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Abstract

This paper presents a stylised social-interaction game where the implementation of a lockdown

policy is delegated to the decentralised, uncoordinated decision-making of a large population of

atomistic agents – assumed risk-neutral and demographically heterogeneous. Compliance with

policy prescriptions is socially beneficial but individually costly. In the static, it determines

the individual risk of contagion in social interactions (at the micro-level) and the number of

new infections (at the macro-). Over time, it affects the peak prevalence of the disease and the

duration of the epidemic. Albeit atomistic, agents act strategically, for they rationally anticipate

others’ behaviour when deciding (not) to comply. Three are the key results of our analysis. First,

the strategic incentives faced by the agents co-evolve with the epidemic. When prevalence is low,

compliance is a dominated strategy. When prevalence is high, individual decisions to comply

are strategic substitutes: older/weaker agents self-protect by implementing social distancing and

younger/healthier ones free-ride. Second, the strategic incentives faced by the agents co-evolve,

too, with their beliefs about susceptibility. When they disregard any information about their past

behaviour and use the aggregates to estimate susceptibility, strategic substitutability prevails.

When beliefs are path-dependent, both complementarity and substitutability may arise. Third,

we show that SIR-based models that fail to account for the endogenous response to policy

prescriptions may substantially overestimate the effectiveness of lockdowns. Incidentally, we

highlight that myopic behaviour may cease to be rational in a dynamic setting where agents’

beliefs about susceptibility are path-dependent.
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“As for how to enter the city, Renzo had heard in a general way that there were very strict orders

to admit no one without a certificate of health, but that on the other hand anyone who used his

wits and seized the right moment could enter quite easily. Such was, in fact, the case. . . ”

— Alessandro Manzoni, The Betrothed: XXXIV.

“<You can’t make more stringent ones than those we have now.>

<No. But every person in the town must apply them to himself.>

Cottard stared at him in a puzzled manner, and Tarrou went on to say that there were far too

many slackers, that this plague was everybody’s business, and everyone should do his duty.”

— Albert Camus, The Plague: Part II.

1. Introduction

Among the many lessons to be learnt after two years of SARS-CoV-2 pandemic, two seem to be –

in our opinion – particularly relevant for policy-making. First: albeit necessary, mandatory social

distancing in general, and strict lockdown policies in particular, embed a clear trade-off between

‘health and wealth’: while containing the spread of the disease, they impose significant economic

losses onto firms and individuals at once – in the form e.g. of unearned profits, reduced income,

and/or higher unemployment rates. Caught between a rock and a hard place, and relentlessly

pressed by the state of emergency, the policy-maker strives to mediate between the many compet-

ing – often opposite – interests that necessarily inform policy-design when public health is at stake

– protection of the elderly and of the weak, regular provision of the essential healthcare services,

social discontent, economic performance and political consent among the others. Not surprisingly,

to strike the right balance is not an easy task. Second: if it is true that to devise social-distancing

norms properly is an hard job, even harder it is to have them properly implemented by the citizenry.

This is the issue at the core of our paper. Fear and superstition allegedly prevented an effective

containment of the great plague of Milan in 1629-31. Apathy and denial took the blame in the

fictional plague of Orano, depicted by Camus roughly 300 years later. There is no need to appeal to
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irrationality, however, to make sense of inefficient implementation. Things may be (relatively) sim-

pler: “collective interests do not necessarily produce collective action” [Heckathorn, 1996]1. When

the population is sufficiently large, compliance with norms is individually costly but irrelevant in

the aggregate. Monitoring by the public authority is necessarily partial and typically imperfect, and

when punishment for misbehaviour is an unlikely event, free-riding may become a tempting option.

The two quotations that open this paper epitomise the clash between the (moral) obligation felt by

the individual to do his/her own duty, and the selfish but rational incentive to step back and let

others do their duty. Thus, even if an optimal lockdown policy was indeed available to the public

authority, Pareto-efficiency at the social level would by no means guarantee efficient implementation

at the individual one.

In a recent paper, [Bisin and Moro, 2022a] highlight that näıvely-designed social-distancing

norms entail significant hidden costs, and stress the necessity to analyse the design and implementa-

tion of lockdown policies jointly by accounting for the endogenous response of agents to – changes in

– policy prescriptions. While the health-wealth trade-off, however, and the related policy dilemmas,

have (rightfully) been – and still remain – the object of study of an extensive literature in epidemi-

ological economics2, the problem of the enforcement of containment policies in general, and that of

their decentralized implementation in particular, seem to have received relatively mild(er) attention.

There are notable exceptions. [Engle et al., 2021], [Farboodi et al., 2021] and [Toxvaerd, 2020], for

instance, embed the workhorse SIR framework3 with fully microfounded behavioural rules, thus im-

posing the formal rigour of equilibrium reasoning to the dynamics of the epidemiological aggregates

they derive “bottom-up” from the social interactions of rational optimisers. [Battiston et al., 2022]

build on the seminal work of [Ehrlich and Becker, 1972] to study self-protection in epidemic through

the lens of a two-player insurance game. [Bisin and Moro, 2022a, Bisin and Moro, 2022b] consider

adaptive behavioural responses within an ABM framework, where rule-of-thumb agents interact

randomly in a limited space and adapt their social behaviour in response to changes in environmen-

tal conditions and/or policy prescriptions. One interesting result seems to hold across all modelling

approaches briefly outlined above: when endogenous social-distancing is included into the picture,

1 See page 250 for the quoted passage.

2 See e.g. [Alvarez et al., 2021], [Jones et al., 2021] and [Eichenbaum et al., 2021].

3 [Kermack and McKendrick, 1927] – se also [Avery et al., 2020] for an excellent survey of the related literature.
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the disease-diffusion process and the dynamics of the main epidemiological aggregates significantly

differ from those observed in a standard SIR framework.

The contribution of this paper to the literature that studies the endogenous implementation of

social-distancing norms is three-fold. First, it identifies a set of key incentives that drive individ-

ual decisions (not) to comply with policy prescriptions when agents are strategically sophisticated.

Second, it studies how such incentives (co-)evolve with the main epidemiological aggregates. Third,

it shows how they respond to different levels of enforcement. To this end, we present a stylised

but sufficiently rich social-interaction game where the implementation of a lockdown policy is dele-

gated to the decentralised, uncoordinated decision-making of a large population of atomistic agents,

assumed risk-neutral and demographically heterogeneous. Compliance with policy prescriptions is

socially beneficial but individually costly, and affects the individual risk of infection in interac-

tions with others by determining both (i) the total number (mass) of social interactions (extensive

margin) and (ii) the composition of the interacting subpopulation in terms of disease-prevalence

(intensive margin). At the macro-level, it determines total number (mass) of new infections, the

peak prevalence of the disease and the overall duration of the epidemic. Agents act strategically,

and rationally anticipate others’ behaviour when deciding whether or not to comply with norms –

in doing so internalizing partially the spillover effect on individual risk of the aggregate compliance

rate. Closest in spirit to our model is [Engle et al., 2021], that will serve as a natural benchmark for

our analysis throughout the entire paper. Three are the key results we outline. First, the strategic

incentives that drive agents’ decision-making co-evolve with the epidemic. When disease prevalence

is low, compliance is not rational(isable) at the individual level. When prevalence is high(er), agents’

decisions to comply are strategic substitutes and opportunistic behaviour may arise. This result is

consistent with the findings of [Engle et al., 2021]. Second, strategic incentives co-evolve, too, with

agents’ beliefs about their susceptibility to the infection. As an agent grows confident about his/her

immunity, his/her propensity to comply increases; the opposite holds true as he/she suspects to be

susceptible. In such an environment, the more susceptibles comply, the riskier social interactions

are for non-compliant ones. Individual decisions to comply become strategic complements. To the

best of our knowledge, this result is entirely novel, and therefore complements and clarifies the

substitutability result of [Engle et al., 2021]. Third, SIR-based dynamics that do not account for
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the endogenous response of agents to policy prescriptions tend to (substantially) overestimate the

effectiveness of social-distancing norms.

The paper is structured as follows. In Section 2 we outline the static social-interaction game, and

in Section 3 we characterise its unique Nash equilibrium. In Section 4 we use the static equilibrium

characterisation to simulate a behavioural SIR augmented with endogenous compliance rates. In

Section 5 we extend the static game of Section 2 by allowing agents to know their epidemiological

statuses, and show that the path-dependency of beliefs is crucial in the determination of the strategic

incentives that drive endogenous compliance. In Section 6 we conclude with a brief summary of the

paper and of its main results.

2. The Model

2.1 Setup

Consider a stylised environment populated by a benevolent policy-maker (the government) and a

continuum of atomistic, risk-neutral agents of measure one (the citizens), uniformly distributed over

the interval [0, 1] and indexed by i. Citizens are heterogeneous with respect to age, sex, general

health conditions, presence of pre-existing and/or chronic pathologies, etc. . . and their heterogeneity

is parameterised by a single summary statistic x(i) ∈ R, defined as

x(i) = x̄+ ε(i) , (1)

with x̄ ∈ R a common component – identical for all citizens –, and where ε(i) is purely idiosyncratic

white noise, in the form

ε(i) ∼ N
(
0, σ2

)
(2)

for all i ∈ [0, 1]. We refer to x(i) as the demographic profile of citizen i. All idiosyncratic com-

ponents ε(i) are assumed to be i.i.d. across individuals, so that x̄ can easily be interpreted as the

median/average profile population-wide, while σ > 0 becomes a natural proxy of the cross-sectional

demographic heterogeneity of the citizenry4. We impose an arbitrary ordering over the demographic

4 Indicate with x̂ the median/average demographic profile. Citizens are atomistic and uniformly distributed over
[0, 1], hence x̂ is obtained via integration over the unit interval with a unitary density. Building on [Judd, 1985], it is
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profiles, whereby lower values of x(i) correspond to younger and/or healthier citizens – conversely,

higher value of x(i) correspond to older and/or weaker ones. (The ordering is arbitrary but with-

out loss of generality.) All structural parameters and definition (1) are assumed to be common

knowledge.

2.2 Disease

At an arbitrary date – that we conventionally indicate with t = 0 – the government becomes aware

of the fact that a mass I
¯
∈ (0, 1) of citizens had been infected by an unknown pathogen (the virus).

The virus causes a potentially mortal disease, identified by two characteristics: i) contagiousness

and ii) mortality. The former indicates the probability β ∈ (0, 1] to become infected after being

exposed to the virus – it is identical across citizens. The latter refers to the probability of death

upon infection. It is heterogeneous across individuals and determined by their demographic profiles:

older and/or weaker citizens have an higher probability to die after infection than younger and/or

healthier ones. Formally, we define the probability of death upon infection per-period, qDi , as a

function q : R2 7−→ [0, 1] in the form

qDi = Φ
(
θ + αx(i)

)
, (3)

where Φ ( · ) indicates the Normal Standard CDF, α > 0 scales the sensitivity to individual-specific

demographic traits x(i), and θ ∈ R parameterises the disease-specific component of mortality –

larger values of θ indicate higher mortality, ceteris paribus. In words: the risk of death faced by the

i-th individual upon infection is determined by both disease-specific characteristics and by his/her

individual-specific resilience to it. Once infected, an individual faces a probability to die qDi in

each subsequent period. Following [Ellison, 1964], the median/average mortality population-wide

immediate to check that

x̂ =

∫ 1

0

x(i) di =

∫ 1

0

x̄di+

∫ 1

0

ε(i)di = x̄ , almost surely ,

since LLN reasoning extended to continua of i.i.d. random variables yields that
∫ 1

0
ε(i) di = E [ε(i)] = 0 almost

surely, with E [ · ] the expectation operator – see also [Vives, 1988], page 854, footnote 4, and [Vives, 2014], page 1207,
footnotes 15 and 16. Notice further that the distinction between median and average is here immaterial, for the
cross-sectional (joint) distribution of the x(i) statistics is symmetric.
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(per-period) Q̄D can be written as5

Q̄D = Φ

(
θ + α x̄√
1 + α2σ2

)
(4)

with x̄ the median/average resilience (that coincides with the median/average demographic profile)

and σ2 the cross-sectional demographic variance – see equation (1). Note that the disease partitions

the citizenry into three epidemiological aggregates: Susceptibles, Infected, Recovered – SIR6. We

call e (i) the epidemiological status of the i-th citizen, i.e.

e(i) : [0, 1] 7−→
{
SY,ASY, S,R

}
(5)

for every i ∈ [0, 1]. Infected citizens areASYmptomatic with probability p ∈ (0, 1], and SYmptomatic

with probability (1− p) – and remain so until they recover or die. Symptoms are assumed to be

apparent and disease-specific, so that each symptomatic infected is aware of his/her status, that

remains unknown, conversely, to the asymptomatic. Irrespective of the presence or lack of apparent

symptoms, infected individuals recovers with (per-period) probability pRi defined as

qRi = γ
(
1− qDi

)
, (6)

with γ ∈ (0, 1) and where qDi is the (individual-specific) probability of death post-infection defined

by (3). In words: in each period subsequent to the infection an infected individual faces a probability

of recovery qDi that is proportional to his/her resilience to the disease. Consistently with (3) and

(6), the (per-period) probability of remaining infected, qIi , can be written as

qIi = 1− qDi − qRi

=
(
1− γ

) (
1− qDi

) . (7)

The corresponding (population-wide) averages Q̄R and Q̄I are defined consistently with (4). Fi-

nally, a recovered individual is immune forever, so that a susceptible citizen is, by construction, an

5 See also [Owen, 1980] for a list of integrals of Gaussian functions where the same result is stated with a different
proof.

6 More precisely, the population is partitioned into Susceptibles, Infected, Recoverd and Dead – SIRD. The dis-
tinction is immaterial for the results.
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individual who had never been previously infected. As in Subsection 2.1, all structural formulae

and parameters are assumed to be common knowledge.

2.3 Contagion

Infected citizens are infective, and spread the contagion by interacting with susceptible ones. All

symptomatic infected are quarantined immediately as they begin to show disease-specific symp-

toms. It is impossible, however, to identify asymptomatics, that remain free to interact with others

and spread the disease. The passing mechanism is such that, when the virus infects a susceptible

individual, it remains latent for one period, and suddenly ‘wakes’ at the beginning of the subsequent

one. During the latency period the individual is infected but not infective. Only once the virus

turns active can the individual pass the disease to others. The probability of infection of a sus-

ceptible citizen is determined by three factors: (i) the extent of his/her social interactions; (ii) the

composition of the interacting population – in terms of group-specific disease prevalence; (iii) the

environment in which interactions do occur. The first and the second factor(s) relate to individual

and collective behaviour, respectively, and are therefore endogenous. The third refers to contingent

environmental conditions – city vs. countryside, closed vs. open space, high vs. low demographic

density, and the like –, and it is therefore completely exogenous. Besides that based on endogene-

ity/exogeneity, a second distinction is here relevant: from the point of view of the generic agent,

individual social behaviour is a control variable, while others’ behaviour and its interaction with

the environment amount to a pure – global – externality7. While the effect of the former on the

individual probability of infection is straightforward – the larger the number of social interactions,

the higher the risk of contagion he/she faces, ceteris paribus –, less clear-cut a priori is the effect of

the latter, that results from the superimposition of an extensive- and intensive-margin component.

