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Abstract

Consider a setting in which individual strict preferences need to be aggregated into

a social strict preference relation. For two alternatives and an odd number of agents, it

follows from May’s Theorem that the majority aggregation rule is the only one satisfying

anonymity, neutrality and strategy-proofness (SP). For more than two alternatives,

anonymity and neutrality are incompatible for many instances and we explore this

tradeoff for strategy-proof rules. The notion of SP that we employ is Kemeny-SP (K-

SP), which is based on the Kemeny distance between social orderings and strengthens

previously used concepts in an intuitive manner. Dropping anonymity and keeping

neutrality, we identify and analyze the first known nontrivial family of K-SP rules,

namely semi-dictator rules. For two agents, semi-dictator rules are characterized by

local unanimity, neutrality and K-SP. For an arbitrary number of agents, we generalize

semi-dictator rules to allow for committees and show that they retain their desirable

properties. Dropping neutrality and keeping anonymity, we establish possibility results

for three alternatives. We provide a computer-aided solution to the existence of a locally

unanimous, anonymous and K-SP rule for two agents and four alternatives. Finally,

we show that there is no K-SP and anonymous rule which always chooses one of the

agents’ preferences.
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1 Introduction

We study the problem of aggregating individual preferences into one preference representing

society. Applications range from elections where voters with individual preferences choose a

representative of the society, to instances in which a group of agents, such as committees,

governing bodies or consortia, have to choose a group preference, to macroeconomic models

that analyze the choices of a representative agent of the society.1 In all of the above situations

the societal preference must posess the same properties as individual preferences and agents

would like it to be “as similar as possible” to their own preference.

A more specific application of this framework can be found in the academic job market,

where departments often need to fill an open position without knowing whether any given

applicant will accept their offer. One solution to this problem is to specify a choice from any

conceivable set of available candidates. However, this idea is not practical when the number

of candidates exceeds even a modest threshold. An alternative, and preferable, approach is to

determine an ordering of the candidates and choose the best among those who are available.

In our paper, we address this problem and study methods of selecting a collective (or

social) ordering of the alternatives when individual preferences over them are themselves

orderings. We refer to such procedures as aggregation rules or simply rules. Formally, this is

the classical framework of Arrovian preference aggregation, pioneered in Arrow [3].

There are three canonical properties that aggregation rules aspire to satisfy: fairness,

efficiency, and incentive-compatibility or, as is more commonly referred to in this literature,

strategy-proofness. The fairness notions of anonymity and neutrality are intuitively appealing

and enjoy widespread applications. A rule satisfies anonymity if it is invariant to a reshuffling

of agents’ identities, and thus treats agents equally when determining the collective outcome.

By contrast, a rule satisfies neutrality if it does not systematically favor one alternative over

another, which is a salient concern when the alternatives represent morally relevant entities.

When there are just two alternatives and an odd number of agents, May’s Theorem [24]

establishes that majority rule is the only rule satisfying anonymity, neutrality and strategy-

proofness.2 However, when there are more than two alternatives we show that, for many

instances, there exists no rule that can simultaneously satisfy both anonymity and neutrality.

1The macroeconomics literature generally does not address the question of how to obtain the representative
agent’s preference from individual preferences.

2For a general number of agents, May’s characterization encompasses for multi-valued rules and substitutes
strategy-proofness with an intuitive monotonicity requirement known as positive responsiveness.
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This result is closely related to a similar finding by Moulin [26] regarding choice rules (that

only choose a winning alternative and not an entire ordering). Evidently, obtaining May-like

possibility results for strategy-proofness involves dropping either anonymity or neutrality.

This is the path we pursue in the current paper.

The efficiency standard we impose is local unanimity (where society’s preference shall

respect any unanimous preference over two alternatives), an analogue of weak Pareto due to

Arrow [3] that has been extensively used in the recent literature on preference aggregation.

As far as non-manipulability is concerned, we adopt Kemeny strategy-proofness (K-SP)

by employing the intuitive and axiomatically-founded notion of Kemeny distance [20, 14].

This significantly strengthens previously used incomplete concepts based on the betweeness

relation [12, 18, 4, 5]. Prior to our work there was no known nontrivial rule satisfying K-SP

for all problem instances.

When we dispense with anonymity but keep neutrality, we propose and analyze the first

known nontrivial (i.e., non-dictatorial and non-constant) family of K-SP rules, semi-dictator

rules. As their name suggests, these rules grant outsize influence to a single agent but stop

short of being full dictatorships. They do so by incorporating voting by committee (Barbera

et al. [10]) in a way that meaningfully restricts the power of the semi-dictator without

violating K-SP. When there are just two agents, semi-dictator rules are characterized by local

unanimity, neutrality and Kemeny strategy-proofness. For an arbitrary number of agents, we

show that semi-dictator rules retain their desirable properties.

When we dispense with neutrality but keep anonymity, we establish possibility results for

the case of three alternatives. In particular, we show that certain subfamilies of Condorcet-

Kemeny [12] and fixed-benchmark [5] rules satisfy anonymity, local unanimity, and K-SP.

These results do not carry over when the number of alternatives exceeds three. To explore

the case of four alternatives and two agents, we frame the rule-existence problem as an

integer program. Consequently, we are able to identify computationally a locally unanimous,

anonymous and K-SP rule. This rule is, in some sense, similar to semi-dictator rules in that

it grants special status to a unique “losing alternative”. This alternative is always placed

as low as possible in the social ordering, subject to respecting local unanimity, and the rule

treats all other alternatives in a balanced (though non-neutral) fashion. Finally, we show

that, for many instances, there is no anonymous and K-SP rule which always selects one

of the agents’ preferences. This preference selection property is related to the requirement

of “peak selection” often used in one-public goods problems (Moulin[25] and others). We

suspect that stronger impossibility results involving anonymity, K-SP and various notions of

efficiency are likely to hold.
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Related Work. Our paper is relevant to two strands of the broader social-theoretic

literature. The first regards May’s Theorem and its various extensions when the number of

alternatives exceeds two, whereas the second deals with the nontrivial issue of how to model

strategy-proofness in Arrovian aggregation.

We begin with the relevant literature on May’s Theorem in multi-alternative environments.

We note that, unlike our paper, all the references we discuss deal with choice rules, as opposed

to aggregation rules. That is, rules which select a winning alternative, not an ordering of

alternatives. Goodin and List [17] allowed for multi-valued rules and extended May’s result

to the setting in which agents cast single-alternative votes among a set of more than two

alternatives. In particular, they showed that majority rule is characterized by anonymity,

neutrality and positive responsiveness in this richer environment. Dasgupta and Maskin [15]

focused on single-valued rules and showed that majority rule uniquely satisfies anonymity,

neutrality, Pareto efficiency and an independence property known as the Chernoff condition

over the largest possible class of problem instances. Working with domain restrictions in

which choice rules are single-valued, Alemante et al. [1] showed that Condorcet, plurality,

approval voting, and maximin rules satisfy anonymity, neutrality, and a certain monotonicity

property. Conversely, Horan et al. [19] allowed for multi-valued rules and focused on the

domain restriction of problems admitting strict Condorcet winners. In this setting, they

characterized the rule selecting the Condorcet winner(s) with anonymity, neutrality, positive

responsiveness, and an independence property they refer to as Nash independence.

Regarding the literature on strategy-proof preference aggregation, Bossert and Stor-

cken [13] were the first to study incentive-compatibility in the Arrovian setting. Working

within the Kemeny framework, they established an impossibility result involving the much

stronger property of group K-SP, ontoness, and a relatively esoteric invariance property of

extrema independence. More recently, Bossert and Sprumont [12] proposed the notion of

betweeness strategy-proofness (Btw-SP), according to which misreporting cannot lead to an

outcome that is between the one obtained under truthful reporting and the agent’s own

preferences. This property amounts to requiring that the truthful social ordering not be

unambiguously dominated by the one produced under misreporting and is thus a necessary,

but weak standard of non-manipulability. Bossert and Sprumont [12] identified a number of

rules that satisfy Btw-SP, and axiomatized a few of them on the basis of Btw-SP and other

properties. Building on these results, Athanasoglou [4] demonstrated that all rules identified

in [12] violate K-SP. Harless [18] and Athanasoglou [5] investigated the interplay of Btw-SP

with various solidarity properties.

Since Arrovian aggregation with Kemeny preferences admits a graph-theoretic interpre-

tation, our work shares some parallels with the literature on single-peaked preferences and
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strategyproof facility location (Moulin [25], Barbera et al. [9], Schummer and Vohra [29],

Aziz et al. [6]). In these settings, so-called generalized median (or phantom) voter mecha-

nisms are often characterized with strategyproofness and efficiency criteria. While related to

voting-by-committees, these sorts of median voter mechanisms are not well-defined in the

Arrovian context and thus not directly relevant.

The paper is organized as follows. Section 2 introduces the model, explores the incompati-

bility of anonymity and neutrality, states May’s Theorem for two alternatives and defines our

notions of efficiency and strategy-proofness. Section 3 drops anonymity and explores the pos-

sibilities of neutrality and our basic properties of local unanimity and K-SP. It characterizes

semi-dictator rules for two agents, and generalizes this class to arbitrary numbers of agents

and alternatives while maintaining its properties. Section 4 drops neutrality and explores

the possibilities of anonymity and our basic properties. For three alternatives, we define two

families of rules which satisfy our basic properties and anonymity. For four alternatives and

two agents we provide the computer-aided solution for the existence of a rule satisfying our

basic properties and anonymity. Furthermore, for three alternatives and three agents we

provide a characterization of median rules with tie-breaking by strengthening local unanimity

to preference selection. Section 5 concludes. The Appendix contains all proofs omitted from

the main text.

