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Abstract

Outcomes observed in laboratory experiments on contests are often not consistent with the

results expected by theoretical models, with phenomena that frequently occur like overbidding

or persisting oscillations in strategic choices. Several explanations have been suggested to un-

derstand such phenomena, dealing primarily with equilibrium analysis. We propose a dynamical

model based on the coevolution of strategic choices and agent preferences. Each agent can have

non self-interested preferences, which influence strategic choices and in turn evolve according

to them. We show that multiple coexisting steady states characterized by non self-interested

preferences can exist, and they lose stability as the prize increases, leading to endogenous os-

cillating dynamics. Finally, with an emphasis on two specific kinds of agents, we explain how

overbidding can emerge. The numerical results show a good qualitative agreement with the

experimental data.

Keywords: Contest models, Endogenous interdependent preferences, Coevolution of strategies and
preferences, Multistability, Non convergent dynamics

1 Introduction

The variety of economic, social and political situations that can be described by contest models has
been extensively analyzed by theoretical and applied social scientists. The first, seminal model of
contests was proposed by Tullock [1], who examined a game in which players, exerting an effort,
compete for a prize. The model introduced in [1] has a unique symmetric Nash equilibrium at
which efforts are proportional to the prize. Predictions of this model have been extensively tested
in controlled laboratory experiments1. In particular, in contest experiments (see [3] and references
therein) it is observed that players typically select strategies that differ from those at Tullock Nash
equilibrium x∗. Many experiments show that players exert an actual average effort that can even
amount or exceed the double of x∗, a phenomenon known as “overdissipation” or “overbidding”.
Even if in a small set of experiments, underbidding has also been observed, in particular when pro-
social behavior among contestants is promoted. Furthermore, strategic choices exhibit persistent
erratic oscillations.

The classic Tullock approach cannot explain the aforementioned phenomena, thus several expla-
nations have been proposed. A first family of these grounds on behavioral theories. For example,
Sheremeta [4] explained the overbidding observed in comparing different experimental results of
several Tullock contest models in terms of noise in rational decision making. This can be ascribed
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1For a comprehensive survey, see Dechenaux et al. [2].
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to many behavioral and demographic factors, which may be the source of the differences in the
behavior of players, as well as their proneness to make mistakes. Baharad and Nitzan [5] proposed
an explanation based on probability distortions, modelled according to the prospect theory of Kah-
neman and Tversky [6]. Results in [5] were improved by Sheremeta and Zhang [7] and Chowdhury et
al. [8] introducing an autocorrelation bias in winning probability evaluations, a sort of “hot-hand”
phenomenon that is well-known in the literature about gambling. Another research strand inves-
tigated the possibility of adjusted utilities for the agents, who did not make their decisions solely
on the basis of the material payoff. For example, Sheremeta [9] suggested that agents can take into
account an additional value induced by the utility of winning, which leads them to overestimate
the prize. Fonseca [10] introduced a concern for other player payoff in the utility of each player,
reconsidering the idea by Konrad [11] and allowing for altruistic/spiteful players. In [10] players
have other regarding preferences and are inequality averse, so their utility reduces as payoffs be-
come different. However, none of the previous approaches introduce a link between the dynamical
evolution of preferences and strategies. Concerning experiments in which underbidding has been
observed, we mention [12, 13, 14].

We stress that experimental studies also highlighted the occurrence of erratic fluctuations in
agent choices, which, in the aforementioned literature, are explained in terms of exogenous noise.
However, Wärneryd in [15] argued that the intrinsic nonlinearity encompassed in contest models may
prevent the agents from learning to converge. By analogy with the well-know dynamical behavior
characterizing nonlinear Cournot games, he noted that when agent are assumed to adopt simple
rules to choose their strategies (e.g., best response mechanisms in which they are not able to know
their opponent future choices), the complex dynamics that arise in the corresponding contest models
may be used to explain erratic trajectories of strategies.

The approaches adopted in the aforementioned literature have some limitations and unsatisfac-
tory facets, and leave open several questions that deserve investigation. Among them, the following
are particularly important and represent the research motivations behind the present contribution.
Is it possible that strategic behaviors that are not consistent with the Tullock Nash equilibrium do
endogenously emerge from the dynamical evolution, and not from exogenous, ex-ante assumptions
on the characterization of the players? What elements do foster robust and persistent underbid-
ding and, in particular, overbidding phenomena? In fact, in general, preferences are exogenously
assigned to the agents, and do not evolve depending on what the agents experiment during the
play of the contest, and hence their effect on the strategic behavior does not change. Besides those
models in which some evolutionary robustness of the considered kinds of agents is studied, it is
not even clear if the non self-interested preferences can endogenously emerge and last. Moreover,
it is interesting to understand if it’s possible to explain fluctuations in the choices of the agents in
terms of endogenous oscillations and what is the role of out-of-equilibrium dynamics in the selection
of strategic behaviors characterized by overbidding? In the modelling carried on in the mentioned
contributions, out-of-equilibrium dynamics are not even taken into account, and it is consequently
not possible to study non convergent trajectories and the emergence of the oscillations observed in
laboratory experiments.

The theoretical approach we pursue to tackle the previous questions is based on a dynamical
coevolution of strategic choices and preferences, considering agents who, in addition to the classic
self-interested preferences, can have both positive or negative regard for their opponents. Agent
preferences are influenced by the competitor behavior, which in turn affects strategic choices. We
introduce a general setting that allows us to formulate a four-dimensional discrete dynamical model,
for which we study possible steady states and their dynamical properties. Concerning static analysis,
the main result is that possibly multiple coexisting steady states characterized by non self-interested
preferences and either overbidding or underbidding can endogenously emerge. Regarding dynamics,
we show that the prize value has an unambiguous destabilizing effect on steady states, leading
to persistent oscillations in strategic choices. Finally, we introduce two particular kinds of agents,
modelled in terms of the way they evaluate their competitor behaviors, for which we study, also with
the aid of numerical simulations, the possible out-of-equilibrium dynamics, the path dependency of
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dynamical outcomes and their selection depending on initial configurations. In particular, for the
class of inequality averse agents, we show that dynamics characterized by overbidding strategies
endogenously emerge from the coevolution of preferences and strategic behavior even if no steady
states characterized by overbidding are possible. This also occurs even if we consider agents that
initially have both a positive regard for their competitors and exert very low efforts. Numerical
results show a good agreement with experimental evidence.

We remark that our focus is limited to contests of the Tullock type, since they have mostly at-
tracted experimental researchers. Moreover, we do not aim to reproduce quantitative characteristics
of outcomes of contest experiments, which can differ depending on the adopted setting. The purpose
is to provide a theoretical explanation and understanding of some key phenomena and to reproduce
them qualitatively.

The remainder of the paper is organized as follows. In Section 2, after introducing a standard
theoretical contest model à la Tullock, we provide a quick overview of the experimental literature
and of the models introducing interdependent preferences. In Section 3, we present the coevolutive
model with endogenous interdependent preferences in a general setting. The static analysis is carried
on in Section 4. In Section 5, we study the stability of possible steady states for the general model,
then we introduce two particular kinds of agents, for which we specialize analytical results and which
we numerically investigate. Finally, we conclude and suggest directions for future research. Proofs
of propositions are collected in Appendix.

2 Overview of the baseline literature status

2.1 The classic Tullock model

We consider a contest in which two players (indexed by i = 1 and 2) compete for a prize v > 0,
exerting efforts xi ≥ 0 and facing homogeneous and constant marginal costs c > 0. Without loss
of generality, we can normalize the marginal cost parameter2, setting c = 1. In the classic, static
setting proposed by Tullock [1], the prize is allocated to one of the two players according to the
contest success function

pi (xi, x−i) =

{ xi

xi+x−i
if (xi, x−i) 6= (0, 0),

1
2 if xi = x−i = 0,

which is interpreted as i′s probability of winning the contest or, equivalently, as the share of the
prize obtained by i. As a consequence, the expected payoff for each player is described by

E(πi(xi, x−i)) =







v
xi

xi + x−i

− xi (xi, x−i) 6= (0, 0),

v

2
xi = x−i = 0.

(1)

This classic Tullock game Γ0 = ({1, 2}, [0,+∞)2, E(πi(xi, x−i))), has the unique Nash equilibrium

x∗
1 = x∗

2 =
v

4
. (2)

2.2 Experimental findings on Tullock contests

Millner and Pratt [16] were the first to experimentally examine a Tullock contest. In their exper-
iment, participants were placed in groups of two and group composition changed from period to
period. The prize was $8 so that the static Nash equilibrium effort was 8/4 = 2, however the results
of the experiment showed that the actual average bid was $2.24, with an average overdissipation of
12%. Even if not directly investigated in their paper, the experimental results of Millner and Pratt
also display heterogeneous behavior.

2Setting c = 1 actually corresponds at reading prize v as a relative prize with respect to costs.
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Since Millner and Pratt, many other experiments have replicated the results of overdissipation
and heterogeneous behavior. In particular, Sheremeta [3] on the basis of a sample of 30 experiments
calculates a median overdissipation rate of 72%.

Why do participants in experiments display overbidding and erratic behavior? In the next
subsection, we review some theoretical models that have been suggested to explain these behavioral
patterns.

2.3 Behavioral contest models

In the past years, many behavioral contest models have been proposed to try to explain the experi-
mental results reported in the previous subsection. Let us review some of these works.

2.3.1 Noise in rational decision making

Sheremeta [4] compares the experimental results of different Tullock contest models, finding again
significant overbidding (result 1) and heterogeneous behavior (results 5 and 6). He then proposes
quantal response equilibria as a possible explanation for these findings, in particular for overbidding,
since Sheremeta claims that many behavioral and demographic factors may cause the observed
differences in player behaviors. In [17] the starting point of this approach is to conjecture that most
subjects are likely to make mistakes, which are modelled using the quantal response equilibrium
(QRE) concept developed in [18]. In a QRE, each player plays a mixed strategy σ∗ in which the
probability of playing a pure strategy x is increasing in the expected payoff π (x, σ∗) of that strategy,
given that the other player is playing the mixed strategy σ∗. In particular, the equilibrium probability
of choosing x is given by

σ∗ (x) =
e

π(x,σ∗)
µ

∫

x
e

π(x,σ∗)
µ dx

,

where µ > 0 is an error parameter describing the level of noise in the decision making process. If
µ → 0, then the Nash equilibrium effort is chosen with probability 1, if µ → ∞, then each possible
effort is equally likely to be chosen. Then, any µ > 0 will lead to overbidding, while as µ → ∞ a
player’s average effort will be v/2.

2.3.2 Biases in probability evaluation

Baharad and Nitzan in [5] apply probability distortions modelled according to the prospect theory
of Kahneman and Tversky [6], where the distortion function is commonly assumed to have an
inverse S-shaped probability weighting function b (p), where p is the objective probability, so that
the perceived probability of winning by player i is

b (pi (xi, x−i)) =























(

xi
xi+x−i

)β

[

(

xi
xi+x−i

)β
+
(

xj
xi+x−i

)β
] 1

β

if (xi, x−i) 6= (0, 0),

( 1
2 )

β

[

( 1
2 )

β
+( 1

2 )
β
] 1

β

if xi = x−i = 0,

where in Kahneman and Tversky β = 0.61. Then, they prove that the Nash equilibrium efforts are

xBN
i =

β

2
1+β2

β

v,

so that there is actually under-bidding for β < 1, the most common case. This result contradicts most
experimental observations and requires a different application of biases in probability evaluation,
which has been done in [7, 8], where overbidding at period t is associated to winning the contest at
period t−1, which in turn is explained by an autocorrelation bias in winning probability evaluations,
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a sort of ”hot-hand” phenomenon well-known in gambling literature. Let us stress that this positive
autocorrelation between past contest victories and overbidding might have interesting alternative
explanations, as we will argue with our model.

2.3.3 Contest models with adjusted utilities

Since the seminal work by Fehr and Schmidt [19], many works have considered the effect of other
regarding preferences on the agent behavior, however, quite a few papers have especially considered
adjusted utilities in contests, while the great bulk of this work has considered very simple game
such as the dictator or the ultimatum game, or even 2 by 2 games [20]. Contests are a particular
interesting setting for this kind of analysis because they are meant to model situations such as
fights, wars, electoral competitions, crimes, strikes and lockouts, sport contests, patent races, project
competitions, litigation, labor market tournaments, and in general all kind of conflicts where players
expend costly, non-refundable resources trying to affect the probability of getting a desired outcome,
so that adjusted utility with altruism or spitefulness may be are particularly relevant.

The utility of winning Suppose that the players care not only about the prize but also about
winning itself. One way to model this case is to assume that, in addition to the prize v, players also
have an extra utility of winning equal to w [9]. Therefore, the adjusted expected payoff for each
player is described by

E(πi(xi, x−i)) =







(v + w)
xi

xi + x−i

− xi (xi, x−i) 6= (0, 0),

v

2
xi = x−i = 0.

(3)

with the unique Nash equilibrium

xw
1 = xw

2 =
v + w

4
. (4)

If in addition to the prize, the players get an extra utility from the mere fact of winning, in equilibrium
we should observe overdissipation. We can also observe heterogeneous behavior if players have
different utilities from winning, say wi, but obviously no individual erratic behavior because the
analysis is based on static Nash equilibria.

The findings in [9] have been replicated by other studies, suggesting that adjusting the utility
functions may help to understand robust behavioral regularities that should be incorporated into
contest models. However, the exact specification of the utility of winning is still an open question.
For example, is it possible that the utility of winning is not additive, and possibly not invariant with
respect to the value of the prize or to the number of contestants?