2.3.1 Extensive-Margin Component

The extensive-margin component of the global externality relates to the fact that the marginal effect

on the risk of contagion faced by a non-compliant individual of an increase in the number (mass)

7 Since we avoid imposing any structure on the spatial dimension of the model (e.g. by assuming that agents interact
within well-specified network or on a lattice), there is no meaningful way in this model to keep track of local, pairwise
interactions. Social interactions are here necessarily of a mean-field type, and the spillover effect of the aggregate
social behaviour on the individual risk of infection is global in the sense that it is symmetric across agents, irrespective
of their (unmodeled) location into the system.
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Figure 1. Chain of possible epidemiological patterns post-infection for the generic i-th individual
that becomes infected at the arbitrary date t.

of social interactions per se depends on the congestion of the environment in which interactions

actually occur. Congestion, in turn, is determined by the (exogenous) carrying capacity of the

environment: a small room gets overcrowded if few people enter it, while cohorts of individuals are

necessary to (over)crowd a stadium. [Bisin and Moro, 2022a] stress the first-order importance of

the spatial/geographical dimension of social contacts in determining the dynamics of a contagion

diffusion process. Consistently, we embed our model with a (very) reduced-form representation

of spatial interactions, whereby the larger is the mass of interacting citizens, the closer are their

contacts, the higher is the probability of contagion in social interactions, ceteris paribus. Indicating

with M ∈ [0, 1] the mass of the interacting (sub)population, we formalize the extensive-margin

effect via a congestion externality φ (M) in the form

φ (M) = (M)ϕ , (8)
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where the coefficient ϕ ≥ 0 scales the speed of congestion as follows: (i) with ϕ ∈ (0, 1) congestion

obtains very soon as M becomes larger; (ii) with ϕ = 1 (over)crowding increases linearly in M ;

(iii) with ϕ > 1 congestion occurs very slowly, and the mass of interacting individuals M must be

(very) large to induce overcrowding8.

2.3.2 Intensive-Margin Component

The intensive-margin component relates to the fact that the risk of contagion in social interactions

depends on the composition of the interacting (sub)population in terms of group-specific disease

prevalence, and that the latter may not remain constant as the mass of interacting individuals

varies. This is the case, for instance, if some types of agents systematically ignore social-distancing

norms more frequently than others. Consider again a mass M ∈ [0, 1] of citizens that interact,

with ASY (M), S(M) and R(M) the number (mass) of ASYmptomaitc infected, Susceptible and

Recovered individuals in M , respectively. The ratio

π (M) =
ASY (M)

ASY (M) + S(M) +R(M)
, (9)

indicates the group-specific prevalence of the disease in subpopulationM – and can be interpreted as

the probability to interact with an asymptomatic infected under the assumption that each individual

interacts with all other individuals in M9. A simple thought experiment may help to further clarify

the issue. Compare the following three situations: in the first, the compliance rate is identical

for all citizens, irrespective of epidemiological states e(i); in the second, recovered citizens ignore

social-distancing norms while the asymptomatics and susceptibles comply; in the third, recovered

and susceptible citizens comply while the asymptomatics ignore social distancing. As the mass

of interaction M increases, the group-specific disease prevalence converges (i) to the prevalence

population-wide in the first situation, (ii) to zero in the second, and (iii) to one in the third. The

take-home message is: when group-specific prevalence is considered, the marginal effect on the risk

of contagion faced by a non-compliant individual of an increase in the mass of social interactions

8 If ϕ = 0 there is no congestion externality, and the risk of contagion in social interactions is entirely determined
by the prevalence of the disease into the interacting (sub)population.

9 Due to the continuum-player specification, π (M) constitutes de facto a measure of the frequency of encounters
with asymptomatic infected – assuming that interactions occur with the entire mass of individuals M .
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depends crucially on the underlying behavioural rule that generated the observed increase – and

its sign is therefore ambiguous a priori.

2.3.3 The Global Externality

Indicating with G (M) the global externality, that parameterises the risk of contagion faced by a

non-compliant individual when M counterparties opted for the same course of action, we can write

G (M) = β π (M) φ (M)

= β

(
ASY (M)

ASY (M) + S(M) +R(M)

)(
M
)ϕ (10)

with φ (M) and π (M) the congestion externality (extensive-margin) and the group-specific preva-

lence effect (intensive-margin), defined by (8) and (9) respectively. In words, as the number of

interacting individualsM increases, the risk of contagion faced by the generic non-compliant citizen

(i) unambiguously increases along the extensive margin, φ ( · ) due to (over)crowding of the envi-

ronment, but (ii) may increase or decrease along the intensive margin π ( · ) depending behavioural

rule(s) that govern social interactions. In Subsection 3 and in Section 5 we fully endogenise te

intensive-margin component π ( · ) by pinning down the compliance rules of citizens as rigorously-

defined equilibrium strategies.

2.3.4 Risk of Contagion in Social Interactions: Wrap-Up

To sum up, the modelling strategy we adopted to link the aggregate social behaviour of the citizenry

to the risk of contagion faced by the single non-compliant individual can be effectively explained

via a simple similitude. Imagine a queue of individuals that enters sequentially a room of given

width. As more and more individuals arrive (the interacting subpopulation M), the room gets

more and more crowded, until overcrowding finally obtains (the congestion externality φ (M), that

increases in M). Keeping constant the rate of new arrivals, the speed at which overcrowding occurs

is determined by the width of the room (parameter ϕ). As the room gets more and more crowded,

interactions become more and more ‘concentrated’. What is the effect of overcrowding on the

probability of contagion faced by a susceptible individual that enters the room? Concentration

increases the likelihood of contagion when the individual interacts with an infected counterparty
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(due to increased physical proximity), but is completely irrelevant when he/she interacts with a

non-infected (the intensive-margin effect π (M), whose relation with M is ambiguous). Overall,

the net effect of increased concentration on the likelihood of contagion is entirely determined by

the composition of new arrivals. If disease-prevalence among the individuals in the queue remains

constant, the effect is unambiguously positive: the probability of meeting an infected in the room

is stable, but the physical proximity of contacts increases. If disease-prevalence decreases with new

arrivals (e.g. as time passes susceptible individuals only remain in the queue), physical proximity

increases but the probability of interacting with an infected counterparty in the room decreases.

The net effect depends on the relative magnitude of the two margins: if the (positive) marginal

effect of increased physical proximity is larger than (negative) the dilution effect of new arrivals

with low(er) group-specific prevalence, than risk increases overall. If the opposite holds true, then

the overall effect is negative. In Appendix D we test the robustness of the qualitative argument

outlined in this Subsection simulating a formal (toy) model of social interaction where physical

proximity increases the probability of contagion. Our simulations suggest that the argument may

be quite robust.

2.4 Containment: The (Static) Social-Interaction Game

In order to – try to – contain the epidemic, in t = 0 the government imposes mandatory social

distancing (the lockdown) to a share L ∈ (0, 1] of citizens, that are formally required by the public

authority to abstain from social interactions for one period. While the lives of citizens extend

indefinitely in time, the social-interaction game is played only once – and it is therefore purely static.

The share 1 − L of exempted citizens can be thought of as identifying the providers of goods and

services deemed ‘essential’ by the policy-maker – healthcare, public security and transportation, and

the like – se e.g. [Alvarez et al., 2021]. In the presence of partial and imperfect monitoring by the

public authority, the implementation of the lockdown boils down to the willingness of individuals

to comply (or not) with policy prescriptions. Citizens are here assumed to be (instrumentally)

rational, strategically sophisticated utility-maximisers, whose decision-making is driven essentially

by self-interest10: any appeal to morality and/or sense of duty is therefore bound to remain a dead

10 Needless to say, we do not intended this as a moral theory of the human nature. Rather, we do consider it as an
extreme, often unrealistic, but methodologically convenient assumption, useful at imposing some structure – and a
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letter. As a consequence, the policy-maker has no suitable alternative to get its policy implemented

but to resort to command-and-control11: all citizens caught cheating on social distancing norms

are imposed a fine k > 0. Individuals that are alive and without symptoms are assumed to enjoy

a (reservation) utility normalized to zero. Every infected citizens faces, in each period subsequent

to the infection, an idiosyncratic probability of death and recovery qDi and qRi – see equations (3)

and (6), respectively. Death entails an arbitrarily large utility loss D ≫ 0 assumed identical across

citizens12. Agents’ common time preferences are summarized by the (common) discount factor

λ ∈ (0, 1) so that, at t = 0, the expected utility D̃i of an infected citizen with demographic profile

x(i) can be written as

D̃i = λ2D

 Φ
(
θ + αx(i)

)
1− λ (1− γ)

(
1− Φ

(
θ + αx(i)

) )
 , (11)

see Appendix B for its derivation. At the moment social distancing is mandated by the authority,

each citizen is faced with an all-or-nothing (binary) choice: comply (a(i) = 1) or not (a(i) = 0)

with policy prescriptions. The median/aggregate compliance rate population-wide A ∈ [0, 1] can

therefore be defined as

A =

∫ 1

0
a(i) di . (12)

Compliance bears no direct utility, but yields full protection from contagion13. Non-compliance

yields a fixed (warm-glow) benefit b > k, but entails a positive risk of infection, parameterised

by the global externality (10) and directly determined by the aggregate social behaviour of the

citizenry – the lower the compliance rate A, the larger the number/frequency of interactions, overall,

the higher the risk of contagion faced by a non-compliant individual. Note that by complying with

social-distancing norms a citizens is forced to give up the warm-glow benefits from social interactions,

great deal of formal rigour – onto the problem(s) under analysis in this paper.

11 Consider this as a ‘worst-case scenario’.

12 This entails de facto that life has the same value to all the individuals, irrespective of their demographic profile.

13 Differently from [Engle et al., 2021], therefore, the number/frequency of social interactions is explicitly action-
contingent in our model and, consequently, so it is the individual risk of contagion – see footnote 12, (page 7) in
[Engle et al., 2021].
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so that the element

c =


cE = b− k with lockdown

cNE = b without lockdown

(13)

can be interpreted without loss of generality as the implicit cost of social distancing14 – and where

the subscripts E and NE indicate “enforcement” and “no-enforcement”, respectively. When the

government is enforcing a lockdown, c coincides de facto with the cost of compliance with policy

prescriptions. When there is no mandatory social distancing, it can be interpreted as the implicit

cost of self-isolation15. The distinction is important in our model: if the risk of contagion is

sufficiently high, older/weaker citizens may use social isolation as a device for self-protection even in

the absence of a lockdown16. Self-protection is not binding, however, for younger/healthier citizens,

that can only be nudged into social distancing via active enforcement by the public authority. By

reducing the warm-glow benefit from social interactions, active enforcement entails here a reduction

in the implicit cost of compliance, ceteris paribus – see equation (13).

3. Equilibrium Characterization

Due to the presence of a global spillover effect G ( · ) of the aggregate social behaviour on individual

risk of contagion, any (candidate) equilibrium profile must entail some form of mutual consistency

between (i) the compliance rules individually used by citizens – pinned down by rational cost-benefit

reasoning –, and (ii) the actual risk of contagion they induce once aggregated. The subjective beliefs

every citizen holds about his/her epidemiological status e(i) play a crucial role in this model – the

issue is extensively discussed in Section 5. To ensure sufficient analytical tractability, we assume

that (i) a citizens not showing disease-specific symptoms ignores his/her status e(i), but (ii) all

epidemiological aggregates be common knowledge. (Both assumptions are relaxed in Section 5.)

For the sake of consistency, an important exception must be made for all those citizens that are or

have been previously symptomatic: since symptoms are disease-specific, they cannot but be aware

14 It is an opportunity cost.

15 See [Toxvaerd, 2020], footnote 1, page 1.

16 The logic is close in spirit to that outlined by [Ehrlich and Becker, 1972] and, more recently, by
[Battiston et al., 2022].
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of being infected when symptomatic, and of being recovered once they cease to be so. This is just

a detail, but an important one: while symptomatic citizens have no bearing on the outcome of

interaction game – they are quarantined as they begin to show symptoms –, this is not the case for

the mass (1− p)R of citizens that recovered after having been symptomatic in the past. Since the

risk of (re)infection is null by assumption, non-compliance is a dominant strategy for them, i.e.

