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Abstract

We offer a new interpretation of the long-term dynamics in the U.S. firm entry

rate. Its decline was the consequence of a persistent combination of adverse(favorable)

productivity shocks to potential entrants(incumbents), while the long-term increase in

price markups did not play a significant role. In spite of the “Schumpeterian” structure

of our model, not all recessions had a “cleansing” effect, because the combination of

shocks associated to the specific episodes had markedly different effects on the dispersion

of firms’ efficiency. Finally, the extensive margin allows to rationalize the procyclical

pattern of TFP growth and its long-term decline.
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1 Introduction.

We offer a new interpretation of the long-term dynamics in the U.S. firm entry rate, docu-

mented in Figure 1: it exhibits a procyclical pattern and gradually falls up to 2010. Since

then, it is essentially flat. In fact, a consistent reduction in the number of young firms (Decker

et al., 2014) and a slowdown in productivity growth (Fernald, 2014; Boppart and Li, 2021)

characterized the U.S. economy over the last decades.

In this regard, the literature on endogenous firm dynamics sees new businesses as the

principal source of innovation in the economy (Asturias et al., 2017; Alon et al., 2018), and

treats the falling entry rate as the key factor behind the productivity slowdown. For instance,

Gourio et al. (2016) document that entry shocks cause a 1-1.5 percent increase in GDP, lasting

over ten years. Increasing concentration and greater market power, reported in studies such

as Autor et al. (2020) and Grullon et al. (2019), are identified as the main culprits, leading to

the rise in markups documented in De Loecker et al. (2020), Gutiérrez and Philippon (2016),

and Eggertsson et al. (2021).

By contrast, other studies emphasize the important contribution of older firms to innova-

tion and productivity growth. According to Hsieh and Klenow (2018), incumbents account

for the lion’s share of innovation through improvements on their own products, whereas at

most one quarter of U.S. productivity growth is ascribable to creative destruction and inputs

reallocation towards relatively new firms. Fort et al. (2018) document the limited effect of

firm entry and exit on the overall decline in U.S. manufacturing employment between 1977

and 2012, and conclude that incumbents might have been successful in raising their produc-

tivity relative to new entrants. Garcia-Macia et al. (2019) find that most growth comes from

incumbents’ contribution, with the role of entrants and creative destruction fading over the

latest decades. Similarly, Klenow and Li (2021) show how fluctuations in U.S. productivity

growth have been mostly driven by variations in incumbents’ ability to innovate.

We build a new model that encompasses these alternative views. We incorporate endoge-
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Figure 1: Firm entry rate, U.S., 1978-2019

Note: Annual data (Business Dynamics Statistics)

nous firm dynamics, as in Hopenhayn (1992), Asturias et al. (2017), and Piersanti and Tirelli

(2020), into a stochastic growth model where technology improvements are determined by the

different shocks that hit potential new entrants and incumbent firms. Long-term stochastic

growth and business cycle dynamics are interpreted on the grounds of a set of shocks that

hit the economy at low and high frequencies. In our model, the entry rate falls either if the

internal productivity growth of potential entrants is subject to an adverse shock, or if fa-

vorable productivity shocks hit incumbents, or if price markups increase. Further, the entry

rate falls if adverse demand shocks lower the value of the entry decision.

Our results are summarized as follows. The estimated model predicts a declining entry

rate even if we exclude entry data from the set of observables. This is a very important

preliminary result, suggesting that we are not forcing the model to rationalize long-run en-

try data “artificially” included in the set of observables. A persistent combination of ad-

verse(favorable) productivity shocks to potential entrants(incumbents) causes the long-run

decline in the model-predicted entry rate. This pattern is fully confirmed when we add the

entry rate to the set of observed variables. The model predicts a long-term increase in price

markups that is consistent with documented evidence, but we cannot find a persistent effect
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of markup shocks on the entry rate decline. In fact, markup shocks only have temporary

effects.

Our model allows to estimate the dynamics of both TFP and average firm efficiency.

The growth of firm efficiency is relatively stable and acyclical. By contrast, TFP growth is

subject to a gradual slowdown and has an unambiguous procyclical pattern. Our original

contribution is that adjustments in the extensive margin, i.e. the mass of firms, drive these

findings. Non-technology shocks explain the cyclical pattern of TFP growth, via their effect

on the extensive margin. We also find that recessions induced by adverse demand shocks

do not have a cleansing effect, i.e. they do not reduce the dispersion of firms’ idiosyncratic

efficiency.

We contribute to a growing literature on business cycle models of endogenous firm dynam-

ics. Lewis and Poilly (2012) and Lewis and Stevens (2015) estimate models in the tradition

of Bilbiie et al. (2007) and Bilbiie et al. (2012), but their focus is different as they neglect

the analysis of long-term entry dynamics and the implications for long-run growth. Just like

us, Clementi and Palazzo (2016) build upon Hopenhayn (1992)’s model, but they treat entry

and exit as an exogenous amplification mechanism of productivity shocks that symmetrically

hit all firms. To the best of our knowledge, this is the first contribution that incorporates

the effect of asymmetric productivity shocks on the entry rate.

We also contribute to the literature that investigates the procyclical pattern of TFP

and the sluggish recoveries following major crises. Anzoategui et al. (2019) focus on the

role of R&D; Qiu and Ŕıos-Rull (2022) link firms’ TFP to the number of varieties each

firm is able to sell. Other studies obtain procyclical TFP either in consequence of sectoral

productivity changes (Swanson, 2006) or through a combination of increasing returns and

increased utilization of the production factors (Gottfries et al., 2021). In our framework,

instead, the extensive margin of goods production drives TFP dynamics.

Finally, the paper provides an interpretation for entry rate dynamics that is comple-

mentary to contributions that emphasize the importance of demographic factors, such as
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Hopenhayn et al. (2018), Pugsley and S, ahin (2018), Karahan et al. (2019) and Peters and

Walsh (2021).

The paper is organized as follows: section 2 describes the model, section 3 provides infor-

mation on the estimation procedure, results are presented in section 4, section 5 concludes.

2 The Model.1

Households demand a bundle of differentiated retail goods

Ct =

(∫ 1

0

Ct (r)
ε
p
t−1

ε
p
t dr

) ε
p
t

ε
p
t−1

, (1)

supply capital services, kt, to firms in the intermediate-goods producing sector (INT hence-

forth), and sell the services of a differentiated labor type ι to the competitive labor packers

who assemble the labor bundle

lt =

(∫ 1

0

lt (ι)
εw−1
εw dh

) εw

εw−1

(2)

that enters the production of INT-goods. INT-goods are sold to retailers.

The perfectly competitive INT-firms have mass ηt, distributed between new entrants,

NEt, and incumbents, INCt, who survived out of the ηt−1 firms active at time t− 1:

ηt = NEt + INCt. (3)

BothNEs and INCs group heterogeneous firms that are subject to idiosyncratic productivity

shocks.

At the beginning of each period, two sets of shocks hit the economy. The first one is a

set of demand and supply shocks that characterize standard DSGE models, i.e. marginal

1See Appendix C for the full set of equilibrium conditions and for the derivation of key equations.
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efficiency of investment, retail price markups and labor supply, monetary and fiscal policy.

The second one includes two independent productivity shocks that symmetrically affect the

idiosyncratic efficiency distribution of NEs and INCs respectively. The sequence of events

unfolds as in Figure 2.

Figure 2: Model sequence of events

2.1 INT-sector.

The production function of a generic firm f is:

yf,jt = Af,jt

(
Zf,j
t

)γ
, (4)

Zf,j
t =

[
(kf,jt )α(lf,jt )(1−α)

]
, (5)

where j = NE, INC. Af,jt defines the firm-specific level of productivity, γ < 1 is the degree

of decreasing return to scale, Zf,j
t is a Cobb-Douglas bundle of factor inputs. Firm dividends
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are

df,jt = pty
f,j
t − rkt k

f,j
t − wtl

f,j
t − wtφj , (6)

where pt is the consumption price of INT-goods, rkt is the real rental rate of capital, wt is the

consumption real wage and φj is the exogenous fixed production cost defined in labor units.

Factor demands are:

kf,jt = αγ
pty

f,j
t

rkt
(7)

lf,jt = (1− α)γ
pty

f,j
t

wt
(8)

and

pzt =

[
rkt
α

]α [
wt

(1− α)

](1−α)

(9)

is the consumption price of Zt. Note that the capital intensity of the input bundle Zf,j
t does

not vary across firms, but its scale obviously grows with firm efficiency.

Zf,j
t =

[
pt
pzt
Af,jt γ

] 1
1−γ

. (10)

The firm supply function therefore is

yf,jt =
(
Af,jt

) 1
1−γ
[
γ
pt
pzt

] γ
1−γ

. (11)

From (6) and (11), the firm’s value can be written recursively as

Vt

(
Af,jt

)
= (1− γ)

[
Af,jt

ptγ
γ

(pzt )
γ

] 1
1−γ

− wtφj + Et

{
Λt+1Vt+1

(
Af,jt+1

)}
, (12)

where φj allows to identify the cutoff values Âjt that define the entry and exit productivity

thresholds

Vt

(
Âjt

)
= 0. (13)
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Right from the outset, note that these thresholds react to current economic conditions, i.e.

an increase in pt unambiguously raises the firm value and lowers the idiosyncratic efficiency

level that meets the profitability condition, whereas an increase in the price of inputs or in

the fixed cost would work in the opposite direction. Future valuation of the firm also matters,

and firms may operate under temporarily negative profitability.

2.1.1 New entrants.

At the beginning of period t, potential NEs draw their productivity level Af,NEt from the

Pareto distribution,

ft
(
ANEt

)
=

∫ +∞

zt

ξ (zt)
ξ(

Af,NEt

)ξ+1
d
(
Af,NEt

)
= 1, (14)

where

zt = zt−1g
z
t (15)

defines the technology frontier, gzt is the stochastic exogenous firm productivity driver in the

long run

ln(gzt ) = (1− ρz) ln(gz) + ρz ln(gzt−1) + εzt ; ε
z
t ∼ N (0, σz) (16)

and gz defines the deterministic productivity growth trend. The mass of new entrants is:

NEt =

∫ +∞

ÂNEt

ξ (zt)
ξ(

Af,NEt

)ξ+1
d
(
Af,NEt

)
=

(
zt

ÂNEt

)ξ
, (17)

where ÂNEt defines the productivity threshold such that Vt

(
ÂNEt

)
= 0.
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2.1.2 Incumbents.

