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Abstract

According to the existing empirical literature the price and the ex-
changed quantity volatility observed in real-world markets may be ex-
plained in terms of the endogenous fluctuations generated by the pres-
ence of nonlinearities. We then replace with a sigmoid adaptive best
response mechanism, characterized by the presence of two horizontal
asymptotes, the linear partial best response mechanism considered in
Mamada and Perrings (2020), where the effect produced by quadratic
emission charges on the dynamics of a Cournot duopoly model with
homogeneous goods was investigated. Due to the sigmoid adaptive
mechanism, output variation in each period depends also on current
production volume. Moreover, the sigmoid nonlinearity, in addition to
being well suited to describe the bounded output variations caused by
physical, historical and institutional constraints, makes the model able
to generate interesting, non-divergent dynamic outcomes, despite the
linearity of the demand function and of marginal costs. Additionally,
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following the suggestion in Mamada and Perrings (2020), we deal with
the more general case of differentiated products. Beyond analytically
studying the stability of the unique steady state, coinciding with the
Nash equilibrium, and the effect produced by the main parameters on
the stability region, we propose two dynamical approaches which allow
to evaluate the environmental policy efficacy when the Nash equilib-
rium is not stable and thus the standard comparative statics technique
does not fit for the purpose. In particular, the former approach, which
is based on a comparison of emissions for different levels of charges,
shows that, also in case the Nash equilibrium is not stable, the con-
sidered environmental policy may be effective both with complements
and with substitutes. The latter approach, consisting in a comparison
of emissions along non-stationary trajectories and along the equilib-
rium path, in the proposed experiments highlights that emissions are
larger along non-stationary trajectories. This gives us the opportu-
nity to show how to act on the level of the asymptotes of the sigmoid
adjustment mechanism to reduce output variations, reaching at one
time a complete stabilization of the system and limiting pollution.

Keywords: Cournot duopoly, emission charges, differentiated goods, sig-
moid output adjustment mechanism, environmental policy efficacy, compar-
ative dynamics.

JEL classification: C61, C62, D43, Q51, Q58

1 Introduction

According to the existing empirical literature (see e.g. Chatrath et al. 2002;
Gouel 2012; Huffaker et al. 2018) the main variables, i.e., good prices and
exchanged quantities, connected with real-world markets, especially those
for agricultural commodities, display chaotic and erratic behaviors, includ-
ing volatility. In particular, those empirical studies suggest that the therein
identified dynamic phenomena may be explained in terms of the endogenous
fluctuations generated by the presence of nonlinearities. Also the experi-
mental literature (cf. for instance Arango and Moxnes 2012) concerning the
real markets dynamics underlines the emergence of oscillatory behaviors in
good prices and exchanged quantities. Hence, in proposing a model to de-
scribe those contexts, also in connection with ecological issues, firstly we
have to guarantee that it is able to generate interesting, i.e., non-stationary,
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non-divergent, dynamic outcomes, so as to be “up to the task of adequately

addressing the implications of these complex system dynamics and the un-

predictability which seems to be their hallmark ”, quoting Stanley (2020) in
regard to ecological economics. Secondly, if we are interested in investigat-
ing the effect produced by an environmental policy scheme on the generated
pollution, we have to explain how the environmental policy efficacy can be
evaluated in the case of non-stationary trajectories. Namely, the classical
comparative statics technique, applied to the system equilibrium, which is
a steady state, is not empirically grounded in such a context, in which the
steady state is rarely stable. Thus, the need to develop alternative, dynam-
ical methods arises, based for instance on the behavior of the time series of
the cumulative aggregate emission. In this manner, the environmental pol-
icy efficacy, to be measured in relation to an emission reduction, could be
implied by a negative variation of cumulative emissions over the considered
time interval as a consequence of an increased strictness of the environmental
policy scheme.
We tackle both issues by revisiting the framework in Mamada and Perrings
(2020), where the effects produced by emission charges on the dynamics of
a Cournot duopoly model were investigated. In more detail, motivated by
the two points described above, we replace the linear partial output adjust-
ment rule considered therein, whose linearity causes a discrepancy between
the simulative outcomes and the empirical data, with a gradual sigmoid ver-
sion of the best response mechanism, characterized by the presence of two
horizontal asymptotes, which help avoid diverging trajectories and negativ-
ity issues. The same sigmoid formulation has been used in different macro
contexts e.g. in Naimzada and Pireddu (2014, 2015), but, to the best of
our knowledge, this is the first time that such nonlinearity is introduced in
the decisional mechanism within a game theoretical framework. We stress
that the sigmoid output adjustment rule, in addition to opening the door
to complex dynamics and to giving us the opportunity to develop the above
mentioned methods to test the environmental policy efficacy, is also sensible
from an economic viewpoint, since it is well-suited to describe the bounded
output variations caused by physical, historical and institutional constraints.
Namely, when the difference between the best response and the current out-
put level of a firm is positive, capacity constraints will bound the increase in
the production volume, because of the limited expansion from time to time
of capital and labor stock. When instead the difference between the best
response and the current output level of a firm is negative, capital cannot
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be destroyed proportionally to that difference as the only factors that may
lower productivity are attrition of machines from wear, time, and obsoles-
cence. Additionally, the labor factor imposes constraints, too: indeed, due
to the presence of trade unions, it is difficult, or impossible, to reduce em-
ployment below a certain threshold level. Notice that the proposed sigmoid
adjustment mechanism is suitable to describe also the gradual output vari-
ations deriving from the limits imposed by an environmental policy scheme
aiming at containing pollution by bounding production, due to the direct
proportionality linking them. In fact, acting on the levels of the horizontal
asymptotes we obtain a further tool to contain pollution, which stabilizes the
dynamics, too. The latter aspect turns out to be particularly relevant when
emissions are larger along non-stationary trajectories than along equilibrium
paths. In such cases, reducing output variations by lowering the distance
between the asymptotes allows at one time to decrease the system dynamic
complexity and to limit pollution. Moreover, with respect to the original set-
ting in Mamada and Perrings (2020), where the goods produced by the two
firms were homogeneous, we assume that firms produce differentiated goods,
following the suggestion contained in the concluding section of their work.
On the other hand, in regard to emission charges, we stick to the quadratic
formulation considered therein.
As concerns the existing literature, we stress that in Naimzada and Pireddu
(2023) we extended the setting in Mamada and Perrings (2020) by introduc-
ing differentiated goods, but without altering the output adjustment rule,
while the effect played by the introduction of differentiated goods and of a
nonlinear output adjustment mechanism in the framework by Mamada and
Perrings (2020) has been investigated in Matsumoto et al. (2022). However,
in the latter work goods can be just substitutes, not complements, and the
quadratic emission charges can only be convex, without the linear term con-
sidered in Mamada and Perrings (2020), so that the environmental policy
is always effective in the setting by Matsumoto et al. (2022). Furthermore,
in their context the nonlinearity is represented by output dependent factors
that replace the constant adjustment coefficients in the best reply mecha-
nism by Mamada and Perrings (2020), implying that the system admits two
boundary equilibria, in addition to the internal equilibrium corresponding to
the one in Mamada and Perrings (2020). Moreover, Matsumoto et al. (2022)
deal with the case in which marginal production costs do not coincide across
firms and analyze, among other issues, the conditions for market transitions
between duopoly and monopoly.
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Turning back to the here considered setting, in studying it we start by ana-
lyzing the stability of the unique steady state, which coincides with the Nash
equilibrium, common to the framework in Naimzada and Pireddu (2023), as
well as its bifurcations and the role played by the main model parameters,
finding that the equilibrium is stable when the two goods are nearly indepen-
dent, while complex dynamics can arise when the dependence degree between
the two goods is strong enough, despite the linearity of the demand function
and of marginal costs. We recall that when the steady state is unstable
in Mamada and Perrings (2020) the output quantities produced by the two
firms tend instead to become unbounded, positive or negative. Furthermore,
due to the introduction of the sigmoid adjustment mechanism, the equilib-
rium stability region is reduced in the here analyzed context with respect
to Naimzada and Pireddu (2023). On the other hand, as long as the Nash
equilibrium is stable in our framework, and we can thus rely on the classical
comparative statics approach, we find a confirmation of the static results ob-
tained in Naimzada and Pireddu (2023), which showed that the considered
environmental policy becomes detrimental when emission charges increase
too slowly with production. In order to deal with the cases in which the Nash
equilibrium is not stable, we propose two alternative, dynamic approaches
to evaluate the environmental policy efficacy, based either on a comparison
of emissions for different levels of charges or on a comparison of emissions
along non-stationary trajectories and along the equilibrium path. The pro-
posed techniques are mainly numerical in nature, involving non-stationary
orbits. The former approach shows that, also when the Nash equilibrium is
not stable, the considered environmental policy may be effective in reducing
pollution, both with complements and substitutes. In regard to the latter
approach, since in the proposed experiments it happens that emissions are
larger along non-stationary trajectories than along the equilibrium path, we
explain how to act on the levels of the asymptotes of the sigmoid in view of
reducing output variations, reaching a complete stabilization of the system
and limiting pollution.
We stress that, to the best of our knowledge, the existing literature on eco-
logical economics is either static (see for instance Ganguli and Raju 2012,
Matsumoto and Szidarovszky 2022, Raju and Ganguli 2013, Sato 2017) or,
even when the proposed models are dynamical in nature, the focus is on the
behavior of the steady state (cf. e.g. Mamada and Perrings 2020, Matsumoto
and Szidarovszky 2021, Matsumoto et al. 2018a, 2018b, Sarafopoulos and
Papadopoulos 2017) and the investigation of the efficacy of the considered
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environmental policy in non-stationary regimes is neglected. A partial excep-
tion is represented by Matsumoto et al. (2022), where the authors study the
dynamic outcomes of their nonlinear model, while the environmental policy
efficacy is granted by the assumptions made therein. Notice that the non-
linearities considered in the present work and in Matsumoto et al. (2022)
concern the decisional mechanism, even if in a different manner, as explained
in Section 2.
Indeed, the remainder of the paper is organized as follows. In Section 2 we
present the setting that we consider. In Section 3 we perform the model sta-
bility analysis. In Section 4 we investigate the efficacy of the environmental
policy from a dynamic viewpoint. In Section 5 we briefly discuss our results
and describe possible extensions of the here studied framework.