Pr
(
e(i) = S

∣∣∣ symptoms) = 0 =⇒ a∗ (i) = 0 (14)

holds. All the other citizens, that never showed disease-specific symptoms in the past, have no

available alternative to form beliefs about their statuses e(i) but to resort to the observable epi-

demiological aggregates. Similarly to [Engle et al., 2021], we therefore assume that

Pr
(
e(i) = S

∣∣∣no symptoms
)

=
ASY

ASY + S + pR
(15)

holds. In words: the probability of being susceptible estimated by the i-th citizen that never

showed symptoms coincides with the (known) disease-prevalence within the mass of citizens that

never showed symptoms. Differently from the citizens that recovered from a symptomatic infection,

those which never showed symptoms cannot condition their decisions (not) to comply with social-

distancing on on their states e(i): they are forced to use the same compliance rule. As a consequence,

irrespective of the specific compliance rule adopted by the non-symptomatics, the aggregate mass

M =M(A) of non-compliant (interacting) citizens must be

M(A) = (1− LA)
(
ASY + S + pR

)
+ (1− p)R (16)

so that, consistently, the intensive-margin component of the risk of contagion – the congestion

externality (8) – can be (re)written as

φ (A) =
[
(1− LA)

(
ASY + S + pR

)
+ (1− p)R

]ϕ
(17)
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and the intensive-margin component – the group-specific disease prevalence (9) within the interact-

ing subpopulation – becomes

π (A) =
ASY (1− LA)

(1− LA) (ASY + S + pR) + (1− p)R
. (18)

for any arbitrary compliance rate A ∈ [0, 1] as defined by (12). Substituting (16) and (18) into (10)

we can finally re-write the individual risk of infection faced by the generic non-compliant citizen –

that never showed symptoms – as

G(A) =
(ASY ) (1− LA)[

(1− LA)
(
ASY + S + pR

)
+ (1− p)R

]1−ϕ
. (19)

Note that, when all non-symptomatic citizens are forced to adopt the same compliance rule, it holds

that

∂

∂A
φ (A) = − ϕL (ASY + S + pR )[

(1− LA) (ASY + S + pR ) + (1− p)R
]1−ϕ

< 0 (20a)

∂

∂A
π (A) = − (1− p)L (R) (ASY )[

(1− LA) (ASY + S + pR ) + (1− p)R
] 2 < 0 (20b)

for every compliance rate A. The interpretation is straightforward. As A increases, the mass of

interacting people decreases, overall. This drives down the risk of contagion ceteris paribus via the

marginal effect of the congestion externality – for any given carrying capacity of the environment, the

smaller the mass of interacting individuals, the lower the level of congestion. Since the recovered

from symptomatic infections (1− p)R do not comply for sure, an increase in A amounts to a

reduction in the share of asymptomatic infected in the interacting subpopulation, hence to a decrease

in the group-specific prevalence π (A). The overall effect on the risk of contagion G(A) is therefore

negative, for

∂

∂A
G(A) = φ (A)

(
∂

∂A
π (A)

)
+ π (A)

(
∂

∂A
φ (A)

)
< 0 (21)

must hold via (20a) and (20b). For the sake of brevity, we adopt henceforth the following compact

notation: (i) the vector Ω summarises all the environmental parameters (including the calibra-
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tion)17; the vector E = ⟨ASY, S,R ⟩ summarises the epidemiological aggregates. Consistently, the

action-contingent expected utility of the generic non-symptomatic citizen can be written as

u
(
a(i), A;Ω,E

)
=


−c if a(i) = 1

−D̃ β G(A) if a(i) = 0

, (22)

where β G(A) is the individual risk of contagion in social interactions, and D̃i is the discounted

cost of death post-infection defined by (11). A rational citizen abstains from social interactions if

and only if u (a(i) =1, A; · ) ≥ (a(i)=0, A; · ) for any arbitrary compliance rate A18. Indicate with

∆i (A) the differential payoff

∆i (A) = u
(
a(i) = 1, A;Ω,E

)
−
(
a(i) = 0, A;Ω,E

)
= −c+ D̃ β G(A)

(23)

that parameterises the relative appeal of compliance w.r.t. non-compliance to a citizen with demo-

graphic profile x(i) when the aggregate compliance is A. It is immediate to check that, for any x(i),

the incentive to comply strictly decreases as the aggregate/median compliance rate A increases.

Hence, when citizens ignore their epidemiological states e(i), their individual decisions to comply

are strategic substitutes. Proposition 1 summarizes the result.

PROPOSITION 1. If all citizens that never showed disease-specific symptoms ignore their epi-

demiological states e(i), then their individual decisions to comply with social-distancing norms are

strategic substitutes.

Proof. The proof is trivial, for the result stems directly from (20)-(21), whereby

∂

∂A
∆i (A) = D̃i β

(
∂

∂A
G(A)

)
< 0

holds.

17 For the sake of formal rigour, it holds that Ω ∈ O ⊂ R2 × R5
+ × [0, 1]3, with ω = ⟨ θ, x̄, α, σ, ϕ, c,D, β, γ, p ⟩ its

generic element.

18 Tie-breaking rules have no bearing on the results due to the continuum-player specification of the model.
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The result is in line with the findings of [Engle et al., 2021], and the interpretation is similar. If

an increase in the aggregate compliance A unambiguously reduces the risk of contagion in social

interactions, then the propensity to comply decreases as high compliance rates are expected. Public

health becomes a public good, and its efficient provision may be hindered by free-riding. Our analy-

sis, however, complements and clarifies the result by characterising who free-rides: not surprisingly,

the citizens that risk less upon infection are those with the lowest propensity to comply, for they

can free-ride on the (costly) effort of citizens that risk more and opt observe social distancing for

self-protection. Note indeed from (23) that the individual incentive to implement social distancing

strictly increases in x(i) via the discounted cost of death post-infection D̃i. This is sensible: the

incentive to (self-)protect from contagion is larger the higher is the probability of death upon getting

infected. As a consequence, the propensity of older/weaker citizens to abstain from social inter-

action is higher than that of younger/healthier ones, ceteris paribus. Notice further that ∆i (A)

is continuous in x(i), so that it is sensible to guess that, in equilibrium, individual decisions to

comply be governed by monotone strategies – contingent to the (observed) demographic profiles

x(i). Consistently, we characterise the (unique) equilibrium of the social-interaction game via a

guess-and-solve approach, whereby we postulate that

x(i) ≥ x̂ (A;Ω,E) =⇒ a(i) = 1

holds, in equilibrium, for all i ∈ [0, 1] that never showed disease-specific symptoms and for every

arbitrary compliance rate A ∈ [0, 1] – with x̂ (A;Ω,E) ∈ R ∪ {+∞} an arbitrary threshold value.

If this is the case, then the aggregate compliance rate can be written as a function of the arbitrary

threshold x̂ (A;Ω,E), for

A (x̂ (·)) = Φ

(
x̄− x̂ (A;Ω,E)

σ

)
(24)

holds due to the continuum-player specification19. We prove that, for any parameterisation Ω and

every configuration of the epidemiological aggregates E, there exists a unique value A = A∗ of the

19 For the sake of formal rigour, (24) holds almost surely, for it involves the evaluation of the aggregate/average
realization ex post of a continuum of i.i.d. random variables – see the caveat outlined in Footnote 4 for additional
details and references.
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aggregate compliance rate such that

A
(
x̂ (A∗;Ω,E)

)
= A∗

holds. Moreover, since A (x̂ (·)) is a monotone function of x̂ (·), there exists a unique threshold

value x∗ (Ω,E) consistent with A∗. The result is summarised by Propositions 2 and 3 for ϕ > 1

and ϕ ∈ [0, 1], respectively.

PROPOSITION 2. Let ϕ > 1 hold. Then, for any parameterisation Ω ∈ O and any configuration

of the epidemiological aggregates E ∈ E, there exists a critical value ASY (Ω,E) of the total mass

of asymptomatic infected citizens such that

A∗ (Ω,E) =


0 if ASY ≤ ASY (Ω,E)

A (x∗ (Ω,E)) ∈ (0, 1) if ASY > ASY (Ω,E)

, (25)

where the i-th citizen complies with social distancing norms if x(i) ≥ x∗ (Ω,E). The marginal type

is x∗ (Ω,E) = +∞ when A∗ = 0, and it is identified by the indifference condition

λ2D

 Φ
(
θ + αx∗ (Ω,E)

)
1− λ (1− γ)

(
1− Φ

(
θ + αx∗ (Ω,E)

))
β G(A∗ (Ω,E)

)
= c (26)

when A∗ ∈ (0, 1].

Proof. See Appendix A.

PROPOSITION 3. Let ϕ ∈ [0, 1] hold. Then...

TO BE WRITTEN

Proof. See Appendix A.
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4. Microfounded Behavioural SIR

In this section we simulate a discrete-time SIR model augmented with the fully microfounded be-

havioural responses characterized in Section 2 as static Nash equilibria of the social-interaction

game. Our goal here is to study how the endogenous (equilibrium) level of compliance with manda-

tory social distancing affects – provided it does – the diffusion process of a stylised epidemic with

known structural characteristics. To this end, we enrich an otherwise standard SIR framework by

assuming that, in each period t: (i) the mass of new infected NIt be determined by the equilibrium

level of compliance A∗
t ∈ [0, 1] arsing from the social interaction game; (ii) the epidemiological

aggregates Et ≡ ⟨ASYt, St, Rt⟩ be consistent with the entire history of past equilibria. What we

obtain are näıve dynamics, where the evolution in time of the aggregates is driven by the collec-

tive, heterogeneous decisions of myopic optimisers – that best-respond to contingent environmental

and strategic conditions, but fail to internalize the future effects of their actions20. Recall that,

by assumption, each player of our social-interaction game (except when he/she recovered from a

symptomatic infection) ignores his/her epidemiological state, and must therefore resort to observ-

able aggregates to form meaningful (common) subjective beliefs about that. (For instance, as in

[Engle et al., 2021] the subjective probability of being infected and asymptomatic in t coincides with

the instantaneous prevalence population-wide πt.) As a consequence, individuals are assumed to be

both myopic and forgetful – each being able to keep of track of the aggregates but not of his/her

individual past behaviour. Both assumptions are extreme and admittedly unrealistic, but essential

to ensure the analytical tractability of the model. They are further discussed in Section 5, where we

partially relax forgetfulness and highlight the – somehow surprising – relevance of individual beliefs

in the determination of strategic incentives.

4.1 Model (Highlights) and Calibration

Consider an environment identical to that outlined in Section 2 but for the fact that interactions are

indefinitely repeated over time – that is discrete and indexed by t = 0, 1, 2 . . . Within each period,

the sequence of events that trigger the instantaneous variations in the epidemiological aggregates

20 [Engle et al., 2021] argue that myopia is consistent with (equilibrium) forward-looking behaviour in a continuum-
player differential game – see footnote 12, page 7. We are not sure whether their argument readily extends or not to
our model specification, for it significantly differs from that outlined in their paper.
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Social

interactions

Figure 2. The within-period sequential structure that determines the (action-contingent) instan-
taneous variation ∆ASY of the asymptomatic – with ∆ASY =p (NIt −NDt −NRt) and NDt and
NRt the masses of new dead and recovered, respectively.

unfolds in three sub-periods: initial conditions are set in the first, social interactions – if any – take

place in the second, and consistently determine within-period variations in the third. Each period t

inherits initial conditions from t−1, and provides t+1 with new ones. Figure 2 provides a graphical

representation of the within-period sequential structure of events that determine the law of motion

of the ASYmptomatic infected. Our augmented model shares many of its equations with a standard

SIR: to avoid redundancy, we omit here a detailed description of the model specification – that is

postponed to Appendix C. Rather, in the following subsection we present in detail its most ‘exotic’

characteristics: (i) the endogenous infection-passing mechanisms that determines the incidence rate

of the disease21 – hence, the within-period mass of New Infected NIt; (ii) the cumulation process

for Dead and Recovered. The calibration we use for the simulations is presented in Table 1 below.

4.2 Infection-Passing & Cohort-Specific Mortality

Within-period New Infected are determined by the social interactions between ASYmptomatic in-

fected and Susceptible citizens that opted for non-compliance with social-distancing norms. Recall,

that, in case of interaction, an infected citizen passes the disease to a susceptible one with probability

β. Moreover, since all citizens ignore their epidemiological state by assumption, (non-)compliance

21 In a continuum-player framework where the initial mass of agents is normalized to one, the distinction between
masses and rates is shaded and generally immaterial for the analysis.
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(i)

Parameter Value Definition

x -1.5 Median/average demographic profile
σ2 4 Demographic heterogeneity
θ -2 Disease-specific mortality
α 1 Sensitivity of mortality to demographic traits
β 1 Disease contagiousness
γ 0.4 Scaling coefficient of the probability of recovery
p 0.7 Fixed share of asymptomatic infected
λ 0.99 Time discount factor
D 150 Individual cost of death

(ii)

Aggregate IC Definition

Pop0 1 Population
I0 0.001 Infected
S0 0.999 Susceptibles
D0 0 Dead
R0 0 Recovered

Table 1 (i) Calibration of the main parameters (ii) Initial conditions (ICs) for the aggregates

is not state-contingent. With a total mass of interacting susceptibles equal to St (1− LA∗
t ), the

mass of new infected NIt can be easily defined as

NIt = St

(
1− LA∗

t

)
︸ ︷︷ ︸

Interacting Susceptibles

× β G (A∗
t ) (27)

with β > 0 the disease-specific passing chance upon interaction, L ∈ [0, 1] the share of strategic

citizens, and where coefficient ϕ ≥ 0 scales the congestion externality. The law of motion of the

ASYmptomatics can be written as

ASYt+1 = ASYt + p
(
NIt −NDt −NRt

)
, (28)

with p ∈ (0, 1] the probability of being asymptomatic after infection, and where NDt and NRt

are, respectively, the within-period new Dead and Recovered calculated according to their cohort-
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specific rates – see below. Note from (C.7) that the congestion externality φ (A) that scales the

aggregate probability of infection is the same that appears in the individual probability of infection

that citizens use in (22) to asses the riskiness of non-compliance. Thus, every citizen internalizes

the spillover by accounting for it in his/her optimal choice, for he/she ‘(fore)sees’ the other citizens

through the (anticipated) average/aggregate compliance rate A∗
t . Recall further that, in equilibrium,

when the risk of infection in social interaction increases, the older/weaker citizens start complying

with social-distancing norms. When this is the case, the demographic composition of the cohort of

new infected NIt ceases to be aligned with that of the entire population, for only younger/healthier

citizens actually become (new) infected. The rates of mortality and recovery must be adjusted

accordingly. In particular, assuming that the demographic composition of the share (1− L) of

exempted citizens is aligned with that of the population, the endogenous mortality rate population-

wide Q̄D (x∗t ) can be written as

Q̄D (x∗t ) = ρ E
[
Φ (θ + αx)

∣∣x ≥ x∗t

]
︸ ︷︷ ︸

Cohort-specific mortality

+(1− ρ) Q̄D (29)

where x∗t is the equilibrium demographic threshold for compliance with social distancing, Q̄D is the

median/average mortality population-wide – see equation (4) –, and ρ ∈ (0, 1] is the relative weight

of the cohort of new infected in the whole interacting population (1− LA∗
t ), i.e.

ρ =
L (1−A∗

t )

1− LA∗
t

.

Note that a model-consistent treatment of the endogenous evolution of cohort-specific mortality

rates is essential for a proper analysis of model dynamics. If the cohorts of new infected are,

on average, younger and healthier than the average citizen, their mortality will be below-average,

too. Accordingly, above-average will be both the probability of recovery and the probability of

remaining infected in the future. Younger/healthier infected therefore die less, but remain infected

and infective for a longer time span, thus prolonging in time the propagation of the disease.
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4.3 The Standard SIR Benchmark: A Note

It is commonplace in the analysis of behavioural SIR models to compare and contrast the results of

the augmented specification with a benchmark SIR deemed ‘standard’. But how do we define how

such ‘standard-SIR’ benchmark? In [Engle et al., 2021] the SIR benchmark model is conceptually

similar to the laissez faire scenario considered by [Toxvaerd, 2020], in that it entails no disease-

containment by the policy-maker, nor self-protection by the citizens via self-isolation. The authors,

therefore, seem to implicitly consider as the benchmark case an ‘unrestricted epidemic’ scenario,

where the diffusion process evolves according to its natural dynamics. However, another benchmark

is available: that in which social distancing is implemented by automaton-like ‘agents’ that imple-

ment any policy prescription they are faced with. This second benchmark case is similar in spirit to

the optimal-control problem studied by [Alvarez et al., 2021]. The good news is: our specification

of the augmented (behavioural) version subsumes both standard-SIR benchmarks as special cases.