At the beginning of period t, the ηt−1 firms draw their idiosyncratic productivity from the

following distribution

ft(Â
INC
t ) =

∫ +∞

ÂINCt−1 gz(1−δINC)Ψt

ξ
[
ÂINCt−1 g

z
(
1− δINC

)
Ψt

]ξ(
Af,INCt

)
ξ+1

d(Af,INCt ) , (18)

where ÂINCt−1 , Vt

(
ÂINCt−1

)
= 0, defines the productivity threshold that characterized the dis-

tribution of INCt−1 firms; by setting gz
(
1− δINC

)
< 1 we assume that, on average, the ηt−1

firms deplete their knowledge capital.2 Finally,

ln (Ψt) = ρΨ ln (Ψt−1) + εΨ
t ; εΨ

t ∼ N
(
0, σΨ

)
(19)

denotes the equivalent of a standard productivity shock. The mass of incumbents is

INCt = ηt−1Ht , (20)

where

Ht =

∫ +∞

ÂINCt

ξ
[
ÂINCt−1 g

z
(
1− δINC

)
Ψt

]ξ(
Af,INCt

)
ξ+1

d(Af,INCt ) =

(
ÂINCt−1 g

z (1− δ) Ψt

ÂINCt

)ξ

(21)

is the endogenous survival probability for the ηt−1 firms. The expected efficiency of the ηt−1

firms is

Et−1 {Aηt−1

t } =
ξ

ξ − 1
Et−1

{
ÂINCt−1 g

z (1− δ) Ψt

}
. (22)

2This is akin to Liu et al. (2020) and the literature cited therein.
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The mass of exiting firms is

EXt = ηt−1 (1−Ht) = ηt−1

(
ÂINCt − ÂINCt−1 g

z (1− δ) Ψt

ÂINCt

)ξ

. (23)

2.1.3 Thresholds.

We now derive the efficiency thresholds associated to the intertemporal zero profit condition

(13). To begin with, from condition (22) notice that firms operative in t are confronted with

the same present value of future dividends

Et

{
V
(
Af,jt+1

)}
=

∫ +∞

ÂINCt+1

Vt+1

(
Af,INCt+1

) ξ
(
ÂINCt+1

)ξ
(
Af,INCt+1

)ξ+1
d
(
Af,INCt+1

)
= Et

{
Ht+1V

av
t+1

}
, (24)

where V av
t+1 defines the continuation value of the ηt firms conditional to survival in t + 1. In

recursive form,

V av
t+1 =

ξ (1− γ)

ξ (1− γ)− 1

[
(1− γ)1−γ

γγ
pt+1(
pzt+1

)γ ÂINCt+1

] 1
1−γ

−wt+1φ
INC+Et+1

{
Λt+2Ht+2V

av
t+2

}
. (25)

Given the shape of the Pareto distribution, condition

ξ (1− γ) > 1

is necessary to ensure that Et

{
V
(
Af,jt+1

)}
converges to finite value.

Using (13) and (25), the following condition identifies the thresholds for INCt and NEt

firms:

Âjt =

[
wtφ

j − Et
{

Λt+1Ht+1V
av
t+1

}
γ

γ
1−γ (1− γ)

]1−γ
(pzt )

γ

pt
. (26)

Increases in the participation cost wtφ
j and in the price of the input bundle pzt raise the
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productivity threshold, whereas increases in current or discounted future profitability, re-

spectively determined by pt and Λt+1Ht+1V
av
t+1, allow relatively less efficient firms to operate

in the market.

Figure 3 provides a graphical representation of how NEs and INCs are distributed.

Panel (a) identifies the fraction of potential entrants that choose to operate in t. In Panel

(b) we represent the distribution of the depreciated knowledge capital inherited by the ηt−1

firms. Finally, in Panel (c) ÂINCt splits the support between exiting and surviving ηt−1 firms.

Figure 3: Model firm dynamics

The following condition highlights the impact of productivity shocks on firm dynamics:

ηt =

(
zt

ÂNEt

)ξ
+ ηt−1

(
ÂINCt−1 g

z (1− δ) Ψt

ÂINCt

)ξ

. (27)

From (15) it is easy to see that shocks to zt have permanent effects on the support of the
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NEs distribution. Using (26), we get

ηt =


(

zt

[wtφNE−Et{Λt+1Ht+1V avt+1]]
1−γ

)ξ
+

ηt−1

(
ÂINCt−1 gz(1−δ)Ψt

[wtφINC−Et{Λt+1Ht+1V avt+1]]
1−γ

)ξ

(
γγ (1− γ)1−γ pt

(pzt )
γ

)ξ

. (28)

Thus, a positive shock to zt creates a supply congestion effect that lowers pt and raises the

productivity thresholds. Our estimates will show that this is associated to an increase in both

entry and exit rates. This mechanism, akin to a Schumpeterian cleansing effect, is enriched

by the role of discounted future profitability: ceteris paribus, the larger ÂINCt also raises the

firm survival probability in the next period, Ht+1, and causes a persistent downward pressure

on the price of INT-goods. The initial εzt shock permanently raises the expected z values in

the NEs distribution support. This, combined with the ÂINCt increase, generates a sequence

of falling prices and endogenously increasing firm productivity.3

The Ψt shock raises the survival probability of the ηt−1 firms and triggers a fall in pt.

In this case both entry and exit rates fall. Finally, demand shocks also matter for firms’

productivity and entry/exit flows. In fact, any change in demand for INT-goods that raises

pt
pzt

will lower the productivity thresholds, raising both INCs and NEs.

2.1.4 INT-sector aggregation.

Production of INT-goods is

Y INT
t = Y NE

t + Y INC
t , (29)

Y NE
t =

∫ +∞

ÂNEt

Af,NEt

[(
kf,NEt

)α (
lf,NEt

)1−α
]γ
dF
(
Af,NEt

)
, (30)

Y INC
t =

∫ +∞

ÂINCt

Af,INCt

[(
kf,INCt

)α (
lf,INCt

)1−α
]γ
dF
(
Af,INCt

)
. (31)

Straightforward manipulations yield the supply function

3See Piersanti and Tirelli (2020) for a detailed discussion.
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Y INT
t =

ξ (1− γ)

ξ(1− γ)− 1

[
NEt

(
ÂNEt

) 1
1−γ

+ INCt

(
ÂINCt

) 1
1−γ

](
γpt
pzt

) γ
1−γ

, (32)

where

ξ (1− γ)

ξ(1− γ)− 1

(
Âjt

) 1
1−γ
(
γpt
pzt

) γ
1−γ

denotes the average production of j-type firms.

Note that an increase in pt has manifold effects. First, it increases the price/cost margin,

pt
pzt

. Second, it raises the mass of j-firms (see conditions 17, 21 and 26). Third, by loosening

the zero-profit condition (26), it reduces the average firm efficiency Âjt . The supply elasticity

is

∂Y INT
t

∂pt

pt
Y INT
t

= ξ − 1 .

From conditions (7) and (8), factor-inputs demands are:

KINT
t = αγ

ptY
INT
t

rkt
, (33)

LINTt = (1− α)γ
ptY

INT
t

wt
+ φNENEt + φINCINCt . (34)

2.1.5 Retailers.

There is a continuum of monopolistic retailers r ∈ (0, 1), and final output is a CES bundle

of differentiated goods:

Yt =

(∫ 1

0

Yt (r)
ε
p
t−1

ε
p
t dr

) ε
p
t

ε
p
t−1

, (35)

where

ln(εpt ) = (1− ρp) ln(εp) + ρp ln(εpt−1) + εpt − ηpε
p
t−1; εpt ∼ N (0, σp) (36)
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allows to identify standard price markup shocks.4

Retailers face Calvo rigidities and either re-optimize with probability 1−Γp or follow this

simple indexation rule

Pt(r) =
(
π
µp
t−1π

1−µp
ss

)
Pt−1 . (37)

Their price is a combination of steady-state and past inflation indexed by the parameter µp.

The solution of the retailers’ pricing problem is:

P
1−εpt
t = (1− Γp) (P ∗t )1−εpt + Γp

(
π
µp
t−1π

1−µp
ss Pt−1

)1−εpt (38)

where P ∗t is the optimal price level and Pt is the retail price index. Aggregating across

individual retailers, we obtain

Yt =
Y INT
t

ξpt
, (39)

where ξpt is the standard measure of price dispersion under Calvo pricing.

2.2 Households.

The representative household ι, ι ∈ (0, 1), maximizes

Et

∞∑
i=0

βt
[

1

1− σ
(Ct+i − hCt+i−1)1−σ

]
exp

(
ψ
σ − 1

1 + ϕ
ζ lt+ilt+i (ι)

1+ϕ

)
, (40)

where ζ lt is a labor supply shock

ln(ζ lt) = ρl ln(ζ lt−1) + εlt; ε
l
t ∼ N

(
0, σl

)
, (41)

4We follow Smets and Wouters (2007) in modeling the price markup shock as an ARMA(1,1) process.
This allows to catch high-frequency fluctuations in inflation.
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subject to:5

Ct + It +
Bt

Pt
= wt (ι) lt (ι) +

(
rkt − aut

)
UtKt +Rn

t−1

Bt−1

Pt
+DF

t . (42)

Ct is consumption of the retail goods bundle, DF
t are firm dividends, Bt is a one-period

nominally riskless bond with gross remuneration Rn
t , Ut denotes variable capacity utilization,

and aut = γ1 (Ut − 1) + γ2

2
(Ut − 1)2 defines its adjustment cost.

The capital stock evolves as follows:

Kt+1 = µt

(
1− S

(
It
It−1

))
It + (1− δ)Kt , (43)

where δ is the depreciation rate, S
(

It
It−1

)
= γI

2

(
It
It−1
− 1
)2

defines investment adjustment

costs, and µt,

ln(µt) = ρµ ln(µt−1) + εµt ; εµt ∼ N (0, σµ) , (44)

is a shock to the marginal efficiency of investment (MEI shock).

Households face a downward-sloping demand function:

lt (ι) =

(
wt (ι)

wt

)−εw
lt , (45)

and Calvo rigidities affect wage setting decisions: each household either optimizes with prob-

ability Γw or follows the indexation rule

wt (ι) =
πµwt−1π

1−µw
ss wt−1 (ι)

πt
. (46)

5We implicitly assume that risk-sharing schemes insulate individual consumption from idiosyncratic shocks
to the household wage bill.
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Wage dynamics are

w1−εw
t = (1− Γw) (w∗t )

1−εw + Γw

(
πµwt−1π

1−µw
ss wt−1

πt

)1−εw

, (47)

where w∗t is the wage set by re-optimizing households.

2.3 Monetary Policy.

We opt for a very simple Taylor rule,6

Rn
t

Rn
ss

=

(
Rn
t−1

Rn
ss

)ρi [(πt
πt

)κπ (
Yt
Yt−1

)κy]1−ρi

ζrt , (48)

where Rn
ss is the steady-state nominal interest rate, ζrt is a monetary policy shock

ln(ζrt ) = ρr ln(ζrt−1) + εrt ; ε
r
t ∼ N (0, σr) (49)

and

ln (πt) = (1− ρπ) (πss) + ρπ ln (πt−1) + επt ; επt ∼ N (0, σπ) (50)

is the stochastic inflation target.

2.4 Market clearing.

Market clearing requires:7

Lt = LINTt , (51)

Kt = KINT
t , (52)

Yt = Ct + It +Gt . (53)

6We also experimented with the complex rule in Smets and Wouters (2007). Our results were confirmed.
7The model is solved up to first order, we therefore neglect price and nominal wage dispersion.
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where Gt = gstYss denotes public consumption as a fraction of steady-state output and

ln(gst ) = (1− ρgs) ln(gs) + ρg
s

ln(gst−1) + εg
s

t ; εg
s

t ∼ N
(
0, σg

s)
(54)

denotes a public consumption shock as in Smets and Wouters (2007) (S&W henceforth).

2.5 Shocks and the endogenous persistence of efficiency thresh-

olds.

To support intuition, we discuss here the IRFs to productivity, MEI, and markup shocks

(Figures 4).8 The choice of this specific subset of shocks is motivated by their relative

importance for the subsequent analysis of observed entry rate dynamics.