2 Model

Let A = {a1, . . . , am} denote a finite set of m ≥ 2 alternatives and N = {1, ..., n} a finite

set of n ≥ 2 agents. Let R denote the set of orderings of A (i.e. complete, reflexive,

antisymmetric, and transitive binary relations). Each agent i ∈ N has a preference relation

Ri ∈ R over A. We interchangeably write aRib and (a, b) ∈ Ri to denote that agent i finds

alternative a at least as good as alternative b. For each B ⊂ A, let R(B) denote the set of

orderings over B. For all R ∈ R, the ordering −R is defined such that for all a, b ∈ A with

a 6= b, (a, b) ∈ R if and only if (b, a) ∈ −R.

A (preference) profile RN = (R1, ..., Rn) is an n-tuple of orderings, representing the

preferences of all agents in N . The set of preference profiles is denoted by RN . Given R ∈ R
and B ⊂ A, let R|B denote the restriction of R to B, and RN |B= (Rj|B)j∈N . If a ∈ B and

a Ri b for all b ∈ B, then we say that a is the most preferred alternative of Ri in B.

For convenience, we often denote an ordering by listing the alternatives from left to right

in increasing rank (where the first ranked alternative is the most preferred one in A). Thus,

if we write R = a1a2...am, then alternative a1 is ranked first, a2 second, and so on. When

the ordering of only the first t positions of R is relevant, we write a1...at... to mean that the
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ordering of the remaining positions can be arbitrary.

A rule is a function f : RN → R. A rule f is dictatorial if there exists i ∈ N such

that for all RN ∈ RN we have f(RN) = Ri. A rule f is constant if f(RN) = f(R′N) for all

RN , R
′
N ∈ RN . A choice rule is a function ϕ : RN → A.

2.1 Anonymity and neutrality

How might rules incorporate a concern for fairness? Two properties, which are intuitively

appealing, are anonymity and neutrality.

Anonymity requires that a rule be invariant to reshuffling agent identities. Formally, let σ :

N 7→ N denote a permutation of N . For each profile RN ∈ RN , let Rσ(N) ≡ (Rσ(1), ..., Rσ(n))

denote the profile where agents have been relabeled according to σ.

Anonymity. For each RN ∈ RN and each permutation σ of N , f(RN) = f(Rσ(N)).

Thus, anonymity ensures that the identity of agents does not affect the outcome of the

rule. It excludes dictatorial rules from consideration.

A second fairness property focuses on the identity of alternatives (and not agents) and

requires that the rule does not systematically favor one alternative over another. Formally, let

π : A 7→ A be a permutation of A. For each R ∈ R, let πR ∈ R be the ordering such that for

all a, b ∈ A, π(a) πR π(b) if and only if a R b. For each RN ∈ RN , let πRN ≡ (πR1, ..., πRn).

Neutrality. For each RN ∈ RN and each permutation π of A,

f(πRN) = πf(RN).

Neutrality ensures that all alternatives are treated equally. If it holds, the rule cannot

discriminate either for or against a particular alternative. It excludes constant rules from

consideration.

While anonymity and neutrality are seemingly mild requirements, they are generally

incompatible.3 The existence of an anonymous and neutral rule will depend on the values

of n and m, the number of agents and alternatives. Theorem 1 provides a necessary and

sufficient condition to this effect. The proofs of all results are relegated to the Appendix.

Theorem 1 An anonymous and neutral rule exists if and only if all prime factors of n are

strictly greater than m.

3Note that no such incompatibility exists when rules are not strict, i.e. when their image is expanded
from R to the set of subsets of R (see, e.g., Young and Levenglick [30]).
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Thus, anonymity and neutrality are compatible for a relatively small set of problem

instances. The proof of Theorem 1 is a straightforward adaptation of an earlier result by

Moulin [26] that applies to choice rules (Theorem 1 of [26]). Nevertheless, it is worth noting

(albeit unsurprising) that the incompatibility of neutrality and anonymity is more acute for

aggregation rules than it is for choice rules.

2.2 Two alternatives: May’s Theorem

Theorem 1 establishes that for the majority of problem instances, it is impossible to satisfy

both anonymity and neutrality. When m = 2, however, this incompatibility becomes less stark

and May’s Theorem [24], a classic result in social choice, provides an important possibility

result.

To state May’s Theorem, we need to formally define strategy-proofness. Given RN ∈ RN

and R′i ∈ R, the notation (R′i, R−i) denotes the profile that is identical to RN except for the

preferences of agent i that are equal to R′i. Minimal strategy-proofness (Min-SP) ensures

that it is impossible to obtain an outcome that is exactly identical to one’s preferences, unless

truthtful preference revelation yields the same result.

Minimal strategy-proofness (Min-SP). There do not exist RN ∈ RN , i ∈ N , R′i ∈ R
such that f(R′i, R−i) = Ri 6= f(RN).

Min-SP is the absolute weakest possible standard of strategy-proofness in the preference

aggregation framework. However, when m = 2 there is no difference between Min-SP and

stronger notions of non-manipulability.4 For two alternatives and an odd number of agents,

the majority rule chooses for any profile the relation which is possessed by a majority of

agents.

Theorem 2 (May’s Theorem [24]). Let |A| = m = 2 and |N | = n be odd. Then majority

rule is the only rule satisfying by anonymity, neutrality and Min-SP.

When m = 2 and n is even, anonymity and neutrality are incompatible by Theorem 1.

The classical version of May’s Theorem deals with this issue by allowing for multi-valued

rules, in which case the anonymity-neutrality tradeoff vanishes.5 By contrast, we insist on

single-valued rules and we examine how May’s Theorem is modified when we drop either

anonymity or neutrality. To this end, we define the following two families of rules.

4For two alternatives, any choice function selecting for each profile a unique alternative corresponds
to the rule choosing for this profile the strict relation where the selected alternative is preferred over the
non-selected alternative.

5Indeed, May’s Theorem is originally formulated as a characterization of majority rule on the full domain
with anonymity, neutrality, and a monotonicity property referred to as positive responsiveness.
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Definition 1 Let A = {a, b}. A rule f is a quota-majority rule if there exists an integer

qa ∈ {0, 1, ..., n} such that, for all RN ∈ RN we have f(RN ) = ab if |{i ∈ N : Ri = ab}| ≥ qa

and f(RN) = ba otherwise.

Definition 2 Let A = {a, b}. A rule f is a collegial-majority rule if there exists a (possibly

empty) set T ⊆ 2N such that (i) ∩T∈T T 6= ∅ if T 6= ∅ and (ii) T\T ′ 6= ∅ and T ′\T 6= ∅ for

all distinct T, T ′ ∈ T , and for all RN ∈ RN we have f(RN) = ab if T ⊆ {i ∈ N : Ri = ab}
for some T ∈ T and f(RN) = ba otherwise.

Proposition 1 demonstrates how May’s Theorem is modified when either neutrality or

anonymity are dropped from the list of requirements a rule should satisfy.

Proposition 1 Let |A| = m = 2.

(i) (Perry and Powers [27]) Quota-majority rules are the only rules satisfying anonymity

and Min-SP.

(ii) Collegial-majority rules are the only rules satisfying neutrality and Min-SP.6

2.3 Efficiency and strategy-proofness

In the preference-aggregation framework, combining anonymity or neutrality together with

Min-SP imposes very weak constraints on acceptable rules. For example, constant rules

choosing always the same preference are anonymous and Min-SP, and dictatorial rules are

neutral and Min-SP.

Therefore, efficiency requirements need to be imposed. We formulate three efficiency

properties, in increasing order of strength. The first is self-explanatory.

Unanimity. For all RN ∈ RN and all R ∈ R, if Ri = R for all i ∈ N then f(RN) = R.

Given orderings R,R′, R′′ ∈ R, we say that R′ is between R and R′′ and write R′ ∈
[R,R′′], if all pairs of alternatives that belong to both R′′ and R also belong to R′.

Definition 3 Given orderings R,R′, R′′ ∈ R, R′ is between R and R′′ (denoted by R′ ∈
[R,R′′]) if R ∩R′′ ⊆ R′.

It is rational to posit that if R′ 6= R′′ and R′ ∈ [Ri, R
′′], then agent i with preferences Ri

has unambiguous preference for R′ over R′′. For every ordering R ∈ R, this binary relation on

6Here (ii) is a special case of Theorem 3.3 in Austen-Smith and Banks [7].

8



R is reflexive, transitive, anti-symmetric but not complete.7 We refer to it as the betweeness

extension applied to R.

Efficiency. There do not exist RN ∈ RN and R′ ∈ R such that R′ ∈ [Ri, f(RN)] for all

i ∈ N and R′ 6= f(RN).

Local Unanimity. For all RN ∈ RN ,
⋂
i∈N

Ri ⊆ f(RN).

A rule satisfies efficiency if it selects an ordering such that there exists no other which

all agents find unambiguously better. By contrast, local unanimity applies to preference

profiles in which there is unanimous agreement over individual binary comparisons. When

such unanimous consensus is present, local unanimity requires the rule to follow it. First

discussed by Arrow [3], local unanimity implies efficiency (Footnote 11 in Harless [18]) but

not the other way around. A few previous papers have used the term ”strong efficiency” to

refer to local unanimity [18, 5].