The unrestricted-epidemic benchmark corresponds to a calibration with L = 0 – i.e. to a scenario

in which all citizens are non-strategic and ignore social-distancing norms by construction. The

automaton-citizens scenario corresponds to a calibration with c < 022 – i.e. to a scenario in which

compliance with norm is always a dominant strategy, whatever the value of L.

4.4 A Look at Näıve Dynamics

Using the calibration presented in Table 1, we now simulate our augmented behavioural SIR model

and study its näıve dynamics. Some general intuitions are (qualitatively) derived via simple

comparative-statics exercises. First, we compare the equilibrium-augmented specification with a

standard-SIR benchmark where all citizens comply with norms – the simulations are presented in

Figures 3, 4 and 5 with L = 0.1 and ϕ set to 0.3, 1 and 3, respectively23. It is apparent from

both figures that the standard SIR significantly overestimates the effectiveness of social distancing.

The result corroborates those of [Engle et al., 2021] and [Farboodi et al., 2021] by confirming their

robustness to alternative model specifications. As a second exercise of comparative statics, we now

22 Recall that c = b−k, where b > 0 is a fixed benefit from social activity, and k > 0 is the fine for cheating on norms.
The calibration c < 0 thus entails that k > b. In words: this is an hypothetical scenario in which the enforcement by
the public authority is so effective that non-compliance is strongly dominated by compliance for every configuration
of the epidemiological aggregates, and A∗ = 1 for every t.

23 With an initial condition I0 = 0.001 the epidemic stops almost immediately in the SIR with L > 0.3.
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Figure 3. Dynamics of the main aggregates: standard vs. augmented SIR with L = 0.1 – ϕ = 0.3.
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Figure 4. Dynamics of the main aggregates: standard vs. augmented SIR with L = 0.1 – ϕ = 1.
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Figure 5. Dynamics of the main aggregates: standard vs. augmented SIR with L = 0.1 – ϕ = 3.

simulate the augmented model with different masses of exempted citizens (1− L). Albeit in the

narrative proposed in Section 2.4 the parameter L indicates the share of citizens that do not provide

essential services, with a slight abuse of interpretation the same parameter can be seen as a proxy

for the ‘strictness’ of the lockdown. That is, we can interpret L as policy design – how many citizens

are required to stay at home – and k as the intensity of enforcement – how lenient/aggressive the

policy-maker is at monitoring compliance and punishing deviations. The simulations are shown in

Figure 6 and 7. Their inspection immediately reveal that the stricter the lockdown is (larger L),

the more effective it is at containing the spread of the disease. As L increases, peak-prevalence

decreases and the epidemic ends sooner. The other aggregates vary consistently – as L increases the

total mass of infected decreases, and so do the cumulated dead. When looking at compliance rates

(Figure 7), another phenomenon emerges: as total and new infected decrease with L, so does the

equilibrium compliance rate A∗
t . A group-size effect of the kind identified by [Olson, 1965] seems

to be present: as L decreases the mass 1 − L of citizens that do not observe social distancing for

sure increases and, to contain risk – both individual and aggregate – higher level of compliance

are needed. In other words, as the group size decreases, the marginal effect of small variations in
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collective behaviour on the global payoff externality increases, spurring agents’ propensity to ‘co-

operate for the collective good’. Third, and last, we compare a scenario in which social distancing
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Figure 6. Dynamics of the main aggregates: standard vs. augmented SIR with several values of
L – ϕ = 3.
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Figure 7. Aggregate/average equilibrium compliance rate A∗
t underlying the dynamics of the

aggregates shown in Figure 6 – ϕ = 3.
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is enforced by the policy-maker via command-and-control, with a no-enforcement scenario where

citizens may reduce their risk of infection by willingly implementing self-isolation. We calibrate the

benefit from social activity as b = 0.8, and simulate the scenario with centralized enforcement with

a fine for cheating k = 0.6 – see equation (13). The implicit cost of compliance is therefore cE = 0.2

in the scenario with enforcement, and cNE = b = 0.8 in the self-isolation scenario. The dynamics

pf the main aggregates, and the corresponding dynamics of the equilibrium level of compliance A∗
t ,

are shown in Figure 8 and 9 respectively. As expected, by reducing the implicit cost of compliance

faced by the citizenry active enforcement of social distancing by the policy-maker spurs compliance.
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Figure 8. Dynamics of the main aggregates: enforcement vs. no enforcement – ϕ = 3.
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Figure 9. Aggregate/average equilibrium compliance rate A∗
t underlying the dynamics of the

aggregates shown in Figure 8 – enforcement vs. no enforcement.

5. The Role of Individual Beliefs

In line with [Engle et al., 2021], in order to be able to characterise analytically the (unique) Nash

equilibrium of our static social-interaction game, we resorted in Section 2 to an extreme form of

forgetfulness, whereby citizens’ past social behaviour is assumed to have no bearing at all on the

beliefs they hold about their current (unobserved) susceptibility to infection. As a consequence, the

citizenry is forced to rely on the observation of aggregates to be able to form meaningful beliefs. In

this Section we highlight how crucial forgetfulness is in the determination the strategic incentives

faced by the citizenry, and study how its (partial) relaxation affects the equilibrium characterisation

outlined in Section 3. We show that when citizens are forgetful and hold common beliefs, individual

decisions to comply with social-distancing norms are always strategic substitutes. When some

form of recall is present, and subjective beliefs begin to diverge because of path-dependence, both

complementarity and substitutability may arise in equilibrium.
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5.1 Path-Dependence and the Evolution of Subjective Beliefs

At the onset of an epidemic information may be scarce and imprecise, and rationality and attention

may be impaired by panic. Doubtlessly far from realism tout court, the forgetfulness assumption

is somehow fair in such environment: unable to keep track of all past interactions, occurred while

the virus was operating undercover, citizens have no suitable alternative for belief-formation but

to resort to the public information about the epidemiological aggregates disclosed by the media.

As time passes and the epidemics evolves, however, this ceases to be the case, for in the long

run is individual behaviour – past and present – that shapes the odds of each epidemiological

state e(i), not the instantaneous aggregates. When subjective beliefs become path-dependent, their

heterogeneity in the cross-section of the citizenry cannot but increase. Figures 6 and 7 clearly reveal

that the median/aggregate compliance rate in equilibrium, A∗, peaks around 25%: this means that

a significant share of younger/healthier citizens never complies throughout the entire epidemic.

Recall from Subsection 2.3 that, at every date t, the (instantaneous) risk of contagion is null if

social distancing is implemented, and strictly positive and equal to β G (A∗
t ) otherwise – with G(A)

defined by (10) and (19). The subjective, path-dependent probability of being susceptible in t,

conditional to the entire history of individual behaviour, can be written as

Pr
(
et(i) = S

∣∣∣ {a∗τ (i)}t−1

τ=0

)
=

t−1∏
τ=0

[
1−

(
1− a∗τ (i)

)(
β G(A∗

τ )
)]

. (30)

Using (30) we can easily write the probability of being susceptible in t after a history of full non-

compliance as

Pr
(
et(i) = S

∣∣∣ a∗τ (i) = 0 for all τ < t
)

=
t−1∏
τ=0

[
1−

(
β G(A∗

τ )
)]

.

that quickly converges to zero as t increases – four simulations with fixed probabilities of infection

are presented in Figure 10. Conditioning on survival, and after a sufficiently large number of periods

post-infection, the probability of being recovered from a previous infection is therefore close to one.

The situation is less clear-cut for those (older/weaker) citizens that always observe social distancing

norms in the central part of the epidemic. Albeit less compelling, a similar reasoning extends to

these individuals. In Subsection 5.2 we study how path-dependence in subjective beliefs may affect
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Figure 10. Probability of the being susceptible after t periods of non-compliance with fixed
probabilities of infection β G(A).

the equilibrium behaviour of citizens in the long run via a slightly modified specification of the

(static) social-interaction game outline and extensively discussed in Sections 2 and 4.

5.2 The Social-Interaction Game, Once More

Consider again the social-interaction game outlined in Section 2, but with a slightly modified setup

in which all epidemiological types e(i) are assumed to be common knowledge. In light of the

argument outlined in Subsection 5.1, the common-knowledge assumption can be interpreted cum

grano salis as a limit case that approximates the informational state to which the citizenry tends

to converge in time – as the epidemic evolves and additional information is extracted from past

behaviour. It is immediate to notice that, in such an environment, strategic uncertainty applies

to susceptible citizens only: absent any risk of reinfection, compliance with social distancing is a

(strongly) dominated strategy for all asymptomatics and recovered. As a consequence the total

mass M(A) of interacting individuals can be written as

MCK(A) = ASY +R+ S (1− LA) , (31)
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where the subscript CK stands for Common Knowledge. It is apparent from (31) that, differently

from the original specification of the interaction game – where the epidemiological states were

unknown –, the aggregate compliance A rate here only affects the mass of susceptible citizens that

opt for non-compliance with social-distancing norms. When it comes to the global externality G(A)

that parameterises the individual risk of infection, this is a crucial element: while the differential

effect of A on different types of citizens has no particular bearing on the congestion externality

φCK (A) – i.e. the extensive-margin component

φCK (A) =
[
ASY +R+ S

(
1− LA

) ]ϕ
, (32)

that continues to be strictly decreasing in A, it dramatically changes the behaviour of group-specific

prevalence πCK (A) – the intensive-margin component

πCK (A) =
ASY

ASY +R+ S (1− LA)
(33)

that now strictly increases in A. Differentiating (33) with respect to A, it is indeed immediate to

check

∂

∂A
πCK (A) =

L (S) (ASY )[
ASY +R+ S (1− LA)

]2 > 0 . (34)

Again, the interpretation is straightforward, for it hinges on the argument extensively discussed in

2.3.2: if some types of agents systematically ignore social-distancing norms more frequently than

others, the group-specific prevalence of the disease (co-)varies with the mass of interacting individ-

uals. When the epidemiological types e(i) are known, asymptomatics and recovered systematically

ignore social distancing, while susceptibles choose strategically whether or not to comply with norms.

As a consequence, any increase in the aggregate compliance rate A amounts to a decrease in the

mass of susceptible individuals within the interacting (sub)population, hence to an increase in the

group-specific prevalence of the disease, ceteris paribus. The overall effect on the risk of contagion

is therefore ambiguous a priori, for

∂

∂A
GCK(A) = φCK (A)

(
∂

∂A
πCK (A)

)
+ πCK (A)

(
∂

∂A
φCK (A)

)
≷ 0
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holds. Recall that the propensity to comply of a citizen with demographic profile x(i) is parame-

terised, in binary-action game, by the payoff differential ∆i (A) – see definition (23). Differentiating

∆i (A) with respect to A under the common-knowledge assumption, we obtain the following result.

PROPOSITION 4. Let the epidemiological types e(i) be common knowledge. Then, for any

calibration Ω ∈ O and any configuration E = ⟨ASY, S,R ⟩ of the epidemiological aggregates, the

individual decisions to comply are:

(i) strategic complements, if ϕ ∈ [0, 1);

(ii) independent, if ϕ = 1;

(iii) strategic substitutes, if ϕ > 1;

where ϕ ≥ 0 is the scaling coefficient of the congestion externality φCK (A) defined by (32), and

with A ∈ [0, 1] the median/aggregate compliance rate with-social distancing norms.

Proof. See Appendix B.

The interpretation is the following. Recall from Subsection 2.3 that φ (A) ∈ [0, 1] is a conges-

tion externality that summarizes how citizens’ aggregate (non-)compliance affects the individual

risk of contagion via overcrowding – the extensive margin effect, see expression (8). As the me-

dian/aggregate compliance rate A decreases, more and more citizens interact socially. In doing so,

they add to the (over)crowding of the environment in which social interactions do occur. Depending

on the scaling coefficient ϕ ≥ 0, congestion may arise quickly (ϕ < 1) or slowly (ϕ > 1), but the

net effect on individual risk is unambiguous: the larger the number of interacting individuals, the

higher the risk of infection faced by a non-compliant susceptible, ceteris paribus. When the epidemi-

ological states are known, ignoring social distancing is a dominant strategy for all ASYmptomatics

and Recovered, so that any increase (decrease) in the compliance rate A amounts to a decrease (in-

crease) in the mass of susceptible citizens in the interacting (sub)population, hence in an increase

(decrease) in the group-prevalence πCK (A) – see the discussion above. With ϕ ∈ [0, 1) congestion

is severe, so that the effect along the extensive margin dominates that on the intensive one: as more

individuals opt for compliance, group-specific prevalence increase, but the corresponding reduction

in congestion is more than offsetting.
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5.3 Aggregate Effects of Strategic Complementarity

When strategic complementarity prevails, the equilibrium characterisation is less clear-cut than

in the presence of pure strategic substitutability. Complementarity typically invites equilibrium

multiplicity, and our interaction game is not an exception. Preliminary analysis shows that the set

of equilibria of this more complex game may be structured as follows.

CLAIM 1. Let the epidemiological types e(i) be common knowledge. Then the set of the (pure-

strategy) Nash equilibria of the social-interaction game is structured as follows:

(i) if ϕ ≥ 1 the game has a unique equilibrium similar to that characterized in Proposition 2;

(ii) if ϕ ∈ [0, 1), the game has multiple equilibria, structured as follows:

a) if ASY ≤ ASY CK (Ω,E), then non-compliance is (strongly) dominant for all citizens,

and A∗ (Ω,E) = 0 holds;

b) if ASY CK (Ω,E) < ASY < ASY CK (Ω,E), then the game has a symmetric Nash equi-

librium with A∗ (Ω,E) = 0 and two monotone equilibrium: one stable (A∗
S (Ω,E)) and

one unstable (A∗
NS (Ω,E)), with A∗

S (Ω,E) > A∗
NS (Ω,E) > 0;

c) if ASY > ASY CK (Ω,E), then the game has a symmetric Nash equilibrium with A∗ (Ω,E) =

0, and a stable monotone equilibrium A∗
S (Ω,E) > 0.