Our purpose is to clarify the endogenous propagation mechanism that drives the response

of firms’ productivity to exogenous shocks. Right from the outset, note that technology

shocks to NE(INC) firms adversely affect the valuation of the other group of firms, and

therefore impact on exit(entry) rates. Further, demand and markup shocks affect entry/exit

rates through the price/cost margin of INT-firms. This, in turn, matters for average firm

productivity that unambiguously falls in the occurrence of INT-sector demand-driven booms

and vice-versa.

Consider first a white noise entry shock, εzt . From condition (16) it is easy to see that

the shock entails a permanent increase in the new entrants’ productivity shifter zt. There are

permanent effects on consumption and investment that materialize at very low frequencies.

By looking at the dynamics of the productivity thresholds for both NEs and INCs, one can

gauge the persistence of the endogenous amplification mechanism, that turns the shock into

a permanent increase in average firm productivity which is as large as the initial increase in zt.

Even if εzt has no persistence, increased supply from NEs immediately raises the productivity

8Parameters are calibrated at the posterior-mean values obtained for our baseline model (see section 4
below).
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Figure 4: Estimated IRFs (Baseline model)
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threshold for INCt firms. This, in turn, triggers a gradual and very persistent upward shift in

the support of the Htηt−1 mass of surviving incumbents (see condition 21), causing a twofold

effect. On the one hand, the incumbents’ expected survival probability falls. On the other

hand, the increase in ÂINCt drives the long-term response of output. The short-run transitions

require a careful discussion. The increased competition from NEs lowers the present value of

potential incumbents and raises the exit rate. In fact, the shock is associated with an episode

of “creative destruction”. This effect is so strong that the initial surge in the exit rate reduces

the extensive margin pushing up the consumption price of INT-goods and the marginal cost

for firms in the retail sector. This, in turn, causes a persistent increase in inflation and in

real interest rates that initially lowers both consumption and investment. Finally, note that

the shock raises the price/cost margin of INT-firms.

The incumbents productivity shock, εΨ
t , is by assumption temporary and has an estimated

autoregressive coefficient ρΨ = 0.247 at the posterior mean. The shock affects the bulk of

the ηt−1 firms and therefore has a large effect on the supply of INT-goods. The decrease in

pt
(pzt )γ

causes a persistent fall in the entry rate, and it is initially so strong that the exit rate

increases too. Note that εΨ
t increases the density of firms characterized by Af,INCt > ÂINCt .

For this reason, after a few quarters the exit rate falls below steady state and the number of

incumbents picks up again. The initial reduction in the number of incumbents is associated

to shifts to the support of the Htηt−1 mass of surviving incumbents (see condition 21), raising

the average efficiency of these firms. Due to the persistent fall in pt
(pzt )γ

, both productivity

thresholds remain above steady state for a prolonged period. In line with standard produc-

tivity shocks, the increased supply of INT-goods has a deflationary effect that triggers an

expansionary monetary policy, stimulating both consumption and investment.

The MEI shock drives a standard boom in demand. The increase in pt
(pzt )γ

raises(lowers)

the entry(exit) rate. This has non-negligible implications for the productivity thresholds and

for average firm efficiency that persistently fall. Finally, a negative markup shock has an un-

ambiguously expansionary effect. The shock pulls up pt
(pzt )γ

, lowering productivity thresholds
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and increasing(reducing) the entry(exit) rate. Average efficiency of INT-firms falls. The ex-

pansionary monetary policy response to the shock supports the growth of both consumption

and investment.

3 Bayesian estimation.

We estimate the model on U.S. data spanning from 1966:I to 2019:IV (with a presample of

four quarters starting in 1965:I). The dataset consists of the yearly firm entry rate measured

by the Business Dynamics Statistics (BDS), and of seven standard macroeconomic variables

observed at a quarterly frequency: worked hours, the Fed funds rate, the inflation rate (GDP

deflator), and the growth rates of GDP, investment, consumption and wages in real terms.

The macroeconomic observables and the initial date are the same considered by S&W, whose

results we take as benchmark reference for business cycle analysis.9

As regards our measure of firm entry, we choose the BDS database, that gathers informa-

tion on the entire universe of U.S. firms.10 This source has been widely employed to study

various features of business dynamism. Examples include Hathaway and Litan (2014), who

analyze the geographical aspects of the decline in U.S. business dynamism, Decker et al.

(2014), who study the role played by entrepreneurship (in the form of startup rates) in U.S.

job creation, Gourio et al. (2016), who use a VAR to estimate the effects of a shock to the

number of startups, and Karahan et al. (2019), who link the fall in firm entry to the slow-

ing pace of labor supply growth. An alternative source for data on startups is provided by

the Bureau of Labor Statistics (BLS), whose records are available at a quarterly frequency.

However, the BLS data are characterized by two crucial features that make the BDS more

suitable for our purposes. First, its sample starts in 1992 and does not allow us to study

the persistent decline in the entry rate. Second, the BLS provides data on establishment

9Appendix B.1 contains a detailed discussion of data sources, definitions, and transformations.
10The BDS data are aggregated starting from the Longitudinal Business Database (LBD), that tracks

single establishments and firms since 1976. These micro-data are used, among the others, by Decker et al.
(2020) to discriminate between possible reasons behind the firm entry decline.
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entry rates: while these might be more useful to investigate job creation and destruction,

they are arguably less relevant for new business formation, as new business establishments do

not necessarily represent new firms. Conversely, the BDS database does distinguish between

firms and establishments.11

In order to deal with the mixed-frequency nature of our dataset, we construct an annual-

ized model-implied measure of firm entry.12 In particular, we take the sum of new entrants

over the periods t : t−3 divided by the average of total firms over the periods t : t−7, where

each period t denotes a quarter. This is consistent with the BDS measure of firm entry,

which is defined as the number of firm births in each year divided by the average number of

firms in that and in the previous year. Then, our model-implied variable is matched with

the observed BDS data only in the final quarter of each year. The values for the remaining

quarters are treated as missing observations and inferred by the Kalman filter.

Hirose and Inoue (2016) suggest that ZLB periods may bias the estimates of some parame-

ters and shocks. To check for this, we estimated the model over the subsample 1966:I-2007:III.

Further, we estimated the model over the full sample after replacing the Fed funds rate with

the shadow rate, obtained by Wu and Xia (2016), from 1990:I up to the end of our sample.

Another important issue concerns the analysis of unconventional monetary policies, which

are not considered in our model. To some extent these policy actions might be captured by

MEI shocks, which may be interpreted as disturbances that affect the financial system ability

to turn savings into capital (Justiniano et al., 2011).13

11BLS data are used by Casares et al. (2020) to estimate a model with endogenous entry and exit. Dif-
ferently from our long-term perspective, their focus is on the period following the financial crisis and on the
relationship between U.S. business cycle fluctuations and the extensive margin.

12See Pfeifer (2013) for references on methodology.
13We also experimented with an additional risk-premium shock that did not play any significant role in

our estimates.
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Table 1: Calibrated parameters (Baseline model)

Parameter Lss gs εp εw α γ δ ξ entry wssφ
INC φratio ρπ

Value 0.33 0.18 6 21 0.33 0.9 0.025 15 0.025 0.05 0.7 0.99

3.1 Calibration and priors.

Following common practice, we calibrate some parameters that are hard to identify (Table 1).

These include the capital depreciation rate, δ = 0.025, corresponding to a 10% depreciation

rate per year; the capital share α = 0.33, corresponding to a steady-state share of capital

income roughly equal to 30%; the labor disutility parameter ψ is calibrated to pin down

the steady-state level of worked hours at 0.33; the steady-state product and labor market

elasticities, εp and εw, are set at 6 and 21, implying steady-state markups of 20% and 5%

respectively, as in Christiano et al. (2014). The share of government spending in aggregate

output, gs = 0.18, and the AR(1) parameter in (50), ρπ = 0.99, are borrowed from Del Negro

et al. (2015).

We set firms’ return, γ = 0.9, in the range of Basu and Fernald (1997) estimates, and the

tail index of the Pareto distribution, ξ = 15, following Asturias et al. (2017).

We set the detrended support of the NEs distribution, z, the depreciation rate of firms

efficiency, δINC , the detrended and wage-adjusted fixed production costs, wssφ
j, to calibrate

some steady-state variables that characterize firm dynamics and the structure of the INT-

goods sector. We set the firm entry rate, NE
η

= 2.5%, to match the 10% average yearly entry

rate observed over the period 1978-2019. The steady-state number of firms, η, is normalized

at 1. The fixed costs of production in labor units, w
(
φNE + φINC

)
, amount to 13, 8% of

total GDP (Bilbiie et al., 2012; Colciago and Etro, 2010). The relative production size of

NEs, that ultimately depends on the fixed costs ratio, is 0.7, close to the value reported

in Clementi and Palazzo (2016). The remaining parameters are estimated with Bayesian

techniques. Priors are in line with those adopted in previous empirical DSGE models. In

particular, most prior distributions are borrowed from S&W with few minor differences. We
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slightly reduce the prior standard deviation of ϕ, the inverse Frisch elasticity parameter.

The prior for π̄ss is looser and centered on a higher mean, following Del Negro et al. (2015).

Finally, the Taylor rule response to GDP growth and the two Calvo parameters are assigned

a higher prior mean, closer to Christiano et al. (2014) and Justiniano et al. (2011).

Table 2: Estimated parameters and structural shocks (Baseline model)

Prior Posterior

Description Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

σ Inverse EIS norm 1.500 0.3750 1.173 0.0415 1.1048 1.2389
ϕ Inverse Frisch elasticity norm 2.000 0.5000 2.354 0.4387 1.6174 3.0601
h Consumption habits beta 0.700 0.1000 0.840 0.0331 0.7860 0.8940
100(β−1 − 1) Discount factor gamm 0.250 0.2000 0.169 0.0798 0.0332 0.2887
π̄ss SS inflation rate gamm 0.750 0.4000 0.716 0.3398 0.1743 1.2297
100(gz − 1) Deterministic trend norm 0.400 0.1000 0.350 0.0437 0.2791 0.4230
κπ Taylor rule coeff. on π norm 1.500 0.2500 1.736 0.1767 1.4447 2.0237
κy Taylor rule coeff. on y norm 0.200 0.0500 0.239 0.0453 0.1647 0.3136
ρi Policy rate per. beta 0.750 0.1000 0.764 0.0274 0.7196 0.8094
Γp Price rigidity beta 0.650 0.1000 0.834 0.0215 0.7982 0.8688
µp Price indexation beta 0.500 0.1500 0.247 0.0971 0.0923 0.4000
Γw Wage rigidity beta 0.650 0.1000 0.815 0.0493 0.7345 0.8988
µw Wage indexation beta 0.500 0.1500 0.315 0.1457 0.0924 0.5217
γI Investment adjustment costs norm 4.000 1.5000 9.415 1.1286 7.5649 11.2810
σa Capital utilization elasticity beta 0.500 0.1500 0.884 0.0483 0.8092 0.9601
ρµ MEI shock per. beta 0.500 0.2000 0.556 0.0683 0.4554 0.6648
ρr Monetary shock per. beta 0.500 0.2000 0.305 0.0617 0.2064 0.4099
ρp Price markup shock per. beta 0.500 0.2000 0.984 0.0064 0.9742 0.9943
ηp Price markup shock MA par. beta 0.500 0.2000 0.363 0.0682 0.2513 0.4757
ρl Labor supply shock per. beta 0.500 0.2000 0.172 0.0636 0.0666 0.2739
ρΨ Incumbents’ prod. shock per. beta 0.500 0.2000 0.247 0.0667 0.1378 0.3566
ρg

s

Gov. spending shock per. beta 0.500 0.2000 0.961 0.0106 0.9442 0.9779
σz Entry shock s.d. gamm 0.100 0.0500 0.005 0.0003 0.0047 0.0055
σµ MEI shock s.d. gamm 0.100 0.0500 0.090 0.0154 0.0655 0.1145
σr Monetary policy shock s.d. gamm 0.100 0.0500 0.002 0.0001 0.0022 0.0026
σp Price markup shock s.d. gamm 0.100 0.0500 0.079 0.0104 0.0625 0.0959
σl Labor supply shock s.d. gamm 0.100 0.0500 0.158 0.0363 0.0995 0.2146
σΨ Incumbents’ prod. shock s.d. gamm 0.100 0.0500 0.006 0.0003 0.0053 0.0063
σg

s

Gov. spending shock s.d. gamm 0.100 0.0500 0.033 0.0017 0.0306 0.0360
σπ Inflation target shock s.d. gamm 0.100 0.0500 0.001 0.0002 0.0008 0.0013

Note: The last two columns report the lower (HPD inf) and the upper bound (HPD sup) of the parameter’s

90% highest posterior density interval.
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4 Results.