2 The model

The extension to differentiated goods of the framework in Mamada and Per-
rings (2020) has been briefly presented in Naimzada and Pireddu (2023).
For the reader’s convenience and in order to add some important aspects
in its derivation, in what follows we describe the main steps related to its
static part, turning then to illustrating the sigmoid best response mecha-
nism, which allows us to keep the same Nash equilibrium found in Naimzada
and Pireddu (2023), solving at the same time the issue with diverging tra-
jectories when equilibrium stability is lost in the linear framework. Namely,
the new formulation choice allows for more realistic dynamic outcomes, suit-
able to mimic the volatility displayed by the variables involved in real-world
markets. Moreover, from the modeling viewpoint, the sigmoid adjustment
mechanism is appropriate to describe the gradual output variations caused
by material, historical and institutional constraints in the production side
of an economy, as well as by the limits imposed by an environmental policy
scheme on production levels, due to their direct proportionality with emis-
sions.1

1Indeed, in Section 4 we shall show that acting on the position of the sigmoid map
asymptotes may represent a form of direct intervention on output and emission levels
through a modification in the bound to the strategy variation between one period and
the following one, in contrast with the indirect nature of the pollution control obtained
by means of emission charges in (2.2). Furthermore, by changing the position of the
asymptotes we will make the system converge toward the Nash equilibrium, starting from
a situation characterized by the presence of a different (periodic or complex) attractor, so
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Denoting by qi,t+1 the output level of firm i at time t + 1 and by qej,t+1 the
output level of firm j at time t + 1 expected by firm i at the end of period
t, with i 6= j ∈ {1, 2}, we assume that in time period t + 1 ∈ N \ {0} firm
i ∈ {1, 2} maximizes the expected profit function

πe
i,t+1 = (p− βqi,t+1 − γqej,t+1)qi,t+1 − cq2i,t+1 − Ci,t+1 (2.1)

where p, c are positive parameters and Ci,t+1 is the emission charge, faced at
time t+1 by firm i, that we will describe in (2.2). For the parameters β and
γ, as usual in the case of differentiated goods, we suppose that |γ| < β.
We recall that, according to Singh and Vives (1984), the expression for the
inverse demand function entering (2.1) can be derived by assuming that in
an economy with a monopolistic sector with two firms, each one producing a
differentiated good, and a competitive numeraire sector, there is a continuum
of consumers of the same type with a utility function separable and linear in
the numeraire good, so that there are no income effects on the monopolistic
sector, and it is possible to perform partial equilibrium analysis. In symbols,
the representative consumer has to maximize in each time period U(q1, q2)−
ρ1q1 − ρ2q2, where ρi is the price of good i and U(q1, q2) = p1q1 + p2q2 −
1
2
(β1q

2
1 + β2q

2
2 + 2γq1q2) , with pi and βi positive, β1β2 − γ2 > 0 and piβj −

pjγ > 0 for i 6= j ∈ {1, 2}. Dealing, like in Mamada and Perrings (2020),
with the simplified case in which p1 = p2 = p and β1 = β2 = β, the utility
function reads as U(q1, q2) = p(q1 + q2) −

β

2
(q21 + q22) − γq1q2, with p and

β positive, and |γ| < β, as supposed above. In particular, if γ > 0 utility
decreases when consuming the two goods together, i.e., they are substitutes;
if γ < 0 utility increases when consuming the two goods together, i.e., they
are complements; if γ = 0 utility is not affected by a joint consumption of the
two goods, i.e., they are independent. The homogeneous good framework is
obtained in the limit case γ = β = k, where k is the price-depressing effect
of oligopoly. Taking the FOC of U(q1, q2)− ρ1q1 − ρ2q2, it is straightforward
to obtain ρi = p − βqi − γqj for i 6= j ∈ {1, 2} as inverse demand functions.
Further details can be found in Motta (2004) and in Singh and Vives (1984).
Concerning Ci,t+1, Mamada and Perrings (2020), followed by Naimzada and
Pireddu (2023), propose the quadratic formulation for emission charges

Ci,t+1 = bui,t+1 +
1

2
du2

i,t+1, (2.2)

that comparative statics results become economically grounded.
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with b > 0, d ∈ R and where, denoting by ε > 0 the emissions per unit
output, ui,t+1 = εqi,t+1 are emissions by firm i ∈ {1, 2} at time t+1. Mamada
and Perrings (2020) use d as bifurcation parameter, finding that it has a
stabilizing effect on the system equilibrium in the case of homogeneous goods.
Moreover, the sign of d determines if the marginal emission charge

dCi,t+1

dui,t+1

= b+ dui,t+1

is positive or negative. Since the marginal emission charge cannot be nega-
tive, when d < 0 the constraint

0 < qi,t+1 <
−b

εd
(2.3)

emerges. Notice that, ceteris paribus, an increase in d produces a raise in
emission charges in (2.2) both when d is positive and when it is negative.
However, in the former case the marginal emission charge increases with
u, while in the latter case it decreases. In such eventuality, according to
(2.3), the maximum value u can assume is given by −b/d. See Figure 1 for a
graphical illustration.

(A) (B)

Figure 1: In (A) we draw the graph of Ci in (2.2) as a function of u for b = 1,
and d = −2 in blue, d = −1 in cyan, d = 0 in green, d = 1 in yellow, d = 2
in orange. In (B) we represent the corresponding marginal emission charges
dCi

du
as a function of u, using the same color distribution as in (A).

Turning back to (2.1), since

∂πe
i,t+1

∂qi,t+1

= p− bε− (2(β + c) + dε2)qi,t+1 − γqej,t+1 (2.4)
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for i 6= j ∈ {1, 2}, expected profits are strictly concave when

2(β + c) + dε2 > 0. (2.5)

This condition is satisfied when Ci in (2.2) is convex for i ∈ {1, 2}, i.e., for

d ≥ 0, as well as for d ∈
(
−2(β+c)

ε2
, 0
]
, in which case Ci is concave, but

production variations lead to emission charge variations close to those that
we would have in the linear case, corresponding to d = 0. Assumption (2.5)
will be maintained along the manuscript. Moreover, setting ∂πe

i,t+1/∂qi,t+1 in
(2.4) equal to 0 we obtain

Ri,t+1(q
e
j,t+1) =

p− bε− γqej,t+1

2(β + c) + dε2
(2.6)

as best response function for i 6= j ∈ {1, 2}, representing the optimal strategy
for firm i in period t+ 1, given the strategy for firm j expected by firm i for
that same period. Notice that Ri,t+1(q

e
j,t+1) is well defined under (2.5). In

order not to overburden notation, we will denote it simply by Ri(q
e
j,t+1).

Imposing like in Mamada and Perrings (2020) that firms have static expec-
tations, it holds that qej,t+1 = qj,t, so that (2.6) can be rewritten as

Ri(q
e
j,t+1) = Ri(qj,t) =

p− bε− γqj,t
2(β + c) + dε2

. (2.7)

Hence, calling (q∗1, q
∗

1) the solution to the system

{
q1,t = R1(q2,t)

q2,t = R2(q1,t)

in each time period t, which arises by supposing that both firms simulta-
neously produce the best response output to their opponent’s strategy, we
find like in Naimzada and Pireddu (2023) that the unique (symmetric) Nash
equilibrium is given by

(q∗1, q
∗

2) =

(
p− bε

2(β + c) + dε2 + γ
,

p− bε

2(β + c) + dε2 + γ

)
. (2.8)

In order to avoid negativity issues, we can assume that p > bε and that
2(β+ c)+dε2+γ > 0, similar to what done by Mamada and Perrings (2020)
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in the case of homogeneous products, or we can suppose that p < bε and
2(β+c)+dε2+γ < 0. In analogy with Naimzada and Pireddu (2023), taking
into account also (2.5), we will need to split the model analysis in Section
3 according to those two scenarios in the case of complements, while with
substitutes the numerator and the denominator of the Nash equilibrium can
just be positive.

As mentioned at the beginning of the section, we will deal with a sig-
moid best response mechanism, which on the one hand allows for nontrivial
and realistic erratic dynamic outcomes, and, on the other hand, is suitable
to describe the gradual output variations deriving both from the limits im-
posed by an environmental policy scheme aiming at containing pollution by
bounding production, as well as from the technical and institutional con-
straints that pertain the production side of an economy. Namely, when the
difference between the best response and the current output level is positive,
capacity constraints will bound the increase in the production volume, due
to the limited expansion from time to time of capital and labor stock; when
instead the difference between the best response and the current output level
is negative, capital cannot be destroyed proportionally to that difference as
the only factors that may reduce productivity are attrition of machines from
wear, time, and obsolescence. Furthermore, also the labor factor imposes lim-
its: indeed, due to the presence of trade unions, it is difficult, or impossible,
to reduce employment below a certain threshold level. In more detail, firms,
due to an adjustment capacity constraint, in Mamada and Perrings (2020)
and in Naimzada and Pireddu (2023) modify their output level according to
the size and the extent of the difference between the best response and the
current output level in just a partial way. However, rather than the linear
formulation adopted in Mamada and Perrings (2020) and in Naimzada and
Pireddu (2023)

qi,t+1 = qi,t + λ(Ri(qj,t)− qi,t), (2.9)

where, for i 6= j ∈ {1, 2}, Ri(qj,t) is the best response function of firm i at
time t+ 1 to the output qj,t produced by firm j at time t and the reactivity
parameter λ varies in (0, 1), we will now consider

qi,t+1 = qi,t + δ

(
υ + δ

υ e−σ(Ri(qj,t)−qi,t) + δ
− 1

)
, (2.10)

where Ri(qj,t) is still the best response function in (2.7).
Moving qi,t to the left-hand side of (2.10), we obtain that the output variation

10



of firm i 6= j ∈ {1, 2} between the next period and the current one is described
by the sigmoid map

g(x) := δ

(
υ + δ

υ e−σx + δ
− 1

)
, (2.11)

with x measuring the difference between the next period optimal strategy
and the current output volume, so that (2.10) can be rewritten as

qi,t+1 − qi,t = g(Ri(qj,t)− qi,t). (2.12)

Before looking at the features of g, let us introduce the concept of relative
variation, that we will denote by RV , and which at time t for firm i is defined
as