Arbitrarily selecting the stable monotone equilibrium A∗
S (Ω,E) as the equilibrium of the interaction

game when the aggregate mass of asymptomatic infected exceeds the critical value ASY (Ω,E), we

simulate an augmented SIR model with endogenous compliance of the type studied in Section

4, but allowing now for both substitutability (ϕ = 3) and complementarity (ϕ = 0.3). Figures

11 and 12 compare the corresponding dynamics of the main epidemiological aggregates, as well

as the (endogenous) compliance rates that pin them down. Albeit purely qualitative, the results

are (very) sensible. As a general stance, strategic substitutes can be thought as self-moderating

mechanisms, for they embed a natural incentive to “lean against the wind”. Strategic complements,

on the contrary, tend to induce cascades and bandwagons via the multiplier effect implicit in their

structure of incentives. Our simulations show that such mechanics may indeed be at work in our
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model. Strategic complements display a sudden and significant increase in the aggregate compliance

rate at the very beginning of the epidemic, accompanied by a sudden contraction: once compliance

plummets to zero (relatively early, around t = 50), it remains there forever. When compared

with complements, strategic substitutes display smoother dynamics: compliance takes over slowly,

peaks around t = 50 similarly to the complementarity scenario, and decreases steadily but slowly.

Recall that out thesis is the following: as time passes and the epidemic evolves, the nature of the

strategic incentives faced by citizens when they are called to decide whether or not to implement

social distancing undergoes a phase transition, whereby strategic substitutability may turn into

complementarity. If this is the case, a behavioural SIR where the endogenous compliance mechanism

is steadily regulated by strategic substitutes may systematically over-estimate average compliance

rates in the final part of the epidemic.
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Figure 11. Dynamics of the main aggregates. The calibration is the same used for the simulations
presented in Section 4. Strategic complementarity and substitutability in compliance is induced by
setting ϕ = 0.3 and ϕ = 3, respectively.
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Figure 12. Evolution in time of the aggregate compliance rate A underlying the dynamics of the
epidemiological aggregates presented in Figure 11.

6. Summary & Conclusions

In this paper we outlined a parsimonious, microfounded model of social interaction between risk-

neutral, demographically heterogeneous agents. In order to contain the spread of an infectious

disease, a benevolent policy-maker imposes mandatory social distancing to a large population of

rational, atomistic citizens. Policy-design and enforcement are centralised, but implementation is

decentralised and uncoordinated: all individuals are allowed to decide autonomously whether or

not to comply with policy prescriptions – equivalently, whether or not to abstain from (risky) social

interactions. Compliance is riskless, socially beneficial but individually costly. Non-compliance is

costless, but entails an aggregate risk of infection proportional to the social distancing implemented

by others. In choosing which action to take, a citizen trades off the direct cost of compliance with

his/her idiosyncratic (expected) cost of death upon infection – the latter determined by his/her de-

mographic profile. Citizens are strategically sophisticated, and rationally anticipate others’ choices

via equilibrium-consistent second-guessing.

Our model is tractable and relatively flexible, but highly stylized. Yet, it is sufficiently rich to

capture some interesting phenomena and to provide the reader with some fresh intuitions. Three

are the key results. First result: the incentives that govern both decision-making and strategic
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interaction co-evolve with the epidemic in a very specific way. When disease-prevalence is low in

the active population, the risk of infection remains negligible even if social-distancing norms are

completely ignored by citizens. When disease-prevalence is high(er), the increased risk of infection

serves as a discipline device for older/weaker citizens, that observe social-distancing norms while

younger/healthier ones slack. In the first case, compliance is a dominated strategy at the indi-

vidual level, social distancing is impossible to implement, and the epidemic evolves according to

standard SIR(D) dynamics. In the second case, individual decisions to comply are strategic sub-

stitutes: high compliance rates induce a low risk of infection that, rationally anticipated by the

citizens, reduces their incentive to comply in the first place. Opportunistic behaviour is observed in

equilibrium, where young/healthy citizens free-ride on the (costly) social distancing implemented

by older/weaker ones. The general result is not novel: it is in line with [Engle et al., 2021] and

[Toxvaerd, 2020], albeit the details differ significantly. Both works, for instance, use continuous-

time differential games to study endogenous social distancing, and consistently appeal to modelling

assumptions that we are able, at least in part, to relax in our discrete-time setup24. The result con-

firms, in any case, that the threshold form of agents’ behavioural responses to aggregates is robust

to alternative model specifications, thus warranting once more their use in reduced-form within

ABM models such as [Bisin and Moro, 2022a, Bisin and Moro, 2022b]. Second result: agents’ be-

liefs about their susceptibility to the infection appear to be crucial in the determination of strategic

incentives. If agents ignore their states, and use observable aggregates to form (common) beliefs

about those states, individual decisions to comply with social-distancing norms cannot be but strate-

gic substitutes. If, conversely, they come to their states, individual actions can be substitutes or

complements, depending on the intensity of the global payoff externality. The result is somehow

counter-intuitive, but boils down to a sensible and relatively simple intuition: if agents know their

states, their actions become state-contingent. If this is the case, asymptomatic and infected agents

have no incentive to implement social distancing, and susceptible agents only are left playing the so-

cial interaction game. Being rational, they realize that, in such an environment, collective decisions

affect both the mass of social interactions (via the congestion externality) and the group-specific

prevalence of the disease: the higher the aggregate level of compliance, the larger the relative mass

of asymptomatic infected in the interacting population, the higher the risk faced by susceptible

24 E.g. the representative-agent framework of [Engle et al., 2021] – see footnote 14, page 7.
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agents that do not comply. Conversely, the lower the aggregate level of compliance, the smaller

the relative mass of asymptomatic agents in the interacting population, the lower the risk faced

by non-compliant susceptibles. When this intensive -margin effect offsets the extensive-margin of

the congestion externality, strategic complementarity dominates and a multiplier effects arises. It

is worth noting that, in the complementarity scenario, group-specific prevalence is endogenous and

departs from that measured population-wide: there share of infected is higher in the sub-population

of interacting agents than in the population as a whole. To the best of our knowledge, the result is

entirely novel. Third result: when endogenous compliance is taken into account, lockdown policies

are typically less effective at containing the epidemics that standard SIR models predict.
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Appendix A.

PROOF OF PROPOSITION 2

The proof of Proposition 2 is relatively simple but lengthy. To ease the exposition and highlight

the most important intermediate results, the proof is subdivided into several lemmas. All formal

arguments are commented and discussed, and complemented by qualitative ones and by several

graphs.

A.1 Preliminary Remarks: The (Expected) Utility from Non-Compliance

Recall from Subsection 3 in the main text that, when citizens are assumed to ignore their epidemi-

ological states e(i), the action-contingent (expected) utility ui ( · ) of a citizen with demographic

profile x(i) is

ui

(
a (i), A;Ω,E

)
=


−c if a (i) = 1

−D̃i

(
S

ASY + S + pR

)
β G(A) if a (i) = 0

(A.1)

where: (i) the vector Ω ∈ O summarises the parameterisation of the model – see footnote 3 in

the main text; (ii) the vector E ∈ E stands for a generic tuple of the epidemiological aggregates

⟨ASY, S,R ⟩ in the space E ⊂ [0, 1]3 of all possible configurations that are consistent, i.e.

E =
{
E ∈ [0, 1]3 :

(
p−1ASY + S +R

)
≤ (1−D) , ∀D ∈ [0, 1]

}
;
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(iii) c > 0 is the implicit cost of compliance defined by (13) – and included in Ω; (iv) A ∈ [0, 1] is

the aggregate/average compliance rate with social-distancing norms defined by (12) and (24); (v)

β G(A) is the probability (risk) of contagion faced by a susceptible citizens when he/she ignores

social distancing and interacts with other non-compliant individuals – it is defined as

G(A) = π (A)φ (A) (A.2)

with φ (A) and π (A) the extensive- and intensive-margin components, respectively, defined as

φ (A) =
[
(1− LA)

(
ASY + S + pR

)
+ (1− p)R

]ϕ
(A.3a)

π (A) =
ASY (1− LA)

(1− LA)
(
ASY + S + pR

)
+ (1− p)R

(A.3b)

with ϕ ≥ 0 – see equations (18) and (17) in the main text; (vi) D̃ (xi) is the discounted (expected)

cost of death after infection, defined as

D̃i = λ2D

 Φ (θ + αx(i))

1− λ (1− γ)
(
1− Φ (θ + αx(i))

)
 , (A.4)

where Φ ( · ) indicates the Normal Standard CDF, D ≫ 0 is the (common) cost of death, λ ∈ (0, 1)

is the (time) discount factor, and γ ∈ (0, 1) parameterises the probability of recovery after infection

– see Appendix B.1 for its derivation.

Note that the expected utility of non compliance of the generic i-th citizen depends on his/her

demographic profile only via the (expected) discounted cost of death Di. As a consequence, it is

strictly decreasing in x(i). The following Lemma states and proves the result.

LEMMA 1. The expected utility of non-compliance is strictly decreasing in x(i), i.e.

∂

∂x(i)
ui (a(i)=0, A;Ω,E) < 0 (A.5)

for every model parameterisation Ω ∈ O and every configuration of the aggregate E ∈ E.
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Proof. The above derivative (A.5) can be written as

∂

∂x(i)
ui (a(i)=0, A;Ω,E) = −

(
∂

∂x(i)
D̃i

)
β G (A) . (A.6)

Differentiating D̃i as defined by (A.4) w.r.t. x(i) we obtain that

∂

∂x(i)
D̃i = αϕ (θ + αx(i))

 1− λ (1− γ)[
1− λ (1− γ)

(
1− Φ (θ + αx(i))

)]2
 > 0 (A.7)

and, since βG (A) ≥ 0, the derivative (A.6) must be strictly negative.

Notice further that, for every demographic profile x(i) ∈ R, the expected utility of non-compliance

defined in (A.1) is strictly in the aggregate/average compliance rate A ∈ [0, 1]. Graphically, as A

increases from zero to one, the entire mapping of ui (a(i) = 0, A; · ) shifts upwards towards zero and

becomes flatter – see Figure A.1. The result is formally stated and proved in Lemma 2 here below.

LEMMA 2. For every pair A′, A′′ ∈ [0, 1] of arbitrary values of the aggregate/average compliance

such that A′′ > A′, the relation

ui
(
a(i) = 0, A=A′′;Ω,E

)
≥ ui

(
a(i) = 0, A=A′;Ω,E

)
(A.8)

holds for any parameterisation Ω ∈ O and every consistent configuration E ∈ E of the aggregates.

Proof. Consider the expected utility of non-compliance for the generic i-th citizen with demographic

profile x(i) ∈ R – see the definition in (A.1). Differentiating it w.r.t. the aggregate/average

compliance rate A it is immediate to check that

∂

∂A
ui (a(i)=0, A;Ω,E) =

β D̃i (S) (ASY )
[
(1− p)R+ ϕ (1− LA) (ASY + S + pR)

]
(ASY + S + pR)

[
(1− L) (ASY + S + pR) + (1− p)R

]2−ϕ
(A.9)

with D̃i ≥ 0 the (expected) discounted cost of death post-infection defined by (A.4). It is immediate

to check that (A.9) is strictly positive for every A ∈ [0, 1] and every ϕ ≥ 0.

Notice further that the utility of non-compliance defined in (A.1) is bounded in x(i). In particular,
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Figure A.1. Expected utility of non-compliance as a function of the individual resilience to the
disease xi. Calibration: θ = 1, α = 1, x̄ = 0, γ = 0.7, D = 150, λ = 0.99, L = 0.7, ϕ = 1.

it holds that

lim
x−→−∞

ui (a(i) = 0, A; · ) = u−∞
0 (A; · ) = 0 (A.10a)

lim
x−→+∞

ui (a(i) = 0, A; · ) = u+∞
0 (A; · ) = −λ2D

(
S

ASY + S + pR

)
β G(A) (A.10b)

for it is immediate to check from (A.4) that

lim
x−→−∞

D̃i = 0

lim
x−→+∞

D̃i = λ2D

holds. Note that the asymptote u+∞
0 (A; · ) defined by (A.10b) is a function of A. Via Lemma 2 it

must therefore hold that

u+∞
0 (A; · ) ∈

[
u+∞ (A=0; · ) , u+∞

0 (A=1; · )
]

(A.11)
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for every A ∈ (0, 1), where the extrema

u+∞
0 (A=0; · ) = −λ2Dβ

[
(S)(ASY )

ASY + S + pR

](
ASY + S +R

)ϕ−1
(A.12a)

u+∞
0 (A=1; · ) = −λ2Dβ

[
(S)(ASY )(1− L)

ASY + S + pR

] [
(1− L)

(
ASY + S + pR

)
+ (1− p)R

]ϕ−1
(A.12b)

are easily obtained by substituting the definition (A.2)-(A.3) of G(A) into (A.10b). Figure A.1

provides a graphical representation of the (expected) utility of non-compliance plotted against the

domain of X = R of the demographic profiles x of the citizenry. The shaded area – in green –

between the bounds ui (a(i)=0;A=0; · ) and ui (a(i)=0;A=1; · ) – the solid lines in blue – is the

“oscillation band” in which the utility takes on values for every possible A ∈ [0, 1]. Via Lemma 2,

every value of A unambiguously identifies one specific curve in the band.

A.2 Identification of the Strategic Scenarios

As the epidemic evolves, the environment in which the agents interact may change dramatically,

and the same holds true for set of incentives that govern both rational behaviour and strategic inter-

actions. We call a ‘scenario’ an environment in which the co-evolution between the epidemiological

aggregates and the behaviour of the agents is pinned down by a well-defined set of incentives –

significantly different and clearly distinguishable from those of other scenarios. In other words, ev-

ery scenario is a “small world” governed by specific and well-defined strategic incentives, and every

change of scenario amounts to a ‘phase transition’. We identify three different scenario: in the first,

non-compliance is a dominant strategy for the risk of contagion in social interaction is too low; in

the second, the symmetric equilibrium where all citizens do not comply is still rationalisable, but

compliance is no longer dominated a strategy; in the third, compliance is always dominant for some

citizens and the symmetric equilibrium at full non-compliance is no longer rationalisable. Every

scenario corresponds to a different equilibrium structure – and to different best-response dynamics

–, but equilibria are unique within scenarios. Every scenario occurs more or less frequently depend-

ing the scaling coefficient ϕ ≥ 0. To proceed with the characterisation, it is therefore convenient

to distinguish between three subcases: (i) ϕ > 1, the simplest; (ii) ϕ = 1; (iii) ϕ ∈ [0, 1), the most

difficult.
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A.2.1 Characterisation for ϕ > 1

We begin with the simplest case. The following Lemma shows that, when ϕ > 1, for every parame-

terisation Ω ∈ O and every arbitrary but configuration E ∈ E of the aggregatesA2 every scenarios is

unambiguously identified by the aggregate mass of asymptomatic infected ASY population-wide.