Table 2 describes parameters and shock processes and reports our posterior estimates for the

baseline, full sample model.14 Consumption habits are in line with Justiniano et al. (2011),

whereas both Calvo parameters are close to the values reported by Del Negro et al. (2015),

and are substantially smaller than in Del Negro et al. (2017) and Casares et al. (2020).

The elasticity of capital utilization costs is slightly higher than in Casares et al. (2020) and

Justiniano et al. (2011) who find a value of 0.84. Lastly, investment adjustment costs are close

to Lewis and Stevens (2015) and below the estimate obtained by Christiano et al. (2014).

The first step in our analysis is a comparison with alternative estimates: an “uninformed”

model that excludes the entry rate from the set of observables (unobserved-entry model,

UEM) and a standard NK model following S&W (SNK). We also implement robustness

checks restricting the sample to the pre-GFC period, i.e. the estimation sample is truncated

at 2007:III (short-sample model, SSM), and substituting the shadow rate for the observed

interest rate (SRM).15

Relative to BM, posterior estimates are virtually unchanged in SRM. Under SSM we see

a decrease in investment adjustment (γI) and capital utilization (σa) costs. All remaining

parameters are substantially stable.

Relatively to SNK, in BM we obtain higher internal persistence: consumption habits (h),

price and wage stickiness (Γp and Γw), investment adjustment and capital utilization costs

are somewhat larger, but fall in the ballpark of existing estimates in the DSGE literature. On

the contrary, the exogenous persistence of the standard NK model, identified in the shocks’

autocorrelation coefficients, is generally more pronounced than in our model.

The UEM estimation produces a higher degree of wage indexation with respect to BM.

Also, the elasticity of investment adjustment costs and the MEI-shock autoregressive param-

eter are closer to SNK than to BM. It follows that our model requires a larger γI but a smaller

14See Appendix B.2 for a detailed discussion of parameters’ identification and convergence.
15See Table A1 in the Appendix.
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ρµ in order to explain entry rate dynamics.

4.1 Drivers of the entry rate decline.

A preliminary step in our analysis is a discussion of the model-implied entry-rate series (MI-

ER) obtained in UEM. In this “uninformed” model, MI-ER grossly overpredicts the response

of observed entry rates (O-ER) to post-recession recoveries up to the mid-90s (see Figure 5).

Nevertheless, information coming from the standard set of observed macro variables and the

need to match the U.S. business cycle data is sufficient for the model to predict a long term

decline in MI-ER, and its correlation with the O-ER series is rather large (0.76).

Figure 5: MI-ER, 1978:I-2019:IV (UEM)

Note: The solid line shows the annualized smoothed estimate of the model-implied entry rate at the posterior

mean (UEM estimation). The dashed line shows the annual firm entry rate in the data (BDS).

It is also interesting to look at the historical decomposition of MI-ER (Figure 6, Panel

(a)), where the estimated technology shocks that persistently lower(raise) the productivity

of NEs(INCs) also imply the prediction of a long term decline in the entry rate.

Figure 6, Panel (b), presents the historical decomposition of the O-ER obtained in our

baseline model. Relative to MI-ER obtained in UEM, the contribution of technology shocks

is virtually unchanged, confirming that productivity growth of potential NEs gradually de-

clined over the sample, and that NEs were crowded out by the technology shocks that raised

INCs productivity. Price-markup and other, mainly demand, shocks contribute to predict
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the observed entry rate, essentially compensating the gap between MI-ER and O-ER. These

shocks bring down the entry rate when it is relatively high (between 1978 and the mid-90s),

and tend to raise it thereafter. These results are in contrast with Gutiérrez and Philippon

Figure 6: Historical shock decomposition: MI-ER and O-ER, 1978:I-2019:IV

Note: The solid line is firm entry rate in log-deviations from its steady state (quarterly estimate at the

posterior mean). The colored bars are the contributions of the grouped shocks (“Demand” includes monetary

policy, inflation target, MEI, and government spending shocks; “Other” includes labor supply shocks and

contribution from initial values). Panel (a): UEM estimation. Panel (b): BM estimation (firm entry rate

coincides with the observed one).

(2017), who argue that the increase in price markups might have been at the root of the

observed decline in entry rates. In fact, our model predicts a long term increase in price

markups and in “pure” profits in line with evidence reported in Traina (2018). Further, the

historical decomposition of price markups highlights the persistent decline in the demand

elasticity of retail goods, εpt , as the main driver of long-run markup dynamics, but this latter

effect has only transitory implications for the entry rate.16

16See Figure A1 in the Appendix.
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We estimate a strong correlation (78%) between the entry rate and the price/cost margin

index pt
(pzt )

. The historical decomposition of pt
(pzt )

is essentially driven by technology shocks,

whereas those demand shocks that matter for the entry rate bear nearly symmetrical effects on

the prices of the intermediate goods and of the Z bundle. This is a novel result, whereby pt
(pzt )

can be interpreted as a summary statistics capturing the occurrence of technology shocks.17

To conclude this discussion, we highlight the reasons why technology shocks may have

similar implications for the entry rate and for the price/cost margin in the INT-sector. Con-

sider first the case of an adverse entry shock (Figure 4).18 In this case, the short-run effect

of the shock temporarily raises output and demand for labor and capital but depresses the

consumption price of intermediate goods and lowers pt
(pzt )

. Then, consider a favorable shock

to the productivity of incumbents. For reasons already discussed in section 2.5 above, the

entry rate inevitably falls, but the sustained output expansion raises both the wage rate and

the rate of return on capital. As a result, pzt increases and the price/cost margin of INT-firms

inevitably falls.

Table 3: Historical shock decomposition “summary”: GDP growth, 1978:I-2019:IV

Shocks

Incumbents Entry Price markup Demand Other

UEM 16.3% 11.9% 11.3% 48.0% 12.4%
BM 10.2% 7.1% 9.8% 60.7% 12.2%

Note: For each shock group, the percentage terms refer to its average contribution to GDP growth, as

obtained from the historical shock decomposition (at the posterior mean), over the period 1978:I-2019:IV.

Specifically, for each quarter, we derive the absolute value of a shock’s contribution to deviations of GDP

growth from its mean. We then calculate the ratio of this value to the sum of all shocks’ contributions (again

in absolute value), and we average the ratios over quarters.

As a final remark, Table 3 summarizes the contributions of shocks to observed GDP growth

in the estimation of BM and UEM since 1978, i.e. the first year when BM is “constrained”

to match the entry rate. Technology shocks play a lesser role in BM, and are replaced by

17See Figure A2 in the Appendix.
18Note that the IRFs in Figure 4 display the effects of a positive entry shock.
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demand shocks. Furthermore, the two models agree about the relative contributions of the

technology shocks that affect NEs and INCs.

4.2 Baseline vs SNK model.

The purpose here is to benchmark our interpretation of the U.S. business cycle against the

established narrative based on the SNK model. With respect to the common shocks, the IRFs

of the two models are very similar (reported in Figure A3 in the Appendix). An interesting

comparison concerns the historical decomposition of GDP growth obtained in the baseline

and in the SNK model (Figure 7).

To sharpen the analysis we focus on the post-2000 period. After 2013, the two models

convey similar messages, but in the previous years important differences are easy to spot.

According to the SNK estimates, markup shocks are persistently contractionary, whereas

technology shocks pull in the opposite direction with an almost symmetrical pattern. Thus

the SNK model conveys a story where pre-2013 growth is determined by a combination of

technology improvements and persistently adverse markup shocks. These contemporaneous

and opposite effects are particularly large in the occurrence and in the immediate aftermath

of the GFC. The contribution of technology shocks to the post 2008:IV recovery appears

implausibly large and in sharp contrast with results obtained in contributions such as Fernald

(2014) and Vinci and Licandro (2021). By contrast, our baseline model does not generate

equally persistent patterns and technology shocks play a lesser role. Demand shocks are

relatively more important. Their positive contribution to growth in the 2003-2006 period is

consistent with the popular narrative about the importance of the credit boom in the run-up

to the GFC.
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Figure 7: Historical shock decomposition comparison: GDP growth, 2000:I-2019:IV

Note: The solid line is observed GDP growth in log-deviations from its estimated steady state. The colored

bars are the contributions of the grouped shocks (“Demand” includes monetary policy, inflation target, MEI,

and government spending shocks for panel (a) and (b), and risk premium shocks for panel (b); “Supply”

includes price markup shocks for panel (a) and (b), labor supply shocks for panel (a), and wage markup

shocks for panel (b); “Other” includes contribution from initial values). Panel (a): BM estimation. Panel

(b): SNK estimation.

4.3 Firm efficiency and total factor productivity in the long-run.

We define TFP, average firm efficiency and efficiency dispersion respectively as

TFPt =

∫ ∞
ÂNEt

Af,NEt +

∫ ∞
ÂINCt

Af,INCt =
ξ

ξ − 1

(
NEtÂ

NE
t + INCtÂ

INC
t

)
, (55)

Âavt =
TFPt
ηt

, (56)
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ΣA
t =

ξ

(ξ − 2) ηt

[
NEt

(
ÂNEt

)2

+ INCt

(
ÂINCt

)2
]
. (57)

Both technology and non-technology shocks explain the volatility of the growth rates of

TFPt, Â
av
t and ΣA

t .19 Shocks to incumbents’ productivity determine about 92% of average

efficiency growth volatility, while the contribution of non-technology shocks is less than 8%.

We observe a similar variance decomposition for the growth rate of efficiency dispersion. By

contrast, demand shocks have predominant effects on TFP growth through their impact on

the extensive margin.

In Figure 8 we show the model estimates for (55), (56) and (57). Panel (a) reports the

sample evolution of Âavt and of the zt shifter that drives the efficiency growth rate for potential

new entrants. Taking zt as a reference, a marked slowdown in Âavt characterizes the years

between the recessions that hit the U.S. economy in the mid-70s and at the beginning of

the 80s. Then the trend is gradually reversed and, since 2008, Âavt lies above the zt shifter.