Utilities with altruism and envy To the best of our knowledge, the first paper to introduce the
role of other player payoffs into a player utility within contest theory was Konrad [11], who introduced
the possibility of altruism and envy into a perfectly discriminant contest, subsequently nested into
an evolutionary setting in which the share of altruists is endogenous and changes according to the
relative success of envious players compared to altruists, measured by their relative material payoffs.
The change in the utilities of players is proposed in a simple linear way:

• the altruist type has the following utility function

UA (xi, x−i) = pi (xi, x−i) v + [1− pi (xi, x−i)]αv − xi

where α ∈ (0, 1) is the altruism-weight parameter that measures the relative weight of the
opponent’s material payoff;

• the envious type has the following utility function

UE (xi, x−i) = pi (xi, x−i) v − [1− pi (xi, x−i)]βv − xi
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where β ∈ (0, 1) is the weight of envy parameter that measures the relative weight of envy in
i′s utility.

Note that Konrad’s analysis was limited to perfectly discriminant contests, and the emphasis was
on the distribution of types that emerges in the long run according to some evolutionary dynamics.
In [10] Fonseca then introduces a concern for the payoff of other players in the utility functions of
the standard Tullock model. He incorporates other-regarding preferences using Fehr and Schmidt
[19] model. Thus, utility of player i′ would take the following form:

Ui (xi, x−i) = πi (xi, x−i)− αi max {π−i − πi, 0} − βi max {πi − π−i, 0} ,

where

• the parameter αi denotes i
′s aversion to disadvantageous inequality and captures the disutility

a subject has from earning a smaller payoff than the other player, qualified by Fehr and Schmidt
as the degree of competitiveness of a player;

• the parameter βi denotes i′s aversion to advantageous inequality, so that a higher βi implies
a more cooperative subject.

The authors assume that βi ≤ αi and βi ∈ [0, 1) . The Nash equilibrium efforts in this case are

xF
i =

(1 + 2αi − 2βi)

4 (1 + αi − βi)
v.

Finally, the paper by Mago et al. [14] is extremely interesting and particularly relevant for our
work, because it provides not only a general model of interdependent utilities with a robust, inter-
esting experimental evidence, it also considers a setting where the players know the identity of the
opponents and where there is ex-post complete information feedback about opponents’ efforts. The
authors argue that knowing the identities of their opponents and effort levels is an important design
feature that affects individual behavior in practice. For instance, workplace managers may choose
to explicitly identify the workers being considered for a promotion and make known their effort
level. Empirically, in line with previous experimental results in the contest literature, the authors
find significant overbidding relative to the standard theoretic Nash equilibrium. Theoretically, they
consider a simple utility function that includes a linear sum of the payoffs:

Ui (xi, x−i) = πi (xi, x−i) +
1

2
s [πi (xi, x−i) + π−i (xi, x−i)] ,

3

where s is an interdependent social payoff parameter representing a measure of how individuals
weight their payoffs relative to others:

• s > 0 reflects the preferences of pro-social individuals who strive to increase the payoff of the
entire group,

• s < 0 reflects the preferences of status-seeking individuals who strive to obtain a higher relative
payoff within the group.

The Nash equilibrium of this game is then

xMSS
i =

1

2 (2 + s)
v.

Thus, in this setting, overbidding in equilibrium requires status-seeking players.

3The formulation proposed here simplifies the original setting considering no specific utility from winning and two
players only.
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3 A dynamical model with endogenously evolving interde-

pendent preferences

We consider an infinitely repeated contest in which two players (indexed by i = 1 and 2) compete at
each game stage (indexed by discrete time sequence t ≥ 0) for a prize v > 0, exerting efforts xi,t ≥ 0
at time t and facing homogeneous and constant marginal costs c > 0.

We recall that in the classic static setting proposed by Tullock, expected payoff of player i is
expressed by

E(πi(xi, x−i)) =







v
xi

xi + x−i

− xi (xi, x−i) 6= (0, 0),

v

2
xi = x−i = 0,

(5)

where x−i can be interpreted as the actual effort of player −i or as player −i effort as expected
by player i. In the present dynamical setting, we adopt the latter meaning, and hence the expected
payoff that, at the end of stage t, each player expects for next game stage at t+ 1 can be described
by

E(πi(xi,t+1, x
e
−i,t+1)|Ii,t+1) =











v
xi,t+1

xi,t+1 + xe
−i,t+1

− xi,t+1 (xi,t+1, x
e
−i,t+1) 6= (0, 0),

v

2
xi,t+1 = xe

−i,t+1 = 0,
(6)

where

• xe
−i,t+1 is the effort that agent i expects his competitor will exert at time t+ 1,

• xi,t+1 is the effort of player i at time t+ 1, and

• Ii,t+1 is the information of player i at the end of stage t, before playing stage t+ 1.

We stress that if we proportionally rescale both efforts, the larger they are, the smaller are expected
payoffs.

3.1 Interdependent preferences

First of all, we make the following assumption on player preferences.

• Players have other regarding (interdependent) preferences, i.e. their expected utility for period
t+ 1 is a linear combination between his own and his competitor material payoff function

E
(

Ui(xi,t+1, x
e
−i,t+1)|Ii,t+1

)

= E
(

πi

(

xi,t+1, x
e
−i,t+1

)

|Ii,t+1

)

+ωi,tE
(

π−i

(

xi,t+1, x
e
−i,t+1

)

|Ii,t+1

)

,
(7)

where ωi,t ∈ (−1, 1) is the weight given at time t by agent i to the expected payoff of the
competitor.

According to the terminology used by Levine [21], Ui(xi,t+1, x
e
−i,t+1) is the adjusted utility of

player i, which reflects player’s own utility and his regard for the opponent, while ωi,t is the coefficient
of altruism. In particular,

• if ωi,t > 0, the player is referred to as altruistic, as such a player has a positive regard for the
opponent;

• if ωi,t = 0, the player is referred to as selfish, corresponding to the usual case;

• if ωi,t < 0, the player is referred to as spiteful, as such a player has a negative regard for the
opponent;
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• the assumption that ωi,t ∈ (−1, 1) means that no player has a higher (positive or negative)
regard for the opponent than for himself.

We stress that the coefficient of altruism encompasses both altruistic and spiteful inclinations. An
increase in the coefficient of altruism could then involve either more altruistic or less spiteful pref-
erences, as well as its decrease can mean either less altruistic or more spiteful preferences. As
a consequence of this, saying that a player more (respectively, less) altruistically behaves encom-
passes both the case in which the positive regard for his opponent increases (respectively, decreases)
and that in which the negative regard for his opponent decreases (respectively, increases), and this
accordingly affects his strategic behavior.

Obviously, coefficient ωi,t is not independent of the units in which utility is measured, and
utility must be measured in the “same”interpersonally comparable units for all players. Finally, the
linearity of the adjusted utility in the opponent’s payoff may be taken as a convenient approximation.
A similar approach in oligopoly modelling can be found in [22].

As previously summed up, standard theory applied to contests assumes that players are selfish
in the sense that they only care about their own expected prize. The alternative line of analysis
pursued in the present contribution is that players are not actually selfish, but they also consider
the other player payoff. In alternative contest theory, it is frequently discussed that some notion
of fairness plays a role in individual decision making. For example, Rabin [20] has proposed a
formal model of what this might mean. However, the model we propose, even if similar in spirit to
Rabin’s model, more radically departs from the ordinary assumptions of game theory, because we
suppose that player altruistic or spiteful preferences endogenously evolve through time because of
the past play of the contest. This notwithstanding, the spirit is similar to the psychological game
approach in [23, 20], even if the formal model we propose is completely different. In psychological
games, the starting point is that player attitudes toward other players depend on how they feel
they are being treated, and this aspect is modelled assuming that the utility of players depends not
only on strategies, but also on their beliefs. The resulting game is then analyzed using equilibrium
theory, for example, considering consistency among first and higher order beliefs. In the present
contribution, we suppose that players do not care if their opponents play “fairly,”but rather if they
are seen as nice people. Fairness usually requires defining an “exogenous” reference value (e.g.,
average payoff) related to which the agents establish if the competitor behavior was fair or not.
Conversely, the approach we pursue is based on a mechanism of endogenous coevolution of strategic
behavior and preferences, which depends on how a player evaluates his opponent choices. This does
not require introducing a reference value encompassing “fairness”, but it, likewise, retains the flavor
that player weights on opponent materialistic payoffs depend both on his own coefficient of altruism
or spitefulness (similar to the approach based on beliefs), but they will also evolve through time.
The point we wish to make with this approach is that the phenomena observed during experiments
do not seem to simply reflect social preferences, but their adjustment through time on the basis of
observed behavior.

3.2 Endogenous dynamics

First, we make the following assumption on player information.

• At the end of each game stage, the efforts played by each agent are disclosed,4 and hence the
information for game stage t+ 1 is Ii,t+1 = {xi,t, x−i,t} .

Second, we make the following assumptions, in particular on the coevolutive mechanism of strategies
xi,t and coefficients ωi,t.

a) the agent strategic behaviors, which are influenced by their interdependent preferences, dynam-
ically evolves on the basis of a best response mechanism with respect to each agent expectations,

4A common setting in contest experiments is that, at the end of each game stage, each player is informed about
the aggregate exerted effort. Since we consider a two player game, this indeed implies that a player knows the last
period strategy of his competitor.
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i.e. each agent, at the end of stage t, chooses for stage t + 1 the strategy that maximizes his
adjusted utility:

xi,t+1 ∈ argmaxE
(

Ui(xi,t+1, x
e
−i,t+1)|Ii,t+1

)

; (8)

b) each player i has static expectations, i.e. each agent, at the end of stage t, assumes xe
−i,t+1 = x−i,t;

c) the agent preferences are in turn influenced by the behavior of their competitors.

In what follows, we detail each of the three components of the dynamical coevolutive mechanism.
In doing so, we assume xi,0 > 0 and we focus on those trajectories for which x1,t and x2,t do not
simultaneously vanish.

3.2.1 Player behavior

Based on assumption a), each player chooses his next period strategy adopting a myopic best response
to each player’s conjecture on opponent’s choice, in the sense that each player at each stage maximizes
his stage adjusted expected utility E

(

Ui(xi,t+1, x
e
−i,t+1)|Ii,t+1

)

. This assumption can be justified as
a result of impatience, so to explain why players don’t maximize their inter-temporal utility function,
thus considering the possibility of influencing the future play of the opponent.

3.2.2 Player expectations

If we assumed perfect forecast (xe
−i,t+1 = x−i,t+1) and time constant interdependent preferences

(ωi,t = ωi), the dynamical model would become static, as the agent would be able to reach the
steady state in just one shot. In this case, the model would be described in terms of a game
Γω = ({1, 2}, [0,+∞)2, E(πi(xi, x−i))), for which it can be shown that the unique Nash equilibrium
x
∗ = (x∗

1, x
∗
2), with

x∗
1 =

v(1 − ω1)
2(1− ω2)

(2− ω2 − ω1)2
, x∗

2 =
v(1− ω2)

2(1− ω1)

(2 − ω2 − ω1)2
,

always exists. As a particular situation, if we consider selfish preferences (setting ωi = 0), we retrieve
the classic Tullock game Γ0 = ({1, 2}, [0,+∞)2, E(πi(xi, x−i))).

In this paper, we assume that players have static expectations, i.e. for any i ∈ {1, 2} , and for any
t ∈ N we have xe

−i,t+1 = x−i,t. Let us stress that this assumption is quite naive, as players expect
that today’s play will be the same as yesterday’s. Obviously, this model of expectation formation
is wrong unless the players reach a steady state; outside a steady state, player choices change every
period, so that there is no reason to suppose that last period choice is a good forecast of next period
choice, Instead, with static expectations, the players expect that the opponent’s choice is constant
through time, while the actual play changes over time. Therefore, even if players start thinking that
the opponent’s choice is stationary, they should quickly learn that it is not. However, not only this is
the most common and simplest way of modelling player expectations, it is also coherent with player
myopic behavior (assumption a) on player behavior), in the sense that each player i is considering
each single stage t, using her available information Ii,t. More generally, why should we expect people
to consider only the last observation? First, if the process that is generating observations undergoes
unobserved regime shifts, as in our model of co-evolution, then older observations may indeed be
less informative than recent ones. Second, psychologists talk of ”recency bias” because commonly
people do weight last information more than old one (see e.g., [24]). Third, it is possible to imagine
an alternate model of strategic choices, or more generally an implicit inertia factor, combined with
impatience, so that this assumption may be partially justified (see [25]). Finally, we stress that to
understand the effect of our combination of mutual changes in expectations and in preferences, it is
useful to simplify as much as possible the expectation dynamics.

9



3.2.3 Dynamics for the agent’s strategic behavior

According to assumption b), we have that adjusted utility (8) can be written as

E(Ui(xi,t+1, x−i,t)|Ii,t+1) =
xi,t+1

xi,t+1 + x−i,t,

v − xi,t + ωi,t

(

x−i,t

xi,t+1 + x−i,t

v − xi,t

)

. (9)

Solving the optimization problem (assumption a)), we get xi,t+1 ∈ argmaxE(Ui(xi,t+1, x−i,t)|Ii,t+1),
so that, for x−i,t > 0, we obtain the standard best response mechanism with static expectations

xi,t+1 = max{
√

vx−i,t(1− ω1,t)− x−i,t, 0}.

We stress that if x−i,t = 0, from (9) we have that a whatever small effort would guarantee to player
i an expected payoff equal to v, when for a null best response it would reduce to v/2. Since we are
mainly interested in trajectories for which both players exert a positive effort, we simply assume an
exogenous minimum effort ε that is played as the reaction to a null expected strategy. We stress
that this is in line with the setting of lab experiments, in which players usually have a discrete set
of strategic choices, and hence there is a minimum non null effort level that can be exerted.

In Figure 1 (a-b) we report the graphs of some best response functions on varying the prize
and the coefficients of altruism. As the prize increases, the best response to a given effort x−i,t

increases as well. This reflects the increasingly high player involvement in the game, as the prize
for which they compete is more and more relevant. Moreover, altruistic preferences (i.e. when
ωi,t > 0) induce milder responses to the opponent behavior, while the opposite occurs with spiteful
preferences. In particular, with altruistic preferences, best response strategy is always smaller than
the classic Tullock Nash equilibrium strategy (denoted by asterisks in Figure 1 (a-b)), while larger
replies are possible for spiteful preferences.