LEMMA 3. Let ϕ > 1. Then, for every model parameterisation Ω ∈ O with ϕ > 1 and every

configuration E ∈ E of the epidemiological aggregates, there exists a unique pair of non-negative

values
〈
ASY ϕ (Ω,E) , ASY ϕ (Ω,E)

〉
of the aggregate mass ASY of asymptomatic infected agents,

with ASY ϕ (Ω,E) > ASY ϕ (Ω,E), such that

− c ≤ u+∞
0 (A=0;Ω,E) if ASY ≤ ASY ϕ (Ω,E) (A.13a)

− c ∈
(
u+∞
0 (A=0;Ω,E) , u+∞

0 (A=1;Ω,E)
]

if ASY ∈
(
ASY ϕ (Ω,E) , ASY ϕ (Ω,E)

]
(A.13b)

− c > u+∞
0 (A=1;Ω,E) if ASY > ASY ϕ (Ω,E) (A.13c)

hold, where c > 0 is the (implicit) cost of compliance, and with u+∞
0 (A;Ω,E) the (expected) utility

from non-compliance of the least resilient agent – i.e. for x→+∞ – when the median/aggregate

compliance rate is A ∈ [0, 1]. The critical values ASY ϕ (Ω,E) and ASY ϕ (Ω,E) are unambiguously

identified by the conditions

−

 (S)
(
ASY ϕ (Ω,E)

)
ASY ϕ (Ω,E) + S + pR

(ASY ϕ (Ω,E) + S +R
)ϕ−1

= − c

λ2Dβ
(A.14a)

−

(S)(1−L)
(
ASY ϕ (Ω,E)

)
ASY ϕ (Ω,E) + S + pR

[ (1− L)
(
ASY ϕ(Ω,E) + S + pR

)
+(1−p)R

]ϕ−1

= − c

λ2Dβ
(A.14b)

respectively.

Proof. We begin by proving the existence and uniqueness of the lower critical value ASY ϕ (Ω,E)

identified by expression (A.14a). Using the definition (A.12a) of the lower asymptote u+∞
0 (A=0;Ω,E)

A2 See Subsection A.1 for a formal definition of what a consistent configuration is.
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of the expected utility of non-compliance, we can rewrite condition (A.13a) in explicit form as

−c ≤ −λ2Dβ

[
(S)(ASY )

ASY + S + pR

](
ASY + S +R

)ϕ−1
(A.15)

that can easily be rewritten as

− c

λ2Dβ
≤ −

[
(S) (ASY )

ASY + S + pR

](
ASY + S +R

)ϕ−1

︸ ︷︷ ︸
g
¯
(ASY )

. (A.16)

Differentiating g
¯
(ASY ) – i.e the RHS of (A.16) – w.r.t. ASY , simplifying off and rearranging, we

obtain

∂g
¯
(ASY )

∂ASY
= −

(S)
[
ϕ (ASY ) (S + pR ) + (ASY )2 (ϕ− 1) + (S +R ) (S + pR )

]
(ASY + S +R )2 (ASY + S + pR )2−ϕ

(A.17)

that is (strictly) negative if

ϕ (ASY ) (S + pR ) + (ASY )2 (ϕ− 1) + (S +R ) (S + pR ) > 0 (A.18)

holds. An inspection of (A.18) immediately reveals that the condition is always met if ϕ ≥ 1 – for

the LHS would be unambiguously negative in that case. Hence

ϕ ≥ 1 =⇒ ∂

∂ASY
g
¯
(ASY ) < 0 (A.19)

holds. Note that the LHS of (A.16) is strictly negative, while for the RHS g
¯
(ASY =0) = 0 holds.

Since g
¯
strictly decreases in ASY if ϕ ≥ 1. there must be a unique intersection ASY = ASY ϕ (Ω,E)

such that

c

λ2Dβ
=

 (S)
(
ASY ϕ (Ω,E)

)
ASY ϕ (Ω,E) + S + pR

(ASY ϕ (Ω,E) + S +R
)ϕ−1

,

and such that, via (A.19),

−c ≤ u+∞
0 (A=0;Ω,E) if ASY ≤ ASY ϕ (Ω,E)

−c > u+∞
0 (A=0;Ω,E) otherwise
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must hold. We now proceed by proving the existence and uniqueness of the upper critical value

ASY ϕ (Ω,E) identified by expression (A.13c). The procedure is the same used for ASY ϕ (Ω,E):

using the definition (A.12b) of the upper asymptote u+∞
0 (A=1;Ω,E) of the expected utility of

non-compliance, we can rewrite condition (A.13c) in explicit form as

− c

λ2Dβ
> −

[
(S)(ASY )(1− L)

ASY + S + pR

] [
(1− L)

(
ASY + S + pR

)
+ (1− p)R

]ϕ−1

︸ ︷︷ ︸
ḡ (ASY )

. (A.20)

Differentiating the function ḡ (ASY ) – i.e. the RHS of (A.20) – w.r.t. ASY we obtain

∂ḡ (ASY )

∂ASY
= −

(S) (1− L)
[
B (ASY )

]
(ASY + S + pR)2

[
(1− L) (ASY + S + pR) + (1− p)R

]2−ϕ
(A.21)

where the polynomial B (ASY ) is

B (ASY ) = (1− p)R (S + pR) +

+ (1− L)

[
(ASY )2 (ϕ− 1) + (S + pR)

(
ϕ (ASY ) + (S + pR)

)]
. (A.22)

A closer inspection of (A.21) immediately reveals that its sign is entirely determined by the sign of

B (ASY ), in particular

∂ḡ (ASY )

∂ASY
< 0 =⇒ B (ASY ) > 0 (A.23)

holds, and note from (A.22) that B (ASY ) > 0 if ϕ ≥ 0, so that

ϕ ≥ 1 =⇒ ∂

∂ASY
ḡ (ASY ) < 0 (A.24)

holds. Note again that the LHS of condition (A.20) is strictly negative, while the RHS is strictly

decreasing in ASY via (A.24). Thus, there must exist a unique intersection ASY = ASY ϕ (Ω,E)

such that

c

λ2Dβ
=

(S)
(
ASY ϕ (Ω,E)

)
(1− L)

ASY ϕ (Ω,E) + S + pR

[ (1− L)
(
ASY ϕ (Ω,E) + S + pR

)
+ (1− p)R

]ϕ−1
,
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and such that, again via (A.24),

−c > u+∞
0 (A=1;Ω,E) if ASY > ASY ϕ (Ω,E)

−c ≤ u+∞
0 (A=1;Ω,E) otherwise

must hold.

A brief remark may be useful here. Recall the graphical interpretation of the behaviour of the ex-

pected utility of non-compliance ui (a(i)=0, A; · ) outlined in Subsection A.1 above: for every value

A ∈ [0, 1] the entire mapping moves upwards (as A increases) or downwards (as A decrease) within an

“oscillation band” identified by the bounds ui (a(i)=0;A=0; · ) – below – and ui (a(i)=0;A=1; · )

– above. What Lemma 2 proves is that, when ϕ > 1, the oscillation band varies with ASY in a

very regular fashion: as ASY increases, the oscillation band moves downwards. The formal proof

outlined above, indeed, essentially proves that the asymptotes of the bounds as x → +∞, i.e.

u+∞
0 (A=1; · ) u+∞

0 (A=1; · ), are strictly decreasing in ASY when ϕ > 1.

Figure A.2. The three strategic regimes when ϕ > 1.
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A.2.2 Characterisation for ϕ = 1

TO BE WRITTEN

A.2.3 Characterisation for ϕ ∈ [0, 1]

TO BE WRITTEN

A.3 Equilibrium Characterisation Per-Scenario

A.3.1 EC Scenario I

In the first scenario, the aggregate mass ASY of asymptomatic infected – the citizens that spread

the contagion via social interactions with non-infected – is too low to induce compliance. As a

consequence, a(i) = 0 is a (strictly) dominant strategy, the game is dominance-solvable and has a

unique (symmetric) Nash equilibrium such that A∗ = 0.

LEMMA 4. Let ASY < ASY ϕ (Ω,E) hold. Then, the compliance game has a unique equilibrium

in which all citizens choose not to comply, i.e.

a∗ (i) = 0

for all i ∈ [0, 1]. The equilibrium median/aggregate compliance rate is therefore A∗ = 0.

Proof. Recall from Lemma 3 that, in the first scenario, the condition (A.13a)

−c ≤ u+∞
0 (A=0;Ω,E)

holds if ASY ≤ ASY ϕ (Ω,E) . Since −c is the net utility of compliance u (a(i)=0, A;Ω,E), we can

rewrite the above condition as

u (a(i)=0, A;Ω,E) ≤ u+∞
0 (A=0;Ω,E) . (A.25)

In words, expression (A.25) states that, if ASY < ASY ϕ (Ω,E), then the implicit cost of com-

pliance exceeds the expected cost of non-compliance (i) for the least resilient citizen(s) with x(i)
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arbitrarily large, (ii) under the worst possible circumstance in which the risk of contagion in case of

non-compliance is maximal (A = 0). As a consequence, no citizen has any incentive to comply, irre-

spective of his/her demographic profile x(i) and/or of other citizens’ (anticipated) aggregate/average

compliance rate A. The game is therefore dominance-solvable in this scenario, and the unique Nash

equilibrium is such that all citizens ignore social-distancing norms – a∗(i) = 0 for all i ∈ [0, 1], hence

A∗ = 0.

A.3.2 EC in Scenario II

In the second scenario, the mass ASY of asymptomatic infected citizens is large enough to induce

compliance with social-distancing norms potentially. However, it is not sufficiently large to ensure

that compliance be rationalisable by the citizenry for every expected compliance rate A ∈ [0, 1].

The equilibrium characterisation for this scenario is structures as follows: Lemma 5 shows that, if

the aggregate compliance rate A exceeds a critical value Â ∈ (0, 1), then non-compliance becomes

dominant. Lemma 6 proves that, for every A ≤ Â the best-response function is downward-sloping

in A – thus confirming that the result of Proposition 2 that characterises the individual decisions

to comply with norms as strategic substitutes; Lemma 7 completes the characterization by showing

that the downward-sloping best-response function has a fixed point in the range [0, Â] of its do-

main. Finally, Lemma 8 highlights a a robustness results, by showing that if the average mortality

population-wide Q̄D is sufficiently low, then the monotone equilibrium characterised by Lemmas 5

to 7 is also stable (in the sense of best-response dynamics), and is therefore the unique equilibrium

that survives the iterated elimination of (strongly) dominated strategies.

LEMMA 5. Let ASY ∈
(
ASY ϕ (Ω,E) , ASY ϕ (Ω,E)

]
hold. Then, there exists a unique criti-

cal value Â ∈ (0, 1] of the aggregate/average compliance rate A, unambiguously identified by the

condition

c (ASY + S + pR)

λ2Dβ (S) (ASY )
= (1− LA)

[
(1− LA) (ASY + S + pR) + (1− p)R

]ϕ−1
, (A.26)

such that (i) compliance with norms is rationalisable if A ≤ Â, while (ii) it is – strongly – dominated

otherwise.

Proof. Lemma 2 ensures that ui (a(i)=0, A= 1; · ) > ui (a(i)=0, A= 0; · ) holds for any ϕ ≥ 0,
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since the expected utility of non-compliance is strictly increasing in A for every demographic profile

x(i) and every arbitrary A ∈ [0, 1]. The asymptote u+∞ (A; · ) defined by (A.10), too, must be

therefore be strictly increasing in A. Recall further from Lemma 3 that the condition ASY ∈(
ASY ϕ (Ω,E) , ASY ϕ (Ω,E)

]
ensures by construction that

u+∞
0 (A=0;Ω,E) < −c ≤ u+∞

0 (A=1;Ω,E) (A.27)

holds. As a consequence, there must exists a unique value A = Â ∈ (0, 1] such that

−c = u+∞
0

(
A=Â;Ω,E

)
(A.28)

holds. Substituting for the definition (A.10b) of the generic u+∞
0 (A=A; · ) into (A.28), we obtain

c (ASY + S + pR)

λ2Dβ (S) (ASY )
= (1− LA)

[
(1− LA) (ASY + S + pR) + (1− p)R

]ϕ−1

︸ ︷︷ ︸
f(A)

, (A.29)

that is condition (A.26) in Lemma 5. Differentiating the RHS of (A.29) – i.e. the function f(A) –

w.r.t. A we obtain

∂

∂A
f(A) = − (1− p)R+ ϕ (1− LA) (ASY + S + pR)

L
[
(1− LA) (ASY + S + pR) + (1− p)R

]2−ϕ
< 0 . (A.30)

Since the LHS of (A.29) is a negative constant, and the RHS is strictly decreasing in A, there

must exist a unique intersection. It is immediate to check that condition (A.27) ensures that such

unique intersection must occur in the admissible range [0, 1]. Hence condition (A.29) unambiguously

identifies the critical value Â ∈ (0, 1]. Note that

A > Â =⇒ −c < u+∞
0 (A;Ω,E)

hold by construction. In words: if A > Â, compliance is (strongly) dominated by non-compliance

even for the least resilient citizen with x(i) −→ +∞. As a consequence, if A > Â compliance is not

rationalisable by any citizen, irrespective of his/her demographic profile.
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Indicate with A∗ (A) : [0, 1] 7−→ [0, 1] the best-response function that maps any arbitrary value of

the aggregate/average compliance rate into A into the compliance rate derived by aggregating the

optimal actions of citizens that are consistent with A – see equation (24) in the main text. Lemma

5 essentially states that

A∗ (A) = 0 , for all A ∈ [Â, 1] . (A.31)

It remains to be determined what is the best-response A∗ (A) when A ∈ [ 0, Â ), i.e. when compliance

is rationalisable for some citizens. The following Lemma provides such result.

LEMMA 6. Let ASY ∈
(
ASY ϕ (Ω,E) , ASY ϕ (Ω,E)

]
hold. Then, the best-response function

A∗ (A) is downward-sloping in A for any A ≤ Â – with Â ∈ (0, 1) the critical value identified in

Lemma 5.