Indeed, average growth rates over subperiods convey the unambiguous message of a gradual

slowdown in gzt (see Table 4).20

Table 4: Annualized average growth rates (BM)

1966:I-1975:I 1975:II-1982:IV 1983:I-2008:IV 2009:I-2019:IV

zt shifter 1.52% 0.93% 0.91% 0.72%
Average firm efficiency 0.76% 0.56% 1.19% 1.06%

Note: Annualized average growth rates of the smoothed estimates of zt and Âavt at the posterior mean.

Panel (b) of Figure 8 plots the post-1966 series of firm size, proxied by the average size

of the Zt bundle, and firm efficiency dispersion. Hopenhayn et al. (2018) find that average

firm size, measured by the number of employees, rose by 20% between 1977 and 2014. Our

measure, that also accounts for capital accumulation, predicts a 28% increase over the same

period. As for productivity dispersion, Kehrig (2015) reports that it “doubled” over the

19See Table A2 in the Appendix for the unconditional variance decomposition.
20These results are broadly consistent with the historical decomposition of observed entry rates, essentially

driven in the long run by the adverse(favorable) shocks to zt(Ψt).
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Figure 8: Baseline model predictions for TFP, firm efficiency and firm size

Note: All lines depict quarterly smoothed estimates at the posterior mean (BM estimation). Panel (a): aver-

age firm efficiency Âavt (blue) and productivity shifter zt (orange); 1966:I-2019:IV (both series are normalized

at 1 in 1966:I). Panel (b): Average firm size (blue), proxied by the ratio of factor-inputs bundle (Zt) over

the number of firms (ηt), and productivity dispersion (orange), i.e. weighted average of the productivity

dispersion of NEs and INCs (dispersion of INC (NE) firm productivities is computed as the variance

of the left-truncated Pareto distribution INC (NE) firms draw efficiency from; the truncation is given by

the respective productivity threshold that varies over time, while the shape of the distribution is constant);

1966:I-2019:IV (the smoothed series of Zt and ηt are normalized at 1 in 1966:I). Panel (c): NE productiv-

ity threshold ÂNEt (blue) and INC productivity threshold ÂINCt (orange); 1966:I-2019:IV (both series are

normalized at 1 in 1966:I). Panel (d): average firm efficiency Âavt (blue) and model-predicted TFP ηtÂ
av
t

(orange); 1971:I-2019:IV (Âavt is normalized at 1 in 1966:I).

period 1972-2009. Our estimation implies that in 2009 the productivity-dispersion measure

was about 2.3-times larger than in 1972.

Panel (c) of Figure 8 reports the productivity thresholds Âjt , showing that the efficiency

gap between incumbents and new entrants has gradually increased since the mid-1980s. This

is consistent with the evidence that incumbents accounted for the lion’s share of innovation

in the latest decades (Hsieh and Klenow, 2018; Garcia-Macia et al., 2019).

Kehrig (2015) shows that the dispersion of firms’ total factor productivity in U.S. man-

ufacturing is greater in recessions than in booms. He builds on this result to discriminate
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between “Schumpeterian” models that unambiguously praise the cleansing effect of reces-

sions, and the “sullying view” supported by models in the tradition of Melitz (2003), where

the procyclical pattern of input costs generates opposite effects of efficiency dispersion. Panel

(b) of Figure 8 shows that, even if our INT-firm sector is inherently “Schumpeterian”, the

estimated pattern of efficiency dispersion in recessions is ambiguous. According to our esti-

mates (Figure 9), during recession episodes in 2001 and 2007, the productivity thresholds are

almost entirely determined by technology shocks, but these shocks did not play a key role in

determining the recession (see Panel (a) of Figure 7).21

Figure 9: Historical shock decomposition: detrended average threshold, 1978:I-2019:IV
(BM)

Note: The solid line is the detrended average productivity threshold in log-deviations from its steady state

(quarterly estimate at the posterior mean); the colored bars are the contributions of the grouped shocks (“De-

mand” includes monetary policy, inflation target, MEI, and government spending shocks; “Other” includes

labor supply shocks and contribution from initial values).

Extensive margin dynamics drive our estimated TFP measure, as shown in Panel (d) of

Figure 8 where the wedge between TFP and average efficiency is entirely accounted for by

21To rationalize this result, consider that, because of the predominant presence of incumbents in the market,
Âavt is mainly affected by the INCs’ threshold and the latter is strongly sensitive to the price/cost margin
which does not necessarily decrease during recessions. See Figure A2 in the Appendix for the smoothed path
and the historical decomposition of price/cost margins. We further discuss the determinants of productivity
thresholds in Appendix C.3.4.
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variations in the mass of firms. Consistently with previous evidence (Field, 2010, 2011), TFP

growth is strongly procyclical, it has declined since 2005, but the GFC apparently marked

a watershed, as pointed out in studies such as Anzoategui et al. (2019) and Bianchi et al.

(2019).22 Differently from these studies, our estimates interpret the TFP slowdown during

the GFC as the consequence of adverse non-technology shocks that mainly operated through

the extensive margin (Figure 10).

Figure 10: Historical shock decomposition: model-predicted TFP growth rate, 2003:I-
2012:IV (BM)

Note: The solid line is TFP growth in log-deviations from its steady state (quarterly estimate at the posterior

mean). The colored bars are the contributions of the grouped shocks (“Other” includes contribution from

initial values).

4.4 Other measures of business dynamism.

In addition to the entry rate, our model bears predictions for other measures of business

dynamism, such as net entry and turnover, respectively NEt−EXt
ηt

and NEt+EXt
ηt

. The model

does a reasonably good job in predicting either variable (see Panel (a) and (b) of Figure 11),

but there is a tendency to predict a pro(counter)cyclical pattern that is difficult to detect

in the observed series for net entry(turnover). In fact, these results are driven by the gap

22By contrast, Fernald (2014) points out that productivity behaved similarly to previous episodes of severe
recession, but recovered strongly once the recession ended.

33



between the model-predicted and the observed exit rate series, as shown in Panel (c) of Figure

11.

Figure 11: Firm-mass growth (% deviations from sample mean), 1979-2019 (BM)

Note: Solid lines show annualized smoothed estimates at the posterior mean (BM estimation); dashed lines

display the respective counterparts in the data (BDS). The model-implied series in panels (a), (b) and (c)

are indexed at the 2000:I observed values. Both series in Panel (d) are expressed in percentage deviations

from their sample mean.

Since exit flows contribute to determine the number of firms, one might wonder whether

this bias could have implications for the interpretation of the entry-rate drivers. Up to

first-order approximation, condition (3) can be decomposed as follows

êntry = HN̂Et − (1−H) ÊX t − (1−H)

T0∑
j=1

(
N̂Et−j − ÊX t−j

)
, (58)

where x̂t denotes log-deviations from the steady state, H is the survival probability of

firms in the deterministic steady state, T0 denotes the initial sample period. Figure 12

suggests that the current estimate of exit has virtually no effect on our interpretation of the

observed entry rate. The accumulated past balance between exit and entry has a limited
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effect and matters only after the GFC. In this period it is driven by the accumulation of exit

flows, but its importance in determining êntry remains limited.

Figure 12: Entry rate decomposition, 1978:I-2019:IV (BM)
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Note: In both panels, the solid line depicts log-deviations from the steady state of the quarterly entry-rate

smoothed estimate at the posterior mean (BM estimation). The colored bars display the model-implied

contribution to those deviations coming from (i) current new entrants, (ii) current firm exits, (iii) past

accumulated new entrants, and (iv) past accumulated firm exits. Panel (b) groups contributions from (iii)

and (iv).

Due to the overestimated countercyclical pattern of the exit rate, our model also exagger-

ates the procyclicality of ∆ηt (see Panel (d) of Figure 11). This effect is particularly strong

in occasion of the recessions that marked the beginning and the end of the Great Moderation

period. This suggest that our results concerning the deep TFP fall in occasion of the GFC

should be taken with some caution.

5 Conclusions.

The paper establishes a strong connection between the long-term decline in the entry rate and

the asymmetric technology shocks that persistently hit new entrants and incumbent firms.

By contrast, the model-implied cumulative increase in price markups did not contribute to
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the concurrent fall in the entry rate. Importantly, these results are confirmed even if we

exclude the entry rate from the observed variables.

Our results emphasize the importance of the extensive margin in determining the long-

term slowdown in TFP growth. The extensive margin also introduces a hitherto unexplored

channel for the transmission of non-technology shocks to the cyclical component of aggregate

TFP.

The model challenges popular wisdom on the “cleansing” effect of recessions: demand-

driven recessions do not necessarily generate survival of the fittest.

Finally, we highlight the reduction in price/cost margins of INT-firms as a single statistic

that captures the effects of technology shocks on entry decisions. Micro-econometric analysis

should investigate the responsiveness of the entry rate to price/cost margins. We leave this

for future work.

36



References

Adjemian, S., Bastani, H., Juillard, M., Karamé, F., Mihoubi, F., Mutschler, W., Pfeifer, J.,
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Appendices

A Additional Tables and Figures.

A.1 Tables.

Table A1: Posterior estimates comparison

Prior Posterior mean

Dist. Mean Stdev. BM SRM SSM UEM SNK

σ norm 1.500 0.3750 1.173 1.168 1.233 1.116 1.118
ϕ norm 2.000 0.5000 2.354 2.297 2.323 2.039 2.131
h beta 0.700 0.1000 0.840 0.847 0.842 0.799 0.813
100(β−1 − 1) gamm 0.250 0.2000 0.169 0.149 0.198 0.181 0.389
π̄ss gamm 0.750 0.4000 0.716 0.707 0.720 0.715 0.705
100(gz − 1) norm 0.400 0.1000 0.350 0.351 0.430 0.311 0.379
κπ norm 1.500 0.2500 1.736 1.762 1.638 1.651 1.787
κy norm 0.200 (0.125) 0.0500 0.239 0.240 0.222 0.246 0.006
κ∆y

norm 0.125 0.0500 - - - - 0.025
ρi beta 0.750 0.1000 0.764 0.770 0.750 0.751 0.784
Γp beta 0.650 0.1000 0.834 0.833 0.804 0.813 0.711
µp beta 0.500 0.1500 0.247 0.271 0.371 0.296 0.206
Γw beta 0.650 0.1000 0.815 0.821 0.876 0.805 0.788
µw beta 0.500 0.1500 0.315 0.330 0.336 0.774 0.564
γI norm 4.000 1.5000 9.415 9.694 8.574 7.515 7.542
σa beta 0.500 0.1500 0.884 0.887 0.777 0.863 0.766
φp norm 1.250 0.1250 - - - - 1.663
∆L norm 1.000 (0.000) 2.0000 - - 1.106 - -2.735
ρµ beta 0.500 0.2000 0.556 0.548 0.460 0.795 0.815
ρr beta 0.500 0.2000 0.305 0.325 0.288 0.239 0.273
ρp beta 0.500 0.2000 0.984 0.982 0.976 0.964 0.973
ηp beta 0.500 0.2000 0.363 0.359 0.401 0.482 0.845
ρl beta 0.500 0.2000 0.172 0.173 0.134 0.225 -
ρw beta 0.500 0.2000 - - - - 0.933
ηw beta 0.500 0.2000 - - - - 0.874
ρΨ beta 0.500 0.2000 0.247 0.240 0.255 0.173 -
ρa beta 0.500 0.2000 - - - - 0.930
ρg

s

beta 0.500 0.2000 0.961 0.961 0.975 0.966 0.957
ρrp beta 0.500 0.2000 - - - - 0.147

Note: Terms in round brackets refer to the prior specifications used in the estimation of the benchmark NK

model, when different from ours.