The best response dynamics is the oldest, most familiar and simple instance of adaptive dynamics,
widely studied in economic theory (see e.g., [26]) for a general analysis of this kind of models.
Although based on myopic behavior and naive expectation formation, it can be partially justified
within a general frame, as argued before. Moreover, in lab experiments, best reply mechanisms
often describe dynamical paths well (see [27]). However, the main point of this paper is to couple
this simple dynamical mechanism with the adaptation of preferences, with coevolution driving the
observed player behaviors and allows mimicking the lab results. From this point of view, the use
of the well-known best response dynamics coupled with the coevolution of player interdependent
preferences allows a deeper understanding of the interaction between the player maximizing behavior,
their expectation formation and the endogenous evolution of the coefficient of altruism.

3.2.4 Dynamics for the agent’s preferences

There have been a great many experimental studies of infinitely repeated games (see e.g., [28]) and
one main takeaway is that in contrast to predictions based on equilibrium analysis, players tend to
reciprocate the past behaviors of their opponents. We formalize this by assuming that the coefficients
of altruism of each agent evolve according to how they assess whether their competitor has played
well or not.

Indeed, the agents do not know altruistic, selfish or spiteful preferences of their competitors,
but their strategic choices at stage t depends on such preferences, which consequently affect the
probability of winning the prize. So agents can compare their own and their competitor expected
payoffs5 and evaluate how much they liked/disliked their competitor behavior, and, based on that,
their preferences consequently adapt.

We stress that it is possible to show that if preferences adapted on the basis of the comparison
of the exerted efforts instead of expected payoffs, all the analytical and numerical results we are

5From now on, for the sake of notation, we drop E(·) and we simply denote the expected payoffs by πi and expected
payoff difference by ∆πi.

10



going to present would not essentially change. The results we present in the remainder of the
paper are discussed in terms of expected payoff comparison, which allows providing a simpler and
clearer economic interpretation, but they can be rephrased in terms of exerted effort comparison
and basically remain identical.

The process of preference evolution can then be outlined in three steps.
a) Agents are informed of the exerted efforts and compare the expected payoffs

In particular, we assume that agents compare the last period expected payoff difference ∆πi,t =
πi,t − π−i,t. From

πi,t = v
xi,t

xi,t + x−i,t

− xi,t

we have

∆πi,t = v
xi,t − x−i,t

xi,t + x−i,t

+ x−i,t − xi,t = −∆π−i,t i = 1, 2. (10)

The payoff comparison is modelled in additive terms instead of a ratio, a possible viable alternative,
following the most common use in the literature, as in [20, 29, 21].
b) Agents evaluate how much they like/dislike the expected payoff difference

The agents positively or negatively evaluate the expected payoff difference ∆πi,t. Such evaluation
can be made in terms of own convenience, fairness/unfairness evaluation, status-seeking behavior and
so on. Since a given scenario can be differently evaluated by distinct agents, the way the expected
payoff difference is evaluated defines the agent kind, which can be modelled by introducing a function
m : R → R,∆πi 7→ m(∆πi,t) which quantifies the evaluation given by agent i to the behavior of
agent −i, inferred from the expected payoff difference. We investigate some possible relevant kinds
of players in Section 5 and the corresponding functional shapes m, but they have in common that
the more m(∆πi,t) positively increases, the more agent i liked what he experienced after stage t
and, symmetrically, the more m(∆πi,t) negatively decreases, the more agent i disliked it. Such an
assessment of the economic observables is actually an evaluation on the competitor behavior, and it
is the element on the basis of which the preferences of each player adapt.

We assume that m(∆πi,t) is a strictly monotone function on (−∞, 0] and on [0,+∞), respec-
tively. This means that, for example, depending on the kind of player, a positive expected payoff
difference can be either evaluated in a positive (like) or negative (dislike) way, but given one of these
alternatives, as ∆πi,t increases, the liking/disliking degree increases as well. Finally, we assume that
m is a Lipschitz continuous function, i.e. there are no sudden changes in the (marginal) evaluation
of the competitor behavior if it slightly changes.
c) Agent preferences adapt accordingly to the evaluation of the expected payoff difference and on their
past experience

How preferences change depends not only on the evaluation of the last game outcome, but it is
also affected by the player same preferences, i.e. by his identity at stage t, which is a consequence
of his history and past experiences. For example, the reaction of a player to a positive evaluation of
the competitor behavior in the last stage could considerably change depending on the current player
preferences. For example, let us assume that at stage t player 1 negatively evaluates the behavior
of his opponent. If player 1 evaluated in a positive way the behavior of player 2 for many periods,
so that he currently has a positive regard for his opponent, a negative evaluation for one period
could weaken such regard, but his preferences will remain characterized in terms of altruism. We
could face an opposite situation if player 1′s preferences evolved toward a negative regard for player
2, as in this case he could become less altruistic. In addition to this, the intensity of the effect of,
for instance, a negative evaluation of the expected payoff difference can change depending on how
much each player current preferences are polarized in terms of positive or negative regard for his
competitor.

From the mathematical point of view, this can be described by the process

ωi,t+1 = f̃(m(∆πi,t), ωi,t),

where f̃ : R×(−1, 1) → (−1, 1), (m,ω) 7→ f̃(m,ω) is such that, for any given ω ∈ (−1, 1), x 7→ f̃(x, ω)
is a smooth, strictly increasing function, whose range is (σ1(ω), σ2(ω)) = (ω− k1(ω), ω+ k2(ω)) and
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Figure 1: Best response function for different values of prize (panel (a)) and coefficients of altruism
(panel (b)). Asterisks denote the classic Tullock Nash equilibrium strategies. Panel (c): graph of
function f̃ on varying its former component x, for different fixed values of its latter component.
Horizontal dotted lines represent ωi,t+1 = ωi,t.

which is symmetric with respect to point (0, f̃(0, ω)). We stress that monotonicity with respect to
the former component obviously guarantees that, for each given preference, the higher the evaluation
of payoff difference is, the larger the coefficient of altruism is. Moreover, since we want to avoid
exogenous biases toward altruism or spitefulness, we introduced suitable symmetry assumptions on
the involved modelling functions. Based on this, we can recast function f̃ into the form

f̃(m,ω) =
σ2(ω)− σ1(ω)

2
f(m) +

σ1(ω) + σ2(ω)

2
= ω +

k1(ω) + k2(ω)

2
f(m) +

k2(ω)− k1(ω)

2
, (11)

where f(m) is an odd function6 (so f(0) = 0), for which limm→±∞ f(m) = ±1.
Function σ1(ωi,t) = ωi,t − k1(ωi,t) (respectively, σ2(ωi,t) = ωi,t + k2(ωi,t)) represents, given the

current preferences, the lower bound (respectively, the upper bound) to the coefficient of altruism
that can characterize player i at time t+1. In Figure 1 (c) we report three possible graphs of function
f̃(·, ωi,t), for different values of ωi,t. Let us refer to the upper graph in yellow, corresponding to the
case of player i with altruistic preferences at time t. The yellow dotted line represents the value at
time t of the coefficient of altruism.

Depending on the positive or negative evaluation of the stage outcome (abscissa m) at time t, his
coefficient of altruism could increase (part of the curve above the yellow dotted line) or decrease (part
of the curve below the yellow dotted line). In such latter case, altruistic preferences could also turn
into spiteful ones. We note that in general f̃(0, ω) 6= ω, i.e. a neutral evaluation of opponent behavior
can lead to a change in the preferences. For example, preferences at time t are represented by the
yellow dotted line, but the next period coefficient of altruism ωi,t+1 = f̃(0, ω), which graphically
corresponds to the intersection between the yellow graph and the vertical dashed line, lies below the
yellow dotted line. The opposite occurs for the red graph related to ωi,t = 0.1, while for the blue

graph related to ωi,t = −0.5 we have f̃(0, ω) = ω. The occurrence of each of these situations is in
principle unrelated to the sign of the coefficient of altruism, i.e. they all can hold for both altruistic,
spiteful or self-interested preferences. We delve deeper into this point at the beginning of Section
4, when discussing the dynamical evolution of variables of the model. Possible values of coefficients
of altruism at time t + 1 can range between the two dashed yellow lines, respectively representing
values σ1(ωi,t) (lower yellow dashed line) and σ2(ωi,t) (upper yellow dashed line). These comments

6For the sake of completeness, in the most general case, function f̃ should be rewritten as in (11) but in terms of
a function f that explicitly depends on ω. Since taking such dependence into account would not introduce new addi-
tional, economically relevant phenomena to those reported in the present contribution, we do not consider dependence
of f on ω. This also allows for a more direct and clear economic explanation of the results.
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Figure 2: Functions σ1 and σ2 (panel (a)) for which k1 and k2 are not monotonic (panel (b)) and
disposition k2/k1 is unimodal on [0, 1) (panel (c)).

can be adapted to discuss red and blue graphs as well.
In what follows, we refer to term f(m(∆πi,t)) in (11) as drift toward altruism, and it encompasses

the effect of the evaluation of the stage t outcome on the next period preferences. In line with the
discussion on the meaning of coefficient of altruism, a negative value of the drift toward altruism
must be intended as a drift toward spitefulness.

Conversely, in (11), the difference k2(ωi,t) = σ2(ωi,t) − ωi,t between the maximum next period
value of the coefficient of altruism and the current one represents how much the regard for player −i
can increase from period t to period t+1. Similarly, difference k1(ωi,t) = ωi,t−σ1(ωi,t) between the
current value of the coefficient of altruism and the maximum possible at t+ 1 describes how much
the regard for player −i can decrease from period t to period t + 1. They encompass an intrinsic
characteristic of the players, which is independent of the behavior of their competitors, but which
endogenously depends on the current preferences. In Figures 2 (a-b) and 3 (a-b) we report some
possible shapes for functions σi and corresponding functions ki.

Before presenting the model, we make some assumptions on functions σi, to take into account only
economically relevant functional shapes and to rule out the occurrence of some trivial or uninteresting
scenarios.

We stress that even under the following assumptions, the static and dynamical results are able
to depict the multiplicity of the economically relevant scenarios that are able to describe outcomes
of contest experiments. Essentially, no new scenarios can arise by removing such assumptions, but
the discussion of the result would simply become more elaborated, as branching, marginal situations
should be taken into account.

Firstly, we assume that σi(ω), i = 1, 2, are smooth, strictly increasing functions. This guarantees
that, for example, the greater is the positive regard of an agent for his competitor, the more such
regard can potentially increase and the less it can decrease. Moreover, we implicitly assume that
functions σi (and, consequently, ki as well) are sufficiently regular to compute the required derivatives
for the theorem proofs.

Since we want to disregard those functional shapes for σi for which dynamical evolution of
variables is not depending on a coevolution of preferences and of player strategic behavior, we
assume that

σ2(ω) > ω > σ1(ω), for any ω ∈ (−1, 1) and lim
ω→±1∓

σ2(ω)− σ1(ω) 6= 0. (12)

Assumption (12) means that, independently of the current agent preferences, in principle he can
always become more altruistic and less altruistic. If we allowed for example σ1(ω) = ω, we would
have situations in which the agent cannot become less altruistic, even when facing a previous stage
stage outcome that is evaluated very negatively. In addition to this, if we allowed for σ2(ω) = σ1(ω)
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Figure 3: Functions σ1 and σ2 (panel (a)) for which k1 and k2 are monotonic (panel (b)) and
disposition k2/k1 is strictly decreasing [0, 1) (panel (c)).

for some ω0 ∈ (−1, 1) this would mean that the evolution of preferences would be “exogenously”
locked at ω0, independently of the evaluation of how much an agent liked/disliked the previous stage
outcome. In this case, it is easy to see that (ω0, ω0) would be a steady state for the equations
governing the evolution of ω for every strategic behavior.

Moreover, the present assumption also rules out that σ2(ω)− σ1(ω) → 0 as ω approaches some
ω0 ∈ {−1, 1}. This would mean that the evolution of preferences could converge toward ±1, inde-
pendently of the evaluation of how much an agent likes/dislikes the outcome of the previous stage
outcome.

In addition to this, in line with the symmetric framework we assumed for the whole game and
the model setting, we impose a symmetric behavior for functions ki when the coefficients of altruism
have opposite signs, i.e.

ki(ω) = k−i(−ω), i = 1, 2, ω ∈ (−1, 1). (13)

This guarantees that if the current coefficient of altruism is positive, the regard for the competitor
can decrease as much as it could increase under an opposite value for the coefficient of altruism. We
stress that a consequence of (13) is that k1(0) = k2(0), i.e. when an agent has selfish preferences,
he has neither disposition toward altruism nor toward spitefulness.

Finally, as it will become evident from the analysis in Section 4, the model allows for a multiplicity
of equilibria. To simplify the discussion, we will focus on situations in which up to three symmetric
equilibria arise, as the explanation of more general situations fall within this prototypical one. To
guarantee this, we can assume that either

k2(ω)

k1(ω)
on ω ∈ [0, 1) is monotonic, (14a)

or
k2(ω)

k1(ω)
on ω ∈ [0, 1) is unimodal. (14b)

Function k2(ω)/k1(ω) endogenously determines if an agent is more prone to becoming more altru-
istic/less spiteful or to becoming more spiteful/less altruistic.

When k2(ω)/k1(ω) is above (respectively below) 1, we can say that the player has an endogenous
disposition toward altruism (respectively toward spitefulness), since he is potentially more disposed
to become more altruistic/less spiteful than to become more spiteful/less altruistic (respectively he is
more disposed to become more spiteful/less altruistic than to become more altruistic/less spiteful).