Proof. We construct the best-response A∗ (A) for the case A ∈ [ 0, Â ) by deriving citizens’ optimal

compliance rule for an arbitrary value A = Ã of the compliance rate. If A = Ã holds, then it is

rational for a citizen to comply if

−c ≥ λ2D

 Φ (θ + αx(i))

1− λ (1− γ)
(
1− Φ (θ + αx(i))

)
( S

ASY + S + pR

)
β G(Ã) . (A.32)

The marginal type x∗(Ã) is the demographic profile x ∈ R that such that the generic i-th citizen with

x(i) = x∗(Ã) is indifferent between compliance and non-compliance when the aggregate/average

compliance rate is A = Ã. Since the expected utility of non-compliance strictly decreases in x(i)

via Lemma 1, and strictly increases in A via Lemma 2, the marginal type must be unique for every

arbitrary A ∈ [0, 1]. Solving (A.32) in x(i) we obtain

x∗(Ã) =
1

α

[
Φ−1

(
c

λ
Z
(
Ã;Ω,E

))
− θ

]
, (A.33)
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where the polynomial Z
(
Ã;Ω,E

)
is defined as

Z
(
Ã;Ω,E

)
=
(
1− λ (1− γ)

)(
ASY + S + pR

)
×

×

{
λβD(S)(ASY )

(
1−LÃ

)[
(1−LÃ) (ASY + S + pR)+(1−p)R

]ϕ−1
−c(1−γ)

(
ASY +S+pR

)}−1

(A.34)

where the condition A ∈ [ 0, Â ) ensures that Z (c/λ) ∈ [0, 1] so that x∗(Ã) is well defined. Since

the expected utility of non-compliance strictly decreases in x(i) via Lemma 1, then, for every

A = Ã < Â: (i) compliance is strongly preferred to non-compliance for all citizens with x(i) > x∗(Ã);

(ii) non-compliance is strongly preferred to compliance for all citizens with x(i) < x∗(Ã). Via the

definition (1) of x(i), LLN reasoning applied to continua of i.i.d. random variables yields

A∗
(
x∗(Ã)

)
= Pr

(
x(i) ≥ x∗(Ã)

)
almost surely , (A.35)

i.e. the mass of citizens with x(i) ≥ x∗(Ã) is equal (almost surely) to the probability ex ante of the

event ε(i) ≥ x∗(Ã)− x̄. Since the idiosyncratic shocks ε(i) are normally distributed with zero mean

and variance σ2 > 0, the aggregate/average compliance rate A∗(Ã) induced by the arbitrary rate

A = Ã is

A∗(Ã) = Φ

(
x̄− x∗(A)

σ

)
(A.36)

that is equation (24) in the main text. Differentiating (A.36) w.r.t. Ã yields

∂

∂Ã
A∗(Ã) = − 1

σ

[
ϕ

(
x̄− x∗(Ã)

σ

)](
∂

∂Ã
x∗(Ã)

)
(A.37)

where ϕ ( · ) ≥ 0 indicates the Normal Standard PDF. Differentiating the marginal type x∗(Ã) w.r.t.

Ã we obtain

∂

∂Ã
x∗(Ã) =

c

αλ

[
ϕ
(
Φ−1

( c
λ
Z(Ã)

))]−1
(
∂

∂Ã
Z(Ã)

)
(A.38)

A14



where

∂

∂Ã
Z(Ã) =

(
Z(Ã)

)2
λDβ(S)(ASY ) (1− λ (1− γ))

(
ASY + S + pR

) ×

× L(
1− LÃ

)2 × (1− p)R+ ϕ(1− LÃ) (ASY + S + pR)[
(1− LÃ) (ASY + S + pR) + (1− p)R

]2−ϕ
(A.39)

that is strictly positive. Since (A.39) is strictly positive, then (A.38) is positive, too. Hence (A.37)

is strictly negative. Overall, therefore, the following

∂

∂Ã
A∗(Ã) = − 1

σ

[
ϕ

(
x̄− x∗(Ã)

σ

)]
︸ ︷︷ ︸

< 0

(
∂

∂Ã
x∗(Ã)

)
︸ ︷︷ ︸

> 0

< 0

holds, which completes the proof.

Lemma 6 completed the characterisation of the best-response function A∗ (A), that can now be

written as

A∗ (A) =


0 if A ≥ Â

A ∗ (x ∗ (A)) ∈ (0, 1) if A < Â

(A.40)

with

A∗ (x∗(A)) = Φ

(
x̄− x∗(A)

σ

)
strictly decreasing in A, and where Â is the critical value identified by Lemma 5. The following

Lemma completes the characterisation of the unique Nash equilibrium in the second scenario, by

showing that a fixed point of A∗(A) exists and it is unique.

LEMMA 7. Let ASY ∈
(
ASY ϕ (Ω,E) , ASY ϕ (Ω,E)

]
hold. Then, the social-interaction game has

a unique Nash equilibrium in monotone strategies, where citizens comply according to the threshold

rule

a∗(i) = 1 ⇐⇒ x(i) ≥ x∗ (Ω,E) , (A.41)
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with the equilibrium cut-off x∗ (Ω,E) identified by the indifference condition

λ2D

 Φ (θ + αx∗ (Ω,E))

1− (1− γ)
(
1− Φ (θ + αx∗ (Ω,E))

)
 β G(A∗) = c , (A.42)

and where

A∗ = A (x∗) = Φ

(
x̄− x∗ (Ω,E)

σ

)
(A.43)

holds – with x̄ ∈ R the median/average demographical profile population-wide and σ > 0 the cross-

sectional variance.

Proof. Lemma 6 proved that the best-response function (A.43) strictly decreases in A when A ∈

[ 0, Â ], and it equal to zero (flat) otherwise. Since A∗(A) is also continue in A over its entire domain,

to prove both the existence and the uniqueness of a fixed point it is sufficient to prove that

A∗(A = Â) < Â . (A.44)

The logic is straightforward: no fixed point can be found in the range A ∈ [ Â, 1 ], for the best-

response is always zero there. If a fixed point indeed exists, it must be in the range A ∈ [ 0, Â ).

Moreover, since A∗(A) strictly decreases in A, if A∗(Â) < Â then A∗(A) must cross the 45 degree

line – from above – at some point in [ 0, Â ). Recall from Lemma 5 that the definition of Â is

implicit, so it is impossible to evaluate A∗(A = Â) directly. However, we know from (A.26) that for

A = Â it must hold that

c (ASY + S + pR)

λ2Dβ (S) (ASY )
=
(
1− LÂ

) [(
1− LÂ

)
(ASY + S + pR) + (1− p)R

]ϕ−1
. (A.45)

Note that the RHS of (A.45) appears at the denominator of equation (A.34), that defines an element

of the marginal type x∗(A) – see equation (A.33). Substituting properly into (A.34) we obtain that

Z(A = Â) =
λ

c
, (A.46)
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hence

x∗(A = Â) =
1

α

[
Φ−1

(
c

λ
Z(A = Â)

)
− θ

]

=
1

α

[
Φ−1

(
1
)
− θ

] (A.47)

with Φ−1 ( · ) the inverse of the Normal Standard CDF. Since it holds that

lim
y−→1

Φ−1 (y) = +∞ ,

then we have that

lim
A−→Â

x∗(A) = +∞ (A.48)

and, consequently,

A∗(A = Â) = lim
A−→Â

A∗ (A)

= lim
x∗−→+∞

A∗ (x∗)

= 0 .

(A.49)

Since A∗
(
A = Â

)
= 0 and Â ∈ (0, 1], then A∗(Â) < Â. And since A∗(A) strictly decreases in A,

then there must exists a unique value A ∗ (Ω,E) such that

A∗ (A∗ (Ω,E)) = A∗ (Ω,E) (A.50)

holds – with A∗ (Ω,E) ∈ ( 0, Â ). And since A∗ ( · ) is a monotone function of x∗ ( · ), there exists a

unique marginal type x∗ (Ω,E) such that

A = A∗ (Ω,E) =⇒ λ2D

 Φ (θ + αx∗ (Ω,E))

1− (1− γ)
(
1− Φ (θ + αx∗ (Ω,E))

)
 β G(A∗ (Ω,E)) = c , (A.51)

i.e. such that when A = A∗ (Ω,E) every citizen with x(i) = x∗ (Ω,E) is indeed indifferent between

compliance and non-compliance with social-distancing norms.

LEMMA 8. Let ASY ∈
(
ASY ϕ (Ω,E) , ASY ϕ (Ω,E)

]
hold. Then, if the no-cycle condition

θ + α x̄ < Ξ (Ω,E) (A.52)
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hold, with

Ξ (Ω,E) = , (A.53)

the fixed poin A∗ identified in Lemma 7 is stable – in the sense of best-response dynamics.

A.3.3 EC in Scenario III

In the third (and last) scenario, the mass ASY of asymptomatic infected citizens is large enough to

induce compliance with social-distancing for every expected compliance rate A ∈ [0, 1]. The results

outlined in Subsection A.3.2 for the equilibrium characterisation in the second scenario extend easily

to this scenario as well, for the best-response A∗(A) is here the same considered in Lemma 6.

LEMMA 9. Let ASY > ASY ϕ (Ω,E) hold. Then, the social-interaction game has a unique Nash

equilibrium in monotone strategies, where citizens comply according to the threshold rule

a∗(i) = 1 ⇐⇒ x(i) ≥ x∗ (Ω,E) , (A.54)

with the equilibrium cut-off x∗ (Ω,E) identified by the indifference condition

λ2D

 Φ (θ + αx∗ (Ω,E))

1− (1− γ)
(
1− Φ (θ + αx∗ (Ω,E))

)
 β G(A∗) = c , (A.55)

and where

A∗ = A (x∗) = Φ

(
x̄− x∗ (Ω,E)

σ

)
(A.56)

holds – with x̄ ∈ R the median/average demographical profile population-wide and σ > 0 the cross-

sectional variance.

Proof. Since ASY > ASY ϕ (Ω,E), the condition

−c > u+∞
0 (A=1;Ω,E) (A.57)

holds. It is immediate to check that the condition ensures that an intersection between the map-

ping of the expected utility of non-compliance u (a(i)=0, A;Ω,E) and the utility of compliance

u (a(i)=1, A;Ω,E) = −c always exists for every A ∈ [0, 1]. As in the proof of Lemma 6, we can
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derive the best-response function A∗(A) by: (i) fixing an arbitrary value A = Ã for the aggregate

compliance rate; (ii) identifying the (unique) marginal type x∗(Ã) consistent with A = Ã; (iii)

calculating A∗(Ã) = A(x∗(Ã)).
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Appendix B.

OTHER PROOFS & DERIVATIONS

B.1 Discounted Cost of Death: Derivation

Recall from Subsection 2.2 in the main text that, once infected at an arbitrary date t, an individual

faces an idiosyncratic probability of death qDi in every subsequent period – with qDi defined by (3).

In case of death, he/she experiences an arbitrarily large individual loss D ≫ 0, while his/her net

utility in case survival is normalized to zero without significant loss of generality. Recall further

that, in every period after the infection, the individual remains infected (and infective) with proba-

bility qIi , and recovers from the disease with probability qRi – with qRi and qIi defined by (6) and (7),

respectively. Figure B.1 summarises the chain of possible epidemiological patterns after infection

occurs, together with the corresponding transition probabilities per-period.

Infection Latency I

qIi

qRi R

qDi
D

I

qIi

qRi R

qDi
D

I

qIi

qRi

qDi

t t+ 1 t+ 2 t+ 3

T ime

λ λ2 λ3

Figure B.1. Chain of possible epidemiological patterns post-infection for the generic i-th individual
that becomes infected at the arbitrary date t.
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With time preferences summarized by the (common) discount factor λ ∈ (0, 1), the discounted sum

in t of all future expected payoffs after infection, D̃i, can be written as

D̃i = λ2D qDi + λ3D qIi q
D
i + λ4D

(
qIi
)2
qDi + λ5D

(
qIi
)3
qDi + . . . =

= λ2qDi D
[
1 + λqIi +

(
λqIi
)2

+
(
λqIi
)3

+ . . .
]
=

= λ2qDi D

[
+∞∑
τ=0

(
λqIi
)τ ]

(B.1)

for every arbitrary date t. Note that both λ ∈ (0, 1) and qIi (0, 1), hence λ q
I
i ∈ (0, 1) holds and the

geometric series in (B.1) converges to

D̃i = λ2D

(
qDi

1− λqIi

)

that, using (7), can be rewritten as

D̃i = λ2D

[
qDi

1− λ (1− γ)
(
1− qDi

)] , (B.2)

i.e. as a function of the sole probability of death per-period qDi . Substituting into equation (B.2)

above for the definition (3) of qDi provided in the main text, we finally obtain

D̃i = λ2D

 Φ
(
θ + αx(i)

)
1− λ (1− γ)

(
1− Φ

(
θ + αx(i)

))


that is exactly expression (11) in the main text.

B.2 Proof of Corollary 4

When the epidemiological states e(i) are common knowledge, the differential payoff ∆CK
i (A) can

be written as

∆CK
i (A) = −c+ β GCK

= −c+ β (ASY )
[
R+ S (1− LA)

]ϕ−1
,

(B.3)
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with ϕ ≥ 0 the scaling coefficient of the congestion externality φCK (A). Differentiating (B.3) w.r.t.

A we obtain

∂

∂A
∆CK

i (A) = −β (ASY ) (S) (ϕ− 1)
[
ASY +R+ S (1− LA)

]ϕ−2
(B.4)

that clearly reveals that

ϕ ∈ (0, 1) =⇒ ∂

∂A
∆CK

i (A) > 0

ϕ = 1 =⇒ ∂

∂A
∆CK

i (A) = 0

ϕ > 1 =⇒ ∂

∂A
∆CK

i (A) < 0

so that the individual decisions to comply with norms are: (i) strategic complements if ϕ ∈ (0, 1);

(ii) non-strategic if ϕ = 0; (iii) strategic substitutes if ϕ > 1.
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Appendix C.

SIR MODEL WITH ENDOGENOUS COMPLIANCE

C.1 Equations

In this Appendix we present the equations that describe the augmented SIR environment simulated

and commented in Section 4 in the main text. Except for the law of motion of the new infected

(NIt), that is governed by the endogenous compliance mechanism pinned down by equilibrium of

the (static) social-interaction game, and for those of the new dead (NDt) and the new recovered

(NRt), that are devised to keep track of the cohort-specific mortality rates induced by endogenous

compliance, the equations are quite standard.

C.1.1 Laws of Motion

Law of motion of the population

Popt+1 = Popt −NDt . (C.1)

Law of motion of the susceptibles

St+1 = St −NIt . (C.2)

Law of motion of the infected

It+1 = It +NIt −NDt −NRt . (C.3)

with the corresponding law of motion of the asymptomatic infected

ASYt+1 = ASYt + p (NIt −NDt −NRt) . (C.4)

Law of motion of the recovered

Rt+1 = Rt +NRt . (C.5)

Law of motion of the dead

Dt+1 = Dt +NDt . (C.6)
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C.1.2 Variations Intra-Period

New infected

NIt = β (St) (ASYt)
(
1− LA∗

t

)2[
(1− LA∗

t )
(
ASYt + St + pRt

)
+ (1− p)Rt

]ϕ−1

. (C.7)

New recovered

NRt =

t∑
τ=0

Q̄R
τ NIτ

(
1− Q̄D

τ − Q̄R
τ

)t−τ

= γ

t∑
τ=0

NIτ (1− γ)t−τ (1− Q̄D
τ

)t+1−τ
.