We now address the vulnerability of a rule to strategic manipulation in a way that

strengthens Min-SP. The first concept we introduce draws from the betweeness relation.

Betweeness strategy-proofness (Btw-SP). There do not exist RN ∈ RN , i ∈ N , R′i ∈ R
such that f(R′i, R−i) ∈ [Ri, f(RN)] and f(R′i, R−i) 6= f(RN).

A rule is Btw-SP if, by misreporting one’s preferences, it is not possible to obtain an

outcome that is unambiguously better than the outcome under truthfulness. Though stronger

than Min-SP, this property still provides a relatively weak notion of non-manipulability.

Beginning with the work of Bossert and Sprumont [12], various rules have been found to

satisfy Btw-SP, and it has formed the basis of various characterizations [12, 5, 18].

While Btw-SP is a useful benchmark for strategy-proofness, the incompleteness of the

betweeness relation diminishes its impact. Indeed, if two orderings are incomparable, then

we cannot say whether a preference misreport is profitable or not. Therefore, we search for a

way to capture preferences over orderings that is consistent with betweeness when the latter

produces clear results, but that also yields a complete relation. To this end, we follow a

two-stage approach. First, we determine a way to measure the distance between two orderings.

Second, we employ this concept of distance to propose a way of ranking orderings in R.

To guide the first part of our exercise, we rquire three basic requirements that a distance

function on R should satisfy: (i) metric conditions, (ii) consistency with betweeness8; and

(iii) invariance to relabeling of the alternatives. Improving on the classic result of Kemeny

7It is incomplete because, given any R ∈ R, there will exist multiple pairs of orderings R′, R′′ that satisfy
R ∩R′′ 6⊆ R′ and R ∩R′ 6⊆ R′.

8In the sense that if R′ ∈ [R,R′′], then the distance from R to R′′ is equal to the sum of the distance or
R to R′ and the distance of R′ to R′′.
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and Snell [21], Can and Storcken [14] showed that there is only one function satisfying these

three requirements: the Kemeny distance [20], a well-known metric in the space of orderings.9

The formal definition follows.

Given two orderings R,R′ ∈ R, let D(R,R′) = (R\R′)∪(R′\R). The Kemeny distance

between R and R′, denoted by δ(R,R′), is defined as δ(R,R′) = |D(R,R′)|
2

. In words, δ(R,R′) is

the number of unordered alternative pairs on whose relative ranking the two orderings disagree.

For example, if R = abc and R′ = cab, then R \ R′ = {(a, c), (b, c)}, R′ \ R = {(c, a), (c, b)}
and δ(R,R′) = 2.

With this definition in mind, every ordering R ∈ R induces a complete, reflexive and

transitive binary relation on R, the Kemeny extension applied to R, whereby orderings

are ranked on the basis of their Kemeny distance to R. The smaller this distance, the

more preferred is the ordering. This binary relation stipulates that two Kemeny-equidistant

orderings from R are indifferent for an agent with preference R.

Given any R ∈ R, it is easy to verify that for all R′, R′′ ∈ R such that R′ 6= R′′, if

R′ ∈ [R,R′′], then δ(R,R′) < δ(R,R′′). Thus, the Kemeny extension of a preference preserves

the betweeness relation.

We now introduce the incentive-compatibility property based on the Kemeny extension.

Kemeny strategy-proofness (K-SP). There do not exist RN ∈ RN , i ∈ N , R′i ∈ R such

that δ(Ri, f(R′i, R−i)) < δ(Ri, f(RN)).

A rule is K-SP if no misrepresentation yields an outcome which is more preferred according

to the Kemeny extension (applied to the deviating agent’s preference) than the one obtained

under truthfulness.10 In other words, K-SP ensures that by misreporting, no agent can obtain

an outcome that is closer to his true preference according to the Kemeny distance.

Since the Kemeny extension preserves the betweeness extension, K-SP implies Btw-SP. In

fact, it strengthens the latter property significantly: none of the known nontrivial Btw- SP

rules satisfy it, unless the number of alternatives is restricted to three (see Athanasoglou [4]

and Section 4). Along related lines, Bossert and Storcken [13] established an impossibility

result involving the much stronger coalitional version of K-SP, ontoness, and a relatively

esoteric invariance property to which they refer as extrema independence.

Verifying whether K-SP is satisfied by a given rule can be difficult, as comparing orderings

on the basis of their Kemeny distance from a certain benchmark is not easy. Computer

simulations are often needed to generate counterexamples, even for problem instances of

small size [4]. For this reason, when investigating a rule’s K-SP, it would be helpful to restrict

9For completeness, we provide their characterization in the Online Appendix.
10In what follows, and in a slight abuse of grammar, we use the acronym K-SP to denote both “Kemeny

strategy-proofness” as well as “Kemeny strategy-proof”.
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the set of preference misrepresentations that need to be compared to truthful reporting.

One way of achieving this goal is by showing that small deviations from truthfulness are

sufficient to adjudicate the rule’s K-SP. Along these lines, a number of recent papers have

focused on identifying necessary and sufficient conditions for the equivalence between global

and local measures of strategy-proofness [28, 22, 23]. Since the results of those papers do not

readily apply to the Arrovian aggregation framework with Kemeny-based preferences, we

explore the local-global equivalence directly.

Before proceeding, we specify what we mean by local measures of strategy-proofness in

our setting.

Local Kemeny strategyproofness (Local K-SP). There do not exist RN ∈ RN , i ∈ N ,

R′i ∈ R such that δ(Ri, R
′
i) = 1 and δ(Ri, f(R′i, R−i)) < δ(Ri, f(RN)).

Thus, a rule is Local K-SP if by misreporting the order of a unique adjacent alternative

pair, it is not possible to obtain an outcome that is closer in Kemeny distance to one’s true

preferences. Clearly, K-SP implies Local K-SP. The following result establishes that the

opposite holds as well, provided the rule also satisfies Min-SP, the weakest possible measure

of global non-manipulability. Note that Local K-SP does not imply Min-SP.11

Proposition 2 If a rule satisfies Local K-SP and Min-SP, then it satisfies K-SP.

Proposition 2 will be useful in establishing the K-SP of the rules we introduce in the next

section.

3 Keep neutrality - Drop anonymity

In this section we explore locally unanimous and K-SP rules that satisfy neutrality but fail

anonymity. We are able to establish a full characterization when the number of agents is two.

3.1 Two agents

We focus on the two-agent case and define a family of rules that forms the cornerstone of

this section.

Definition 4 A two-agent semi-dictator rule is parameterized by the following two in-

puts:

11We provide an example in the Online Appendix. We conjecture, but so far have been unable to prove,
that local K-SP combined with some mild efficiency property implies Min-SP. This would mean that, given
mild efficiency requirements, local K-SP is equivalent to K-SP. Such a result would more closely align with
the contribution of Kumar et al. [23].
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(i) A semi-dictator i ∈ N ∈ {1, 2}.

(ii) A position set P ⊂ {1, 2, ...,m− 1} satisfying for all distinct p, p′ ∈ P , |p− p′| > 2.

Let RN ∈ RN . Without loss of generality, suppose that the semi-dictator i has preference

Ri = a1a2...am. Let f
(i,P )
k (RN) the kth-ranked alternative in the ordering f (i,P )(RN), where

k = 1, 2, ...,m. The semi-dictator rule is defined as follows (where N = {i, j}):

f
(i,P )
k (RN) =


ak−1, if k − 1 ∈ P and akRjak−1

ak+1, if k ∈ P and ak+1Rjak

ak, otherwise.

(1)

for all k = 1, 2, ...,m.

A two-agent semi-dictator rule f (i,P ) produces an ordering that is identical to the prefer-

ences of the semi-dictator i except possibly at the alternatives occupying ranks {p, p + 1}
where p ∈ P . In particular, given the semi-dictator’s preferences Ri = a1a2....am, for every

position p ∈ P , alternatives ap and ap+1 will be assigned rank either p or p+ 1, in accordance

with agent j’s preferences.

Figure 1 illustrates a two-agent semi-dictator rule when m = 14, semi-dictator 1, P =

{4, 7, 13} and R1 = a1a2....a14.

It is important that any two distinct positions in the set P have distance greater than

two as otherwise the two-agent semi-dictator rule might be manipulated by the semi-dictator.

We illustrate this below for five alternatives where either P = {1, 3} or P = {1, 4}.

Example 1 Let A = {a1, a2, a3, a4, a5} and N = {1, 2}.
On the one hand, if i = 1 and P = {1, 3}, then the semi-dictator rule is not K-

SP: let R1 = a1a2a3a4a5 and R2 = a2a1a4a3a5; then f (1,P )(R1, R2) = a2a1a4a3a5 and

δ(R1, f
(1,P )(R1, R2)) = 2; for R′1 = a1a3a2a4a5 we have f (1,P )(R′1, R2) = R′1 and δ(R1, R

′
1) = 1,

and agent 1 profitably manipulates from (R1, R2) via R′1. However, agent 2 cannot profitably

manipulate f (1,P ),12 it is sufficient for the agent, who is not the semi-dictator, that any two

distinct positions in P differ by at least two.