RV i,t :=
qi,t+1 − qi,t
Ri(qj,t)− qi,t

, (2.13)

with i 6= j ∈ {1, 2}, i.e., as the ratio between the output variation in a
given period and the difference between the optimal output and the current
strategy. Thanks to such notion, we will be able to compare in a more formal
manner our adjustment mechanism in (2.10) with that in (2.9), considered
by Mamada and Perrings (2020), as well as with the nonlinear updating rule
adopted by Matsumoto et al. (2022), which reads as

qi,t+1 = qi,t +Kqi,t(Ri(qj,t)− qi,t), (2.14)

for i 6= j ∈ {1, 2} and K ∈ (0,+∞).
Computing the relative variation in the three different scenarios, we obtain
RV i,t = λ in relation to (2.9), RV i,t = Kqi,t in relation to (2.14), while RV i,t

has no explicit formulation in connection with (2.10), but we will derive be-
low some qualitative properties for it. The common feature for the relative
variation in the three settings is that it is always linked with the reactivity,
given just by λ for (2.9), by K for (2.14), and by σ for (2.10). Of course, the
connection between the relative variation and the reactivity is different in
each case. Indeed, in Mamada and Perrings (2020) the two notions coincide,
the relative variation being constant, while in the setting by Matsumoto et
al. (2022), that may be considered as an extension of the former framework,
the relative variation proportionally increases with the current production
volume, the proportionality factor being given by the reactivity. Also in re-
gard to the sigmoid adjustment rule in (2.10), the relative variation is not
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constant, depending on the current production level.
Turning back to the mechanism in (2.12), we notice that g in (2.11) is in-
creasing and that it passes through the origin. Moreover, it is bounded from
below by −δ and from above by υ. The presence of the two horizontal asymp-
totes helps avoid diverging trajectories and negativity issues. In particular,
by raising (resp. lowering) υ and δ we obtain an increase (resp. decrease)
in the possible output variations, which have to be contained in the inter-
val (−δ, υ). Notice that acting on υ (resp. δ) produces an effect when the
best response is above (resp. below) the current production level. We show
the graph of the sigmoid function g for different values of the reactivity σ
in Figure 2, where we denote by y the output difference between tomorrow
and today output levels by firm i. Namely, σ is a non-negative parameter
describing the intensity with which the difference between the best response
and the current output level determines the output variation. For σ = 0,
firms are completely insensitive to that difference and they keep their output
unchanged in time, so that qi,t+1 − qi,t = 0 for every t. In the limit σ → +∞,
the sigmoid approaches a piecewise constant function, taking just the lowest
and the highest possible values: indeed, the value of g coincides with −δ for
negative values of the signal Ri(qj,t) − qi,t and with υ for positive values of
Ri(qj,t)− qi,t. Moreover, as observed above, σ influences, together with υ and
δ, the relative variation in connection with (2.12), that, recalling (2.13), is
given by

RV i,t =
g(Ri(qj,t)− qi,t)

Ri(qj,t)− qi,t
. (2.15)

Notice that, looking at (2.10) and recalling the meaning of variable x in-
troduced after (2.11), x = 0 corresponds to the Nash equilibrium (q∗1, q

∗

2) in
(2.8), as the best response function formulation is still the one in (2.7). Since
g is an increasing map passing through the origin, x = 0 coincides also with
the unique steady state for (2.10). Some features of RV i,t easily follow from
(2.11) and (2.15), observing that: (I) g(x)/x → 0+ when x → ±∞;
(II) g(x)/x is an even map when υ = δ;

(III)
g(x)

x
→ σ̃ :=

υδσ

υ + δ
when x → 0. (2.16)

Namely, (I) implies that for us there is no direct proportionality between
RV i,t and qi,t, contrary to what occurs in the setting by Matsumoto et al.
(2022), where with (2.14) the relative variation proportionally increases with
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the current production volume. Indeed, with (2.10) RV i,t tends to vanish
when the production volume is far from the current optimal output level.
In particular, due to (II), such decrease in RV i,t is symmetric with respect
to positive or negative values of the signal Ri(qj,t) − qi,t that have the same
modulus if the upper and lower asymptotes of g are at the same distance
from the horizontal axis. Finally, by (III) in (2.16) the relative variation at
the steady state coincides with σ̃, which, taking into account the joint effect
of σ, υ and δ, will be called joint reactivity in what follows. Notice that σ
influences σ̃, without modifying the value of the asymptotes and that, like
in the linear framework proposed by Mamada and Perrings (2020) it would
be possible to consider different values of the reactivity parameter λ for the
two firms, also in the present nonlinear setting we could assume personalized
values of the sensitivity parameter σ. However, since this hypothesis would
overburden the analysis, making the interpretation of the results less neat,
similar to Mamada and Perrings (2020), where the reactivity parameter is
homogeneous for the two firms, we prefer to deal with the case in which the
value of σ coincides for firms.

(A) (B) (C)

Figure 2: The graph of the sigmoid function g in (2.11), for a low (in (A)),
intermediate (in (B)) and high (in (C)) value of σ.

3 Local stability analysis

Let us start by investigating how the presence of the sigmoid adjustment
mechanism influences, with respect to the linear framework with differenti-
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ated goods considered in Naimzada and Pireddu (2023), the local stability
of the Nash equilibrium for (2.10), which for i 6= j ∈ {1, 2} may be explicitly
written as



q1,t+1=q1,t + δ

(
υ+δ

υ e
−σ(R1(q2,t)−q1,t)+δ

− 1

)
=q1,t + δ

(
υ+δ

υ e
−σ

(
p−bε−γq2,t

2(β+c)+dε2
−q1,t

)

+δ

− 1

)

q2,t+1=q2,t + δ

(
υ+δ

υ e
−σ(R2(q1,t)−q2,t)+δ

− 1

)
=q2,t + δ

(
υ+δ

υ e
−σ

(
p−bε−γq1,t

2(β+c)+dε2
−q2,t

)

+δ

− 1

)

(3.1)
Calling F : (0,+∞)2 → (0,+∞)2 the planar map associated with the above
dynamical system, in Subsection 3.1 we will deal with the cases of substi-
tutable and independent goods, in which γ ∈ [0, β), so that the framework
with homogeneous goods, corresponding to γ = β, is encompassed as limit
case, while in Subsection 3.2 we will focus on complements, with γ ∈ (−β, 0).

3.1 Substitutable and independent goods

In the present subsection, we deal with the case γ ∈ [0, β). Since (2.5) has to
be satisfied, it follows that 2(β + c) + dε2 + γ > 0. Hence, the positivity of
the Nash equilibrium (q∗1, q

∗

2) in (2.8) requires that

p− bε > 0, (3.2)

similar to Mamada and Perrings (2020). Consequently, the following result,
which highlights the destabilizing role of the joint reactivity σ̃ = υδσ

υ+δ
intro-

duced in (2.16), holds true:

Proposition 3.1 When γ ≥ 0, under (2.5) and (3.2), (q∗1, q
∗

2) in (2.8) is

admissible according to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, (q∗1, q
∗

2)

is locally asymptotically stable for System (3.1) when d > −2β+2c−γ

ε2
and

σ̃ < 2
1+ γ

2(β+c)+dε2
.

Proof. We are going to derive the local stability conditions for our system
at the steady state by using Jury (1964) conditions

(i) det(J) < 1;

(ii) 1 + tr(J) + det(J) > 0;

(iii) 1− tr(J) + det(J) > 0,

(3.3)
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where J = JF (q
∗

1, q
∗

2) is the Jacobian matrix for F computed at (q∗1, q
∗

2), which
reads as

JF (q
∗

1, q
∗

2) =




1− σ̃ − σ̃γ

2(β+c)+dε2

− σ̃γ

2(β+c)+dε2
1− σ̃


 (3.4)

and that is well defined by (2.5). Since as expressions for the determinant
and for the trace of J we respectively find

det(J) = σ̃2

(
1−

γ2

(2(β + c) + dε2)2

)
− 2σ̃ + 1, tr(J) = 2− 2σ̃,

condition (iii) reads as

1−
γ2

(2(β + c) + dε2)2
> 0, (3.5)

so that, setting A := 1− (γ2/(2(β + c) + dε2)2), we have that A has to lie in
the interval (0, 1). Condition (i) is then equivalent to

σ̃ <
2

A
, (3.6)

while condition (ii) holds if and only if

Aσ̃2 − 4σ̃ + 4 > 0. (3.7)

It is straightforward to check that (3.6) and (3.7) are jointly satisfied when

σ̃ <
2

1 + γ

2(β+c)+dε2

. (3.8)

Moreover, since (3.5) can be equivalently rewritten as

(2(β + c) + dε2 − γ)(2(β + c) + dε2 + γ) > 0 (3.9)

and by (2.5) it holds that 2(β + c) + dε2 + γ > 0, then (3.5) is equivalent to

2(β + c) + dε2 − γ > 0 (3.10)

as well, which can be rewritten as

d > −
2β + 2c− γ

ε2
. (3.11)
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Since, by (2.5), the conditions in (2.3) lead to

d > −
b(2β + 2c+ γ)

εp
, (3.12)

the desired conclusion follows from (3.8), (3.11) and (3.12). �

Comparing the above result with the findings obtained in Naimzada and
Pireddu (2023), Proposition 3.1 highlights an overall reduction in the sta-
bility region for (q∗1, q

∗

2) with respect to Proposition 3 therein due to the
introduction of the sigmoid adjustment mechanism in (2.10). Namely, un-
der (3.2) in the nonlinear context we observe stricter conditions for stability
than in its linear counterpart, arising from the destabilizing role played by
the joint reactivity σ̃ (cf. (3.8)). Specifically, when (3.8) is violated, a period-
doubling bifurcation occurs at the steady state,2 possibly opening the door
to interesting dynamic phenomena. We illustrate two different scenarios, ac-
cording to the sign of d, in Figure 3, where we let σ vary. More precisely, for
a positive value of d, if (3.2) holds true, the only condition in Proposition
3.1 that can be violated is the last one, i.e., that in (3.8). Indeed, for the
parameter configuration considered in Figure 3 (A), where d = 0.1, (3.8)
reads as σ̃ < 1.413 or, equivalently, as σ < 4.175, since δ = 0.4 and υ = 2.2.
In fact, in that bifurcation diagram σ varies in (0, 6.5) and (q∗1, q

∗

2) in (2.8)
is stable for low values of σ, while above the stability threshold we observe
a cascade of period-doubling bifurcations leading to chaos. On the other
hand, when dealing with negative values for d, no condition in Proposition
3.1 is granted. In particular, in Figure 3 (B) we fix d = −0.4 and, for the
chosen parameter set, conditions (2.5) and (3.2) are fulfilled, as well as the
stability condition in (3.11), which reads as d > −0.480, while (3.8) reads
as σ̃ < 1.089, or equivalently σ < 3.218. Hence, like in (A), also in this case
the steady state is stable for low values of σ. On the other hand, since the

2According to Elaydi (2007), page 249, this is a consequence of the fact that a violation
of (3.8) occurs when condition (ii) in (3.3) becomes an equality, so that the Jacobian matrix
in (3.4) admits a real eigenvalue equal to −1. Analogously, a period-doubling bifurcation
occurs at the steady state with complements when (3.17) in the proof of Proposition 3.2
is violated. Of course, the same is still true when (3.8) and (3.17) are rewritten in order
to make explicit a parameter different from σ̃, such as d or γ. In this respect, we remark
that a period-doubling bifurcation occurs on increasing σ̃ or |γ| (cf. Corollaries 3.5 and 3.6
for γ), while a period-doubling bifurcation occurs on decreasing d (see Corollaries 3.1 and
3.3). We can then equivalently say that a period-halving bifurcation occurs on increasing
d.
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admissibility condition in (2.3) leads to3 qi < 0.370 for i ∈ {1, 2}, it is fulfilled
just for σ ∈ (0, 3.660). This is indeed the interval for σ depicted in Figure 3
(B), where we have to interrupt the bifurcation diagram before the cascade
of period-doubling bifurcations (cf. also Footnote 2). We stress that, both
in (A) and in (B), orbits do not diverge when the steady state is not stable,
thanks to the introduction of the sigmoid adjustment mechanism, differently
from what happens with the linear adjustment rule considered in Mamada
and Perrings (2020) and in Naimzada and Pireddu (2023). Notice that for
the parameter configurations in Figure 3 (A) and (B), disregarding the pa-
rameters not encompassed in the model linear formulation, (q∗1, q