The interpretation of κy differs between the NK benchmark and our model. In the former, κy determines the

Taylor rule response to output gap deviations from the steady state, where the output gap is defined as the

difference between the actual and the flexible-price output level. κ∆y
stands for the monetary policy weight

on output gap growth. Conversely, monetary policy in our model targets output growth through κy.

φp is the estimated share of fixed costs and ρrp is the persistence of risk premium shocks, both absent in our
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model, while ρw and ρa are the autocorrelation coefficients of the wage markup and stationary technology

processes, respectively. These two shocks can be thought of as counterparts of our labor supply and incum-

bent shocks.

∆L enters the observation equation of hours worked as a “correction” term, when the steady state of L does

not equal the observed sample mean.

Table A2: Productivity measures variance decomposition (BM)

Shocks

Incumbents Entry Supply Demand

TFP growth 8.2% 2.4% 22.0% 67.4%
Average efficiency growth 91.9% 0.4% 1.5% 6.3%
Efficiency dispersion growth 93.1% 0.4% 1.3% 5.3%

Note: Unconditional variance decomposition at the posterior mean. Non-technology shocks are grouped into

two categories: supply and demand. “Supply” includes price markup and labor supply shocks; “Demand”

includes monetary policy, inflation target, MEI, and government spending shocks.
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A.2 Figures.

Figure A1: BM predictions: profit share of GDP and markups, 1966:I-2019:IV

Note: Panel (a): quarterly smoothed estimates, at the posterior mean, of profits of INT-firms and retailers

as a share of GDP (blue), and of retailers’ price markup over marginal costs (orange). Panel (b): the solid

line is markup in log-deviations from its steady state (quarterly estimate at the posterior mean); the colored

bars are the contributions of the grouped shocks (“Demand” includes monetary policy, inflation target, MEI,

and government spending shocks; “Other” includes labor supply shocks and contribution from initial values).

Figure A2: BM predictions: price/cost margin of INT-firms and observed entry rate 1978:I-
2019:IV

Note: Panel (a): quarterly smoothed estimates, at the posterior mean, of the price/cost margin of INT-firms

(orange), and of the entry rate (blue). Panel (b): the solid line is the price/cost margin in log-deviations

from its steady state (quarterly estimate at the posterior mean); the colored bars are the contributions of

the grouped shocks (“Demand” includes monetary policy, inflation target, MEI, and government spending

shocks; “Other” includes labor supply shocks and contribution from initial values).
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Figure A3: IRFs comparison (BM vs SNK)

Note: Quarterly estimated mean impulse responses (solid lines) with 90% HPD intervals (dashed lines) to one-standard-deviation shocks.
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B Estimation technical appendix.

B.1 Data.

Data on real GDP (GDPC1), the GDP deflator (GDPDEF), nominal personal consump-
tion expenditures (PCEC), and nominal fixed private investment (FPI) are produced at a
quarterly frequency by the Bureau of Economic Analysis, and are included in the National
Income and Product Accounts (NIPA). Average weekly hours in the nonfarm business sector
(PRS85006023) and hourly compensation in the nonfarm business sector (PRS85006103) are
produced by the Bureau of Labor Statistics (BLS) at a quarterly frequency. The civilian
employment level (CE16OV) and the civilian non-institutional population (CNP16OV) are
also produced by the BLS at a monthly frequency. We take quarterly averages of the monthly
data. The federal funds rate (FEDFUNDS) is obtained from the Federal Reserve Board’s
H.15 release at a business day frequency. We take quarterly averages of the annualized daily
data. All these data are collected from FRED (except for hourly wages, retrieved from the
BLS database), and are transformed following S&W. Data on total firms and firm births (de-
fined as firms born during the last 12 months) are produced by the Census Bureau, within
the Business Dynamics Statistics (BDS) survey, at an annual frequency. In a robustness
estimation, we use shadow rate data from Wu and Xia (2016).23

Table B1: Data Transformation.

Data Transformation

Output growth 100∆ ln
(

GDPC1
CNP16OVindex

)
Investment growth 100∆ ln

[(
FPI

GDPDEF

)
1

CNP16OVindex

]
Consumption growth 100∆ ln

[(
PCEC

GDPDEF

)
1

CNP16OVindex

]
Wages growth 100∆ ln

(
PRS85006103
GDPDEF

)
Hours worked 100 ln

[(
PRS85006023
CNP16OVindex

) (
CE16OVindex

100

)]
Inflation 100∆ ln (GDPDEF )

Nominal interest rate FEDFUNDS/4 [SHADOWRATE/4]

Entry rate 100 ln
(

1 + BIRTHSy
(FIRMSy+FIRMSy−1)/2

)

B.2 Estimation.

The model is solved using a first-order approximation around the deterministic steady state
and is estimated using Dynare 4.6.2 (Adjemian et al., 2022). The baseline estimation is run
with a single Markov Chain of 2 million draws, of which we discard the first 400 thousands.

23https://sites.google.com/view/jingcynthiawu/shadow-rates
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The overall acceptance ratio of the Metropolis-Hastings algorithm is close to 26%. Estimation
results are virtually identical if we run four chains of 500 thousand draws each.

B.2.1 Prior-posterior plots.

All posterior distributions are well-shaped and tighter than the respective priors, with the
exception of the steady-state inflation rate whose prior and posterior distributions almost
overlap, indicating a weak identification for this parameter. We do not consider this a major
weakness of our estimation, since the posterior mean is close to the average inflation rate in
the data and to the estimates in the DSGE literature.
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B.2.2 Convergence.

We consider two convergence diagnostics tests. The Geweke test uses a χ-square test to
compare the means of draws from 400,000 to 720,000 and from 1,200,000 to 2,000,000. The
null hypothesis is that the two sample means are equal, suggesting that draws from the two
samples come from the same distribution, and thus that the chain has converged. In order
to tackle the impact of draws’ correlation on the estimates, a Newey and West (1987)-type
estimator is used that tapers spectral density. The Raftery and Lewis test identifies the
number of burn-in and the number of draws after burn-in required to estimate the q=0.025
percentile (corresponding to a 95% HPDI) with a precision of 0.5% with 95% certainty. If
the number of burn-in and required draws is below the number of draws considered in the
estimation, we can conclude that the chain has converged.
Looking at the p-values accounting for serial correlation (with taper), the null hypothesis for
equality of means of the Geweke test (Table B2) is not rejected for all parameters but κπ and
ρl, at a 5% significance level. On the contrary, the Raftery and Lewis test (Table B3) delivers
a maximum number of required draws well below the 2 million used in our estimation. In
order to further examine the convergence of κπ and ρl, we look at the trace plots of the
two parameters (see Figures B1 and B2): in neither case we spot evident drifts or jumps to
other modes. Therefore, we are led to conclude that the Markov Chain has converged to the
ergodic distribution.

Table B2: Geweke (1992) Convergence Tests, based on means of draws 400000 to 720000
vs 1200000 to 2000000. p-values are for χ2-test for equality of means.

Posterior p-values

Parameter Mean Std No Taper 4% Taper 8% Taper 15% Taper

σεz 0.0051 0.0003 0.3410 0.9308 0.9232 0.9069
σεµ 0.0906 0.0154 0.0000 0.5877 0.5327 0.5003
σεr 0.0024 0.0001 0.0000 0.1742 0.1723 0.1592
σεp 0.0795 0.0105 0.0006 0.8070 0.7835 0.7506
σεl 0.1584 0.0370 0.0000 0.3895 0.3909 0.3583
σεΨ 0.0058 0.0003 0.0000 0.1566 0.1995 0.2521
σεgs 0.0333 0.0017 0.0000 0.1229 0.0868 0.0659
σεπ 0.0011 0.0002 0.0000 0.3065 0.2557 0.2323
σ 1.1723 0.0418 0.0000 0.4398 0.4220 0.3782
ϕ 2.3524 0.4382 0.0000 0.4047 0.3570 0.3561
h 0.8402 0.0331 0.0000 0.7524 0.7516 0.7310
100(β−1 − 1) 0.1687 0.0797 0.0000 0.1027 0.1037 0.0663
π̄ss 0.7145 0.3385 0.0000 0.1459 0.1240 0.1242
100(gz − 1) 0.3508 0.0437 0.8886 0.9892 0.9877 0.9866
κπ 1.7367 0.1770 0.0000 0.0301 0.0155 0.0081

(Continued on next page)
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Table B2: (continued)

Posterior p-values

Parameter Mean Std No Taper 4% Taper 8% Taper 15% Taper

κy 0.2391 0.0453 0.0000 0.3856 0.3896 0.4003
ρi 0.7642 0.0274 0.0000 0.2307 0.3054 0.3418
Γp 0.8337 0.0215 0.0002 0.8269 0.8024 0.7629
µp 0.2471 0.0975 0.0000 0.0961 0.0838 0.0568
Γw 0.8153 0.0493 0.0000 0.4520 0.4308 0.4062
µw 0.3161 0.1458 0.0000 0.1583 0.1291 0.1166
γI 9.4144 1.1290 0.9057 0.9924 0.9915 0.9904
σa 0.8844 0.0481 0.0000 0.5240 0.5560 0.5497
ρµ 0.5555 0.0686 0.0000 0.3768 0.3432 0.3348
ρr 0.3059 0.0617 0.0000 0.7046 0.7270 0.7181
ρp 0.9841 0.0064 0.0000 0.4358 0.4603 0.4485
ηp 0.3625 0.0686 0.0000 0.5989 0.5790 0.5659
ρl 0.1722 0.0636 0.0000 0.0203 0.0084 0.0003
ρΨ 0.2472 0.0666 0.0000 0.5467 0.5078 0.4864
ρg

s
0.9609 0.0105 0.1021 0.9080 0.8946 0.8667

Table B3: Raftery/Lewis (1992) Convergence Diagnostics, based on quantile q=0.025 with
precision r=0.005 with probability s=0.950.

V ariables M(burn− in) N(req.draws) N +M(totaldraws) k(thinning)

σεz 56 60622 60678 1
σεµ 68 73755 73823 1
σεr 90 95568 95658 11
σεp 72 77938 78010 1
σεl 253 293418 293671 18
σεΨ 65 70697 70762 1
σεgs 83 85280 85363 8
σεπ 91 98169 98260 1
σ 1040 1123633 1124673 43
ϕ 77 83752 83829 1
h 236 251685 251921 15
100(β−1 − 1) 46 50096 50142 1
π̄ss 37 39767 39804 1

(Continued on next page)
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Table B3: (continued)

V ariables M(burn− in) N(req.draws) N +M(totaldraws) k(thinning)

100(gz − 1) 68 73880 73948 1
κπ 54 58891 58945 1
κy 87 94815 94902 1
ρi 111 121169 121280 1
Γp 106 115155 115261 1
µp 53 57460 57513 1
Γw 77 83610 83687 1
µw 59 63990 64049 1
γI 105 109813 109918 11
σa 180 195344 195524 1
ρµ 375 411367 411742 1
ρr 81 87327 87408 1
ρp 109 118552 118661 1
ηp 64 69629 69693 1
ρl 53 56834 56887 1
ρΨ 78 84465 84543 1
ρg

s
173 189324 189497 1

Maximum 1040 1123633 1124673 43
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Figure B1: Trace plot for parameter κπ
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Figure B2: Trace plot for parameter ρl
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C Theoretical DSGE model

C.1 Set of dynamic equations.

