).

But since 7_;(s;, WD|X (i)) = Q_;(X¥(Q)) = UDX,(X(G)), then s; ¢ UD;( K+
1L, X(G)) 2 Qi(X(G)) = WD(G), a contradiction.

Finally, we show that any acceptable theory 7" under axioms 1 and 2
satisfies T(G) C Q(X(G)) for any NFG G. Fix a NFG G: since Q(X(G))
is rectangular, it suffices to show that T3(G) C Qi(X(Q)). First, s; € T;(G)
implies that s; satisfies axiom 1 and thus s; € UD}(X(G)). Now suppose
that for every player i T;(G) C UD}(X(G)). By axiom 2, for every i, every
X (i) € X(4,G) and every s; there exists a p_; € A(7_;(s;, T|X(7))) such
that s; € Fi(p_i). But T_Z'(SZ',T|X(7:)) C Xj?giTj(G) C XHAZUD?(X(G))
so s; € UDMMX(G)). Therefore by induction, s; € Q;(X(G). Hence
T(G) =WD(G) = Q(X(G)) for any NFG G. ©

9.4 Consistency of (Iterated) Admissibility as Solution Con-
cept

Consider Abreu and Pearce 1984 negative result on weak dominace.

Proposition 2 There exist no solution concept T satisfying azioms 3, 4

and 5.
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Proof: Suppose that there exists a solution concept T satisfying axioms 3,4
and 5 and apply T to the game G of figure 4

ac | ad | be | bd
;| 1,111,1{1,0{1,0
ay0,0]1,110,0[1,1

Figure 4

Since the strategies aw, ac, bc and bd are weakly dominated, then axioms
3 and 4 imply T(G) = {a1} x {ad}. Now consider the following restriction
of G to A = {a, az} x {ad}, where the weakly dominated strategies ac, bc,
and bd have been removed, and thus WD(G) C {aq, a9} x {ad} C S. Then
axiom 3 implies T(G4) = T(G) N A = {1} x {ad}. But in G* the payoff
functions of both players are constant and thus any solution concept should
satisfy T(G4) = A = {1, ao} x {ad}, a contradiction. ¢

In the proof, Abreu and Pearce assume that “the solution set must be
independent of ... the labels one chooses” to denote strategies (p. 173), an
intuitive condition but not stated as an independent axiom.

The following result instead shows that (iterated) admissibility as char-
acterized by theorem 3 is instead a satisfactory criterion in the sense of
Abreu and Pearce 1984.

Proposition 3 Azioms 3, 4 and 6 are mutually consistent.

Proof: First we show that axioms 4 and 6 are satisfied if and only if the
following condition holds: for all games G € G

T(GVPHD) = T(@).

ONLY IF: because of axiom 6 T(GVP'()) = T(G) N WDY(G), and

because of axiom 4 T(G) C WD (G), hence T(GV P (D)) = T(@).
IF: since by definition of solution concept T(G"P' () C WDY(G), then
T(GVPHD) = T(G) implies T(G) C WDY(G), i.e. axiom 4. Moreover
T(GVP(G)) = T(G) implies T(GV P () N WDYG) = T(G) N WDYQ),
but then since by definition of solution concept T(GW P (@) C WD (G), it
follows that T(GWP' () = T(@) N WDYG), i.e. axiom 6.

Now consider IWUS as solution concept, i.e. T(G) = WD'(G). By the
previous result, T satisfies axiom 3. Moreover T(G) = WD (G) implies
T(GWPHG)) = WDY(G). Hence T(G) = T(GWP' () and thus, because of
the previous result, T' satisfies axioms 4 and 6. &
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9.5 Cautious Bayesian Optimisation and Iterated Admissi-
bility
Proposition 4 For every game G € G
R(G) = SD(G) and R(G)=WD(G).

Proof: First it is necessary to prove the equivalence between definition 5
of (cautious) rationalizability which iteratively restricts players’ beliefs and
the reduction procedure where both the set of players’ possible choices and
beliefs are iteratively ristrect, i.e. where

RUG) := {s; € RTYG)| 3u; € A(R(G)) such that s; € Fi(u;)}.
and
RUG) := {s; e B7(G)| i € A°(R'(G)) such that s; € Fy(u;)}-

This is done by Bernheim 1984 and Pearce 1984 for rationalizability and
Veronesi 1994 for cautious rationalizability. Then the result follows by in-

duction from lemmas 3 and 4 of Pearce 1984 or from theorems 5.2.1 and
5.2.5 of Blackwell and Girshick 1954. ©

Proposition 5 For any game G € § R'(G) = R(G) # 0. On the other
hand, there exist games G € G such that

1. R(G) =10;
2. there exist fived points of A, but none of them is mazimal;

3. R(G) # R(G).

Proof: the result on rationalizability is proposition 3.2 in Bernheim 1984,
while the result on cautious rationalizability is proposition 2 in Borgers and
Samuelson 1992. ©

Proposition 6 The operator A is monotone, i.e. A C B = A(A) C
A(B), while the operator A is not monotone.

Proof: By definition A is clearly monotone (see also Bernheim 1984). On
the other hand apply A to the game of figure 2: A({L, R} x {T, M, B}) =
{R} x {T}, but A({L,R} x {T}) = {L.R} x {T}. ©

Theorem 4 For any finite normal form game G € G

R(G)=R'(G) #0.
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Proof: Preliminary define recursively Vk € IN  A¥[X)(B) := A[X](A*1[X](B))
with A°[X](B) = B. The proof relies on many previous results. First,
note that by definition A[X] is monotone. Second theorem 2 and proposi-
tion 4 imply that Q(X(G)) = R(G) = N A*[X](S) (see also lemma 2 in
SW). Therefore we need to prove the equality between the infinite iteration

of AF[X](S) and the maximal fixed point of A[X], using the monotonicity

of A[X] and following Bernheim 1984 proof of proposition 3.1. Suppose
R(G) # R"(G). Then there exists a set A C S and a k € IN such that:

A= A[X](A) (6)
ANAFX)(S) =4 (7)
ANAFTIX](S) C A where the inclusion is strict. (8)

Monotonicity implies that if A C B, then A[X](ANB) = A[X](A)NA[X](B).
Moreover (7) implies

A[X](A N AF[X](S)) = A[X](A) (9)
and A C A[X]*(S). Hence (9) implies
A[X](A) NA[X](AP[X](S)) = A[X](A). (10)

But the definition of A*¥+1[X] and (6) imply that (10) is equivalent to 4 N
AR X)(S) = A, a contradiction with (8). ©
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