∗

2) in (2.8) is
stable for the dynamical system analyzed in Naimzada and Pireddu (2023)
since the stability condition in (3.11), common to that framework (cf. Propo-
sition 3 therein), is fulfilled. We also stress that considering γ = β = 3.1 in
Figure 3 (A) and (B), so that goods are homogeneous, we obtain dynamics
analogous to the ones detected in those bifurcation diagrams, where the in-
terdependence degree between goods is already very high. In particular, for
the parameter configurations in Figure 3 (A) and (B) except for γ = β = 3.1,
(q∗1, q

∗

2) in (2.8), which in the case of homogeneous goods reads as

(q∗1, q
∗

2) =

(
p− bε

3β + 2c+ dε2
,

p− bε

3β + 2c+ dε2

)
,

is stable for the dynamical system considered in Mamada and Perrings (2020)
since the stability condition in (3.11), which becomes d > −β+2c

ε2
, is fulfilled

for those parameter values.
In regard to comparative statics, we remark that the same conclusions con-
tained in Propositions 1 and 2 in Naimzada and Pireddu (2023), showing
that, with substitutable and independent goods, under (3.2), the compo-
nents of the Nash equilibrium in (2.8) decrease when b, d or ε increase in the
model linear formulation, hold true with the sigmoidal adjustment mecha-
nism, too. Hence, the efficacy of the environmental policy described by the
emission charges in (2.2) would seem not to be affected by the nonlinear out-
put adjustment rule introduced in the present work. On the other hand, as
underlined in Naimzada and Pireddu (2023), a comparative statics result is
economically grounded if it concerns an equilibrium which is asymptotically
stable and thus orbits converge towards it after a transient period. Due to

3Notice that, when the Nash equilibrium is unstable, (2.3) has to be satisfied by all
production levels, not just by those computed at the equilibrium.
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(A) (B)

Figure 3: The bifurcation diagram of q1,t+1 in (3.1) with respect to σ and
initial conditions q1,0 = 0.25, q2,0 = 0.2, for p = 2.5, δ = 0.4, υ = 2.2, β =
3.1, c = 0.15, b = 0.4, ε = 2.7, γ = 3, and d = 0.1 in (A), d = −0.4 in (B).

the above highlighted destabilizing role played by σ̃, that concerns the case
of complements, too (cf. Subsection 3.2), we can then say that the signifi-
cance of the comparative statics analysis is reduced when dealing with the
model nonlinear formulation in (3.1), rather than with its linear counterpart.
Accordingly, in Section 4 we will present alternative, dynamic approaches to
evaluate the environmental policy efficacy, based either on a comparison of
emissions along non-stationary trajectories and along the equilibrium path or
on a comparison of emissions for different levels of charges in (2.2), described
by increasing values of d.
Still in regard to d, we observe that it is possible to rewrite the statement
of Proposition 3.1 in order to make its role explicit starting from (3.8) as
follows:

Corollary 3.1 When γ ≥ 0, under (2.5) and (3.2), (q∗1, q
∗

2) in (2.8) is ad-

missible according to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, (q∗1, q
∗

2) is

locally asymptotically stable for System (3.1) for σ̃ < 2 and

d > max

{
−2(β + c)

ε2
+

γ

ε2
,
−2(β + c)

ε2
+

γ

ε2
(
2
σ̃
− 1
)
}
.

Hence, similar to what happened with the model linear formulation in Ma-
mada and Perrings (2020), in the case of homogeneous goods, and in Naimzada
and Pireddu (2023), with substitutable and independent products, under
(2.5) and (3.2) parameter d plays just a stabilizing role on the Nash equilib-
rium, when it influences its stability. Namely, it can also happen that, under
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(2.5) and (3.2), the equilibrium in (2.8) is stable for any admissible value for
d according to (2.3). However, with respect to Mamada and Perrings (2020)
and Naimzada and Pireddu (2023), we now have one extra stability condi-
tion, involving σ̃, and thus more frameworks may arise. We represent the
three main possibilities4 in Figure 4, where we take d as bifurcation param-
eter and the various values of p and σ allow for a different ordering among
the thresholds contained in Corollary 3.1. In particular, calling d1, d2 the
stability thresholds therein, d0 the admissibility threshold coming from (2.3)
and de the threshold coming from (2.5), i.e.,

d1 :=
−2(β+c)

ε2
+ γ

ε2
, d2 :=

−2(β+c)
ε2

+ γ

ε2( 2
σ̃
−1)

,

d0 := − b(2β+2c+γ)
εp

, de := −2(β+c)
ε2

,

(3.13)

for the parameter configuration in Figure 4 (A) it holds that de = −0.892 <
d2 = −0.754 < d1 = −0.480 < d0 = −0.469. Since the stability thresholds
d1 and d2 are below the admissibility threshold d0, the Nash equilibrium is
stable for all values for which it is admissible, as highlighted by the bifur-
cation diagram in Figure 4 (A), that we draw for d ∈ (−0.469, 0). More-
over, the steady state is decreasing with d, in agreement with Proposition
1 in Naimzada and Pireddu (2023). On the other hand, for the parame-
ter values considered in Figure 4 (B) it holds that d0 = −1.005 < de =
−0.892 < d2 = −0.754 < d1 = −0.480. Hence, although this time both sta-
bility thresholds d1 and d2 are larger than d0 and satisfy (2.5), which imposes
d > de, also the admissibility condition in (2.3), that leads to qi < − 0.4

2.7d
for

i ∈ {1, 2}, since d varies, has to be taken into account. It is straightforward
to check that (q∗1, q

∗

2) is admissible at the stability threshold d = d1, since
q∗i = 0.053 < − 0.4

2.7d1
= 0.309 for i ∈ {1, 2}. Hence, by continuity, it should

be possible to represent the corresponding bifurcation diagram for values of
d in a left neighborhood of d1. However, due to a monotone divergence phe-
nomenon which occurs as soon as d is below d1, in Figure 4 (B) we draw the
bifurcation diagram for d ∈ [−0.480,−0.450) only, where the Nash equilib-

4Notice indeed that no crucial differences emerge when the smaller between the two
stability thresholds d1 and d2 in (3.13) lies above or below the admissibility threshold d0.

In regard to the comparison between d1 and d2, with substitutes we have that d1 < d2
for σ̃ > 1. In particular, this remark applies to the limit case in which γ = β, i.e., when
we are dealing with homogeneous goods. We finally stress that d1 and d2 coincide when
products are independent.
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rium is locally asymptotically stable.5 We stress that at d = d1 = −0.480 a
saddle-node bifurcation occurs.6 In regard to the divergence issue, we recall
that the sigmoid adjustment mechanism bounds in each period the output
variation and thus lowers the speed of divergence of the orbits, sometimes
completely preventing divergence, like e.g. in Figures 3 and 7. However, this
is not always the case, as shown by Figure 4 (B). Finally, in Figure 4 (C) we
have d0 = −1.005 < de = −0.892 < d1 = −0.480 < d2 = −0.467, so that
also in such framework both stability thresholds d1 and d2 are larger than
d0 and satisfy (2.5), too. Recalling that, in the considered framework, the
admissibility condition in (2.3) reads as qi < − 0.4

2.7d
for i ∈ {1, 2}, a simple

check shows that we can represent the corresponding bifurcation diagram
e.g. for d ∈ (−0.478,−0.450). This is indeed the choice made in Figure 4
(C), which confirms that the Nash equilibrium is stable for d > d2, whereas
for values of d slightly smaller than d2 we observe a cyclic behavior, since at
d = d2 a period-halving bifurcation occurs (cf. Footnote 2). Similar to (B),
also in this case it would be possible to consider a wider range of values of
d. However, since the values of q1 raise very rapidly for decreasing values of
d ≈ −0.480, we focus on a small variation interval for d in Figure 4 (C), in
order to better focus on the steady state stability recovery.

Notice that, differently from d, parameter b plays no role on the stability of
the Nash equilibrium, being not present in the Jacobian matrix in (3.4).
When making explicit the effect of γ on the stability of the Nash equilibrium
starting from Proposition 3.1, we obtain the following result, which shows
that an increasing degree of interdependence between goods is destabilizing:

5Actually, it would be possible to represent the bifurcation diagram in Figure 4 (B) e.g.
for d ∈ [−0.480, 0), but, in order to better highlight what occurs in the proximity of the
stability threshold d = d1, we focus on a smaller interval of values for d. A similar remark
applies to the choice of the range for d in the bifurcation diagram in Figure 4 (C).

6According to Elaydi (2007), page 249, when condition (iii) in (3.3) becomes an equal-
ity, and thus the Jacobian matrix in (3.4) admits a real eigenvalue equal to +1, then a fold,
a pitchfork or a transcritical bifurcation occurs. Since condition (iii) in (3.3) becomes an
equality just when (3.11) is violated, we are in one of those three cases for d = d1. In par-
ticular, we can infer that a saddle-node bifurcation occurs for the parameter configuration
considered in Figure 4 (B), since, according to the chosen initial conditions, the production
of one firm positively diverges, while the production of the other firm negatively diverges.
As we shall see in Subsection 3.2, with complements, depending on the parameter values
we deal with, (iii) in (3.3) is either always or never fulfilled and thus no fold, pitchfork or
transcritical bifurcations can occur in that framework.
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(A) (B) (C)

Figure 4: The bifurcation diagram of q1,t+1 in (3.1) with respect to d and
initial conditions q1,0 = 0.25, q2,0 = 0.2, for δ = 0.4, υ = 2.2, β = 3.1, c =
0.15, b = 0.4, ε = 2.7, γ = 3, and p = 3, σ = 1.478 in (A), p = 1.4, σ = 1.478
in (B), p = 1.4, σ = 3 in (C).