We emphasize that disposition is endogenous, since it can change depending on the current coeffi-
cient of altruism, which evolves over time. Moreover, the disposition toward altruism or spitefulness
determines the positive or negative sign of k2(ω)− k1(ω), so in what follows we can discuss the role
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of the disposition of a player also inspecting the sign of k2(ω) − k1(ω). For example, Figure 2 (c)
depicts a situation in which player i exhibits disposition toward altruism for 0 < ωi,t < 0.5 and
ωi,t < −0.5 and disposition toward spitefulness for −0.5 < ωi,t < 0 and ωi,t > 0.5, while Figure
3 (c) depicts a situation in which player i exhibits a uniform disposition toward altruism when he
is currently spiteful and a uniform disposition toward spitefulness when he is currently altruistic.
Assumptions (14) then restrict the maximum possible number of changes in the disposition of a
player as his preferences range from spitefulness to altruism.

As it will become evident in the remainder of the paper, drift toward altruism and disposition
toward altruism/spitefulness play a crucial role in explaining static and dynamical behaviors of the
model.

The graphs of functions σi and ki reported in Figure 2 (a-b) and 3 (a-b) are consistent with
all the previous assumptions. In particular, in Figure 2 (b) functions ki fulfill assumption (14b),
whereas in Figure 3 (b) they fulfill assumption (14a).

Finally, we limit the possible heterogeneity between the agents to the initial strategy and/or
coefficient of altruism. All the remaining elements will be the same for both players (i.e. functions
f, σi and m).

The resulting model consists of the following four dimensional dynamical system



































x1,t+1 = max{
√

vx2,t(1− ω1,t)− x2,t, 0},
x2,t+1 = max{

√

vx1,t(1− ω2,t)− x1,t, 0},

ω1,t+1 = ω1,t +
k2(ω1,t) + k1(ω1,t)

2
f(m(∆π1,t)) +

k2(ω1,t)− k1(ω1,t)

2
,

ω2,t+1 = ω2,t +
k2(ω2,t) + k1(ω2,t)

2
f(m(∆π2,t)) +

k2(ω2,t)− k1(ω2,t)

2
,

(15)

where ∆πi,t are defined by (10) and depend on xi,t and x−i,t. Model (15) can be written in a compact
way as st+1 = F (st) by introducing function F : (0,+∞)2 × (−1, 1)2 → R

4, s = (x1, x2, ω1, ω2) 7→
F (s) = F (x1, x2, ω1, ω2), defined by the right hand side in (15).

4 Static analysis

Before analyzing the static properties of model (15), we discuss how variables evolve.
Concerning the equations describing the dynamics of the coefficients of altruism, the preferences

evolve according to an anchoring-and-adjusting mechanism. The anchor corresponds to the current
preferences, encompassed in ωi,t, and it is adjusted according to the evaluation given by players to
the outcome of the previous stage (encompassed in f(m(∆πi,t))), tuned by the potential changes
in the regard for the opponent, (respectively encompassed in k1(ωi,t) and k2(ωi,t)).

Let us start considering the case in which no anchoring is present, i.e. the preference evolution
is independent of the current preferences. This occurs for σ(ω1,t) = −1 and σ(ω2,t) = 1. In this
situation, the next period coefficient of altruism would be a direct consequence of the evaluation of
the expected payoff difference alone, resulting ωi,t+1 = f(m(∆πi,t)).

However, in general, the anchor to past experience acts as a dampening factor for the drift.
Assume for now that, given the current preferences, a player is neither disposed toward altruism
nor toward spitefulness (i.e. k1(ωi,t) = k2(ωi,t)). For example, let us consider current spiteful
preferences. We can make reference to the blue graph in Figure 1, for which k1(ωi,t) = k2(ωi,t)
holds true. In this situation, a negative (respectively positive) evaluation of the opponent behavior
drives the agent preferences toward an increase (respectively decrease) of spitefulness. Due to a
conservatism bias, the previous preferences are under-revised with respect to the signal represented
by the expected payoff difference, so that the result is just a reduced adaption toward altruism. This
mechanism is encompassed in coefficient 0 < (k2(ωi,t) + k1(ωi,t))/2 ≤ 1 that rescales f(m(∆πi,t)) in
the latter couple of equations in (15).
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In addition to the drift toward altruism, we can however highlight another mechanism that can
lead to a change of preferences, i.e. an endogenous disposition toward altruism or spitefulness. This
latter mechanism is encompassed in additive term (k2(ωi,t)− k1(ωi,t))/2, whose sign is determined
by the disposition toward altruism/spitefulness k2(ωi,t)/k1(ωi,t).

Let us focus for simplicity on the case of a player with spiteful preferences at stage t who neutrally
evaluates (neither he likes/nor he dislikes) the stage outcome, so that no endogenous drift toward
either altruism or spitefulness is present as a consequence of strategic choices. For the following
discussion, we can refer to Figure 2.

Depending on both the current, negative, coefficient of altruism and his disposition toward either
altruism or spitefulness, the player could both become less altruistic, less spiteful (or even become
altruistic) or he could not change his preferences. If a player exhibits a disposition toward spite-
fulness, he could become less altruistic, even in the presence of a neutral evaluation of the stage
outcome. However, as already mentioned, this can change depending on the current degree of spite-
fulness/altruism, i.e. on the past experiences. For example, when the actual degree of spitefulness is
mild and there is room for a more pronounced spiteful behavior, the player could decide to act less
altruistically if he has a disposition toward spitefulness. For example, this occurs in the situation
reported in Figure 2 (c) for small, negative coefficients of altruism ωi,t ∈ (−0.5, 0). Conversely, if the
current level of spitefulness of a player is very high, it could depict a scenario in which past strong
drifts toward spitefulness (due to particular strategic behaviors) induced an excess of spitefulness,
so that when such drift is no more present, the disposition of the player tends to counterbalance the
spitefulness excess and the negative regard toward the opponent decreases. For example, this occurs
in the situation reported in Figure 2 (c) for large, negative coefficients of altruism ωi,t ∈ (−1,−0.5).
Finally, another possible scenario in the presence of an elevated degree of spitefulness could depict
a player who is unwilling to change his behavior and lock into spitefulness.

To summarize, preference evolution can be described in terms of an anchoring toward past
experience, a drift toward altruism induced by the evaluation of the stage outcome and a path
dependent disposition toward becoming more altruistic/spiteful.

We already discussed the role of prize and preferences on the strategies in Section 3.2.3. In light of
the dynamical evolution of preferences, we stress that overbidding with respect to the classic Tullock
Nash equilibrium strategy can emerge due to the presence of spiteful preferences, which, however,
can in turn emerge from the negative evaluation of the strategic behavior of the competitors, giving
rise to the dynamical coevolution of strategies and preferences.

Now we study possible steady states s∗(x∗
1, x

∗
2, ω

∗
1 , ω

∗
2) of model (15). The first result concerns

symmetric steady states, i.e. those for which x∗
1 = x∗

2 = x∗ and ω∗
1 = ω∗

2 = ω∗. In what follows, we
refer to a steady state at which ωi 6= 0 for at least one i = 1, 2 as non self-interested steady state,
while in the opposite case we refer to it as self-interested steady state. In the former case, we refer
to a steady state in which ω∗

i > 0, i = 1, 2 as altruistic steady state, meaning that the steady state
is characterized by altruistic preferences. Similarly, a steady state in which ω∗

i < 0, i = 1, 2 is called
spiteful steady state.

Proposition 1 Vector (x∗, x∗, ω∗, ω∗) is a symmetric steady state for dynamical system (15) if and
only if

x∗ =
v(1− ω∗)

4
(16)

and
k2(ω

∗)

k1(ω∗)
=

1− f(δ)

1 + f(δ)
, (17)

where we set δ = m(0).
At least a symmetric steady state always exists for any δ, and it is the unique one for all δ if and

only if k2(ω)/k1(ω) is strictly monotonic. In this case, ω∗ increases as δ increases.
A self-interested steady state is possible if and only if δ = m(0) = 0.
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The components of the steady state related to the strategies correspond to the Nash equilibrium
of game Γω when ω∗

1 = ω∗
2 = ω∗, i.e. are the strategic choices of players whose utility function

is the modified utility (7) with exogenous coefficients of altruism ω∗. We remark that x∗ is larger
(respectively smaller) than the Nash equilibrium strategy of a Tullock contest if and only if it corre-
sponds to the steady state strategies of a spiteful (respectively altruistic) steady state. This means
that overbidding (respectively underbidding) at symmetric steady states is a direct consequence of
spiteful (respectively altruistic) preferences.

This is in line with the literature about other regarding preferences in lab experiments (see [30]).
The relevant facet is that, in the present setting, non self-interested preferences can endogenously
emerge from the coevolution of player behaviors and preferences, and are determined by condition
in (17), in which both identities (i.e. disposition toward altruism/spitefulness) and player evaluation
of the stage outcome (i.e. δ) are involved. Moreover, the extent of overbidding and underbidding is
magnified by the prize, as evident in (16), which is again in agreement with experimental findings
(see [3]), in which players more and more overbid as the prize increases.

Let us note that, in such a symmetric scenario, the steady expected payoff differential is null,
so δ = m(0) represents the evaluation that the agents make for a scenario in which ∆π∗

i = 0. A
consequence of this is that the steady state coefficient of altruism does not depend on v.

The left-hand side in (17) encompasses the player disposition toward either altruism of spite-
fulness. Conversely, the right hand side in (17) is a decreasing function of δ, for which we have
(1 − f(δ))/(1 + f(δ)) = 1 if and only if δ = 0. Moreover, f(m(∆πi)) represents the coefficient of
altruism that a player would adopt just relying on the expected payoff difference, independently of
his current preferences. Since in this case case we would have σ1(ω) = −1 and σ2(ω) = 1 and hence
k1(ω) = ω + 1 and k2(ω) = 1− ω and noting that condition (17) can be rewritten as

f(δ) =
k1(ω

∗)− k2(ω
∗)

k2(ω∗) + k1(ω∗)
, (18)

the steady state would be ω∗ = f(δ), as immediately predictable also from equation (11). This
means that f(δ) represents the steady state coefficient of altruism corresponding to the symmetric
scenario in which the player preferences evolve just under the drift induced by the evaluation of the
strategic behavior.

Conversely, let us now take into account non constant functions σi(ω) and start assuming δ = 0,
i.e. we focus on the case for which the evaluation of a symmetric scenario is neutral, neither
positive nor negative. In this case, player disposition toward altruism would result in an increase
of altruism, since, even if the observation of stage t outcome would not induce any change in the
preferences, player disposition would drive preferences toward an increased level of altruism (or
reduced spitefulness). The reverse would occur in the opposite situation, with disposition toward
spitefulness driving preferences toward a reduced level of altruism (or increased spitefulness). So if
a symmetric scenario is neutrally evaluated, a steady state could only realize if there is disposition
toward neither altruism nor spitefulness.

In general, a symmetric configuration of coefficients of altruism is a steady state if and only if the
two above described mechanisms act in opposite7 ways and balance out. So a positive evaluation
of a symmetric scenario must be counter-balanced by a disposition toward spitefulness (otherwise
the two forces would add together, resulting in increasingly altruistic preferences). Similarly, to a
negative evaluation of a symmetric scenario must correspond a disposition toward altruism (otherwise
spitefulness would increase).

A unique symmetric steady state is possible for all δ if and only if players have disposition
toward altruism when they have spiteful preferences and disposition toward spitefulness when they
have altruistic preferences, as in the scenario reported in Figure 3. In this case, we can say that
players globally have disposition toward self-interest, as if they are currently altruistic (Figure 3
(c) for ωi,t > 0), their disposition toward spitefulness would induce a decrease of coefficient of
altruism (the graph in Figure 3 (c) lies below the horizontal axis), with the opposite occurring

7This is the reason for which the right hand side in (17) is a decreasing function of f(δ).
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when they are currently spiteful. If symmetric behaviors are neutrally evaluated (i.e. δ = 0), this
would lead to a decrease of the coefficient of altruism when it is positive and an increase when it is
negative, so only self-interested preferences can emerge at the steady state. Conversely, if symmetric
behaviors are positively or negatively evaluated, this can respectively counterbalance disposition
toward spitefulness or for altruism, allowing for the existence of spiteful or altruistic steady states,
respectively. For example, if players evaluate that their competitors nicely behaved, they would be
disposed, to a certain point, to go against their intrinsic inclination toward self-interested preferences,
and they would settle to a positive regard for their opponent. The self-interested steady state then
occurs just in a particular situation, which requires that players are also neutral with respect to
the evaluation of identical expected payoffs. This actually portrays a situation in which agents are
completely self-interested.

Conversely, when players do not globally have disposition toward self-interest, multiple equilibria
can occur. Their number and distribution strongly rely on how endogenous disposition toward
altruism/spitefulness changes. In particular, the simplest scenario occurs under assumption (14b).

Corollary 1 If k2(ω)/k1(ω) is unimodal for ω ∈ [0, 1), then there exists δ̄ > 0 such that for δ ∈
(−δ̄, δ̄) model (15) has three symmetric steady states, with at least an altruistic and a spiteful steady
state.

For δ < −δ̄ or δ > δ̄ model (15) has a unique symmetric steady state, which is characterized in
terms of altruism if δ > 0 and of spitefulness δ < 0.

The scenario of Corollary 1 is that reported in Figure 2. In particular, steady state coefficients of
altruism are identified by the intersection between a horizontal line, representing f(δ), and a cubic-
like function like that in Figure 2 (c). In such case, at least a non-self interested steady state always
exists, at which either underbidding or underbidding strategies are chosen.

To summarize, all the previous results show that non self-interested steady states can endoge-
nously emerge from the coevolution of player strategic behaviors and preferences.

Let us now focus on the possible existence of non-symmetric steady states, i.e. at which x∗
1 6= x∗

2

and ω∗
1 6= ω∗

2 .