On the other hand, if i = 1 and P = {1, 4}, then the semi-dictator rule is K-SP. As above

it follows that agent 2 cannot profitably manipulate. For agent 1, let R1 = a1a2a3a4a5 and R2

12This is true in general and can be easily seen with the help of Proposition 2. First, agent 2 cannot profit
from exchanging the positions of adjacent alternatives in his true ranking: if R′2 is such that δ(R2, R

′
2) = 1, then

either f (1,P )(R1, R2) = f (1,P )(R1, R
′
2) or δ(f (1,P )(R1, R2), f (1,P )(R1, R

′
2)) = 1 and they differ exactly for the

two alternatives where R2 and R′2 differ, which is not profitable for agent 2. Second, agent 2 cannot manipulate
such that his true ranking is chosen: if R′2 is such that f (1,P )(R1, R

′
2) = R2, then for any p ∈ P (where

R1 = a1 · · · am), we have R′2|{ap,ap+1} = R2|{ap,ap+1} which then implies f (1,P )(R1, R
′
2) = f (1,P )(R1, R2), a

contradiction.
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Figure 1: An illustration of a two-agent semi-dictator rule f = f (i,P ) with i = 1, P = {4, 7, 13}
and R1 = a1a2....a14. The rule applied to profile RN produces a social ordering that is identical
to Ri, except possibly at ranks (4,5), (7,8) and (13,14) where the relative order of adjacent
alternatives is determined by agent 2’s preferences R2. For example, if agent 2 prefers a5 to
a4, a7 to a8 and a14 to a13, then f(RN) = a1a2a3[a5a4]a6[a7a8]a9a10a11a12[a14a13], where the
brackets are added for emphasis.

be arbitrary. Then by definition, δ(R1, f
(1,P )(R1, R2)) ≤ 2. If δ(R1, f

(1,P )(R1, R2)) ≤ 1, then

it is easy to see that agent 1 cannot manipulate. Thus, let δ(R1, f
(1,P )(R1, R2)) = 2. Now

agent 1 cannot manipulate by pushing a1 or a2 to fourth or fifth position in his deviation

R′1 as then δ(R1, f
(1,P )(R′1, R2)) ≥ 2. Similarly agent 1 cannot manipulate by pushing a4

or a5 to first or second position in his deviation. Now in the deviation R′1 either the first

two ranked alternatives are {a1, a2} or the last two ranked alternatives are {a4, a5}. Then

when a3 is ranked third we have f (1,P )(R′1, R2) = f (1,P )(R1, R2), when a3 is ranked first or

second we have f (1,P )(R′1, R2)|{a4,a5} = f (1,P )(R1, R2)|{a4,a5} and δ(R1, f
(1,P )(R′1, R2)) ≥ 2,

and when a3 is ranked fourth or fifth we have f (1,P )(R′1, R2)|{a1,a2} = f (1,P )(R1, R2)|{a1,a2} and

δ(R1, f
(1,P )(R′1, R2)) ≥ 2. The detailed argument can be found in the proof of Theorem 4.

Our first main contribution is the characterization of two-agent semi-dictator rules with

local unanimity, neutrality and K-SP.

Theorem 3 Let N = {1, 2} and |A| = m ≥ 3. A rule f satisfies local unanimity, neutrality

and K-SP if and only if f is a two-agent semi-dictator rule.

The proof of Theorem 3 proceeds by establishing the characterization for m = 3 and
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m = 4, and then tackles the case m ≥ 4 by induction. The argument for m = 4 is particularly

involved as it requires the careful examination of many different sub-cases.

3.2 More Than Two Agents

Our second main contribution is to define the general class of semi-dictator rules and to show

that they satisfy the properties of Theorem 3. In doing so, we also identify the first nontrivial

K-SP rule for an arbitrary number of agents and alternatives. Unlike the two-agent case, a

characterization of semi-dictator rules for general n and m remains elusive.

We begin by defining the concept of a committee, which plays a central role in the analysis.

Committees and extensions thereof (e.g., left-right coalition systems) have been studied

extensively in a variety of models of social choice (Barbera [8]).

Definition 5 A committee is a non-empty collection C of subsets of N satisfying the

following two conditions:

(1) for all C,C ′ ⊂ N , we have C ∈ C&C ⊂ C ′ ⇒ C ′ ∈ C and

(2) for all C ⊂ N , we have C ∈ C ⇔ N \ C /∈ C.

Committees serve the following function in semi-dictator rules, which is reminiscent to

the ”voting by committee” procedure of Barbera et al. [10]. Given any pair {a, b} ⊂ A, a

committee C indicates the set of the so-called ”winning coalitions” when deciding the order

of alternatives a and b. In particular, if the preference profile in question is such that the set

of agents preferring a to b is contained in C, then the semi-dictator rule will rank a above b.

This procedure is well-defined since agents have complete preferences over alternatives and

the definition of committees ensures that C ∈ C iff N \ C /∈ C.
Clearly, when m = 2, the voting by committees procedure is K-SP. The challenge is to

design an aggregation rule that integrates voting by committee when m ≥ 3 in a way that

does not lead to violations of transitivity and K-SP. This is exactly what semi-dictator rules

accomplish.

Definition 6 A semi-dictator rule is parameterized by the following three inputs:

(i) A semi-dictator i ∈ N .

(ii) A position set P ⊂ {1, 2, ...,m− 1} satisfying for all distinct p, p′ ∈ P , |p− p′| > 2.

(iii) For each position p ∈ P a committee Cp on N \ {i}. Let C ≡ Cp|p∈P denote the

corresponding family of committees.

14



Let RN ∈ RN . Without loss of generality, suppose that the semi-dictator i has preferences

Ri = a1a2...am. Let f
(i,P,C)
k (RN ) denote the kth-ranked alternative in the ordering f (i,P,C)(RN ),

where k = 1, 2, ...,m. The semi-dictator rule is defined as follows:

f
(i,P,C)
k (RN) =


ak−1, if k − 1 ∈ P and {j ∈ N \ {i} : ak Rj ak−1} ∈ Ck−1
ak+1, if k ∈ P and {j ∈ N \ {i} : ak+1 Rj ak} ∈ Ck
ak, otherwise.

(2)

for all k = 1, 2, ...,m.

A semi-dictator rule f (i,P,C) when applied to a profile RN produces an ordering that is

identical to the preferences of the semi-dictator i except possibly at the alternatives occupying

ranks {p, p + 1} where p ∈ P . Given the semi-dictator’s preferences Ri = a1a2....am, for

every position p ∈ P , alternatives ap and ap+1 will be assigned rank either p or p + 1. If

the set of agents preferring ap to ap+1 in profile RN (i.e., the set {j ∈ N \ {i} : ap Rj ap+1})
belongs to the committee Cp, then alternative ap is assigned rank p and ap+1 rank p + 1,

consistent to the semi-dictator’s preferences; if not, ap+1 is assigned rank p and ap rank p+ 1,

in contrast to the semi-dictator’s preference. This procedure is well-defined because there

is always a gap between pairs of adjacent alternatives whose order is decided by committee

–this is guaranteed by the requirement that if p, p′ ∈ P such that p 6= p′, then |p− p′| > 2.

Furthermore, analogous to Example 1 it can be seen that the gap has to be greater than two

as otherwise the semi-dictator might be able to manipulate the rule.

Figure 2 illustrates a semi-dictator rule when m = 14, semi-dictator 1 with R1 = a1a2....a14

and P = {4, 7, 13}. The structure of the committees C4, C7, C13 is specified in the figure and

its caption.

While semi-dictator rules are neutral, they are obviously not anonymous. A way of

improving their fairness from the point of view of the agents is by maximizing the number of

alternative pairs to be decided by committees. Along these lines, the number of alternatives

pairs whose relative order is decided by committee can range from 0 (when the semi-dictator

is in fact a dictator) to bm+1
3
c. If we wanted to constrain the semi-dictator’s power as much

as possible ex-ante, we would choose a semi-dictator rule with |P | = bm+1
3
c.

We now turn to the efficiency and incentive properties of semi-dictator rules. The main

result we establish is the K-SP of all semi-dictator rules. As mentioned earlier, Proposition 2

allows us to simplify the proof by focusing only on adjacent deviations from truthful reporting.

Theorem 4 Semi-dictator rules satisfy local unanimity, neutrality and K-SP.
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Figure 2: An illustration of a semi-dictator rule f = f (i,P,C) with i = 1, P = {4, 7, 13}
and R1 = a1a2....a14. The rule applied to profile RN produces a social ordering that is
identical to R1, except possibly at ranks (4,5), (7,8) and (13,14) where the relative order of
adjacent alternatives: (i) {a4, a5} is determined by majority rule with ties broken against the
semi-dictator; (ii){a7, a8} follows the semi-dictator’s wishes unless all other agents rank a8
before a7; and (iii) {a13, a14} goes against the semi-dictator’s wishes as long as both agents 2
and 4 prefer a14 to a13.

Remark 1. It is worth noting that semi-dictator rules can be generalized to allow for

committees that depend not only on the position set P , but also on the alternative pairs

whose order the committee determines. In other words, we could define semi-dictator rules

where we introduce for each position p ∈ P and unordered pair of alternatives {a, b} ⊂ A a

committee Cp({a, b}). The proof of K-SP, detailed in Theorem 4, carries over to this more

general setting. Of course, if we extend semi-dictator rules in this manner they will fail to be

neutral.

4 Keep anonymity - Drop neutrality

In this section we explore locally unanimous and K-SP rules that satisfy anonymity but fail

neutrality. In contrast to the previous sections, we are not able to find a family of rules

that satisfies these properties on the full domain. Instead, we establish possibility results for

the two special cases where there are three alternatives or there are four alternatives and

two agents. In addition, we show that anonymity, K-SP and a property with antecedents in

the literature we refer to as preference selection, are incompatible for many instances. We
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suspect, but have been unable to prove, that there exists no locally unanimous, anonymous

and K-SP rule for general n and m.