Corollary 3.2 When γ ≥ 0, under (2.5) and (3.2), (q∗1, q
∗

2) in (2.8) is ad-

missible according to (2.3) for γ > −
(
2(β + c) + dεp

b

)
. If this is the case, it

is locally asymptotically stable for System (3.1) when σ̃ < 2 and

0 ≤ γ < min
{
2(β + c) + dε2,

( 2
σ̃
− 1
) (

2(β + c) + dε2
)}

. (3.14)

Hence, in our duopoly setting with emission charges we obtain confirmation
of the destabilizing role of the degree of substitutability among commodities
found by Agliari et al. (2016) in a duopoly framework with differentiated
goods and nonlinear demand functions.
In regard to the threshold values in (3.14), i.e.,

γ1 := 2(β + c) + dε2, γ2 :=
( 2
σ̃
− 1
) (

2(β + c) + dε2
)
,

we notice that γ1 < γ2 if and only if σ̃ ∈ (0, 1), while the opposite inequality
holds true for σ̃ ∈ (1, 2).
Rather than illustrating Corollary 3.2, we will show in Figure 7 possible
bifurcation diagrams drawn for positive and negative values of γ, in relation
to the findings in the more general Corollary 3.5, which encompasses both
the case of substitutes and (Scenario I) of complements.

3.2 The case of complements

In the present subsection, we deal with the case γ < 0. Accordingly, under
(2.5), two different scenarios ensure the positivity of the Nash equilibrium in
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(2.8), i.e.,
p− bε > 0, 2(β + c) + dε2 + γ > 0, (3.15)

or
p− bε < 0, 2(β + c) + dε2 + γ < 0. (3.16)

The former scenario, in which (2.5) is granted and that occurs for small
values of γ in absolute value, leads to findings similar to, but not coinciding
with, those described in Subsection 3.1. In the latter scenario, that occurs
for large values of γ in absolute value and for negative values of d, (2.5) is
instead not guaranteed and outcomes will be drastically different from those
detected in the other cases. In order to easily refer to the scenarios related to
(3.15) and (3.16), in what follows we will call them Scenario I and Scenario
II, respectively, and we will analyze them separately.

3.2.1 Analysis of Scenario I

The dynamic result, which represents the counterpart to Proposition 3.1,
reads as follows:

Proposition 3.2 When γ < 0, under (3.15), (q∗1, q
∗

2) in (2.8) is admissi-

ble according to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, it is locally

asymptotically stable for System (3.1) when σ̃ < 2
1− γ

2(β+c)+dε2
.

Proof. Using Jury conditions like in the proof of Proposition 3.1, we find
again (3.5), equivalent to (3.9), as well as (3.6) and (3.7). However, this
time, since γ is negative, (3.6) and (3.7) are jointly fulfilled when

σ̃ <
2

1− γ

2(β+c)+dε2

. (3.17)

Moreover, by (3.15), (3.9) is equivalent to (3.10) and to (3.11). Since, still
by (3.15), the conditions in (2.3) lead to (3.12) and it holds that

−
b(2β + 2c+ γ)

εp
> −

2β + 2c+ γ

ε2
> −

2β + 2c− γ

ε2
,

the assertion follows by (3.12) and (3.17). �

Similar to what happened with substitutes, we notice that although the same
conclusions about comparative statics contained in Propositions 4 and 5 in
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Naimzada and Pireddu (2023), according to which the components of the
Nash equilibrium in (2.8) decrease when b, d or ε increase, hold true with
the sigmoidal adjustment mechanism, too, the significance of the comparative
statics analysis is reduced when dealing with the model nonlinear formula-
tion in (3.1), since the stability region in Proposition 3.2 for (q∗1, q

∗

2) in (2.8)
is reduced with respect to Proposition 6 in Naimzada and Pireddu (2023),
obtained for the model linear formulation. Indeed, in that setting the Nash
equilibrium is stable under (3.15) anytime it is admissible according to (2.3),
i.e., when (3.12) holds true, while with the sigmoidal adjustment mechanism
the extra condition in (3.17), highlighting the destabilizing role played by the
joint reactivity σ̃, is required for stability. In particular, two different possi-
bilities, according to the sign of d, are illustrated in Figure 5, where we let σ
vary, finding outcomes which bear resemblance to those detected in Figure
3, as well as some differences. Namely, for the parameter configuration con-
sidered in Figure 5 (A), where d = 0.1, since (3.15) holds true and (3.12) is
guaranteed by the positivity of d, the only condition in Proposition 3.2 that
can be violated is the one in (3.17), which reads as σ̃ < 1.413 or equivalently
as σ < 4.175, since υ = 2.2 and δ = 0.4. Indeed, in that bifurcation diagram
σ varies in (0, 10) and (q∗1, q

∗

2) in (2.8) is stable for low values of σ, while after
the period-doubling bifurcation occurring at σ = 4.175 (cf. Footnote 2), we
observe a secondary Neimark-Sacker bifurcation at σ = 5.112, at which the
period-two cycle loses stability and quasiperiodic dynamics emerge. When
considering negative values for d, no condition in Proposition 3.2 is granted.
In particular, in Figure 5 (B) we fix d = −0.1 and, for the chosen parameter
set, condition (3.15) is fulfilled, while (3.17) reads as σ̃ < 1.316, or equiva-
lently σ < 3.888. Hence, like in (A), also in this case the steady state is stable
for low values of σ. On the other hand, since the admissibility condition in
(2.3) leads to qi < 1.481 for i ∈ {1, 2}, it is fulfilled just for σ ∈ (0, 5.334).
This is indeed the interval for σ depicted in Figure 5 (B), which is sufficient
to witness the secondary Neimark-Sacker bifurcation of the period-two cycle,
followed by quasiperiodic dynamics.7 Both in Figure 5 (A) and (B) orbits

7In this respect we remark that choosing a more negative value of d would allow us
to draw the bifurcation diagram for a smaller interval of values for σ. For instance, for
d = −0.15 we should interrupt the diagram in Figure 5 (B) just after the secondary
Neimark-Sacker bifurcation. The same remark applies to Figure 3. Namely, in (B) therein
we have to truncate the bifurcation diagram just after the period-doubling bifurcation
with d = −0.4, while if we chose d = −0.1 in Figure 3 (B), we would obtain a bifurcation
diagram more similar to the one in Figure 3 (A), encompassing complex dynamics.
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do not diverge after the steady state stability loss, differently from the lin-
ear framework considered in Mamada and Perrings (2020) and in Naimzada
and Pireddu (2023), thanks to the introduction of the sigmoid adjustment
mechanism.

(A) (B)

Figure 5: The bifurcation diagram of q1,t+1 in (3.1) with respect to σ and
initial conditions q1,0 = 0.25, q2,0 = 0.2, for p = 2.5, δ = 0.4, υ = 2.2, β =
3.1, c = 0.15, b = 0.4, ε = 2.7, γ = −3, and d = 0.1 in (A), d = −0.1 in (B).

We stress that the threshold values in Figure 3 (A) and in Figure 5 (A)
for σ coincide because in the two bifurcation diagrams we considered the
same parameter values, except for γ = 3 in the former, and γ = −3 in the
latter, so that |γ| = 3 in either case.8 Namely, we will see in Corollary 3.6
in Subsection 3.3, which encompasses the frameworks of substitutes and of
complements, that, since d > 0 in Figures 3 (A), 5 (A) and (3.2) holds true
in both frameworks, then |γ| determines the stability threshold value for σ̃,
as it follows by making the latter parameter explicit in (3.20).
Let us now state the analogues of Corollaries 3.1 and 3.2, which are obtained
by highlighting in the statement of Proposition 3.2 the role of d and of γ,
respectively.
In regard to the former, making d explicit in (3.17), we obtain the following:

Corollary 3.3 When γ < 0, under (3.15), (q∗1, q
∗

2) in (2.8) is admissible

according to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, it is locally asymp-

8Notice that in Figure 5 (B) we had to consider a different value for d < 0 with respect to
Figure 3 (B) due to the admissibility condition (3.12), with consequent different threshold
values for σ in Figures 3 (B) and 5 (B) although having |γ| = 3 in both bifurcation
diagrams.

24



totically stable for System (3.1) for σ̃ < 2 and

d >
−2(β + c)

ε2
−

γ

ε2
(
2
σ̃
− 1
) .

When illustrating the different dynamic scenarios compatible with Corollary
3.3, starting from the threshold values for d in (3.13), we notice that de
and d1 are no more involved, while the admissibility condition d0 is still
necessary, and, in place of d2, we need to consider d′2 := −2(β+c)

ε2
− γ

ε2( 2
σ̃
−1)

.

Hence, the only two possibilities are given by d′2 < d0 and d0 < d′2. We
represent them in Figure 6 (A) and (B), respectively, where we take d as
bifurcation parameter, for different values of p and σ. In more detail, with
the parameter configuration in Figure 6 (A) (coinciding with that in Figure
4 (A), except for an opposite value for γ) it holds that d′2 = −0.754 < d0 =
−0.173. Since the stability threshold d′2 is below the admissibility threshold
d0, the Nash equilibrium is stable for all values for which it is admissible, as
confirmed by the bifurcation diagram in Figure 6 (A), that we draw for d ∈
(−0.173, 0). Notice that the steady state is decreasing with d, in agreement
with Proposition 4 in Naimzada and Pireddu (2023). On the other hand,
for the parameter values considered in Figure 6 (B)9 it holds that d0 =
−0.471 < d′2 = −0.467. Thus, although this time the stability threshold d′2
is larger than d0, in order to take into account the admissibility condition in
(2.3), that leads to qi < − 0.4

2.7d
for i ∈ {1, 2}, since d varies, we can represent

the corresponding bifurcation diagram just for d ∈ (−0.469, 0). However, in
Figure 6 (B) we focus on d ∈ (−0.469,−0.4), to better highlight that (q∗1, q

∗

2)
is locally asymptotically stable for (3.1) when d > d′2, whereas for values of
d slightly smaller than d′2 we observe a cyclic behavior, that is replaced by
monotone divergence for lower values of d.
Making explicit in the statement of Proposition 3.2 the role of γ rather than
that of d, we obtain the next:

Corollary 3.4 When γ < 0, under (3.15), (q∗1, q
∗

2) in (2.8) is admissible

according to (2.3) for γ > −
(
2(β + c) + dεp

b

)
. If this is the case, it is locally

asymptotically stable for System (3.1) when σ̃ < 2 and

0 > γ >
(
1−

2

σ̃

) (
2(β + c) + dε2

)
.

9We stress that with the parameter configuration in Figure 4 (B) and γ = −3 we would
have found again the scenario with d′

2
< d0 in Figure 6 (B). Hence, in this case, unlike in

(A), we had to consider a different parameter configuration with respect to Figure 4 (B).
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(A) (B)

Figure 6: The bifurcation diagram of q1,t+1 in (3.1) with respect to d and
initial conditions q1,0 = 0.25, q2,0 = 0.2, for δ = 0.4, υ = 2.2, β = 3.1, c =
0.15, b = 0.4, ε = 2.7, γ = −3, and p = 3, σ = 1.478 in (A), p = 1.1, σ = 3
in (B).