Tables from (C1) to (C3) summarize the system of dynamic equations:

Descriptions Equations

1) Marginal utility of consumption λt = (Ct − hCt−1)−σ exp
(
σ−1
1+ϕ

ζ ltL
1+ϕ
t

)
,

2) Marginal rate of substitution MRSt = (Ct − hCt−1)
(
ψζ ltL

ϕ
t

)
,

3) Euler equation from capital λt
Et{λt+1} = β

[
Et
{rkt+1}
Qt

+ (1− δ)Qt+1

Qt

]
,

4) Euler equation it = (πt+1) λt
λt+1β

,

5) FOC variable capital utilization rkt = γ1 + γ2 (Ut − 1) ,

6) Euler equation for investments 1 = Qtµ
i
t

[
1−

(
S ′
(

It
It−1

)
It
It−1

+ S
(

It
It−1

))]
+ βEt

{
λt+1

λt
Qt+1µ

i
t+1S

′
(
It+1

It

)(
It+1

It

)2
]

,

7) Capital law of motion Kt+1 = µit

(
1− S

(
It
It−1

))
It + (1− δ)Kt,

8) Production bundle cost pzt =
[
rkt
α

]α [
wt

(1−α)

](1−α)

,

9) Incumbents’ productivity threshold ÂINCt =

[
wtφINC−Et{Λt+1Ht+1V avt+1]

γ
γ

1−γ (1−γ)

]1−γ
(pzt )γ

pt
,

10) New entrants’ productivity threshold ÂNEt =

[
wtφNE−Et{Λt+1Ht+1V avt+1]

γ
γ

1−γ (1−γ)

]1−γ
(pzt )γ

pt
,

11) Discounted value of future dividends V av
t+1 = ξ(1−γ)

ξ(1−γ)−1
(1−γ)
γ

[
pt+1ÂINCt+1 γ

(pzt+1)
γ

] 1
1−γ

− wt+1φ
INC + Et+1

[
Λt+2Ht+2V

av
t+2

]
,

12) Survival probability Ht =

(
ÂINCt−1 gz(1−δINC)Ψt

ÂINCt

)ξ
,

Table C1: List of dynamic equations
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Descriptions Equations

13) New entrants NEt =
(

zt
ÂNEt

)ξ
,

14) Incumbents INCt = ηt−1Ht,
15) Exit EXt = ηt−1 (1−Ht) ,
16) Active firms ηt = NEt + INCt,
17) Share of entry entryt = NEt

ηt
,

18) Share of exit exitt = EXt
ηt

,

19) INT-output Y INT
t =

ξ{[wtφNE−Et{Λt+1Ht+1V avt+1]]NEt+[wtφINC−Et{Λt+1Ht+1V avt+1]]INCt}
pt[ξ(1−γ)−1]

,

20) Capital demand Kt = KINT
t = αγ

rkt
ptY

INT
t ,

21) Labor demand Lt = LINTt = (1−α)γ
wt

ptY
INT
t +NEtφ

NE + INCtφ
INC ,

22) TFP TFPt = ξ
ξ−1

(
NEtÂ

NE
t + INCtÂ

I
t

)
,

23) Average firms’ efficiency Âavt = TFPt
ηt

24) Efficiency dispersion ΣA
t = ξ

(ξ−2)ηt

[
NEt

(
ÂNEt

)2

+ INCt

(
ÂINCt

)2
]

25) Solow Residual SRt = Yt

[(Kt)α(Lt)
1−α]

γ ,

26) Set of Calvo price eq. (1) a1,t = Yt
(
ΠC∗
t

)
+ β Γp

ΠC∗
t

ΠC∗
t+1

(
π
µp
t π̄

(1−µp)
ss

πt+1

)1−εpt
λt+1

λt
a1,t+1,

27) Set of Calvo price eq. (2) a2,t = P̃t Yt + λt+1

λt
β Γp

(
π
µp
t π̄

(1−µp)
ss

πt+1

)(−εpt )
a2,t+1,

28) Set of Calvo price eq. (3) a1,t =
εpt a2,t

εpt−1
,

29) Set of Calvo price eq. (4) 1 = (1− Γp)
(
ΠC∗
t

)1−εpt + Γp

(
π
µp
t−1π̄

(1−µp)
ss

πt

)1−εpt
,

30) Set of Calvo price eq. (5) ξpt = (1− Γp)
(
ΠC∗
t

)(−εpt ) + Γp

(
π
µp
t−1π̄

(1−µp)
ss

πt

)(− εpt )
ξpt−1,

Table C2: List of dynamic equations
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Descriptions Equations

31) Set of Calvo wages eq. (1) aw1,t = λtw
εw

t Lt + βΓw

(
πµwt π̄

(1−µw)
ss

πt+1

)εw−1

aw1,t+1,

32) Set of Calvo wages eq. (2) aw2,t = ϕw
(1+θ)εw

t L1+θ
t + β Γw

(
πµwt π̄

(1−µw)
ss

πt+1

)(1+θ)εw

aw2,t+1,

33) Set of Calvo wages eq. (3) (w#
t )1+εwθ = εw

εw−1

aw2,t
aw1,t

,

34) Set of Calvo wages eq. (4) w1−εw
t = (1− Γw)

(
w#
t

)1− εw

+ Γw

(
wt−1

πµwt−1π̄
(1−µw)
ss

πt

)1−εw

,

35) Monetary policy rule
Rnt
Rnss

=
(
Rnt−1

Rnss

)ρi [(
πt
πt

)κπ (
Yt
Yt−1

)κy]1−ρi
ζrt ,

36) Aggregate resources constraint Yt =
Y INTt

ξpt
= Ct + It + gSt Y ,

37) Technology frontier evolution (NEs) zt = gzt zt−1,
38) Shock to NEs’ technology ln(gzt ) = (1− ρz) ln(gz) + ρz ln(gzt−1) + εzt ,
39) Shock to INCs’ technology ln (Ψt) = ρΨ ln (Ψt−1) + εΨ

t ,
40) Shock to inflation target ln (πt) = ln (1− ρπ) πss + ρπ ln (πt−1) + επt ,
41) Shock to monetary policy ln(ζrt ) = ρr ln(ζrt−1) + εrt ,
42) Shock to labot supply ln(ζ lt) = ρl ln(ζ lt−1) + εlt,
43) Shock to MEI ln(µt) = ρµ ln(µt−1) + εµt ,

44) Shock to public expenditure ln(gSt ) = ρg
s
ln(gSt−1) + εg

s

t .

Table C3: List of dynamic equations
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C.2 The de-trended model.

The model economy follows a Balanced Growth Path (BGP). Output Yt, consumption Ct,
capitalKt , investment It and wage wt grow at the endogenous rate gt; Further, the technology
frontier zt and the technology thresholds Âjt grow at the exogenous rate gtz. The remaining
variables are stationary. In order to compute the deterministic steady state and the de-
trended model, we have to identify the relation that binds the different growth rates.

C.2.1 Households.

We can start our computation from the Households first order conditions. Since we know
that C grows at the same rate of Y , we can show that the Lagrangian multiplier s.s. follows
this path:

λ̃t =
λt
gt

=

(
C̃t − h

C̃t−1

gt

)−σ
exp

(
σ − 1

1 + ϕ
L1+ϕ
t

)

M̃RSt =

(
C̃t − h

C̃t−1

gt

)
(ψLϕt )

From the Households Euler conditions, we can find the de-trended Euler equations on
capital:

λt
Et{λt+1}

= β

[
Et
{rkt+1}
Qt

+ (1− δ)Qt+1

Qt

]

λ̃tgt+1

β Et

{
λ̃t+1

} =

(
Qt+1r

k
t+1

Qt

+
Qt+1

Qt

(1− δ)

)

C.2.2 INT-firms.

Once that we have defined the costs of production we can compute the productivity thresh-
olds:

Âjt =

[
wtφ

j − Et
{

Λt+1Ht+1V
av
t+1

]
γ

γ
1−γ (1− γ)

]1−γ
(pzt )

γ

pt

This implies:

Âjt =

gtwtφj − Et
{
gt

Λ̃t+1

gt+1
Ht+1Ṽ

av,s
t+1 gt+1

]
γ

γ
1−γ (1− γ)

1−γs

·


[
r̃kt
α

]α [
gtw̃t

(1−α)

](1−α)

p
1
γ

t


γ
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Âjt = g1−αγ
t

wtφj − Et
[
Λ̃t+1Ht+1Ṽ

av
t+1

}
γ

γ
1−γ (1− γ)

1−γ

(p̃zt )
γ

pt

˜ÂNE,INCt =

w̃tφj − Et
{

Λ̃t+1Ht+1Ṽ
av
t+1

}
γ

γ
1−γ (1− γ)

1−γ

(p̃zt )
γ

pt

Since the number of firms is assumed to be stationary it will follow that g1−αγ
t = gzt

ηt =

 z

˜̂ANEt

ξS

+ ηt−1

 ˜̂
AIt−1g

z
(
1− δINC

)
Ψt

gzt
˜̂
AIt

ξS

The remaining de-trendization is straightforward.
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C.2.3 Set of de-trended equations.

Tables from (C4) to (C6) summarize the system of de-trended equations:

Descriptions Equations

1) Marginal utility of consumption λ̃t =
(
C̃t − h C̃t−1

gt

)−σ
exp

(
σ−1
1+ϕ

L1+ϕ
t

)
,

2) Marginal rate of substitution M̃RSt =
(
C̃t − h C̃t−1

gt

)
(ψLϕt ) ,

3) Euler equation from capital λ̃tgt+1

β Et{λ̃t+1} =
(
Qt+1rkt+1

Qt
+ Qt+1

Qt
(1− δ)

)
,

4) Euler equation it = πt+1

β
gt+1λ̃t

λ̃t+1
,

5) FOC variable capital utilization rkt = γ1 + γ2 (Ut − 1) ,

6) Euler equation for investments 1 = Qtµ
i
t

[
1−

(
S ′
(
Ĩtgt
Ĩt−1

)
Ĩtgt
Ĩt−1

+ S
(
Ĩtgt
Ĩt−1

))]
+ βEt

{
λ̃t+1

λ̃tgt+1
Qt+1µ

i
t+1S

′
(
Ĩt+1gt+1

Ĩt

)(
Ĩt+1gt+1

Ĩt

)2
]

,

7) Capital law of motion K̃t+1 = µit

(
1− S

(
ĨtgKt
Ĩt−1

))
Ĩt + (1−δ)K̃t

gKt
,

8) Production bundle cost p̃zt =
[
rkt
α

]α [
w̃t

(1−α)

](1−α)

,

9) Incumbents’ productivity threshold
˜̂
A
INC

t =

[
w̃tφINC−Et{Λ̃t+1Ht+1Ṽ avt+1}

γ
γ

1−γ (1−γ)

]1−γ
(p̃zt )γ

pt
,

10) New entrants’ productivity threshold
˜̂
A
NE

t =

[
w̃tφNE−Et{Λ̃t+1Ht+1Ṽ avt+1}

γ
γ

1−γ (1−γ)