4.1 Existence

4.1.1 Three alternatives

We begin by defining a set of orderings of the elements of R that will prove useful later on.

Note that for all R ∈ R, the ordering −R is defined so that for all a, b ∈ A such that a 6= b,

(a, b) ∈ R if and only if (b, a) ∈ −R.

Definition 7 An ordering � of R is regular if, for all R ∈ RN , whenever R is ranked first

by �, then for all R′, R′′ different than R and −R and such that R′′ ∈ [R′, R], we cannot

have both −R � R′ and −R � R′′.

For example, if � is regular and ranks abc first, then we cannot have both cba � bac and

cba � bca, and we also cannot have both cba � acb and cba � cab. An example of an ordering

� that is regular is one that ranks orderings on the basis of their Kemeny distance from a

benchmark R (the smaller the distance, the higher the rank), with ties broken arbitrarily.

We may call such an ordering Kemeny-consistent.

We proceed by defining two families of rules that are known in the literature and play an

important role in this section.

Definition 8 Let � be an ordering on R. For all RN ∈ RN , let

K(RN) = arg min
R∈R

∑
i∈N

δ(R,Ri). (3)

The �-Condorcet-Kemeny rule is defined as the aggregation rule which assigns to each

RN ∈ RN the ordering belonging to K(RN) ranked highest according to �.

Definition 9 Let � be an ordering on R. Rule f is the fixed-benchmark rule13 associated

with � if, for all RN ∈ RN ,

f(RN) = R where R ⊇
⋂
i∈N

Ri and R � R′ for all R′ ∈ R such that R′ ⊇
⋂
i∈N

Ri. (4)

13The literature refers to those rules as fixed-order status-quo rules. As we will use the term of status-quo
later, we will refer to them here as “fixed-benchmark rules”.
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Condorcet-Kemeny and fixed-benchmark rules are locally unanimous, anonymous and

Btw-SP [12, 5]. Since they use an exogenous ordering � on R to break ties, they violates

neutrality.14

Proposition 3 demonstrates that, when m = 3, any �-Condorcet-Kemeny and any

�-fixed-benchmark rule will satisfy K-SP if and only if the ordering � is regular.

Proposition 3 Let |A| = m = 3.

(1) The �-Condorcet-Kemeny rule satisfies K-SP if and only if � is regular.

(2) The �-fixed-benchmark rule satisfies K-SP if and only if � is regular.

Unfortunately, Proposition 3 does not extend to four or more alternatives. This was

already known for Condorcet-Kemeny rules, as Athanasoglou [4] showed that all such rules

will fail K-SP for m ≥ 4 and n ≥ 5. As for fixed-benchmark rules, we show why all of them

will fail K-SP for m ≥ 4 and n = 12. Without loss of generality, suppose m = 4 (as for

m > 4 we let all agents rank m− 4 alternatives at the bottom identically) and suppose f

is a �-fixed-benchmark rule such that � ranks abcd first. Consider the profile RN with 12

agents where each agent has a different ordering and
⋂
i∈N Ri = (d, a).15 Then there exists

exactly one agent j such that δ(Rj, f(RN)) = 5, e.g., if f(RN) = dabc, then this agent j

has preference Rj = cbda. Now, if agent j deviates to R′j = abcd, then f(R′j, R−j) = abcd

and δ(Rj, abcd) = 4, a violation of K-SP. A similar argument works for any other �-fixed-

benchmark rule.

4.1.2 Four alternatives and two agents

Below we focus on the case of four alternatives and two agents.

We begin by showing that even in such environments, both families of rules considered

in Proposition 3 fail K-SP. We restrict attention to Kemeny-consistent orderings � but

suspect a similar reasoning to hold for any other � that are regular without being Kemeny-

consistent. Suppose f is a �-Condorcet-Kemeny rule or a fixed-order status quo rule where

� is Kemeny-consistent with abcd as the highest-ranked ordering (as we’ll see both rules yield

identical outcomes in the following example). Consider the profile (R1, R2) = (cbda, dabc),

and suppose dabc � bcda so that f(R1, R2) = dabc16 and δ(R1, f(R1, R2)) = 5. Then the

14To be precise, fixed-benchmark rules are parameterized with a special kind of partial order on R
that is referred to as conclusive (Athanasoglou [5]). To avoid uninteresting complications, we focus on
fixed-benchmark rules which employ a full linear ordering �.

15Note that there are 6 orderings ranking d first, there are 4 orderings ranking d second and above a, and
there are 2 orderings ranking d third and above a.

16If bcda � dabc, then we repeat a similar reasoning for the profile (dacb, bcda).
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deviation R′1 = cbad yields f(R′1, R2) = abcd, leading to δ(R1, f(R′1, R2)) = 4 and a violation

of K-SP. Relabeling alternatives, we conclude that for all Kemeny-consistent orderings � we

can construct a two-agent problem where K-SP is violated for both types of rules.

The failure of the rules of Proposition 3 means that we have to search elsewhere for

possible locally unanimous, anonymous and K-SP rules.

Theorem 5 Let N = {1, 2} and |A| = m = 4. There exists a rule satisfying local unanimity,

anonymity and K-SP.

We established Theorem 5 by framing the existence of an anonymous, locally unanimous

and K-SP rule as an integer program and obtained a computational solution on Matlab. All

details are available in the Online Appendix where all 576 profiles are listed, and both the

integer program and its implementation in Matlab are described.

The calculated family of rules satisfying the desired properties have the following charac-

teristics:

1. A losing alternative (say a) is identified and placed as low as possible in the society’s

ranking subject to respecting local unanimity. For example, for any R ∈ R, f(R,−R)

always places the losing alternative a at the bottom.

2. All other alternatives are treated symmetrically in the sense that they have identical

rank-frequency vectors as detailed below.

If we evaluate the rule at all possible ((4!)2 = 576) profiles, we obtain the following

rank-frequency matrix:

1 2 3 4
a 36 84 156 300
b 180 164 140 92
c 180 164 140 92
d 180 164 140 92

Table 1: Cell [x, k] indicates the number of profiles in which alternative x is ranked kth by
the rule. Here alternative a is the losing alternative.

The calculated rule has the following features. When both agents rank the same alternative

at the bottom, then by local unanimity this alternative is ranked at the bottom by the social

ordering. Now when considering the subdomain where both agents rank the same non-losing

alternative at the bottom, say d, then the rule restricted to the other three alternatives is

a rule satisfying local unanimity, anonymity and K-SP. It turns out that those rules are
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“fixed-status-quo rules with tie-breaking”. This also applies to the subdomains where both

agents rank the same non-losing alternative at the top (and by local unanimity this alternative

is at the top of the social ordering). We define below such rules.

Example 2 Let N = {1, 2} and A = {a, b, c}. Fix a status-quo ordering R0, say R0 = cba.

The R0-fixed-status-quo rule with tie-breaking f makes the following choice for any profile

RN = (R1, R2) ∈ RN :

(i) if R0 is locally unanimous for RN , then f(RN) = R0;

(ii) if R0 is not locally unanimous for RN and R1 ∈ [R0, R2], then f(RN) = R1;

(iii) if R0 is not locally unanimous for RN and R2 ∈ [R0, R1], then f(RN) = R2; and

(iv) otherwise, we have either [R1 = acb&R2 = bac] or [R1 = bac&R2 = acb] and set

f(RN) = bac.17

It is obvious that f satisfies local unanimity and anonymity, and one can also check K-SP.

Indeed, the rule described in Example 2 is the fixed-status-quo rule with tie-breaking when

both agents rank the non-losing alternative d at the bottom. Let Rd
0 denote the fixed-status-

quo ordering when both agents rank d at the bottom, and R
d

0 denote the fixed-status-quo

ordering when both agents rank d at the top. Then for the rule we found it holds that

Rd
0 = bca and R

d

0 = cba, i.e. a is ranked as low as possible by Rd
0 and R

d

0 and the order of b

and c is reversed for those two fixed-status-quo orderings. This pattern is confirmed as it

holds for any non-losing alternative and we detail all the fixed-status-quo orderings when

both agents rank a non-losing alternative at the bottom or at the top (see also Figure 3).

Rb
0 = dca R

b

0 = cda

Rc
0 = bda R

c

0 = dba

Rd
0 = cba R

d

0 = bca

. (5)

Note also the following: the non-losing alternatives are ranked in a cycle by the fixed-status-

quo orderings where a non-losing alternative is ranked at the bottom as Rb
0 ranks c above d,

Rc
0 ranks d above b, and Rd

0 ranks b above c. Now the reverse holds for the fixed-status-quo

orderings where a non-losing alternative is ranked at the top.

17More precisely, Ri is chosen if the third ranked alternative of Ri and the first ranked alternative of R0

coincide.
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acdadc

dac

DCA cda

cad

Rb0 for FixBot [21]+[23]+[27]

abdadb

dab

dba BDA

bad

Rc0 for FixBot [36]+[38]+[42]

abcacb

cab

CBA bca

bac

Rd0 for FixBot [51]+[53]+[57]

acdadc

dac

dca CDA

cad

R
b

0 for FixTop [21]+[23]+[27]

abdadb

dab

DBA bda

bad

R
c

0 for FixTop [36]+[38]+[42]

abcacb

cab

cba BCA

bac

R
d

0 for FixTop [51]+[53]+[57]

Figure 3: Fixed-status-quo orderings (indicated in capital letters) when both agents rank a
non-losing alternative at the bottom or at the top. The numbers refer to the excel file and
the column FixBottom/FixTopProfiles.