The effect on the Nash equilibrium of γ, that seems to be destabilizing in
Corollary 3.2 and stabilizing in Corollary 3.4, will be better highlighted in
Corollary 3.5 in Subsection 3.3, in which γ can take both positive and nega-
tive values.
Before stating that result, we complete the investigation of what occurs with
complements by focusing on Scenario II.

3.2.2 Analysis of Scenario II

Even under (3.16), the conclusions about comparative statics found in Naimzada
and Pireddu (2023) (cf. Propositions 7 and 8 therein) still hold true with
the model nonlinear formulation, showing that the environmental policy de-
scribed by the emission charges Ci in (2.2) is not effective in reducing pollu-
tion when d is negative enough and thus emission charges increase too slowly
with production. Namely, under (3.16), which can be fulfilled just by values
of d that are much lower than 0, the components of the Nash equilibrium in
(2.8) increase with b, d and ε.
In this scenario however we find confirmation of the dynamic result in Naimzada
and Pireddu (2023) (cf. Proposition 9 therein), too, according to which the
steady state is never stable, when it is admissible. Namely, the counterpart
to Propositions 3.1 and 3.2 reads as follows:

Proposition 3.3 When γ < 0, under (2.5) and (3.16), (q∗1, q
∗

2) in (2.8) is

admissible according to (2.3) for d < − b(2β+2c+γ)
εp

. If this is the case, it is

always unstable for System (3.1).
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Proof. Using Jury conditions, we find again (3.5), equivalent to (3.9), as well
as (3.6) and (3.7). However, since we are now supposing that 2(β+c)+dε2+
γ < 0, this time from (3.9) it follows that

2(β + c) + dε2 − γ < 0, (3.18)

which contradicts (2.5) with γ < 0. Hence, Jury conditions are never satisfied
for System (3.1) at (q∗1, q

∗

2) , leading to the assertion. �

We will not illustrate the dynamics arising on increasing the main model
parameters in this scenario, in which no stability thresholds are present,
since the numerical simulations we performed provided divergent outcomes,
with no emerging attractors.
In order to conclude the local stability analysis, we shall better highlight
the role of γ. This will be done in the next subsection, where we will derive
results that encompass both the case of substitutes and of complements under
(3.15).

3.3 The role of the interdependence degree between

goods

Merging Corollaries 3.2 and 3.4, we find the following:

Corollary 3.5 Under (2.5) and (3.15), (q∗1, q
∗

2) in (2.8) is admissible ac-

cording to (2.3) for γ > −
(
2(β + c) + dεp

b

)
. If this is the case, it is locally

asymptotically stable for System (3.1) when σ̃ < 2 and

(
1−

2

σ̃

) (
2(β + c) + dε2

)
< γ < min

{
2(β+c)+dε2,

( 2
σ̃
−1
) (

2(β + c) + dε2
)}

.

(3.19)

Although containing heavy conditions, Corollary 3.5 shows that increasing
the absolute value of γ has a destabilizing effect on System (3.1).
The statement of Corollary 3.5 is much simplified under the assumption that
d > 0, in which case there is no need for the admissibility condition in (2.3),
and (2.5) and (3.15) reduce to (3.2). Moreover, the stability condition (3.10)
derived in Proposition 3.1 is granted, and thus we easily obtain the next:

Corollary 3.6 Assuming that d > 0, under (3.2) it holds that (q∗1, q
∗

2) in

(2.8) is locally asymptotically stable for System (3.1)
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• for every value of |γ| < β if σ̃ ≤ η := 4β+4c+2dε2

3β+2c+dε2
;

• for every value of |γ| <
(
2
σ̃
− 1
)
(2(β + c) + dε2) if η < σ̃ < 2;

• for no values of γ if σ̃ ≥ 2.

Proof. For d > 0, (3.19) reads as

|γ| <
( 2
σ̃
− 1
) (

2(β + c) + dε2
)
, (3.20)

which can be fulfilled by some values of γ just when σ̃ < 2, since 2(β +
c) + dε2 > 0. Recalling that γ ∈ (−β, β), (3.20) imposes stricter bounds
on γ exclusively when

(
2
σ̃
− 1
)
(2(β + c) + dε2) < β, i.e., when σ̃ > η :=

4β+4c+2dε2

3β+2c+dε2
∈ (1, 2). The proof is complete. �

We illustrate the three scenarios described in Corollary 3.6 in Figure 7, where
we show the bifurcation diagram of q1,t+1 in (3.1) for γ ∈ (−β, β) and dif-
ferent, increasing, values of σ. Namely, for the parameter configuration con-
sidered in Figure 7 it holds that d > 0 and p > bε, so that (3.2) is fulfilled
and it is immediate to check that, in analogy with the results about com-
parative statics contained in the above recalled Propositions 1, 2, 4 and 5 in
Naimzada and Pireddu (2023), where the role of b, d and ε was investigated,
(q∗1, q

∗

2) in (2.8) is decreasing for γ ∈ (−β, β) = (−3.1, 3.1). Moreover, for
the parameter η introduced in Corollary 3.6 it holds that η = 1.400, and
thus in Figure 7 (A), for σ = 2, we have σ̃ = 0.677 < η, so that the Nash
equilibrium is locally asymptotically stable for every value of γ ∈ (−3.1, 3.1);
in Figure 7 (B), for σ = 5.8, we have η < σ̃ = 1.963 < 2, so that the Nash
equilibrium is locally asymptotically stable just for γ ∈ (−0.137, 0.137), ac-
cording to (3.20); in Figure 7 (C), for σ = 6, we have σ̃ = 2.030 > 2, so that
the Nash equilibrium is stable for no values of γ. We finally observe that, as
highlighted by Figure 7 (B) and (C), when the steady state loses stability,
via period-doubling bifurcations (cf. Footnote 2), because of an high interde-
pendence degree between goods, complex dynamics may emerge due to the
presence of chaotic or quasiperiodic attractors, but no divergence issues arise
thanks to the bounds imposed by the sigmoidal function in (3.1).
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(A) (B) (C)

Figure 7: The bifurcation diagram of q1,t+1 in (3.1) for γ ∈ (−3.1, 3.1) and
initial conditions q1,0 = 0.25, q2,0 = 0.2, for p = 2.5, δ = 0.4, υ = 2.2, β =
3.1, c = 0.15, b = 0.4, d = 0.1, ε = 2.7, and σ = 2 in (A), σ = 5.8 in (B),
σ = 6 in (C).

4 Dynamic approaches for the evaluation of

the environmental policy efficacy

We now discuss how to evaluate the environmental policy efficacy when the
steady state is not stable. Namely, in introducing our model we stressed that
a growing empirical literature (see e.g. Chatrath et al. 2002; Gouel 2012;
Huffaker et al. 2018) highlights the chaotic behavior of the main variables
in various markets, and in particular in agricultural markets. In order to
be realistic, our model has to be able to reproduce the dynamic phenom-
ena identified by those empirical studies, according to which what we see is
the result of the action of underlying nonlinear mechanisms. Starting then
from the framework in Mamada and Perrings (2020), we replaced the lin-
ear output adjustment rule considered therein with a sigmoid mechanism
in view of obtaining interesting, i.e., non-stationary, non-divergent, dynamic
outcomes. The introduction of the sigmoid mechanism, in addition to allow-
ing for nontrivial dynamics, shrinks the steady state stability region. Indeed,
comparing Propositions 3.1, 3.2 and 3.3 with the corresponding results in
Naimzada and Pireddu (2023), we observe a reduction in the stability region
for (q∗1, q

∗

2) both in the case of substitutes and of complements in Scenario
I - in the latter framework the Nash equilibrium in Naimzada and Pireddu
(2023) was always stable when admissible - and a confirmation of its uncon-
ditional instability in Scenario II, in consequence of the introduction of the
sigmoid adjustment mechanism in (2.10). Therefore, it is important to un-
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derstand how the environmental policy efficacy can be evaluated in the case
of non-stationary trajectories. Namely, as long as the Nash equilibrium is
stable, such as in Figures 4 (A) and 6 (A), the efficacy of the environmental
policy can be assessed using the standard tool, which is represented by the
comparative statics analysis. In this respect, we recall that, as mentioned
in Section 3, according to Propositions 1 and 4 in Naimzada and Pireddu
(2023), which hold true with the nonlinear adjustment mechanism in (2.10),
too, the environmental policy described by the emission charges Ci in (2.2) is
effective in reducing pollution, i.e., the equilibrium pollution level falls with
an increase in b or d, with substitutes or under (3.15), while in agreement
with Proposition 7 in Naimzada and Pireddu (2023) it is detrimental under
(3.16), since in such case the equilibrium pollution level raises with an in-
crease in b or d, due to the fact that, under (3.16), emission charges increase
too slowly with production. Nonetheless, when the steady state is not stable,
or when the considered scenario is characterized by the presence of an attrac-
tor different from the Nash equilibrium, the comparative statics technique is
neither economically, nor empirically grounded. In such cases, we then need
to introduce alternative methods, based for instance on the behavior, for
different values of d, of the time series of the cumulative emissions, defined
as the sum, over a certain time interval [0, T ], of the aggregate emissions
Ut := u1,t + u2,t = ε(q1,t + q2,t) produced in time period t ∈ [0, T ] by both

firms, i.e., in symbols CET :=
∑T

t=0 Ut = ε
∑T

t=0(q1,t + q2,t). In this manner,
the environmental policy efficacy could be implied by a negative variation
of cumulative emissions over the chosen time interval as a consequence of
an increase in d. We can use such method to investigate the environmental
policy efficacy e.g. in the contexts considered in Figures 4 (C) and 6 (B),
where d was the bifurcation parameter.
To that aim, for the parameter values used therein we reproduce the two
bifurcation diagrams for aggregate emissions Ut+1 in Figure 8 (A) and (C),
respectively, where we fix three different values of d (colored in blue, red and
green), some of which lie in the interval where the steady state is unstable,
while the remaining ones belong to the stability interval of the Nash equi-
librium. We show the corresponding time series of the cumulative emissions
CET for T ∈ [0, 100] in Figure 8 (B) and (D), by using the same colors as in
(A) and (C). In particular, in Figure 8 (A) and (B) the blue color refers to
d = −0.477, the red color to d = −0.471 and the green color to d = −0.465,
while in Figure 8 (C) and (D) the blue color refers to d = −0.468, the red
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(A) (B) (C) (D)