Proposition 2 Vector (x∗
1, x

∗
2, ω

∗
1 , w

∗
2) is an asymmetric steady state for dynamical system (15) if

and only if

x2 =
v(1− ω∗

1)(1 − ω∗
2)

2

(2− ω∗
2 − ω∗

1)
2

, x∗
1 =

v(1 − ω∗
1)

2(1− ω∗
2)

(2− ω∗
2 − ω∗

1)
2

, (19)

and














f(m(∆π∗
1(ω

∗
1 , ω

∗
2))) =

k1(ω
∗
1)− k2(ω

∗
1)

k1(ω∗
1) + k2(ω∗

1)
,

f(m(−∆π∗
1(ω

∗
1 , ω

∗
2))) =

k1(ω
∗
2)− k2(ω

∗
2)

k1(ω∗
2) + k2(ω∗

2)
,

(20)

Moreover, as v → +∞ we have that asymmetric steady states either vanish or they converge
toward a symmetric steady state.

We start noting that (x∗
1, x

∗
2) corresponds to the Nash equilibrium of game Γω.

Condition (20) is a generalization of (17) to the case of ω∗
1 6= ω∗

2 . It can be again explained in
terms of the balancing between the disposition toward altruism/spitefulness and the drift toward
altruism induced by stage outcome evaluation. The main difference between the symmetric and
the asymmetric steady state scenarios is that, in this latter one, the two players can have different
evaluations of the stage outcome, as ∆π∗

1(ω
∗
1 , ω

∗
2) = −∆π∗

2(ω
∗
1 , ω

∗
2). For simplicity, let us assume

that player 1 and player 2 evaluate in opposite ways the expected profits, with a negative evaluation
by player 1. The drift toward spitefulness of player 1 has the same extent of the drift toward altruism
of player 2. Recalling the discussion following Proposition 1, a steady state configuration occurs if
player 1 has a disposition toward altruism that counterbalances the drift toward spitefulness. The
difference is that now, to be in a steady state configuration, player 2, differently from player 2, must
have disposition toward spitefulness, since for player 2 the drift is toward altruism.
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We stress that even if several asymmetric equilibria could arise, they are relevant only for suitably
small values of the prize. In fact, as v increases, they either vanish or they are close to a symmetric
steady state. Since the model is strongly characterized in terms of symmetry (in particular assuming
the same kind of players, i.e. function m is the same for both players), it is quite predictable that
symmetric steady states play the main role, in particular as the prize increases and asymmetric
configurations become hardly sustainable without an exogenous player asymmetry8.

Therefore, we limit the study of stability to symmetric steady states. We will give some more
details about asymmetric steady states in the numerical simulations reported in Section 5.

5 Dynamical analysis

The analysis carried on in Section 4 showed that non self-interested steady states can emerge from
the coevolution of preferences and strategies. However, to understand how dynamics select a par-
ticular steady state (for example, those spiteful, linked to overbidding phenomena) and their role in
the possible emergence of endogenous oscillating dynamics, we must investigate out-of-steady state
dynamical behaviors.

We begin to analyze the local asymptotic stability of symmetric steady states, in particular by
focusing on the role of the v. We distinguish the general case, in which the two players have non
identical initial strategies and preferences, from the very particular one in which both players are
identical also in regard to this aspect.

Proposition 3 Let s∗ = (x∗, x∗, ω∗, ω∗) be a symmetric steady state of (15) and let us define

θ∗(ω∗) = f(δ)

(

k′1(ω
∗)

2
+

k′2(ω
∗)

2

)

+
k′2(ω

∗)

2
− k′1(ω

∗)

2
.

For general initial conditions, we have that if −2 < θ∗(ω∗) < 0 there exists v̄(ω∗, θ∗(ω∗)) such that
s
∗ is locally asymptotically stable for v < v̄(ω∗, θ∗(ω∗)) and unstable for v > v̄(ω∗, θ∗(ω∗)).
If θ∗(ω∗) < −2 or θ∗(ω∗) > 0, s∗ is never locally asymptotically stable.
In the particular case of ω1,0 = ω2,0 and x1,0 = x2,0, model (15) is equivalent to a two-dimensional

system for which steady state s
∗ is either unconditionally stable or unstable.

The previous proposition shows that, as the prize increases, non-convergent dynamics can arise,
giving rise to endogenous oscillations in line with what is observed in lab experiments, in which
erratic behavior and overbidding more frequently occur when the prize is large [3, 15]. The economic
rationale of such phenomena can be ascribed to overreactive behaviors of the agents in the presence
of large prizes, self sustained by the coevolution of preferences. If at any time players have either
different strategies or preferences, since the best response to the competitor strategic behavior is
larger the more the prize increases, we have that a whatever a small discrepancy between the behavior
of players is magnified. Moreover, if, for example, a player exerted a small effort, the competitor
can be induced to play a large effort. This leads to relevant expected payoff differences, which,
depending on the kind of player and his disposition, significantly alter preferences. This in turn
affects the strategic behavior of the players, leading to a strong response to the competitor strategy
due to the large prize.

In the remained of this section, we introduce two analytic expressions for function m, which de-
scribe two particularly economically relevant kinds of players, namely tit-for-tat and inequality averse
agents, for which we specify the previous analytical results and which we numerically investigate.

A tit-for-tat agent positively evaluates a situation in which his expected payoff is larger than
that of his competitor, as he recognizes this as a situation in which the competitor nicely behaved
in his regards, while he negatively evaluates a situation in which his expected payoff is smaller than
that of his competitor, as he recognizes this as a situation in which the competitor badly behaved in

8We stress that the asymptotic behavior of asymmetric equilibria is not due to assumptions (13), which is not used
in the proof of Proposition 2.
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his regards. We stress we use “tit-for-tat” for this kind of players by analogy with the homonymous
game strategy, in which players replicate competitive and cooperative opponent behaviors. Indeed,
in the present contribution, tit-for-tat is related to the way players evaluate their opponent behaviors,
and not to a strategic behavior. Moreover, tit-for-tat assumes that a player is initially cooperative,
conversely, we do not restrict initial preferences.

To model a tit-for-tat kind of player, a possible simple functional shape is

m(∆πi,t) = γ∆πi,t, (21)

where γ > 0 encompasses the strength of the reaction of the player.
An inequality averse agent evaluates in an increasingly negative way any situation in which the

expected payoffs of the two agents are different, since this points out a bad behavior by either
himself or his opponent. According to Fehr and Schmidt [19], agents exhibit a dislike toward unfair
material outcomes, both if they experience unfairness against them and if they are favored by it.
Nevertheless, agents more dislike inequities potentially causing disadvantage to themselves than
those causing advantage to them. Mimicking what is used in [19], we consider function

m(∆πi,t) = δ − αmax{−∆πi,t, 0} − βmax{∆πi,t, 0} =

{

δ + α∆πi,t if ∆πi,t < 0,

δ − β∆πi,t if ∆πi,t > 0,
(22)

to describe how inequality averse player i evaluates expected payoff differences. In (22) α > β >
0 respectively weight the negative evaluation of player i of the expected material disadvantage
−∆πi,t = ∆π−i,t and of expected material advantage ∆πi,t, while δ > 0 represents the evaluation of
a completely inequality-free scenario.

Large coefficients α and β with respect to δ points out a strong inequality aversion, and hence
the more there are differences in the player behaviors the smaller or more negative the evaluation of
the expected payoff difference is. Conversely, small coefficients α and β with respect to δ encompass
a mild or small inequality aversion.

In the next two subsections we specialize the results of Proposition 1 and Corollary 1 to tit-for-tat
and inequality averse players, and we perform numerical investigations of the possible dynamical
behaviors. To better focus on the main aspects and explanation of results, in what follows we always
assume that monotonicity assumptions (14) on endogeneous disposition hold true. Moreover, without
loss of generality, we assume that f ′(0) = 1, as scenarios arising for different values of f ′(0) occur
for suitable rescaling of parameters defining function m. For the numerical simulations, we use
functions f(z) = tanh(z) and σ2(ω) = max(min(aω + b, 1),−1). Expressions for function k1, k2 and
σ1 can be obtained from k2(ω) = σ2(ω) − ω, k1(ω) = ω − σ1(ω) and, thanks to assumption (13),
from k1(ω) = k2(−ω).

5.1 Tit-for-Tat players

Firstly, in the next proposition, we specialize general static and dynamical results for the model
with two tit-for-tat players.

Proposition 4 Vector (x∗, x∗, ω∗, ω∗) is a symmetric steady state for (15) if and only if

x∗ =
v(1− ω∗)

4
, k1(ω

∗) = k2(ω
∗). (23)

Under assumption (14a), the self-interested steady state is the unique symmetric one, and if k′2(0)−
k′1(0) ∈ (−4, 0) it is locally asymptotically stable provided that

v <
4

γ(k1(0) + k2(0))
, (24)

otherwise it is unconditionally unstable.
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Under assumption (14b), model (15) has three symmetric steady states s
∗
+ = (x∗

a, x
∗
a, ω

∗, ω∗),
s
∗
0 = (v/4, v/4, 0, 0) and s

∗
− = (x∗

s , x
∗
s,−ω∗,−ω∗), where s

∗
0 is locally unconditionally unstable and

s
∗
± are locally asymptotically unstable if k′2(ω

∗) − k′1(ω
∗) < −4, while otherwise they are locally

asymptotically stable provided that

v <
4(1∓ ω∗)

γ(k1(ω∗) + k2(ω∗)(1 ± ω∗)
. (25)

If ω1,0 = −ω2,0, model (15) reduces to a three-dimensional dynamical system for which s
∗
0 is locally

asymptotically stable provided that

max

{

−2− k′2(0)

2
+

k′1(0)

2
,
k′2(0)

2
− k′1(0)

2
, 0

}

< v <
4

γ(k1(0) + k2(0))
.

First, we start noting that since a tit-for-tat player neutrally evaluates a stage outcome in which
players exert identical efforts (and hence no drift toward more/less altruism is present), at symmetric
steady states a player must have disposition neither toward altruism nor spitefulness, as encompassed
in the latter condition in (23). For comments on steady states existence and uniqueness, we refer to
the discussion after Proposition 1 and Corollary 1.

Concerning stability, we highlight the predictable destabilizing effect of the strength of reaction
of players to the expected payoff differences. Moreover, the more the coefficient of altruism can
potentially increase, the more s

∗ becomes unstable for smaller values of the prize. Greater kj(ω
∗
i )

potentially allows for larger preference variations, which in turn causes larger changes in strategic
behaviors. Effort differences can be relevant on payoffs even in the presence of a small prize, leading
to self sustained oscillations in the coevolution of strategies and coefficients of altruism. Conversely,
the opposite occurs in the presence of a small potential variations of preferences.

When three steady states exist, noting that factor (1−ω∗)/(1+ω∗) is decreasing with respect to
ω∗, the stability interval for the altruistic steady state is always smaller than for that spiteful. The
explanation for this can be found in the larger payoffs expected when players underbid with respect
to when they overbid. Assume that both players have slightly different altruistic preferences, close to
those at the altruistic steady state. We recall that at s+ both players have neither disposition toward
altruism nor for spitefulness, since the latter condition in (23) holds true. Due to the difference in
the coefficients of altruism, there are inequalities in exerted efforts that induce inequality in expected
payoffs. Since altruistic players underbid, their expected payoffs are large even in the presence of
a small prize, so reduced effort inequalities can lead to significant payoff differences, which in turn
induce relevant changes in the preferences. Since agents have opposite evaluations of the expected
payoff differences, one agent becomes more altruistic, the other less altruistic and this goes on until
the disposition toward spitefulness of the former player and that for altruism of the latter one
become dominating and start counterbalancing the drifts toward altruism induced by stage outcome
evaluation, reversing the phenomenon.

Conversely, when the prize is suitably small and agents are spiteful, expected payoffs are small,
which induces small payoff differences and this does not significantly affect preferences.

Moreover, the self-interested steady state is locally asymptotically unstable. However, if the
initial preferences are characterized in terms of coefficients of altruism with opposite signs, i.e.
the degree of altruism of a player exactly balances that of spitefulness of the competitor, s∗0 can
attract trajectories for intermediate values of the prize. The reason for which for small values of
v convergence to s

∗
0 is not possible is that in such prize range asymmetric steady states exist, and

attract trajectories starting with ω1,0 = −ω2,0. We give numerical evidence and explanation of such
phenomena in Figure 4, which is obtained setting γ = 4 and σ2(ω) = max(min(1.1ω + 0.3), 1),−1),
which provides a unimodal function k2(ω)/k1(ω). In the first two rows of Figure 4, we have possible
steady states as graphical solutions to System (20) and the corresponding basins of attraction,
obtained on varying the initial coefficients of altruism and setting x1,0 = 0.1 and x2,0 = 0.4 (accurate
numerical investigations show that the reported basins of attraction are just marginally affected by
the initial strategy choices). We discuss the simulations just for ω2 ≥ ω1, due to the symmetric
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behavior induced by tit-for-tat players. For very reduced prize values (Figure 4 (a)), we have three
distinct asymmetric steady states (one of which is P1, which lines on ω2 = −ω1), in addition to the
symmetric steady states s∗± and s

∗
0 (the self-interested steady state, denoted by an asterisk). Among

them, the attractor around P1 (together with the corresponding one around P ′
1) and s

∗
± attract

almost any trajectory, as it can be inferred by the corresponding basins of attraction reported in
Figure 4 (e). Conversely, steady states P2 and P3 do not play a significant active role on dynamics.
As v increases, P2 arrives at P1 and then moves toward P3 (Figure 4 (b)), until they merge (Figure 4
(c)) and disappear (Figure 4 (d)). Conversely, as the prize increases, steady state P1 becomes locally
stable and it moves closer to s∗0. Its basin of attraction progressively reduces (Figure 4 (f-h)) to a very
small region around line ω2 = ω1. When asymmetric equilibria still exist, convergence toward them
is possible with suitably heterogeneous initial preferences, otherwise trajectories converge toward
symmetric steady states. When P1 and P ′

1 merge with s
∗
0, it attracts trajectories characterized by

opposite coefficients of altruism. The previous considerations are also evident by looking at the
bifurcation diagrams reported in Figure 4 (i-l).