]1−γ
(p̃zt )γ

pt
,

11) Discounted value of future dividends Ṽ av
t+1 = ξ(1−γ)

ξ(1−γ)−1
(1−γ)
γ

[
pt+1

˜̂
A
INC

t+1 γ

(p̃zt+1)
γ

] 1
1−γ

− w̃t+1φ
INC + Et+1

[
Λ̃t+2Ht+2Ṽ

av
t+2

]
,

12) Survival probability Ht =

( ˜̂
A
INC

t−1 gz(1−δINC)Ψt˜̂
A
INC

t gzt

)ξ

,

Table C4: List of de-trended equations
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Descriptions Equations

13) New entrants NEt =

(
z˜̂

A
NE

t

)ξ
,

14) Incumbents INCt = ηt−1Ht,
15) Exit EXt = ηt−1 (1−Ht) ,
16) Active firms ηt = NEt + INCt,
17) Share of entry entryt = NEt

ηt
,

18) Share of exit exitt = EXt
ηt

,

19) INT-output Ỹ INT
t =

ξ{[w̃tφNE−Et{Λt+1Ht+1Ṽ avt+1}]NEt+[w̃tφINC−Et{Λ̃t+1Ht+1Ṽ avt+1}]INCt}
pt[ξ(1−γ)−1]

,

20) Capital demand K̃t = K̃INT
t = αγ

rkt
ptỸ

INT
t ,

21) Labor demand Lt = LINTt = (1−α)γ
w̃t

ptỸ
INT
t +NEtφ

NE + INCtφ
INC ,

22) Average productivity T̃FP t = ξ
ξ−1

(
NEt

˜̂
A
NE

t + INCt
˜̂
A
I

t

)
,

23) Average firms’ efficiency
˜̂
A
av

t = T̃ FP t
ηt

24) Efficiency dispersion Σ̃A
t = ξ

(ξ−2)ηt

[
NEt

(˜̂
A
NE

t

)2

+ INCt

(˜̂
A
INC

t

)2
]

25) Solow Residual S̃Rt = Ỹt

[(K̃t)
α

(Lt)
1−α]

γ ,

26) Set of Calvo price eq. (1) ã1,t = Ỹt
(
ΠC∗
t

)
+ β Γp

ΠC∗
t

ΠC∗
t+1

(
π
µp
t π̄

(1−µp)
ss

πt+1

)1−εpt
λ̃t+1

λ̃t
ã1,t+1,

27) Set of Calvo price eq. (2) ã2,t = P̃t Ỹt + λ̃t+1

λ̃t
β Γp

(
π
µp
t π̄

(1−µp)
ss

πt+1

)(−εpt )
ã2,t+1,

28) Set of Calvo price eq. (3) ã1,t =
εpt ã2,t

εpt−1
,

29) Set of Calvo price eq. (4) 1 = (1− Γp)
(
ΠC∗
t

)1−εpt + Γp

(
π
µp
t−1π̄

(1−µp)
ss

πt

)1−εpt
,

30) Set of Calvo price eq. (5) ξpt = (1− γ)
(
ΠC∗
t

)(−εpt ) + γ

(
π
µp
t−1π̄

(1−µp)
ss

πt

)(−εpt )
ξpt−1,

Table C5: List of de-trended equations

58



Descriptions Equations

31) Set of Calvo wages eq. (1) ãw1,t = λ̃tw̃
εw

t Lt + βΓw

(
πµwt π̄

(1−µw)
ss

πt+1

)εw−1

ãw1,t+1,

32) Set of Calvo wages eq. (2) ãw2,t = ϕw̃
(1+θ)vw
t L1+θ

t + β Γw

(
πµwt π̄

(1−µw)
ss

πt+1

)(1+θ)εw

ãw2,t+1,

33) Set of Calvo wages eq. (3) (w̃#
t )1+εwθ = εw

εw−1

ãw2,t
ãw1,t

,

34) Set of Calvo wages eq. (4) w̃1−εw
t = (1− Γw)

(
ŵ#
t

)1− εw

+ Γw

(
w̃t−1π

µw
t−1π̄

(1−µw)
ss

gtπt

)1−εw

,

35) Monetary policy rule
Rnt
Rnss

=
(
Rnt−1

Rnss

)ρi [(
πt
πt

)κπ (
Ỹt

gtỸt−1

)κy]1−ρi
ζrt ,

36) Aggregate resources constraint Ỹt =
Ỹ INTt

ξpt
= C̃t + Ĩt + gSt Y ,

37) Growth rates gt = (gzt )
1

1−αγ ,
38) Shock to NEs’ technology ln(gzt ) = (1− ρz) ln(gz) + ρz ln(gzt−1) + εzt ,
39) Shock to INCs’ technology ln (Ψt) = ρΨ ln (Ψt−1) + εΨ

t ,
40) Shock to inflation target ln (πt) = ln (1− ρπ) πss + ρπ ln (πt−1) + επt ,
41) Shock to monetary policy ln(ζrt ) = ρr ln(ζrt−1) + εrt ,
42) Shock to labor supply ln(ζ lt) = ρl ln(ζ lt−1) + εlt,
43) Shock to MEI ln(µt) = ρµ ln(µt−1) + εµt ,

44) Shock to public expenditure ln(gSt ) = ρg
s
ln(gSt−1) + εg

s

t .

Table C6: List of de-trended equations
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C.3 Key derivations.

C.3.1 Equation (25) - Firms’ continuation value.

We start from the (12) and (13) to get

V avt+1 = Et

{
V
(
Ajt+1

)}
=

=

∫ +∞

ÂINCt+1

Vt+1

(
AINC,jt+1

)
ft

(
AINC,jt+1

)
d
(
AINC,jt+1

)
= Ht+1V

av
t+1

=

∫ +∞

ÂINCt+1

(1− γ)

[
Af,jt+1

pt+1γ
γ(

pzt+1

)γ
] 1

1−γ

ft

(
AINC,jt+1

)
d
(
AINC,jt+1

)
− wt+1φ

INC
t + Et

{
Λt+2Vt+2

(
Af,jt+2

)}
=

=
(1− γ)

γ

[
pt+1γ(
pzt+1

)γ
] 1

1−γ ∫ +∞

ÂINCt+1

[
Af,jt+1

] 1
1−γ

ft

(
AINC,jt+1

)
d
(
AINC,jt+1

)
− wt+1φ

INC
t + Et

{
Λt+2Vt+2

(
Af,jt+2

)}
=

=
(1− γ)

γ

[
pt+1γ(
pzt+1

)γ
] 1

1−γ ∫ +∞

ÂINCt+1

[
Af,jt+1

] 1
1−γ−ξ−1

d
(
AINC,jt+1

)
− wt+1φ

INC
t + Et

{
Λt+2Vt+2

(
Af,jt+2

)}
=

=
(1− γ)

γ

[
pt+1γ(
pzt+1

)γ
] 1

1−γ ∫ +∞

ÂINCt+1

[
Af,jt+1

] 1
1−γ−ξ−1

d
(
AINC,jt+1

)
− wt+1φ

INC
t + Et

{
Λt+2Vt+2

(
Af,jt+2

)}
=

=
ξ (1− γ)

ξ (1− γ)− 1

(1− γ)

γ

[
pt+1Â

INC
t+1 γ(

pzt+1

)γ
] 1

1−γ

− wt+1φ
INC
t+1 + Et+1

{
Λt+2Ht+2V

av
t+2

}
.

C.3.2 Equation (26) - Productivity thresholds.

Also in this case, we get the condition from (12) and (13)

Vt

(
Âjt

)
= (1− γ)

[
Âjt

ptγ
γ

(pzt )
γ

] 1
1−γ

− wtφj + Et
{

Λt+1V
av
t+1

]
= 0

(1− γ)

[
Âjt

ptγ
γ

(pzt )
γ

] 1
1−γ

= wtφ
j − Et

{
Λt+1V

av
t+1

]
Âjt =

[
wtφ

j − Et
{

Λt+1Ht+1V
av
t+1

]
(1− γ) pt

]1−γ [
pzt
ptγ

]γ

C.3.3 Equation (32) - Aggregate INT-output.

We start from the idiosyncratic production function.

yf,jt = Af,jt

[
(kf,jt )α(lf,jt )(1−α)

]γ
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Aggregating for NEs idiosyncratic productivity we get

Y NE
t =

∫ +∞

ÂNEt

Af,NEt

[(
kf,NEt

)α (
lf,NEt

)1−α
]γ
dF
(
Af,NEt

)
=

∫ +∞

ÂNEt

Af,NEt

[
pt
pzt
Af,NEt γ

] γ
1−γ

dF
(
Af,NEt

)
=

[
pt
pzt
γ

] γ
1−γ
∫ +∞

ÂNEt

(
Af,NEt

) 1
1−γ

dF
(
Af,NEt

)
= ξzξt

[
pt
pzt
γ

] γ
1−γ
∫ +∞

ÂNEt

(
ÂNEt

) 1
1−γ−ξ−1

d
(
Af,NEt

)
=

ξ (1− γ)

ξ(1− γ)− 1
NEt

(
ÂNEt

) 1
1−γ
(
γpt
pzt

) γ
1−γ

,

and, aggregating for INCs idiosyncratic productivity we get

Y INC
t =

∫ +∞

ÂINCt

Af,INCt

[(
kf,INCt

)α (
lf,INCt

)1−α
]γ
dF
(
Af,INCt

)
=

∫ +∞

ÂINCt

Af,INCt

[
pt
pzt
Af,INCt γ

] γ
1−γ

dF
(
Af,INCt

)
=

[
pt
pzt
γ

] γ
1−γ
∫ +∞

ÂINCt

(
Af,INCt

) 1
1−γ

dF
(
Af,INCt

)
= ξ

[
ÂINCt−1 gz (1− δ) Ψt

]ξ [ pt
pzt
γ

] γ
1−γ
∫ +∞

ÂINCt

(
ÂINCt

) 1
1−γ−ξ−1

d
(
Af,INCt

)
=

ξ (1− γ)

ξ(1− γ)− 1
INCt

(
ÂINCt

) 1
1−γ
(
γpt
pzt

) γ
1−γ

.

C.3.4 Elasticity of productivity thresholds.

In order to measure the sensitivity of the two productivity thresholds to their different com-
ponents, we compute the first-order approximation of equation (26):

˜̂
A
j

t =

w̃tφj − Et
{

Λ̃t+1Ht+1Ṽ
av
t+1

}
γ

γ
1−γ (1− γ)

1−γ

(p̃zt )
γ

pt
.

In the detrended steady state,

˜̂
A
j

=

[
w̃φj −HṼ av

γ
γ

1−γ (1− γ)

]1−γ
(p̃z)γ

p
.
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Log-linearizing,24

âjt =
1− γ

wφj −HV av

[
φjŵt −HV av(Λ̂t+1 + Ĥt+1 + V̂ av

t+1)
]
− (p̂t − γp̂zt ).

From our calibration, φNE < φINC implies that the sensitivity of the thresholds to the
approximated wedge between participation costs and expected future profits is larger for
NEs. On the other hand, sensitivity to the price/cost margin is the same for each type of
firm.

24Where x̂t is the detrended log-deviation of the generic variable xt. For the sake of a clear notation the
log-deviation of Âjt is labeled by âjt .
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