Figure 8: In (A) and (C) we report the bifurcation diagrams of Ut+1 with
respect to d for the same parameter values used in Figures 4 (C) and 6
(B), respectively. In (B) and (D) we show the time series of cumulative
emissions CET for T ∈ [0, 100] corresponding to the values of d marked with
different colors in (A) and (C), respectively. The initial conditions in (B)
are U0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.45 = 1.215, connected with q1,0 = 0.25
and q2,0 = 0.2, for the blue and the red time series, and 2εq∗1 = 2 ∗ 2.7 ∗
0.052 = 0.281 for the green time series, while in (D) the initial conditions are
U0 = 2.7 ∗ 0.45 = 1.215, connected with q1,0 = 0.25 and q2,0 = 0.2, for the
blue time series, 2εq∗1 = 2 ∗ 2.7 ∗ 0.074 = 0.399 for the red time series, and
2εq∗1 = 2 ∗ 2.7 ∗ 0.044 = 0.238 for the green time series.

color to d = −0.443 and the green color to d = −0.418. The initial condi-
tions in (B) are U0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.45 = 1.215 for the blue and
the red time series, and 2εq∗1 = 2 ∗ 2.7 ∗ 0.052 = 0.281 for the green time
series, while in (D) the initial conditions are U0 = 2.7 ∗ 0.45 = 1.215 for
the blue time series, 2εq∗1 = 2 ∗ 2.7 ∗ 0.074 = 0.399 for the red time series,
and 2εq∗1 = 2 ∗ 2.7 ∗ 0.044 = 0.238 for the green time series. Since in (B)
and (D) the cumulative emissions for T ∈ [0, 100] are larger for lower values
of d, this means that increasing emission charges in (2.2) reduce pollution,
and thus the considered environmental policy is effective. We would find the
same conclusion by applying the just described method to the framework in
Figure 4 (B), too, in agreement with the comparative statics result for Fig-
ure 4 (A) (see Proposition 1 in Naimzada and Pireddu, 2023). Contrasting
Figure 8 (B) and (D), we observe that, although in both (A) and (C) the
considered values of d are equidistant, pollution decreases in (B) rapidly for
higher values of d, while in (D) the efficacy of the environmental policy, al-
though raising with d, slows down when d increases. In this sense, an intense
increase in d is more useful in (B) than in (D).
In view of better comparing and understanding Figure 8 (A) and (C), we
draw in Figure 9 the time series of q1,t in dark blue and of q2,t in green for
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(A) (B)

Figure 9: In (A) and (B) we show the time series of q1,t in dark blue and
of q2,t in green for t ∈ [101, 140], corresponding to the values of d marked in
blue in Figure 8 (A) and (C), respectively.

t ∈ [101, 140], corresponding to the values of d marked in blue in Figure 8
(A) and (C), i.e., d = −0.477 and d = −0.468, respectively. We find that,
although for the considered values of d both the bifurcation diagrams of q1,t+1

in Figures 4 (C) and 6 (B) highlight the presence of a stable period-two cycle,
in Figure 9 (A) we witness an agreement between the periods of high/low
production strategies for the two firms, so that their outputs give a concor-
dant contribution to aggregate emissions in Figure 8 (A), while in Figure 9
(B) there is discordance between the high/low output choice timing for the
two firms, still giving rise to a decreasing trend. Such difference between
Figure 9 (A) and (B) is the reason why in the bifurcation diagram in Figure
8 (A) we witness a period-two cycle for Ut+1 for low values for d, like it was
in Figure 4 (C), while in Figure 8 (C) we do not see oscillations for Ut+1 even
before the stability threshold value, i.e., d = −0.467.
We stress that in the time series in Figure 9 (A) and (B) we introduced
a transient of 100 periods in order to show the asymptotic behavior of the
production of the two firms. We also remark that the choice of considering
T ∈ [0, 100] in our experiments in Figure 8 (B) and (D) has no effect on the
behavior of time series for cumulative emissions. Namely, considering a larger
time interval, the distance among the found time series would increase, but
their ordering would not change. Moreover, we underline that the proposed
technique can be applied to more general frameworks, in which looking at the
corresponding bifurcation diagram with respect to d is not clear what is the
effect generated by an increase in emission charges on produced quantities,
and consequently on emissions.
Hence, thanks to our first method based on cumulative emissions we checked
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in Figure 8 the efficacy of the environmental policy introduced in (2.2) for
the parameter configurations considered in Subsection 3.1 and in Scenario
I in Subsection 3.2, in agreement with the comparative statics results ob-
tained for substitutes and complements under (3.15) in Propositions 1 and
4 in Naimzada and Pireddu (2023). In regard to Scenario II in Subsection
3.2, in which the Nash equilibrium is always unstable when it is admissible,
we can say that if the system reached the steady state and remained on it
despite the equilibrium instability, we would find that emissions raise with
an increase in d, in agreement with Proposition 7 in Naimzada and Pireddu
(2023), i.e., the comparative statics result valid for the case of complements
under (3.16). On the other hand, since in Scenario II in Subsection 3.2 we are
always in an instability regime and the numerical simulations we performed
display divergent outcomes, with no emerging attractors, it is not possible
to draw conclusions about the environmental policy efficacy in that scenario.
Namely, related comments can be made just when orbits visit an attractor.
A different extension of the classical comparative statics analysis to the
frameworks in which the steady state is not stable may lead to what we
could call “comparative dynamics”, consisting in a comparison, for the given
parameter configuration and over a certain time interval, of cumulative emis-
sions, starting from the unstable Nash equilibrium and from a different point
in the basin of attraction of the stable periodic or complex attractor. We
show what happens in this respect both with substitutes, in Figures 10 and
11, and with complements under (3.15), in Figures 12 and 13, starting in
both cases from Figure 7 (C) and dealing with positive and negative values
for γ, respectively.
Namely, in Figure 10 (A) we draw the bifurcation diagram of q1,t+1 obtained
for the same parameter values used in Figure 7 (C) but fixing γ = 3 and let-
ting d vary in (0.05, 0.15). Since the steady state (drawn in red, dashed line)
is always unstable for the considered parameter values and, according to the
value of d ∈ (0.05, 0.15), we observe a periodic or a chaotic attractor (in blue),
in order to perform a “comparative dynamics” exercise, we contrast in Figure
10 (B) the time series of cumulative emissions CET for T ∈ [0, 100] corre-
sponding to d = 0.1, with initial condition u1,0 + u2,0 = ε(q1,0 + q2,0) = 2.7 ∗
0.6 = 1.62 for the blue points and u1,0 + u2,0 = 2εq∗1 = 2 ∗ 2.7 ∗ 0.139 = 0.751
for the red points. We find that the cumulative emissions in the considered
time interval are larger along the non-stationary trajectory than along the
equilibrium path. Hence, we could try to contain emissions and to stabilize
the system by acting on the sigmoid adjustment mechanism, and in particu-
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(A) (B)

Figure 10: In (A) the bifurcation diagram of q1,t+1 in (3.1) with respect to
d ∈ (0.05, 0.15) with initial conditions q1,0 = 0.1, q2,0 = 0.5, for p = 2.5, δ =
0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, σ = 6 and γ = 3. In
(B) we show the time series of cumulative emissions CET for T ∈ [0, 100]
corresponding to d = 0.1, with initial condition u1,0 + u2,0 = 1.62, connected
with q1,0 = 0.1 and q2,0 = 0.5, for the blue points and 2εq∗1 = 2∗2.7∗0.139 =
0.751 for the red points.

lar on the position of its horizontal asymptotes. In this respect, we recall the
bounding role played by the horizontal asymptotes, whose level, as explained
in Section 2, is controlled by parameters υ and δ. Indeed, reducing υ lowers
the upper asymptote, which plays a role when the best response is above the
current production level, while decreasing δ raises the lower asymptote, which
intervenes when the best response is below current production level. Starting
from the framework in Figure 10 and acting for instance on υ, we obtain the
effect illustrated in Figure 11, where in (A) and (C) we show that, as desired,
the complexity of the dynamics decreases by lowering υ. In more detail, fixing
the remaining parameters as in Figure 10 (A), in Figure 11 (A) for υ = 1.35
we obtain a periodic attractor (in blue), i.e., a period-four or a period-two
cycle for d ∈ (0.05, 0.15), while the steady state (drawn in red, dashed line)
is always unstable for such values of d. Drawing in Figure 11 (B) the time
series of cumulative emissions for T ∈ [0, 100] corresponding to d = 0.1, with
initial condition u1,0 + u2,0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.6 = 1.62 for the blue
points and u1,0 + u2,0 = 2εq∗1 = 2 ∗ 2.7 ∗ 0.139 = 0.751 for the red points,
we find, like in Figure 10 (B), that cumulative emissions are larger along
the non-stationary trajectory than along the equilibrium path. Reducing υ
further to 0.5 in Figure 11 (C), we finally obtain the complete stabilization
of the system. This shows that the sigmoid adjustment mechanism can be
effective in reducing pollution, by acting on the maximum allowed produc-
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Figure 11: In (A) and (C) we report the bifurcation diagrams of q1,t+1 in (3.1)
with respect to d ∈ (0.05, 0.15) with initial conditions q1,0 = 0.1, q2,0 = 0.5,
for p = 2.5, δ = 0.4, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, σ = 6, γ = 3,
and υ = 1.35 in (A), υ = 0.5 in (C), respectively. In (B) we show the time
series of cumulative emissions CET for T ∈ [0, 100] corresponding to (A) with
d = 0.1, with initial conditions u1,0 + u2,0 = 1.62, connected with q1,0 = 0.1
and q2,0 = 0.5, for the blue points and 2εq∗1 = 2 ∗ 2.7 ∗ 0.139 = 0.751 for the
red points.

tion variation. As argued above, in consequence of the system stabilization,
the comparative statics analysis becomes economically grounded. We recall
that, for the case of substitutes, the corresponding comparative statics result
in Naimzada and Pireddu (2023) (cf. Proposition 1 therein) states that the
equilibrium pollution level falls with an increase in emission charges. We
stress that the outcome about the system stabilization is independent from
the choice of considering T ∈ [0, 100] in regard to the time frame, as well as
from the choice of d = 0.1, since for any value of d ∈ (0.05, 0.15) we would
obtain the same conclusion, whether in Figure 10 (A) we observe a periodic
or a chaotic attractor.
In fact, we shall reach analogous conclusions also with complements, when
(3.15) holds true. In this case, starting again from Figure 7 (C), we draw in
Figure 12 (A) the bifurcation diagram of q1,t+1 obtained for the same param-
eter values used therein but fixing γ = −3 and letting d vary in (0.05, 0.15),
which highlights a multistability phenomenon. Since the steady state (drawn
in red, dashed line) is always unstable for the considered parameter values
and we observe two coexisting chaotic attractors (in blue and in green),
interrupted just by some periodicity windows, in order to perform a com-
parative dynamics exercise, we contrast in Figure 12 (B) the time series of
cumulative emissions CET for T ∈ [0, 100] corresponding to d = 0.1185,
with initial condition u1,0 + u2,0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.45 = 1.215 for
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Figure 12: In (A) the bifurcation diagram of q1,t+1 in (3.1) with respect
to d ∈ (0.05, 0.15) with initial conditions q1,0 = 0.25, q2,0 = 0.2 for the blue
points and q1,0 = 0.1, q2,0 = 0.5 for the green points, for p = 2.5, δ = 0.4, υ =
2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, σ = 6 and γ = −3. In (B) we show
the time series of cumulative emissions CET for T ∈ [0, 100] corresponding
to d = 0.1185, with initial condition u1,0 + u2,0 = 1.215, connected with
q1,0 = 0.25 and q2,0 = 0.2, for the blue points, u1,0 + u2,0 = 1.62, connected
with q1,0 = 0.1 and q2,0 = 0.5, for the green points, and 2εq∗1 = 2∗2.7∗0.325 =
1.757 for the red points.