We stress that in-depth, numerical investigations with different functions σi always showed that
asymmetric steady states can exist just for very small values of v or γ. Both these settings are
not particularly interesting from the economic point of view, as in the former one we have that the
prize is even smaller than the marginal costs, while in the latter one the players are not particularly
involved in the competition, since their reaction to the stage outcomes is very reduced. Both these
situations are not realistically compatible with contest lab experiments.

Now we study the possible dynamics arising for prizes larger than marginal costs (i.e. v > 1),
again setting σ2(ω) = max(min(1.1ω + 0.3), 1),−1) and γ = 4. We stress that for such functions
σi(ω) we have three steady states s

∗
+ = (v/18, v/18, 7/9, 7/9), s∗0 = (v/4, v/4, 0, 0) and s

∗
− =

(4v/9, 4v/9,−7/9,−7/9), where s
∗
+ is locally asymptotically stable for v < 18, s∗− is unstable (it

would be stable for v < 0.2812), while, for ω1,0 = −ω2,0, the self-interested steady state s
∗
0 is stable

for v < 1.6667.
In Figure 5 (a-b) we report bifurcation diagrams of variables xi and ωi for different initial settings.

In all the diagrams the initial strategies are set equal to x1,0 = 3 and x2,0 = 4. The black and blue
bifurcation diagrams are obtained setting ω1,0 = −0.5 and ω2,0 = 0.3, i.e. the average coefficient of
altruism is negative, and hence the initial preferences are, on average, characterized by spitefulness.
For v < 18, trajectories converge toward the spiteful steady state, while at v = 18 it loses stability and
we have numerical evidence of the occurrence of a Neimark-Sacker bifurcation. We note that quasi-
periodic trajectories are always characterized by overbidding (the black/blue bifurcation diagrams
in Figure 5 (a) always lie above the dashed line representing the Nash equilibrium of the classic
Tullock game) and spiteful preferences (the black/blue bifurcation diagrams in Figure 5 (b) always
lie below horizontal line ω = 0, corresponding to self-interested preferences).

Similarly, setting ω1,0 = −0.3 = ω2,0, s
∗
0 loses stability through a Neimark-Sacker bifurcation at

v = 1.6667 (green and gray bifurcation diagram). In this case, trajectories of strategies have large
oscillations around the Nash equilibrium of the classic Tullock game, with alternating altruistic and
spiteful preferences.

Finally, if initial preferences are, on average, characterized by altruism, as for example setting
ω1,0 = 0.5 and ω2,0 = −0.3, we have periodic dynamics around the altruistic steady state, which, as
already noted, is unstable when v > 1.

Convergence toward the altruistic or spiteful steady state basically depends on the characteri-
zation of the initial preferences, on average, in terms of altruism or spitefulness, as evident from
the basins of attraction reported in Figure 5 (c). If ω1,0 + ω2,0 < 0, trajectories converge toward
an attractor characterized by spitefulness, while if ω1,0 + ω2,0 > 0 trajectories converge toward an
attractor characterized by altruism (and, as analytically proved, only for ω1,0+ω2,0 = 0, convergence
is toward an attractor characterized, at least on average, by self-interest). We stress that these phe-
nomena are mainly driven by the initial preferences alone, while they are essentially independent of
the initial strategic choices, at least when xi,0 are not too extreme to give rise at first to overreaction
phenomena in the best response mechanism.
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Figure 4: Tit-for-tat players: asymmetric steady states and related dynamics. First row: steady
states as intersections of the curves implicitly defined by (20), for different small values of the prize
v. Second row: basins of attraction corresponding to the steady state scenarios in row 1. Third row:
bifurcation diagrams for variables x1 and x2 (panel (i)) and ω1 and ω2 (panel (l)), in which black
and blue colors are used for player 1 and 2, respectively, while the black dashed line in panel (i)
corresponds to the self-interested steady state strategy.

To summarize, both Proposition 4 and numerical investigations show that tit-for-tat players, in
reciprocating their competitor behaviors, allow for the emergence of non self-interested dynamics,
self-sustained by the coevolution of their preferences and strategic behavior. Both overbidding and
underbidding phenomena are possible. However, since contest experiments are characterized by a
strong degree of competitiveness and, the initial attitude of players can be encompassed in initial
spiteful preferences, a scenario with tit-for-tat kind of players coevolves giving rise to dynamics
driven by spiteful preferences, with overbidding phenomena. Conversely, when pro-social attitude
is promoted (e.g., [14]), reduced efforts and underbidding are observed. This can be explained in
terms of stimulating altruistic preferences, which then bolster dynamics characterized in terms of
positive coefficients of altruism and underbidding.
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Figure 5: Tit-for-tat players: symmetric steady states and related dynamics. First row: bifurcation
diagrams for variables x1 and x2 (panel (a)) and ω1 and ω2 (panel (b)), when initial preferences are
characterized on average by spitefulness (black and blue colors), by altruism (red and magenta) and
by self-interest (gray and green). Basins of attraction (panel (c)) when v = 30.

5.2 Inequality averse players

The next proposition presents specialized static and dynamical results for the model with two in-
equality averse players. Since the conditions defining steady states do not become simpler than those
in (20), we avoid repeating them. Moreover, since the discussion on asymmetric steady states with
tit-for-tat players is still applicable for inequality averse players, we just focus on symmetric steady
states.

Proposition 5 Under assumption (14a), or under assumption (14b) and if δ is suitably large, model
(15) has a unique symmetric steady state s

∗
+ = (x∗

a, x
∗
a, ω

∗, ω∗) with ω∗ > 0.
Under assumption (14b) and if δ is suitably small, model (15) has three steady states s

∗
+ =

(x∗
a, x

∗
a, ω

∗
a, ω

∗
a), s

∗
−,1 = (x∗

s,1, x
∗
s,1, ω

∗
s,1, ω

∗
s,1), s

∗
−,2 = (x∗

s,2, x
∗
s,2, ω

∗
s,2, ω

∗
s,2) with ω∗

s,1 < ω∗
s,2 < 0 < ω∗

a.
Each of the previous steady states is locally asymptotically stable provided that k′2(ω

∗)−k′1(ω
∗) ∈

(−4, 0) and

v <
8(1− ω∗)

(α− β)f ′(δ)(k1(ω∗) + k2(ω∗))(1 + ω∗)
, (26)

in which ω∗ is replaced by the corresponding steady state coefficient of altruism.
If k′2(ω

∗)− k′1(ω
∗) < −4 or k′2(ω

∗)− k′1(ω
∗) > 0, the steady state is unconditionally unstable, in

particular s
∗
−,2 is always unconditionally unstable.

Since an inequality averse player positively evaluates a stage outcome at which no inequal-
ity is present between player behaviors, it is understandable that a steady state characterized in
terms of altruism always exists in a symmetric scenario. However, if the disposition toward altru-
ism/spitefulness non-monotonically depends on the coefficient of altruism, also spiteful steady states
can exist, at least for small values of δ, as shown and discussed in Corollary 1.

Concerning stability, we have that the greater is the difference between aversion toward his own
material disadvantage with respect to that toward the competitor material disadvantage, the smaller
is the threshold prize value after which a steady state becomes unstable. This can be explained as
follows. The more α is different from β, the more the effect on the preferences of the evaluation
of the stage outcome is different. Note that, differently from tit-for-tat players, inequality averse
players can in principle provide the same evaluation of payoff differences (when α = β), since they
both dislike inequalities. However, even if, as ∆πi diverts from zero, their dislike increases, the more
α − β is large, the more ∆πi differently increases for each player. This can amplify the difference
between preferences, which can self-sustain due to the consequent inequalities in player strategies
that cause differences in expected payoffs.
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Once more, an altruistic steady state has, ceteris paribus, a reduced interval of prize values above
which instability arises. This is again due to larger payoffs expected by altruistic players, possibly
inducing larger payoff differences that, in the case of inequality averse players, self-sustain.

At a first glance, Proposition 5 seems to show that when inequality averse players are involved,
dynamics characterized in terms of altruism should dominate. An altruistic steady state always
exists, and it can also be the unique one. Even when it becomes unstable, one could expect that
oscillating dynamics around positive values of coefficient of altruism should arise, with consequent
underbidding in strategies. However, the scenarios that arise can be quite surprising.

We discuss dynamics with the help of numerical simulations. We thoroughly checked, by changing
the involved parameters and the shapes of functions σi, that the reported simulative results are robust
and the consequent comments hold true in general.

We consider σ2(ω) = max(min(1.1ω + 0.3), 1),−1) and we set α = 4 and β = 0.6 (such
values are among those proposed in [19]). If we set δ = 0.1, we have three symmetric steady
states, as shown in Figure 6 (a), corresponding to s

∗
−,1 = (0.43v, 0.43v,−0.72,−0.72), s∗−,2 =

(0.32v, 0.32v,−0.30,−0.30), s∗+ = (0.04v, 0.04v, 0.82, 0.82).
Moreover, from condition (26), s∗+ is locally asymptotically stable for v < 0.58, while s

∗
−,1 for

v < 29.05. So, the prize values for which s
∗
+ is stable are very small, in particular less than marginal

costs. In Figure 6 (b-c) we report the bifurcation diagrams for strategies and coefficients of altruism
considering initial values close to s

∗
+. Notwithstanding, for v > 3.3 trajectories converges toward the

spiteful steady state and, when s
∗
−,1 becomes unstable, toward an attractor at which preferences are

always characterized by spitefulness and strategies by overbidding. As evident from Figure 6 (d-h),
the spiteful steady state s

∗
−,1 attracts trajectories that also start from initial altruistic preferences.

We stress that the basins reported in Figure 6 (d-h) are obtained by setting initial strategies close
to 0.04v, i.e. to the steady state strategies related to s

∗
+. The attractor arising from the loss of

stability of s∗+ very quickly grows and as v →∼ 3.2 it tends to collide with the boundary of the
basin of attraction of s∗−,1, and hence to disappear. So, even for quite small values of the prize,
s
∗
+ does not play any economically significant role in the dynamics (we recall that, in agreement

with Proposition (31), some trajectories starting with ω1,0 = ω2,0 can still converge toward s
∗
+)

and starting from almost any initial condition we have convergence toward the spiteful steady state
or the attractor arising when it becomes unstable. The scenario reported in Figure 6 shows that,
at least when multiple steady states are present, the spiteful steady state is the relevant one from
the dynamical point of view, giving rise to overbidding phenomena even if the players initially have
altruistic preferences, especially when the prize increases.

What is most surprising is that dynamics characterized by spiteful preferences can emerge even
in the absence of spiteful steady states. To this end, we consider the same setting we used for the
simulations reported in Figure 6, but we increase δ, setting it equal to 0.4. In this case, as shown in
Figure 7 (a), we have a unique altruistic symmetric steady state s∗+ = (0.02v, 0.02v, 0.91, 0.91), which
is locally asymptotically stable just for v < 0.45. As v increases, a closed invariant curve emerges
around s

∗
+ giving rise to quasi-periodic dynamics. However, such attractor moves away from s

∗
+,

and it quickly reaches regions of the phase space in which coefficients of altruism are negative and
hence strategic choices are larger than those corresponding to the classic Tullock Nash equilibrium.
The bifurcation diagrams reported in Figure 7 (b-c) are obtained setting ω1,0 = 0.9, ω2,0 = 0.905 and
x1,0 = x2,0 = 0.31, i.e. coefficients of altruism are very close to those at s∗+. They show that, even if
for small values of the prize, dynamics are characterized in terms of altruism, strategies (respectively
coefficients of altruism) shift upward (respectively downward), highlighting overbidding phenomena.
As evident from Figure 7 (d-g), the attractor arising when s

∗
+ becomes unstable “travels” along the

diagonal of phase plane (ω1, ω2), shifting toward the region in which both coefficients of altruism
are negative. To better explain such dynamical behavior, we make reference to the initial parts of
the time series of xi and ωi reported in Figure 7 (h-i). The initial conditions are close to s

∗
+, and

both players have initial altruistic preferences and underbid. However, the small difference between
their initial preferences causes slightly different strategic behaviors, which lead to inequalities in the
expected payoffs, which is significant due to the underbidding of the agents. Inequality aversion then
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Figure 6: Inequality averse players, δ = 0.1. First row: three symmetric steady states characterized
in terms of either spitefulness or altruism (panel (a)). Panels (b-c): bifurcation diagrams for variables
x1 and x2 and ω1 and ω2, when initial preferences are characterized by altruism (black and blue
colors are respectively used for player 1 and 2). Second row: s

∗
−,1 (blue asterisk, turquoise basin

of attraction) coexisting with another attractor (yellow basin of attraction) arisen from the loss of
stability of s∗+ (red asterisk). Third row: s∗−,1 (blue asterisk) attracts almost any trajectory (panel
(g)) and, as v further increases, it loses stability and a closed invariant curve emerges (panel (h)).

brings about a change in the preferences. Since they both dislike the stage outcome, this creates a
drift toward spitefulness that starts decreasing the coefficient of altruism. However, the effects of
aversion toward his own material disadvantage with respect to that toward the competitor material
disadvantage are different, and hence the extent of the decrease of the coefficients of altruism is
different for each player, and this amplifies inequality between player behaviors and hence between
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payoffs. The decrease of coefficients of altruism then goes on, and altruistic preferences turn into
spiteful ones, due to the persistence of a behavior of the competitor that is evaluated as bad. As the
players become more spiteful, they increase the exerted effort and they start overbidding (t = 5).
This progressively reduces expected payoffs, and hence the difference between them. However, such
differences persist, as they are sustained by inequality aversion toward own material disadvantages,
which, due to the erratic evolution of both preferences and strategies, alternately affect different
players. Spitefulness and overbidding increases until they reach a point (t = 15), at which, due to
the large, negative coefficient of altruism, each player disposition toward altruism is dominating,
leading to a slow increase of the coefficient of altruism, also because of reduced expected payoffs
and consequently reduced inequality. Such an increase goes on until inequalities are bearable. As
the overbidding reduces and payoff inequality tends to increase, an abrupt inversion of preference
trajectories occurs, with a fast return of spitefulness sustained by inequality aversion.