(C.8)

New dead

NDt =
t∑

τ=0

Q̄D
τ NIτ

(
1− Q̄D

τ − Q̄R
τ

)t−τ
. (C.9)

C.1.3 Additional Simulations
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Figure C.1. Dynamics of the main aggregates: several values of L, ϕ = 0.3.

C2



0 50 100

0

0.1

0.2

0.3

0 50 100

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

0

0.05

0.1

0.15

0.2

0.25

Figure C.2. Endogenous compliance: several values of L, ϕ = 0.3.
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Figure C.3. Dynamics of the aggregates: several values of L, ϕ = 1.
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Appendix D.

CONGESTION VS. PREVALENCE:

A (TOY) MODEL OF LOCAL INTERACTION

D.1 Action-Contingent Probability of Infection: A Recap

The probability of infection faced by a susceptible individual in our model is determined by (i) the ex-

tent of his/her social interactions, (ii) the prevalence of the disease within the interacting population,

and (iii) the environment in which interactions do occur. To the single decision-maker, individual

social behaviour is a control variable, while others’ amounts to a pure – global – externality, that we

model as a payoff-relevant spillover G(A) ∈ [0, 1] mapping the aggregate social behaviour of agents,

as measured by their median/average compliance rate A∈ [0, 1] with social-distancing norms, into

the individual risk of contagion they face when non-compliant. Notwithstanding the continuum-

player specification, actual strategic reasoning is therefore involved in the decision-making process

of the (infinitely many) agents that populate our model, for the rational anticipation of A at the

moment they decide whether or not to comply entails a partial internalization of the global spillover

G (A) – see Subsection 2.3 in the main text for the details. Recall from equation (10) that, formally,

the global externality G (A) can be written as

G(A) = π (A) φ (A) ,

where φ (A) and π (A) are its extensive- and an intensive-margin component, respectively. The

extensive-margin φ (A) relates to the fact that the marginal effect on the risk of contagion faced by

a non-compliant individual of an increase in the number of social interactions per se depends on the

congestion of the environment in which interactions actually occur. The effect is unambiguously

positive: increased congestion always entails an higher risk of contagion, ceteris paribus. The
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intensive-margin π (A) relates to the fact that the risk of contagion in social interactions depends

on the composition of the interacting (sub)population in terms of group-specific disease prevalence,

and that the latter may not remain constant as the mass of interacting individuals varies. This is

the case, for instance, if some types of agents systematically ignore social-distancing norms more

frequently than others.

In 2.3.4 we explained the logic behind this structure by means of a practical example. Some

individuals enter sequentially a room of given width: some of them are infected, the others are not.

As more and more individuals arrive, the room gets crowded, until overcrowding finally obtains –

the congestion externality φ (A), that increases in in the mass of interacting individuals. Keeping

constant the rate of new arrivals, the speed at which overcrowding occurs is determined by the width

of the room – parameter ϕ –. As the room gets more and more crowded, interactions become more

and more concentrated. Concentration increases the likelihood of contagion when an individual

interacts with an infected counterparty (due to increased physical proximity), but it is completely

irrelevant when he/she interacts with a non-infected – the intensive-margin effect π (A), whose effect

is ambiguous. Overall, the net effect of increased concentration on the likelihood of contagion is

entirely determined by the composition of new arrivals. If disease-prevalence among the individuals

in the queue remains constant, the effect is unambiguously positive: the probability of meeting an

infected in the room is stable, but the physical proximity of contacts increases. If disease-prevalence

decreases with new arrivals (e.g. as time passes susceptible individuals only remain in the queue),

physical proximity increases but the probability of interacting with an infected counterparty in the

room decreases. The net effect depends on the relative magnitude of the two margins. In this

Appendix we formalise the example of the room with sequential entering by means of a simple

model of local interaction, and show that, within the limits of the model, the qualitative argument

seems indeed to hold.

D.2 A Reduced-Form Model of Local Interaction with Congestion

In the spirit of [Schelling, 1969, Schelling, 1971] and, more recently, [Blume, 1993, Blume, 1995] and

[Morris, 2000]D1, we account for the spatial dimension of (pairwise) social interactions in reduced-

D1 See [Blume et al., 2005] for an excellent survey on local-interaction games.
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form by assuming that (i) interacting units be pre-assigned specific locations onto a segment of

given lengthD2, and that (ii) interactions be local in the sense that the physical distance between

two interacting units entirely determines the intensity of their interaction.

D.2.1 Setup

Consider a stylized environment populated by a finite numberM ≫ 2 of non-strategic individuals –

the units –, that interact within a closed space – the room – whose spatial extension is parameterised

by W > 0 – its width. Each unit is exogenously assigned to one of two (mutually exclusive)

subpopulations: that of the Infected (I) – indexed by j = 1, 2, . . . – and that of the Healthy (H)

– indexed by h = 1, 2, . . . Indicating with Ī and H̄ the total number of infected and healthy units,

respectively, the identity

Ī + H̄ =M

must therefore hold. Infected units are infective, and social interactions with them entail, for

healthy individuals, a risk of contagion proportional to physical proximity – the closer the contact,

the higher the probability of infection, ceteris paribus. Social interactions with healthy units are

completely risk-free. Locations ℓ ∈ [ 0,W ] in the room are (arbitrarily) ordered from left to right,

and assigned separately to the units in each subpopulation according to their indexes – that is, ℓ = 0

is the first available location, ℓ = W is the last one, the unit j = 1 gets the first location available

to the infected subpopulation, the unit h = 1 gets the first location available to the healthy one,

etc. . . Finally, within subpopulations, locations are assigned according to two criteria: (C1) all units

must be evenly distributed along the entire widthW ; (C2) all distances between neighbouring units

must be identical. Formally, it is immediate to check that, indicating with ℓj and ℓh the locations

of the j-th infected and of the h-th healthy unit, respectively, the pair of equations

ℓj=1 = 0 (D.1a)

ℓj+1 = ℓj +
W

Ī − 1
(D.1b)

D2 This is the simplest modelling strategy available, that we adopt in this Appendix for the sake of analytical
tractability. Alternative, more complex approaches are available – among others: (i) interactions on fully specified
networks – see e.g. [Herrmann and Schwartz, 2020] and [Block et al., 2020]; (ii) interactions on lattices – see e.g.
[Bak et al., 1993]; (ii) random walks with matching in two-dimensional spaces – see e.g. [Bisin and Moro, 2022a,
Bisin and Moro, 2022b].
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Figure D.1. Pairwise probability of infection ψ (ℓh − ℓj) as a function of ℓh – with Ī = 3 infected
units within a room of width W = 20. Contagiousness at zero-distance is β = 0.8. Comparison
between low infectivity (k = 1, left-hand side) and high infectivity (k = 50, right-hand side).

for the infected subpopulation, and, similarly, the pair of equations

ℓh=1 = 0 (D.2a)

ℓh+1 = ℓh +
W

H̄ − 1
(D.2b)

for the healthy subpopulation, allocate locations consistently with the criteria (C1)-(C2).

D.2.2 Contagion

In Subsection D.2.1 we assumed that the probability of contagion upon interaction with an infected

decay with the physical distance between the interacting units. To impose additional structure on

the model, we assume further that the decay be exponential. Formally, indicating with ψh,j ∈ [0, 1]

the probability of infection from an infected unit in location ℓj faced by a healthy unit in location

ℓh, we assume that

ψh,j = ψ (ℓh − ℓj) = β exp

{
− 1

k
(ℓh − ℓj)

2

}
, (D.3)
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with β ∈ (0, 1], and where the coefficient k > 0 scales the infectivity of the disease – the larger k,

the larger the distance at which an infected unit may infect a healthy one with non-zero probability.

Note that

ψ (0) = β ,

so that β can be interpreted as the probability of infection in a zero-distance contact – i.e. in the

closest possible interaction between units. Figure D.1 provides a graphical representation.

Note that, a priori, any of the Ī infective units in the room can infect any of the H̄ healthy ones.

Taking the perspective of the generic h-th healthy unit, therefore, any (location-based) interaction

with an infected, if considered in isolation, is akin to a Bernoulli experiment – whose outcome is

contagion with probability ψh,j . However, an healthy unit can be actually infected at most once.

As a consequence, for any given location ℓh, the probability of infection ex ante is the outcome of

a collection of Ī Bernoulli experiments that are not independent. In particular, it must hold that

Pr
(
h infected by j′ |h infected by j ̸= j′

)
= 0

for every h ∈ {1, 2, . . . , H̄} and every j ̸= j′ with j, j′ ∈ {1, 2, . . . , Ī}. We derive the marginal proba-

bilities of our non-standard statistical experiment starting from the probability space of a standard

binomial experiment with Ī Bernoulli trials, and normalizing the corresponding probabilities by the

total probability mass of the outcomes that can occur with non-zero probability in our experiment.

Such events are of two types:

(A) the healthy unit h is infected by the infective unit j and not by any of the other infective

units ̸= j;

(B) the healthy unit h remains healthy – i.e. it is not infected by any of the Ī infective units in

the room.

The corresponding (total) probability mass Σ (ℓh=h̄) is therefore

Σ (ℓh=h̄) =
Ī∑

j=1

ψh̄,j

∏
j′ ̸=j

(
1− ψh̄,j′

)
︸ ︷︷ ︸

Tot. probability mass events of type (A)

+
Ī∏

j=1

(
1− ψh̄,j

)
︸ ︷︷ ︸

Tot. probability mass event (B)

(D.4)
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so that the overall ex ante probability of contagion faced Ψ̂ (ℓh=h̄) by the generic healthy unit h = h̄

in located at ℓh̄ can be written as

Ψ̂ (ℓh=h̄) =

Ī∑
j=1

[
ψh̄,j

∏
j′ ̸=j

(
1− ψh̄,j′

)]
Ī∑

j=1

[
ψh̄,j

∏
j′ ̸=j

(
1− ψh̄,j′

)]
+
∏Ī

j=1

(
1− ψh̄,j

) , (D.5)

that is the probability of being infected by one of the Ī infective units when being located at ℓh̄.

D.2.3 Estimated Probability of Contagion

Before entering the room, a healthy unit knows both how many infected units are in the room

(Ī) and where they are located (positions ℓj). However, it ignores which of the H̄ locations ℓh

available to healthy units it will be assigned to, once in the room. As a consequence, it ignores,

too, the (location-dependent) probability of contagion it will face, once in the room. Since locations

are randomly allocated, however, each al(location) is equally likely a priori. Collapsing all the

structural parameters that define the environment in which interactions occur into a single vector

Ω, the probability of contagion Ψ
(
h̄;Ω

)
estimated a priori by the generic healthy unit h = h̄ that

is about to enter a room (i) of width W , (ii) with Ī infective units evenly distributed along W , and

(iii) with H̄ locations available to healthy units evenly distributed along W , can be written as

Ψ
(
h̄;Ω

)
=

1

H̄

 H̄∑
h=1

Ψ̂ (ℓh)

 , (D.6)

with Ψ̂ (ℓh) the (expected) probability of contagion when located at ℓh defined by (D.5).

D.3 Scenario Analysis

To be able to decide whether or not to observe social-distancing norms, the rational, strategic

agents that play the interaction game outlined in the main text are called to anticipate other’s

social behaviour in order to properly assess the risk of contagion in interactions. In his/her mind,

every agent is called to perform a sort of “scenario analysis” by asking: “what is the risk of contagion

I would face by interacting socially whenM other agents are going to do the same?” What if, instead,

D6



the interacting mass is M ′ > M?” And so on. . . In this subsection, we take the perspective of one of

the non-strategic units that populate this toy model, and let it perform the same scenario analysis.

By following its estimates ex ante – before entering the room – of the probability of infection it will

face ex post – once in the room –, we are able to see how they vary with (i) the total number of

interacting units M = H̄ + Ī, (ii) the total number of infective units Ī, and (iii) the width W of the

room. The scenario analysis performed by the unit substantiates in keeping track of its estimates

ex ante of the probability of contagion upon interaction in the room, Ψ
(
h̄;Ω

)
, as additional units

are assumed to enter into the room. The process that governs the new arrivals is known, and entails

that, at every iteration, a cohort of 10 units enters the room. The share δI ∈ [0, 1] of infective

units in each cohort is assumed to be (i) stable over iterations, and (ii) known to the unit that

performs the estimation – hence, to the modeller that keeps track of it! We simulate two distinct

“worlds”: one in which the share of infected units within the room remain constant as new cohorts

arrive; the other, in which such share decrease at every iteration. The first world approximates the

best-response dynamics of the social-interaction game played by forgetful citizens, where individual

actions are always strategic substitutes – see Sections 2 and 3). The second world approximates

the best-response dynamics of the social-interaction game played by citizens that are aware of their

epidemiological states, where individual actions can be both complements and substitutes depending

on the magnitude of the congestion externality – see Section 5.

D.3.1 Constant Share of Infective Units in New Arrivals

In this world, every new cohort that enters the room has a stable composition, with δI ∈ (0, 1) its

(constant) share of infective units. As new cohorts arrive, the room gets more and more crowded,

but the share of infective units in the room remains constant by construction. This controlled

simulation is intended as a robustness check for the argument

If the group-specific prevalence remains constant or increases as more an more individuals

interacts, then the risk of infection unambiguously increases in the total mass of interactions.

that rationalises, in the main text, the formal result that individual decisions to comply with social-

distancing norms are always strategic substitutes when agents ignore their epidemiological status.

We calculate the probability of infection Ψ (h;Ω) for several (fixed) shares of infective units δI and
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several values of the width W .
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Figure D.2. Probability of infection Ψ (h;Ω) estimated for an increasing number of cohorts with
constant shares δI .

The three figures correspond to three sets of initial conditions. It is immediate to check that,

except for the initial iterations, the estimated probability of infection steadily increases as the

number cohort cumulates in the room. The width W parameterises how quickly congestion occurs,

and can therefore be considered as a proxy of the ϕ parameter that scales the congestion externality

in the main text. The evolution of Ψ (Ω) is stable across all the several value of W , suggesting that

the substitutability-only result when the group-specific disease-prevalence is non-decreasing in the

interacting mass may be quite robust.

D.4 Decreasing Share of Infective Units in New Arrivals

In this world, every new cohort that enters the room contains healthy units only – i.e. δI = 0.

The number of infective units in the room is therefore equal to that imposed via initial conditions,
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Figure D.3. Blabla

and the disease prevalence in the room steadily decreases as new cohorts arrive. This controlled

simulation is intended as a robustness check for the argument

If the group-specific prevalence decreases as more an more individuals interacts, then the risk of

infection increases or decreases depending on the relative magnitude of the congestion externality

that rationalises, in the main text, the formal result that individual decisions to comply with social-

distancing norms can be both strategic substitutes and complements when every agent is aware of

his/her epidemiological state, and conditions on that his/her decisions about social interactions.
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