Conversely, a “rotating-status-quo rule with tie-breaking” appears when both agents rank

the losing alternative a at the bottom. Then the rule makes the following choices:

f(bcda, dcba) = cdba, f(bdca, cdba) = dbca and f(cbda, dbca) = bcda. (6)

Now the same applies to the subdomain where both agents rank the losing alternative at the

top (and by local unanimity this alternative is at the top of the social ordering). That is,

we again have a “rotating-status-quo rule with tie-breaking”, with the difference that the

rotating status quo is the opposite of the one where the losing alternative is ranked at the

bottom, i.e.

f(abcd, adcb) = abdc, f(abdc, acdb) = acbd and f(acbd, adbc) = adcb. (7)

We indicate the outputs of (6) and (7) in Figure 4. The output of the rule and its complete

formal definition is given in the Online Appendix (but can also be derived from the previous

results using local unanimity and K-SP).18 We also give the formal definition of the rule

18For instance, if R1 = dcba, then (i) for R2 = dbca by local unanimity we have f(dcba, dbca) ∈
{dbca, dcba}, and by K-SP and f(bdca, cdba) = dbca we obtain f(dbca, dcba) = dbca, (ii) for R2 = bdca we
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bcdbdc

dbc

dcb CDB

cbd

f(bcda, dcba) = cdba for FixBot [6]

bcdbdc

DBC

dcb cdb

cbd

f(bdca, cdba) = dbca for FixBot [8]

BCDbdc

dbc

dcb cdb

cbd

f(cbda, dbca) = bcda for FixBot [12]

bcdBDC

dbc

dcb cdb

cbd

f(abcd, adcb) = abdc for FixTop [6]

bcdbdc

dbc

dcb cdb

CBD

f(abdc, acdb) = acbd for FixTop [8]

bcdbdc

dbc

DCB cdb

cbd

f(acbd, adbc) = adcb for FixTop [12]

Figure 4: Rotating-status-quo rules with tie-breaking where both agents rank a at the bottom
or at the top. The outcomes are indicated in capital letters while italic letters are used for
preferences, and the numbers refer to the table in the excel file.

below. For any profile RN ∈ RN ,

• if R1 ∩ R2 ∩ {(a, b), (a, c), (a, d)} = ∅, then f(R) = f(R1|{b,c,d}a,R2|{b,c,d}a) (i.e. the

outcome of the rule is the same as for the profile where a is pushed to the bottom for

both agents and the rotating-status-quo rule with tie-breaking given by (6) is used);

• if R1 ∩ R2 ∩ {(a, b), (a, c), (a, d)} = {(a, x)} (where x ∈ {b, c, d}), then f(R) =

f(R1|A\{x}x,R2|A\{x}x) (i.e. the outcome of the rule is the same as for the profile

where x is pushed to the bottom for both agents and the Rx
0-fixed-status-quo rule given

by (5) is used);

• if R1 ∩ R2 ∩ {(a, b), (a, c), (a, d)} = {(a, y), (a, z)} (where {b, c, d} = {x, y, z}), then

f(R) = f(xR1|A\{x}, xR2|A\{x}) (i.e. the outcome of the rule is the same as for the

profile where x is pushed to the top for both agents and the R
x

0-fixed-status-quo rule

given by (5) is used); and

• if R1 ∩R2 ∩ {(a, b), (a, c), (a, d)} = {(a, b), (a, c), (a, d)}, then both agents rank a first

have f(dcba, bdca) = dbca from K-SP and f(bdca, cdba) = dbca, and (iii) for any R2 6= bdca, dbca, f(R1, R2)
is determined by K-SP and f(dcba, bcda) = cdba.
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and f(R) is the outcome of the rotating-status-quo rule with tie-breaking given by (7)

where both agents rank a first.

The rule f satisfies local unanimity, anonymity and K-SP (for two agents and four alternatives).

4.2 Preference selection

In May’s theorem, the rule always chooses a preference of one of the agents. The same

holds for the median voter rule choosing always the peak of one of the agents (and by

Black’s [11] theorem in symmetric single-peaked environments the median voter’s preference

is the majority relation19). The property below adapts the one of “peak selection” (often

used in one-public goods problems) to our context.

Preference selection: For all RN ∈ RN , we have f(RN) ∈ {R1, . . . , Rn}.

Preference selection also corresponds to the fact that always a member of the society shall

be chosen to represent the social preference. Again this is in the vein of macroeconomics

where the representative consumer shall be a member of the society. Note that preference

selection implies local unanimity and efficiency.

Next we present two impossibility results for preference selection in conjunction with

anonymity and K-SP. In other words, if always some agent is chosen to represent society,

then either anonymity or K-SP is violated.

Theorem 6 Let m ≥ 3 and |N | be even. There exists no rule satisfying preference selection,

anonymity and K-SP.

Theorem 7 Let m ≥ 4 and |N | = 3k. There exists no rule satisfying preference selection,

anonymity and K-SP.

Note that the above two theorems exclude situations where there are both three alternatives

and three agents. As it turns out, preference selection and K-SP together with either neutrality

or anonymity characterize families of rules which are reminiscent to Black’s median rules. In

other words, then it is possible to choose a representative agent while assuring K-SP and

either neutrality or anonymity.

For three alternatives and three agents we denote by 4 the triangle profiles where

agents’ preferences are K-equidistant from each other (e.g. (abc, cab, bca)). Note that

19Ehlers and Storcken [16] characterized the class of Arrovian aggregation rules in single-peaked environ-
ments.
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there are 12 triangular profiles and neutrality divides them into two sets of 6 profiles,

i.e. 4 = 4′ + 4′′ where 4′ contains (abc, cab, bca) and all profiles obtained from it by

permuting alternatives, and where 4′′ contains (abc, bca, cab) and all profiles obtained from

it by permuting alternatives. Similarly anonymity divides 4 into two sets of 6 profiles, i.e.

4 = 4̂′+ 4̂′′ where 4̂′ contains (abc, cab, bca) and all profiles obtained from it by permuting

agents, and where 4̂′′ contains (acb, bac, cab) and all profiles obtained from it by permuting

agents.

Proposition 4 Let N = {1, 2, 3} and A = {a, b, c}.

(i) A non-dictatorial rule f satisfies preference selection, neutrality and K-SP if and only

if f is a median rule with agent-based tie-breaking (i.e. there exist i, j ∈ N (where i = j

is possible)) such that for all RN ∈ 4′, f(RN) = Ri, for all RN ∈ 4′′, f(RN) = Rj,

and for all RN ∈ RN\4, the median is chosen, i.e. f(RN) = Ri if Ri ∈ [Rj, Rk]

(where N = {i, j, k}) and [Rj, Rk] is the unique shortest path from Rj to Rk to which

Ri belongs to).

(ii) A rule f satisfies preference selection, anonymity and K-SP if and only if f is a

median rule with preference-based tie-breaking (i.e. there exist R̂′0 ∈ {abc, cab, bca}
and R̂′′0 ∈ {acb, bac, cab}) such that for all RN ∈ 4̂′, f(RN) = R̂′0, for all RN ∈ 4̂′′,
f(R) = R̂′′0, and for all RN ∈ RN\4, the median is chosen, i.e. f(RN) = Ri if

Ri ∈ [Rj, Rk] (where N = {i, j, k}) and [Rj, Rk] is the unique shortest path from Rj to

Rk to which Ri belongs to).

Somewhat surprisingly in (i) and (ii) above, we have neutrality versus anonymity and at

the same time agent-based tie-breaking versus preference-based tie-breaking.

5 Conclusion

We have considered the aggregation of individual preferences into one social preference. Here

the set of alternatives can be public (like public goods), private (like consumption bundles)

or a mix of both of them. This is due to the fact that any agent prefers social preferences

which are closer to his own preference. Applications range from electing an individual to

represent the society to choosing the representative consumer of the economy.

In such settings fairness is important. We explored the tradeoff between anonymity

(where agents are treated equally) and neutrality (where alternatives are treated equally), two

fundamental properties which are generally impossible to jointly satisfy. As basic requirements

we consider local unanimity, an analogue of Pareto efficiency, and Kemeny strategy-proofness
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(K-SP), whereby any agent prefers preferences which are closer to his own in terms of Kemeny

distance. Dispensing with anonymity and keeping neutrality, we proposed semi-dictator rules

and showed they are the first non-trivial family to satisfy local unanimity, neutrality and K-SP.

Furthermore, for two agents these properties characterize semi-dictator rules. Dispensing

with neutrality and keeping anonymity, we found a computer-aided solution to the existence

of a rule satisfying local unanimity, anonymity and K-SP when there are two agents and four

alternatives. For three alternatives we provided two families of rules satisfying the desired

properties. Finally, for three alternatives and three agents, we characterized median rules

with tie-breaking via preference selection, K-SP and either neutrality or anonymity.

When choosing the society’s preference, we must decide how to resolve the anonymity-

neutrality fairness tradeoff. If the society finds equal treatment of agents to be more

important than equal treatment of alternatives, then neutrality should be dropped and

anonymity maintained; otherwise, the opposite should occur. Our results help to clarify the

consequences of such a judgment call as regards the design of efficient and strategy-proof

aggregation rules.

Appendix

Below we provide all proofs of our results in the main text.