We note that maximum positive drift toward altruism is bounded by the value of δ. However,
increasing δ, the altruistic steady state is more altruistically polarized, and hence it’s stability region
further shrinks. So the increased possible drift toward altruism is opposed by the larger inequalities
that steady state instability creates, so the final dynamical behavior is essentially the same of that
described for reduced values of δ.

If we considered functions σi for which k2(ω)/k1(ω) is strictly increasing and just one symmetric
altruistic steady state exists, we would observe dynamical behaviors that are similar in all and for
all to those reported in Figure 7.

We note that simulations show that altruistic steady states can play a more relevant dynamical
role if we decrease α and β. This means that players are weakly inequality averse, i.e. they are
quite indifferent to what they observe from stage outcomes. So it is not surprising that in these
cases dynamics are characterized more by the initial preferences than by a coevolution of preferences
and strategies. However, these scenarios are not particularly interesting from the economic point of
view, as they are not consistent with the strong competitiveness degree encompassed in contest lab
experiments, for which strategic behavior is expected to have greater influence on players.

We stress that, as we mentioned in the Introduction and in Section 2, in the literature it was
already shown that inequality aversion could be an explanation of overbidding, but assuming exoge-
nous spitefulness for players. The previous results show that overbidding due to inequality aversion
is robust with respect to endogenous preference evolution and can emerge even if the players are
(initially) altruistic.

To summarize, when inequality averse players are involved, the static analysis would suggest
that altruism and underbidding should be dominant, but the dynamical analysis highlights that
spitefulness and overbidding can endogenously emerge, giving rise to non convergent dynamics, once
more self-sustained by the coevolution of strategies and preferences.

6 Conclusions

Coevolution of other regarding preferences and agent behaviors proved to be an effective tool to
understand the emergence of non self-interested preferences, and consequently of strategic choices
that can explain overbidding or underbidding phenomena, as well as erratic behavior. The carried
on analysis shows the importance played by agent preferences in determining both possible steady
and dynamical outcomes. Moreover, it highlights how a static investigation of contest models can
be misleading, as preference evolution can drive trajectories very far from steady states. The way
player preferences evolve depending on the observation and evaluation of the contest outcomes leads
to the selection of particular steady configurations, when multiple of them coexist. In addition, for
example in the case of inequality averse players, it can even sustain the endogenous occurrence of
overbidding when no steady states characterized in terms of overbidding do exist. Moreover, the
coevolutive approach that we pursued allows a clear explanation of the rationale behind each static
or dynamical result.

We aim at developing future research in several directions. First, we have so far considered a
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Figure 7: Inequality averse players, δ = 0.4. First row: the unique symmetric steady state is
characterized in terms of altruism (panel (a)). Panels (b-c): bifurcation diagrams of variables
x1, x2 and ω1, ω2, when initial preferences are characterized by altruism (black and blue colors are
respectively used for player 1 and 2). Second and third rows: attractor evolution as v increases
(panels (d-g)) and related position with respect to locally asymptotically unstable altruistic steady
state (red asterisk). Third row, panels (h-i): time series of variables x1, x2 and ω1, ω2 when v = 14.

symmetric setting, with homogeneous players. Introducing heterogeneity also allows for testing the
robustness of the results in an evolutionary perspective. Moreover, different preference evolution
mechanisms can be taken into account, considering, for instance, an exogenous reference value on
which basis the agents evaluate the behavior of their opponents. Finally, the model we proposed is
related to a classic Tullock contest setting, but this approach can be extended to different situations,
as for example in public good games. In addition to this, it could be applied to conflict models,
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to understand the ebb and flow often observed in the level of hostilities, with waves of extreme
contrasts followed by an ostensible quiet, and again by extreme violence.

Appendix

Proof [Proposition 1 and of Corollary 1] For a symmetric equilibrium we set ω1 = ω2 = ω. From
the former couple of equations we immediately obtain (16). Since ∆πi(x1(ω, ω), x2(ω, ω)) = 0 we
have











0 =
k1(ω) + k2(ω)

2
f(m(0)) +

k2(ω)− k1(ω)

2
,

0 =
k1(ω) + k2(ω)

2
f(m(0)) +

k2(ω)− k1(ω)

2
,

which provides the second condition in (17). Note that such condition can be rewritten as

f(δ) =
k1(ω

∗)− k2(ω
∗)

k2(ω∗) + k1(ω∗)
. (27)

Let g : (−1, 1) → R defined by g(ω) = k1(ω)−k2(ω)
k2(ω)+k1(ω) . From k1(0) = k2(0) we have g(0) = 0, and since

k1(ω) = k2(−ω), function g(ω) is odd. Moreover, since k2(ω) → 0+ as ω → 1− and k1(ω) → 0+

as ω → −1+, from assumption (12), since |σ2(ω) − σ1(ω)| > µ we have k2(ω) + k1(ω) > µ, and
hence limω→−1− k2(ω) ≥ µ and limω→1− k1(ω) ≥ µ, from which g(ω) → ±1 as ω → ±1. Since
f(δ) ∈ (−1, 1), thanks to the Intermediate Values Theorem, we have that equation (27) always has
at least a solution. The conclusion on the self-interested steady state is straightforward from (17).

Setting ρ(ω) = k2(ω)/k1(ω), we have that the right hand side in (27) can be rewritten as

g(ω) = 1−ρ(ω)
ρ(ω)+1 , for which g′(ω) = −2ρ′(ω)

(1+ρ(ω))2 , i.e. the monotonicity of g is opposite to that of

ρ(ω). This means that if ρ(ω) is strictly monotonic, we then have that (27) has a unique solution.
Note that, thanks to assumption (13), we have g(0) = 0 and, thanks to assumption (12), we have
g(±1∓) = ±1, so if ρ(ω) is strictly monotonic, function g must be strictly increasing (which means
that k2(ω)/k1(ω) must be strictly decreasing). So a straightforward geometric consideration shows
that if δ increases, also the solution to (27) increases as well. The strict monotonicity of ρ(ω) is also
necessary for uniqueness. It is clear that if ρ(ω) is monotonic but not strictly monotonic, then (27)
has infinitely many solutions for some δ. If ρ(ω) is not monotonic, then for some ω̄ we must have
ρ′(ω̄) = 0 and ω̄ is an extremum point. If it is for example a maximum point, for δ belonging to a
suitably small left neighborhood of f−1(ρ(ω̄)) we have at least a couple of solutions to (27).

Moreover, since k1(ω) = k2(−ω), function g is odd and unimodal on [0, 1), it is a cubic-like
function, so we immediately have the result about the maximum number and characterization of
symmetric steady states of Corollary 1. ✷

Proof [Proposition 2] From the former couple of equations in (15) we immediately obtain (19).
Recalling that ∆π2,t = −∆π1,t the latter couple of equations requires











0 =
k1(ω1) + k2(ω1)

2
f(m(∆π1)) +

k2(ω1)− k1(ω1)

2
,

0 =
k1(ω2) + k2(ω2)

2
f(m(−∆π1)) +

k2(ω2)− k1(ω2)

2
,

which immediately provides (20).

We limit to detail the proof for those ω1 for which
k1(ω1)− k2(ω1)

k1(ω1) + k2(ω1)
> 0, the other case can

be similarly handled. For simplicity, let us again denote by m the restriction of function m(x)
to x ≥ 0. Since σ2(ω) ≥ ω + µ > ω > ω − µ ≥ σ1(ω) we have that ki(ω) 6= 0 on (−1, 1), so

−1 <
k1(ω)− k2(ω)

k1(ω) + k2(ω)
< 1 and hence the latter condition in (20) can be then rewritten as

(1− ω∗
1ω

∗
2)(ω

∗
2 − ω∗

1)

(2− ω∗
1 − ω∗

2)
2

=
1

v
m−1

(

f−1

(

k1(ω
∗
1)− k2(ω

∗
1)

k1(ω∗
1) + k2(ω∗

1)

))

. (28)
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As v → +∞, the right hand side of the previous identity pointwise converges toward the null function
for any given ω∗

1 . This means that, for any ω∗
1 , for suitably large values of v, we have that ω∗

2 solving
the previous identity can be made as close as we like to ω∗

1 . This concludes the proof. ✷

Proof [Proposition 3 We start considering general initial conditions. We note that function F
defining model (15) is Lipschitz continuous but not differentiable at x1 = x2. However, the classic
argument on the eigenvalues of the Jacobian matrix of F at the steady state can be adapted and
still holds at a symmetric steady state s

∗ of (15). For the reader’s sake, we detail the proof.
Let us consider a symmetric steady state s

∗ of (15). Note that x∗
1 = x∗

2 6= 0, so it is possible to
find a suitable neighborhood Ω ⊂ (0,+∞)2× (−1, 1)2 of s∗ such that if (x1, x2, ω1, ω2) ∈ Ω, we have
xi ≥ µ > 0 for some µ > 0. This guarantees that on each subset

Ω+ = Ω ∩ {(x1, x2, ω1, ω2) ∈ R
4 : x2 ≥ x1}, Ω− = Ω ∩ {(x1, x2, ω1, ω2) ∈ R

4 : x2 ≤ x1},

function F ha continuous partial derivatives, and hence it is Frechet differentiable. Let J± be the
Jacobian matrices of F on Ω±, for any norm, we then have that there is a ball B(s∗, δ+) such that
for any h ∈ R

4 : s∗ + h ∈ Ω+

lim
‖h‖→0

‖F (s∗ + h)− F (s∗)− J+(s∗)h‖
‖h‖ = 0,

and there is a ball B(s∗, δ−) such that for any h ∈ R
4 : s∗ + h ∈ Ω−

lim
‖h‖→0

‖F (s∗ + h)− F (s∗)− J−(s∗)h‖
‖h‖ = 0.

Let us assume that ρ(J±(s∗)) < 1, and let us consider a norm ‖‖ for which ||J±(s∗)‖ < ρ(J±(s∗))+
ε < 1 − ε, for some suitable ε > 0. Thanks to Frechet differentiability and recalling that s

∗ is
a steady state, there is a ball B(s∗, δ+) such that for any h ∈ R

4 : s∗ + h ∈ B(s∗, δ+) we have
‖F (s∗+h)−s

∗−J+(s∗)h‖ ≤ ε‖h‖ and there is a ball B(s∗, δ−) such that for any h ∈ R
4 : s∗+h ∈

B(s∗, δ−) we have ‖F (s∗ + h)− F (s∗)− J−(s∗)h‖ ≤ ε‖h‖. We then have on B(s∗, δ+) that

‖F (s∗ + h)− s
∗‖ ≤ ‖F (s+ h)− s

∗ − J+(s∗)h‖+ ‖J+(s∗)h‖ ≤ ε‖h‖+ |(ρ(J+) + ε)|h|,

and on B(s∗, δ−) that

|F (s∗ + h)− s
∗| ≤ |F (s∗ + h)− s

∗ − J−(s∗)h|+ |J−(s∗)h| ≤ ε|h|+ (ρ(J−) + ε)|h|,

so that on B = B(s∗, δ+)∪B(s∗, δ−) we have |F (s∗+h)−s
∗| ≤ k|h| with k < 1, and this guarantees

convergence toward s
∗ of iterations that start in B.

The Jacobian matrix of System (15) is defined for any x1 6= x2 and results

J =









0 j12 j13 0
j21 0 0 j24
j31 j32 j33 0
j41 j42 0 j44









,

where

j12 =
1

2

√

v(1 − ω1)

x2
− 1, j13 = −1

2

√

vx2

1− ω1
, j21 =

1

2

√

v(1− ω2)

x1
− 1, j24 = −1

2

√

vx1

1− ω1
,

and

j31 = −
m′(∆π)f ′(m(∆π))

(

k1(ω1)
2 +

k2(ω1)
2

)

(x2
1+2x1x2+x2

2−2vx2)

(x1+x2)2
= −j32,

j33 = f(m(∆π))
(

k′
1(ω1)
2 +

k′
2(ω1)
2

)

+
k′
2(ω1)
2 − k′

1(ω1)
2 + 1,

j41 =
f ′(m(−∆π))m′(−∆π)

(

k1(ω2)
2 +

k2(ω2)
2

)

(x2
1+2x1x2+x2

2−2vx2)

(x1+x2)2
= −j42,

j44 = f(m(−∆π))
(

k′
1(ω2)
2 +

k′
2(ω2)
2

)

+
k′
2(ω2)
2 − k′

1(ω2)
2 + 1,
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in which we set ∆π = (x2−x1)(x1−v+x2)
x1+x2

.

We have that J+(s∗) (i.e. the Jacobian matrix of the restriction of F to Ω+ evaluated at s∗) is

J+(s∗) =









0 0 − v
4 0

0 0 0 − v
4

m′(0+)z −m′(0+)z 1 + θ 0
−m′(0−)z m′(0−)z 0 1 + θ









,

where we set

z = f ′(δ)

(

k1(ω
∗)

2
+

k2(ω
∗)

2

)

1 + ω∗

1− ω∗ , θ = f(δ)

(

k′1(ω
∗)

2
+

k′2(ω
∗)

2

)

+
k′2(ω

∗)

2
− k′1(ω

∗)

2
.