the blue points, u1,0 + u2,0 = 2.7 ∗ 0.6 = 1.62 for the green points, and
u1,0 + u2,0 = 2εq∗1 = 2 ∗ 2.7 ∗ 0.325 = 1.757 for the red points. We find again
that the cumulative emissions in the considered time interval are larger along
the non-stationary trajectories than along the equilibrium path. Hence, also
in this case we could try to contain emissions and to stabilize the system by
acting on the sigmoid adjustment mechanism, and in particular by lowering
the upper asymptote. Reducing υ we obtain the effect illustrated in Figure
13, where in (A) and (C) we show that, as desired, the complexity of the
dynamics decreases when υ becomes smaller. In more detail, fixing the re-
maining parameters as in Figure 12 (A), in Figure 13 (A) for υ = 1.28 we
find (in blue) a quasiperiodic attractor in two pieces which loses stability in
favor of a stable period-two cycle via a reverse Neimark-Sacker bifurcation
for increasing values of d ∈ (0.05, 0.15), while the steady state (in red, dashed
line) is always unstable. Drawing in Figure 13 (B) the time series of cumu-
lative emissions CET for T ∈ [0, 100] corresponding to d = 0.1 with initial
condition u1,0 + u2,0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.45 = 1.215 for the blue points
and u1,0+u2,0 = 2εq∗1 = 2∗2.7∗0.336 = 1.814 for the red points, we find that
the cumulative emissions are larger along the quasiperiodic, non-stationary
trajectory than on the Nash equilibrium. Lowering υ further to 0.5 in Figure
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Figure 13: In (A) and (C) we report the bifurcation diagrams of q1,t+1 in (3.1)
with respect to d ∈ (0.05, 0.15) with initial conditions q1,0 = 0.25, q2,0 = 0.2
for p = 2.5, δ = 0.4, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, σ = 6, γ = −3,
and υ = 1.28 in (A), υ = 0.5 in (C), respectively. In (B) we show the time
series of cumulative emissions CET for T ∈ [0, 100] corresponding to (A) with
d = 0.1, with initial conditions u1,0+u2,0 = 1.215, connected with q1,0 = 0.25
and q2,0 = 0.2, for the blue points, and 2εq∗1 = 2 ∗ 2.7 ∗ 0.336 = 1.814 for the
red points.

13 (C), we finally reach the stabilization of the system. This shows that the
sigmoid adjustment mechanism is effective in reducing pollution, by acting
on the maximum allowed production variation, also with complements under
(3.15). Notice that such outcome is in agreement with the corresponding
comparative statics result in Naimzada and Pireddu (2023) (cf. Proposition
4 therein), stating that the equilibrium pollution level falls with an increase
in emission charges, which becomes economically grounded when υ is low
enough, so that the steady state is stable. Again, the stabilization of the
Nash equilibrium is independent from the choice of dealing with T ∈ [0, 100]
and d ∈ (0.05, 0.15).
Summarizing, through our first method, based on a comparison of emissions
for different levels of charges, we have found that increasing values for d raise
the dynamic efficacy of the considered environmental policy, while the sec-
ond approach, i.e., the “comparative dynamics” technique, has highlighted
that, in order to reduce pollution, guaranteeing the convergence to the Nash
equilibrium is preferable to allowing for complex or periodic behavior in the
firms’ output, and that acting on the asymptotes may correspond to a direct
control of emissions, in contrast with the indirect nature of the pollution con-
trol obtained by means of the emission charges in (2.2). In this respect, we
stress that the direct control exerted by acting on the sigmoid asymptotes
stabilizes the Nash equilibrium without inducing any variation in the output
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level, contrary to the indirect control described by (2.2) which, according to
Propositions 1 and 4 in Naimzada and Pireddu (2023), induces a negative
variation in output. The above described conclusions have been reached for
the parameter configurations considered in Section 3 both with substitutes
and in Scenario I therein with complements under (3.15). On the other hand,
due to the fact that, according to Proposition 3.3, the Nash equilibrium is
never stable under (3.16) and that divergence issues arise in the numerical
simulations we performed for Scenario II in Section 3, our techniques do not
allow us to draw conclusions about the efficacy of the environmental policy
when dealing with complements under (3.16).

5 Conclusion

In agreement with the results of the growing empirical and experimental
literature (see e.g. Arango and Moxnes 2012; Chatrath et al. 2002; Gouel
2012; Huffaker et al. 2018), which highlights the chaotic behavior of the main
variables involved in various markets, and in particular in agricultural com-
modity markets, we proposed a model able to generate interesting, erratic
dynamic outcomes. In more detail, starting from the Cournot duopoly frame-
work with quadratic emission charges and homogeneous goods in Mamada
and Perrings (2020), we replaced the linear partial best response mechanism
considered therein with a sigmoid adaptive best response mechanism, which,
in addition to help avoid diverging trajectories and negativity issues, is also
sensible from an economic viewpoint, being suitable to describe the gradual
output variations caused by material, historical and institutional constraints
in the production side of an economy, as well as by the limits imposed by an
environmental policy scheme on production levels, due to their direct pro-
portionality with emissions. Moreover, following the suggestion contained
in the concluding section of Mamada and Perrings (2020), we assumed that
firms produce differentiated goods. Beyond analytically studying the stabil-
ity of the unique steady state, which coincides with the Nash equilibrium,
and the effect produced by the main parameters on the stability region, we
proposed two dynamical methods which allow to evaluate the environmental
policy efficacy when the Nash equilibrium is not stable and thus the stan-
dard comparative statics approach does not fit for the purpose. Involving
non-stationary orbits, the proposed techniques are mainly numerical in na-
ture. In particular, the first technique, which is based on a comparison of
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emissions for different levels of charges, showed that, also when the Nash
equilibrium is not stable, the considered environmental policy may be effec-
tive both with complements and substitutes. The second method, consisting
in a comparison of emissions along non-stationary trajectories and along the
equilibrium path, in the proposed experiments highlighted the presence of
larger emissions along non-stationary trajectories. Hence, it gave us the op-
portunity to illustrate how an intervention on the sigmoid asymptotes may
correspond to a direct control of emissions - in contrast with the indirect
nature of the pollution control obtained by means of the considered emission
charges - that also allows for a complete stabilization of the system, so that
comparative statics results become economically grounded, starting from a
situation characterized by the presence of a different attractor. In more de-
tail, in making our numerical experiments, we have not only seen that the
position of the asymptotes of the sigmoid is crucial in determining the sys-
tem dynamics, but also that small variations in other parameters, such as the
interdependence degree between goods, may generate important differences
in the outcomes. In this respect we mention the work by Menueta et al.
(2021), which suggests that a particularly careful choice of the (e.g. fiscal or
environmental) policy to implement is needed when dealing with nonlinear
models in which complex dynamics and bifurcation phenomena can emerge.
We believe that the analyzed setting can be the starting point for other re-
search works.
At first, we deem it essential to fully develop all dynamical aspects hidden
inside the proposed model, in order to make it more realistic. Two possible
extensions of the studied framework in such direction are represented respec-
tively by the description of the environment as a sector interacting with the
economic sphere and by the possibility of describing the transition among
different market structures via an evolutive approach based on relative prof-
itability of markets.
Regarding the former extension, in agreement with the seminal work by John
and Pecchenino (1994), where the environment and its neglect are expressed
through a dynamic equation, we could enrich the model by the introduction
of one or more dynamic equations describing the evolution of the environ-
ment and its mutual interactions with the economic sector. In this manner,
differently from the standard approach which depicts the environment in
a parametric manner, it would be possible to deal with dynamical models
consisting of coupled equations, in order to make explicit the effect of the eco-
nomic activities on the evolution of the environment, as well as the impact of
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the environmental features on the economic activities, both in a direct man-
ner, through consumption and production choices, and in an indirect way,
through environmental policies. The addition of the dynamic equation(s) de-
scribing the environment evolution would make our “semi-dynamic” model
fully dynamic and nonlinear. Usually, in that kind of models complex phe-
nomena emerge, such as bifurcations, chaotic behavior, coexistence among
different attractors. According to Costanza et al. (1993) and Perrings (1998),
the environmental policy efficacy should be evaluated in those dynamic non-
linear models. In this respect, we stress that along the paper we measured the
efficacy of the considered environmental policy in terms of its effectiveness
in reducing emissions. Of course, a reduction in emissions is a consequence
of an output decrease. A more general evaluation of an environmental policy
scheme would require to deal with an oligopoly model that takes into account
further variables, i.e., the factors of production, such as the employed labor
(see e.g. Chiarella and Okuguchi, 1997).
In regard to the latter extension, concerning the transition among different
market structures, we start by recalling that Mamada and Perrings (2020)
tackle the issue of the market structure endogeneity, focusing in particular
on the conditions that may lead from duopoly to monopoly, investigated also
in Matsumoto et al. (2022) under the assumption that marginal production
costs do not coincide across firms. An alternative approach to the prob-
lem of the market structure endogeneity could be evolutive in nature, with
firms deciding whether to operate or not in a given market on the basis of a
profitability signal, such as the comparison between the profitability of the
market with respect to the average profitability of other markets. In this
manner the number of firms operating in a market would become an endoge-
nous variable. Such approach would allow to more generally investigate the
conditions which lead, possibly in a reversible manner, from a market struc-
ture to another one.
Different extensions of the proposed framework, which would be useful in
view of testing the robustness of the here obtained results, could concern the
formulation of the demand functions of firms and their technology hetero-
geneity in regard to emissions. For instance, following Agliari et al. (2016),
we might deal with demand functions deriving from an underlying CES util-
ity function, while in relation to firms technology heterogeneity we recall
that pollution abatement technologies not coinciding across firms have been
considered e.g. in Ganguli and Raju (2012) and in Matsumoto et al. (2018b).
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