Proof of Theorem 1: The proof is a straightforward adaptation of the argument of Theorem

1 in Moulin [26].

First we prove necessity. Suppose that n = k · p for some integers k and p such that

p ≤ m. We will show that no anonymous and neutral rule exists. Consider the profile RN

satisfying (where bold fonts are added for clarity):

R1 = Rp+1 = R2p+1 = ....R(k−1)·p+1 = a1a2....ap ap+1...am

R2 = Rp+2 = R2p+2 = ....R(k−1)·p+2 = a2....ap−1a1 ap+1...am

R3 = Rp+3 = R2p+3 = ....R(k−1)·p+3 = a3....apa1a2 ap+1...am
...

Rp = Rp+p = R2p+p = ....R(k−1)·p+p = apa1....ap−1 ap+1...am.

Now define the permutation π : A 7→ A as follows:20

20Here mod p(k+1) denotes the number modular to p, i.e. mod p(p+1) = p and mod p(k+1) = k+1
if k < p.
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π(k) =

{
mod p(k + 1) if k ∈ {1, 2, ..., p}

k otherwise.

Simple algebra yields f(πRN) = f(Rσ(N)), where the permutation σ : N 7→ N is given by:

for all l ∈ {0, . . . , k − 1} and all i ∈ {1, . . . , p},

σ(lp+ i) = lp+ mod p(i+ 1).

Anonymity requires f(Rσ(N)) = f(RN) whereas neutrality requires f(πRN) = πf(RN) 6=
f(RN). This contradicts f(πRN) = f(Rσ(N)).

We now prove sufficiency. Suppose every prime factor of n is greater than m. This means

that it is not possible to write n = k · p for some integers k, p such that p ≤ m. We proceed

by displaying a rule that is anonymous and neutral. Given a profile RN and a ∈ A, define

the quantity

l(RN , a) = |{i ∈ N : a ranked last by agent i in profile RN}| ,

i.e., the number of agents who rank a last in profile RN . In addition, given a profile RN and

B ⊆ A, define the

L(RN , B) = {a ∈ B : a = arg max
b∈B

l(RN |B, b)},

i.e., the set of alternatives attaining the maximum of function l(RN |B, ·) over set B.

Suppose there exists B∗ ⊆ A with |B∗| > 1 with the property that, for all a ∈ B∗, there

exists the same number k∗ of agents ranking a last in RN . This implies that n = k∗ · |B′|,
which, since |B′| ≤ m, contradicts the stated hypothesis on n and m. Hence, for all B ⊆ A,

we have:

L(RN , B) ⊆ B and {L(RN , B) = B ⇔ |B| = 1} .

As a result, given any B ⊆ A, the decreasing sequence

B0 = B,

Bt = Bt−1 \ L(RN , Bt−1), t = 1, 2, ...

will converge to a singleton for some t ∈ {1, 2, ...,m}. We call this alternative a∗(B).

Given a rule f and a profile RN , let fk(RN) denote the kth ranked alternative in f(RN).

Now, define the aggregation rule f ∗ as the output of the following algorithm:
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Input: RN

1. Initialize A0 = A.

2. For k = 1, 2, ...m

(a) Set f ∗k (RN) = a∗(Ak−1) ≡ ak.

(b) Set Ak = Ak−1 \ ak.

Output: f ∗(RN) = a1a2...am

The above algorithm is well-defined and terminates at k = m, since at every k the

alternative a∗(Ak−1) is well-defined. The rule f ∗ is anonymous and neutral. �

Proof of Proposition 2: Suppose rule f is locally K-SP and Min-SP but not K-SP. Then

there exists an agent i and profile RN = (Ri, R−i) such that δ(Ri, f(R′i, R−i)) < δ(Ri, f(RN )),

for some R′i satisfying δ(Ri, R
′
i) > 1.

Denote f(R′i, R−i) = R∗. By Min-SP , f(R∗, R−i) = R∗. Suppose δ(Ri, R
∗) = T − 1 and

consider a shortest path between Ri and R∗, which we denote {Ri = R1, R2, ..., RT = R∗}.
To avoid cumbersome notation, let xt ≡ f(Rt, R−i) for all t = 1, 2, ..., T . By assumption, we

have x1 = f(RN) and xT = R∗.

We will show by backwards induction that δ(Rt, xt) ≤ δ(Rt, R∗) for all t. The base

case t = T follows trivially because xT = R∗. Suppose δ(Rk, xk) = δ(Rk, R∗) for all

k = t, t+ 1, ..., T . By local L-SP at (Rt−1, R−i) and the induction hypothesis applied to k = t:

δ(Rt−1, xt−1) ≤ δ(Rt−1, xt) ≤ 1 + δ(Rt, xt) ≤ 1 + δ(Rt, R∗) = δ(Rt−1, R∗).

Thus, the induction step is complete, implying that δ(Rt, xt) ≤ δ(Rt, R∗) for all t = 1, 2, ..., T .

When applied to t = 1 this yields δ(Ri, f(RN)) ≤ δ(Ri, R
∗), which is a contradiction to

f(R′i, R−i) = R∗ and δ(Ri, f(R′i, R−i)) < δ(Ri, f(RN)). �

Proof of Theorem 3:

Note that the (if) direction is a special case of Theorem 4 which we show later.

The proof of the (only if) direction proceeds in three steps.

1. First, we prove the characterization when m = 3.

2. Then, we use Step 1 to prove the characterization for m = 4.

3. Using Step 2 as a base case, we prove the characterization for m ≥ 4 by induction.
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Step 1: The case m = 3.

Suppose N = {1, 2} and A = {a, b, c}.
For the (only if) direction, let f satisfy the properties. Focusing on agent 1, we consider

the following three rules.

(a) For all RN = (R1, R2) ∈ RN , f 0(RN) = R1; or

(b) For all RN with R1 = a1a2a3, f
1(RN) = (a1R2|{a2,a3}) (where R2|{a2,a3} denotes the

restriction of R2 to a2 and a3); or

(c) For all RN with R1 = a1a2a3, f
2(RN) = (R2|{a1,a2}a3) (where R2|{a1,a2} denotes the

restriction of R2 to a1 and a2).

Denote the corresponding rules where agent 2 plays the role of agent 1 and vice versa by g0,

g1 and g2.

Recall that a profile RN is opposite if R2 = −R1. Consider f(abc, cba), and without loss

of generality, let f(abc, cba) ∈ {acb, abc, bac}. If this is not the case, then focus on agent 2

and rules g0, g1, g2 and apply similar reasoning. We distinguish between three cases.

1. f(abc, cba) = abc. Then by neutrality, for any opposite profile RN , agent 1’s preference

is chosen, i.e. f(R,−R) = R = f 0(RN) for all R ∈ R. Since f(R1,−R1) = R1 for any

choice of R1, K-SP applied to agent 2 implies that, i.e., f(R1, R2) = R1 = f 0(R1, R2)

for all R1, R2 ∈ R.

2. f(abc, cba) = acb. Then by neutrality, for any opposite profile RN we have f(RN) =

f 1(RN). If RN = (R1, R2) is not opposite, then consider f(R1,−R1) = f 1(R1,−R1)

and f(R2,−R2) = f 1(R2,−R2). Now if R2 6= −R1 is on the half circle that links R1

to −R1 which includes f 1(R1,−R1), then by local unanimity we have f(R1, R2) ∈
{R1, f

1(R1,−R1), R2}. K-SP applied to agent 2 at profile (R1,−R1) yields f(R1, R2) 6=
R2. Similarly, K-SP applied to agent 2 at profile (R1, R2) implies f(R1, R2) 6= R1.

Hence we conclude f(R1, R2) = f 1(R1, R2).

Otherwise, R2 6= −R1 is not on the half circle containing f 1(R1,−R1). For clarity, and

without loss of generality (due to neutrality) suppose R1 = abc, so that f(abc, cba) = acb

and R2 ∈ {bac, bca}. If R2 = bca, then by neutrality, f(−R2, R2) = abc, and by K-SP,

f(RN) = abc = f 1(RN), the desired conclusion. If R2 = bac, then from the previous

fact, f(acb, bca) = abc. By K-SP and local unanimity, f(acb, R2) = abc, and using again

K-SP and local unanimity, we obtain f(RN) = abc = f 1(RN), the desired conclusion.

3. f(abc, cba) = bac. Note that in this case f(abc, cba) = bac = f 2(abc, cba). Then using

similar arguments as in Case 2 it follows that f(RN) = f 2(RN) for all RN .
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Step 2: The case m = 4.

Let A = {a, b, c, d}. For the (only if) direction, let f satisfy the properties. Let f denote

the rule where f is restricted to the domain where both agents rank at the bottom the same

alternative. By local unanimity, also f ranks at the bottom this alternative. Thus, f is a

two agents-three alternatives rule. Furthermore, neutrality implies that the same type of

rule is chosen when the two agents rank the same alternative at the bottom. Similarly we

denote by f the rule where f is restricted to the domain where both agents rank at the top

the same alternative. We consider three cases: (I) f = f 1, (II) f = f 0 and (III) f = f 2 (as

f ∈ {g0, g1, g2} is analogous to the one by switching the roles of agent 1 and agent 2).

(I) f = f 1:

Suppose that f is of type f 1. We show that f must be a semi-dictator rule with semi

dictator 1 and agent 2 chooses the preference in f of the second and third alternatives of 1’s

preference.

First, we show that f1(RN) = top(R1) for all RN . Suppose not, i.e. f1(RN) 6= top(R1).