A straightforward computation shows that the characteristic polynomial of J+(s∗) is

p(λ) = λ

(

λ3 − 2(θ + 1)λ2 +

(

θ2 + 2θ +
φ

4
+ 1

)

λ+

(

−φ

4
− φθ

4

))

, (29)

where we set φ = vz(m′(0−) +m′(0+)).
Similarly, we have that J−(s∗) (i.e. the Jacobian matrix of the restriction of F to Ω− evaluated

at s∗) is

J−(s∗) =









0 0 − v
4 0

0 0 0 − v
4

m′(0−)z −m′(0−)z 1 + θ 0
−m′(0+)z m′(0+)z 0 1 + θ









.

A straightforward computation shows that the characteristic polynomial of J−(s∗) is again (29), so
the conditions under which the eigenvalues of J+(s∗) and J−(s∗) lie inside the unit circle are the
same. This also means that conditions under which their eigenvalues lie outside the unit circle are
the same, and hence reverting the following inequalities we will obtain conditions under which a
symmetric steady state is unstable.

Polynomial (29) has indeed a null eigenvalue, so conditions under which its eigenvalues lie inside
the unit circle are those for the roots of a third degree polynomial. We recall that, as reported, for
example, in [31, 32], such conditions are














T +D − 1 +M < 0
−(T +D + 1 +M) < 0
M − T ·D − 1 +D2 < 0
−(M − T ·D + 1+D2) < 0

where T = 2θ + 2,M = θ2 + 2θ +
φ

4
+ 1, D =

φ(θ + 1)

4
, (30)

so conditions (30) become























θ(φ−4θ)
4 < 0

− (θ+2)(φ+4θ+8)
4 < 0

(

θ+1
4

)2
φ2 −

(

θ2

2 + θ + 1
4

)

φ+ θ2 + 2θ < 0

(θ+1)2

16 φ2 +
(

2(θ+1)2−1
4

)

φ− (θ + 1)2 − 1 < 0

. (31)

Since we aim at studying stability on varying v, we solve each condition with respect to φ. Let

φ1(θ) = 4θ, φ2(θ) = −4θ − 8, φ3(θ) =
4θ(θ + 2)

(θ + 1)2

and

φ−(θ) =
2
(

−2θ2 − 4θ − 1−
√

8(θ + 1)2 + 1
)

(θ + 1)2
, φ4(θ) =

2
(

−2θ2 − 4θ − 1 +
√

8(θ + 1)2 + 1
)

(θ + 1)2
,
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solving (31) for φ, depending on θ, we find

θ < −2 −2 < θ < 0 0 < θ < 2
Condition1 φ > φ1(θ) φ > φ1(θ) φ < φ1(θ)
Condition2 φ < φ2(θ) φ > φ2(θ) φ > φ2(θ)

Condition3 φ3(θ) < φ < 4
φ3(θ) < φ < 4
( if θ = −1, φ < 4)

φ3(θ) < φ < 4

Condition4 φ−(θ) < φ < φ4(θ)
φ−(θ) < φ < φ4(θ)
( if θ = −1, φ > −4)

φ−(θ) < φ < φ4(θ)

We start focusing on θ < −2, whose study we subdivide into two cases.

Let − 3+
√
5

2 ≤ θ < −2. We have

φ2(θ) ≤ φ3(θ) ⇔ −4θ− 8 ≤ 4θ(θ + 2)

(θ + 1)2
⇔ 4(θ + 2)(θ2 + 3θ + 1)

(θ + 1)2
≥ 0, (32)

in which the last expression is true for θ2 + 3θ + 1 ≥ 0, i.e. when − 3+
√
5

2 ≤ θ < −2, so condition 2
and 3 are not compatible in such interval.

Let θ < − 3+
√
5

2 . We have

φ4(θ) < φ3(θ) ⇔
2
(

−2θ2−4θ−1+
√

8(θ+1)2+1
)

(θ+1)2 < 4θ(θ+2)
(θ+1)2

⇔ 16θ−2
√
8θ4+32θ3+48θ2+32θ+9+8θ2+2

(θ+1)2 > 0

⇔ 32(θ2 + 3θ + 1)(θ2 + θ − 1) > 0,

(33)

which is true since θ2 +3θ+1 is positive for θ < − 3+
√
5

2 as well as θ2 + θ− 1, since it is positive for

θ < − 1+
√
5

2 . So condition 3 and 4 are not compatible for θ < − 3+
√
5

2 and (31) has empty solution.
So we conclude that s∗ is unconditionally unstable for θ < −2.

Now we focus on θ < −2, whose study we again subdivide into two cases.

Let 0 < θ ≤
√
5−1
2 . We have

φ1(θ) ≤ φ3(θ) ⇔ 4θ ≤ 4θ(θ + 2)

(θ + 1)2
⇔ 4θ(θ2 + θ − 1)

(θ + 1)2
≤ 0, (34)

in which the last expression is true for θ2 + θ − 1 ≤ 0, i.e. for 0 < θ ≤
√
5−1
2 , so condition 1 and 3

are not compatible in such interval.

Let θ >
√
5−1
2 . Recalling (33), we have that φ4(θ) < φ3(θ) since θ2 + 3θ + 1 is positive for

θ >
√
5−3
2 as well as θ2 + θ − 1, since it is positive for θ >

√
5−1
2 . So condition 3 and 4 are not

compatible for θ >
√
5−1
2 and hence (31) has empty solution.

So we conclude that s∗ is unconditionally unstable also for θ > 0.
Let us now consider the case of θ ∈ (−2, 0). We note that if m′(0−) +m′(0+) > 0, we have that

as v increases in (0,+∞), φ increases in (0,+∞), while if m′(0−) +m′(0+) < 0, we have that as v
increases in (0,+∞), φ decreases in (−∞, 0).

So we start considering the solution to (31) in the case of m′(0−) + m′(0+) > 0, so we are
interested only in solutions φ ∈ (0,+∞). Since θ ∈ (−2, 0), both conditions 1 and 2 are always
fulfilled, while condition 3 reduces to φ ∈ (0, 4), and we set

v̄(ω, θ) =
4

(m′(0−) +m′(0+))f ′(δ)
(

k1(ω)
2 + k2(ω)

2

)

1+ω
1−ω

. (35)

We have
2
(

−2θ2 − 4θ − 1 +
√

8(θ + 1)2 + 1
)

(θ + 1)2
< 4,
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as it can be equivalently rewritten into

2
(

−2θ2 − 4θ − 1 +
√

8(θ + 1)2 + 1
)

(θ + 1)2
< 4 ⇔

2
(

4θ2 + 3 + 8θ −
√
8θ4 + 32θ3 + 48θ2 + 32θ + 9

)

(θ + 1)2
> 0 ⇔ 8θ(θ + 1)2(θ + 2) > 0,

which is indeed true recalling that θ ∈ (−2, 0).
Now we focus on the solution to (31) in the case of m′(0−) +m′(0+) < 0, so we are interested

only in solutions φ ∈ (−∞, 0). Conditions 1 and 2 can be summarized as

φ >

{

4θ −1 ≤ θ < 0
−4θ − 8 −2 < θ < −1

(36)

and we set

v̄(ω, θ) =







4θ

(m′(0−)+m′(0+))f ′(δ)
(

k1(ω)

2 +
k2(ω)

2

)

1+ω
1−ω

−1 ≤ θ < 0,

−4θ−8

(m′(0−)+m′(0+))f ′(δ)
(

k1(ω)

2 +
k2(ω)

2

)

1+ω
1−ω

−2 < θ < −1.

Moreover, recalling (34), we have φ3(θ) < φ1(θ) on −1 ≤ θ < 0 and, recalling (32), we have
φ3(θ) < φ2(θ) on −2 < θ < −1, so condition (36) guarantees condition 3.

Finally, also condition 4 is guaranteed by condition (36). In fact, we can note that the right-hand
side in (36) is greater or equal than −4 on (−2, 0), φ4 > 0 and

2
(

−2θ2 − 4θ − 1−
√

8(θ + 1)2 + 1
)

(θ + 1)2
< −4,

since it can be equivalently rewritten as

2
(

√

8(θ + 1)2 + 1− 1
)

(θ + 1)2
> 0,

which is true since
√

8(θ + 1)2 + 1 ≥ 1.
Now let us discuss what happens if x1,0 = x2,0 and ω1,0 = ω2,0. In this case, both equations

describing the dynamics of strategic behavior are the identical, as well as those describing preference
adjustment mechanism. This means that four dimensional model (15) reduces to the two dimensional
model







xt+1 =
√

vxt(1− ωt)− xt,

ωt+1 = ωt +
k2(ωt) + k1(ωt)

2
f(m(0)) +

k2(ωt)− k1(ωt)

2
,

(37)

where xt and ωt represent the time invariant strategies of both players. The Jacobian matrix of the
map defining the right-hand side of (37) is

J =





√

v(1−ω)
x

− 1 −
√
xv

2
√
1−ω

0
k′
2(ω)
2 − k′

1(ω)
2 + f(δ)

(

k′
1(ω)
2 +

k′
2(ω)
2

)

+ 1



 ,

which evaluated at a symmetric equilibrium becomes

J∗ =

(

0 − v
4

0
k′
2(ω

∗)
2 − k′

1(ω
∗)

2 + f(δ)
(

k′
1(ω

∗)
2 +

k′
2(ω

∗)
2

)

+ 1

)

,

from which it is evident that stability does not depend on v. ✷

33



Proof [Proposition 4] Characterization of the steady state coefficient of altruism in (23) immediately
follows from (17) and f(δ) = 0. Concerning stability, we start noting that at a symmetric steady
state, since k1(ω

∗) = k2(ω
∗), we have

(

k2(ω
∗)

k1(ω∗)

)′
=

k′2(ω
∗)k1(ω∗)− k2(ω

∗)k′1(ω
∗)

k21(ω
∗)

=
k′2(ω

∗)− k′1(ω
∗)

k1(ω∗)
,

so the sign of k′2(ω
∗) − k′1(ω

∗) is determined by the monotonicity of k2(ω
∗)/k1(ω∗). We already

showed in the proof of Proposition 1 that if k2(ω
∗)/k1(ω∗) is strictly monotonic, it must be strictly

decreasing, so k′2(ω
∗)− k′1(ω

∗) < 0 and from Proposition 3 s
∗
0 is unconditionally unstable if θ(0) =

(k′2(0)− k′1(0))/2 < −2. Conversely, if k′2(0)− k′1(0) > −4, from the proof of Proposition 3 we have
that stability is guaranteed provided that (35) holds true, that in the present case reduces to (24).

Under assumption (14b), recalling that the right-hand side in (27) vanishes for ω∗ = 0 and
approaches 1 as ω∗ → 1−, we have that k2(ω)/k1(ω) is strictly increasing at s∗0, while it is strictly
decreasing at s∗±, so s

∗
0 is unconditionally unstable since k′2(0)− k′1(0) > 0, while for s∗± conditional

stability is again guaranteed by (35) holds true, that in the present case reduces to (25).
Noting that for a tit-for-tat player m is an odd function, we have that the equations of model

(15) governing dynamics of ω can be written as

ω1,t+1 = ω1,t +
k2(ω1,t) + k1(ω1,t)

2
f(m(∆π1,t)) +

k2(ω1,t)− k1(ω1,t)

2
,

ω2,t+1 = ω2,t −
k2(ω2,t) + k1(ω2,t)

2
f(m(∆π1,t)) +

k2(ω2,t)− k1(ω2,t)

2
,

so, if ω1,0 = −ω2,0, model (15) becomes a three dimensional system with a unique variable ωt =
ω1,t = −ω2,t for coefficients of altruism, i.e.















x1,t+1 =
√

vx2,t(1− ωt)− x2,t,

x2,t+1 =
√

vx1,t(1 + ωt)− x1,t,

ωt+1 = ωt +
k2(ωt) + k1(ωt)

2
f(m(∆π1,t)) +

k2(ωt)− k1(ωt)

2
.

Evaluating at (x1, x2, ω) = (v/4, v/4, 0) the Jacobian matrix corresponding to the function defining
the right-hand side of the last system we find

J∗ =







0 0 − v
4

0 0 v
4

γ
(

k1(0)
2 + k2(0)

2

)

−γ
(

k1(0)
2 + k2(0)

2

)

k′
2(0)
2 − k′

1(0)
2 + 1






,

whose characteristic polynomial is

p(λ) = −λ

(

λ2 −
(

k′2(0)

2
− k′1(0)

2
+ 1

)

λ+
γv

4
(k1(0) + k2(0))

)

.

Setting

T =
k′2(0)

2
− k′1(0)

2
+ 1, D =

γv

4
(k1(0) + k2(0)),

the eigenvalues of p(λ) lie inside the unit circle provided that







1 + T +D > 0
1− T +D > 0
1−D > 0

⇔











2 +
k′
2(0)
2 − k′

1(0)
2 + γv

4 (k1(0) + k2(0)) > 0

−k′
2(0)
2 +

k′
1(0)
2 + γv

4 (k1(0) + k2(0)) > 0
1− γv

4 (k1(0) + k2(0)) > 0

which concludes the proof. ✷

34



Proof [Proposition 5] Under assumption (14a), characterization of the steady state coefficient of
altruism immediately follows from (17) and f(δ) > 0. Similarly, under assumption (14b), recalling
Corollary (1), for suitably large values of δ, we have a unique symmetric steady state with ω∗ > 0.
For its stability, we start noting that for (22) we have m′(0−) = α and m′(0−) = −β, with α−β > 0.
From Proposition 3 any symmetric steady state is unconditionally unstable if θ(ω∗) = (k′2(ω

∗) −
k′1(ω

∗))/2 < −2 or if k′2(ω
∗) − k′1(ω

∗) > 0, which holds true for s
∗
−,2 at which k2(ω

∗
s,2)/k1(ω

∗
s,2)

is strictly increasing, and hence k2(ω
∗) − k1(ω

∗) as well, recalling the first part of the proof of
Proposition 4. Conversely, if k′2(ω

∗)− k′1(ω
∗) ∈ (−4, 0), since have m′(0−)+m′(0−) > 0, the steady

state is stable under condition (35), which in the present case becomes (26). ✷
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