Then by K-SP, f(R1, f(RN)) = f(RN). Let R′1 : top(R1)f(RN)|A\{top(R1)}. Then R′1 ∈
[R1, f(RN )] and by K-SP, f(R′1, f(RN )) = f(RN ). If R′1 and f(RN ) rank the same alternative

at the bottom, then this is a contradiction to f(R′1, f(RN)) = f 1(R′1, f(RN)) and

f1(R
′
1, f(RN)) = f1(RN) 6= top(R1) = top(R′1).

Thus, bot(f(RN )) = top(R1). Let R′2 : f1(RN )f2(RN )f4(RN )f3(RN ). Note that f(R′1, f(RN ))

is of K-distance one to R′2. Thus, f(R′1, R
′
2) is of distance at most one to R′2, which implies

f1(R
′
1, R

′
2) 6= top(R′1), a contradiction because f4(R

′
1, f(RN )) = f4(RN ) = top(R1) = top(R′1),

bot(R′1) = bot(R′2), f(R′1, R
′
2) = f(R′1, R

′
2) and f = f 1.

Second, we show that f2(RN) 6= bot(R1) for all RN . Suppose that f2(RN) = bot(R1) 6=
bot(R2) (as otherwise we have a contradiction to the fact that f is of type f 1). Let R1 : abcd.

By K-SP, f(R1, f(RN )) = f(RN ) and f(RN ) ∈ {adbc, adcb}. Thus, without loss of generality,

we may suppose R2 = f(RN).

Case 1: f(RN) : adcb.

Then δ(R1, f(RN)) = 3. Let R′1 : bacd. Then from top(f(R′1, f(RN))) = top(R′1) = b

and by local unanimity, f(R′1, f(RN)) ∈ {badc, bacd}. But then δ(R1, f(R′1, f(RN))) ≤ 2, a

contradiction to K-SP.

Case 2: f(RN) : adbc.

Let R̂1 : acbd and R̂2 : adcb. Note that R̂N = Rb↔c
N and by neutrality, f(R̂N) = adcb.
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Consider (R̂1, f(RN)). Then δ(f(RN), f(R̂N)) = 1 and by K-SP (as agent 2 could deviate

from (R̂1, f(RN)) to R̂N = (R̂1, R̂2)), δ(f(RN), f(R̂1, f(RN))) ≤ 1. Thus, f(R̂1, f(RN)) ∈
{adbc, dabc, abdc, adcb}. Then

(i) f(R̂1, f(RN)) = adbc implies that f = g0 and f(R1, adcb) = adcb, which yields a

contradiction as in Case 1;

(ii) f(R̂1, f(RN)) = dabc contradicts the fact f1(R̂1, f(RN)) = top(R̂1) = a;

(iii) f(R̂1, f(RN)) = abdc implies that f is of type g2 which implies for R̄1 : abcd and

R̄2 : acbd we have both f(R̄N) = f(R̄N) = g2(R̄N) = abcd and f(R̄N) = f(R̄N) =

f 1(R̄N) = acbd, a contradiction; and

(iv) f(R̂1, f(RN)) = adcb implies that f is of type g1.

For (iv) we derive a contradiction in three steps. In the first step we show that f2(RN ) =

top(R2|A\{top(R1)}) for any profile RN . In the second step then we show that either agent 1

always chooses the third alternative in f(RN ) or agent 2 always chooses the third alternative.

In the third step we show that f violates K-SP (and therefore, (iv) cannot occur).

In the first step we show that f2(RN) = top(R2|A\{top(R1)}) for any profile RN . Suppose

f2(RN) 6= top(R2|A\{top(R1)}). By K-SP and neutrality, without loss of generality, we may

suppose R1 = f(RN) = abcd. By f = g1, we have a = top(R1) 6= top(R2) and top(R2) =

top(R2|A\{top(R1)}) 6= a, b (as b = f2(RN ) 6= top(R2|A\{top(R1)})). Similarly, by f = f 1, we must

have bot(R2) 6= d = bot(R1). We distinguish two subcases (top(R2) = c or top(R2) = d):

if top(R2) = c, then for R′2 : cabd we have R′2 ∈ [R2, f(RN)] (as R1 = f(RN) = abcd)

and f(R1, R
′
2) = f(RN) = abcd which is a contradiction as f = f 1 and f(R1, R

′
2) =

f(R1, R
′
2) = acbd; and if top(R2) = d, then for R′2 : dabc we have R′2 ∈ [R2, f(RN)],

f(R1, R
′
2) = f(RN ) = abcd and δ(R′2, f(RN )) = 3 which yields a contradiction to K-SP as for

R′′2 : adbc we have (from f = g1) f(R1, R
′′
2) = f(R1, R

′′
2) = adbc and δ(R′2, f(R1, R

′′
2)) = 1.

For the second step, consider R′1 : abcd, R′2 : abdc and R′N = (R′1, R
′
2). By local

unanimity, f(R′N) = R′1 or f(R′N) = R′2. We show that if f(R′N) = R′1, then agent 1

always chooses the third alternative, and if f(R′N) = R′2, then agent 2 always chooses the

third alternative. Without loss of generality, let f(R′N) = R′1. Let RN be an arbitrary

profile. By the above, we have f1(RN) = top(R1) and f2(RN) = top(R2|A\{top(R1)}). Suppose

f3(RN) 6= top(R1|A\{f1(RN ),f2(RN )}). Then by K-SP, f(R1, f(RN)) = f(RN). Let R′1 =

f1(RN)f2(RN)f4(RN)f3(RN). Now by neutrality and our assumption, f(R′1, f(RN)) = R′1.

Note that f4(RN) = top(R1|A\{f1(RN ),f2(RN )}), and δ(R1, R
′
1) < δ(R1, f(RN)), which is a

contradiction to K-SP.
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In the third step we show that f violates K-SP. Let R1 : abcd and R2 : adcb. If

f(R′N) = R′1, then by the above, f(RN) : adbc. Let R̂1 : bacd. Then f(R̂1, R2) = bacd,

δ(R1, f(R̂1, R2)) = 1 < δ(R1, f(RN)), which is a contradiction to K-SP. If f(R′N) = R′2,

then as above it can be shown agent 2 always chooses the third alternative in f(RN). But

then consider R1 : abcd and R2 : adcb. Then f(RN) = adcb but for R̂1 : bacd we have

f(R̂1, R2) : badc, δ(R1, f(R̂1, R2)) = 2 < 3 = δ(R1, f(RN)). Thus, (iv) also leads to a

contradiction.

We have shown f1(RN) = top(R1) and f2(RN) 6= bot(R1) for all RN . Now if bot(R2) =

bot(R1), then we have f(RN) = f(RN) where f1(RN) = top(R1) and f4(RN) = bot(R1), and

by f = f 1, R2 decides the ranking over the second and third alternative in R1 (which is the

desired conclusion).

Before treating the remaining case bot(R2) 6= bot(R1), as an intermediary step, we show

f = f 2. Consider R1 : abcd and R2 : acbd. Then f(RN) = f(RN) = acbd. As also

f(RN) = f(RN), we obtain f 6= f 0, f 1, g2. Thus, f ∈ {f 2, g0, g1}. If f ∈ {g0, g1}, then for

R1 : abcd and R2 : adcb we have f2(RN) = d, a contradiction to f2(RN) 6= bot(R1). Hence,

we obtain f = f 2.

Finally, suppose bot(R1) 6= bot(R2). We show f4(RN) = bot(R1). Suppose f4(RN) 6=
bot(R1) and by neutrality, without loss of generality, let R1 = abcd. Then f1(RN ) = a and by

f2(RN) 6= bot(R1), f3(RN) = d. Thus, f(RN) ∈ {abdc, acdb}.
If f(RN) = acdb, then by K-SP, f(R1, f(RN)) = acdb 6= f(R1, f(RN)) = f 2(R1, f(RN)),

which is a contradiction to the above.

Hence, f(RN ) = abdc. Then by cP1d and local unanimity, dP2c. As top(R2) 6= a, we have

then top(R2) ∈ {b, d}. If top(R2) = d, then dP2b. By K-SP, f(f(RN), R2) = f(RN) = abdc.

But now for R′2 : adbc we have (from f = f 1) f(f(RN), R′2) = f(f(RN), R′2) = adbc which is

a contradiction to K-SP as

δ(f(R2, f(f(RN), R′2)) = δ(R2, adbc) < δ(R2, abdc) = δ(R2, f(RN)) = δ(R2, f(f(RN), R2)),

where the inequality follows from dP2b.

If top(R2) = b, then from local unanimity, f(RN ) = abdc and cP1d we obtain dP2c. Now for

R′2 : bdca we have f1(RN) = a = f1(R1, R
′
2) and by K-SP, f(R1, R

′
2) = f(RN) = abdc (where

agent 2 is misreporting). But then by K-SP, f(R1, abdc) = abdc 6= abcd = f 2(R1, abdc) =

f(R1, abdc), a contradiction.

Hence, we have shown that for any profile RN , f1(RN) = top(R1) and f4(RN) = bot(R1).

As f = f 1 it follows that agent 2 chooses the preference in f(RN) of the second and third

alternatives of R1 (as by K-SP we may suppose top(R2) = f1(RN) and bot(R2) = f4(RN)).
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(II) f = f 0.

We show that for any profile RN , f(RN ) restricted to its first three alternatives coincides

with R1 restricted to these alternatives. Again by K-SP, without loss of generality, let

R2 = f(RN). If f(RN)|A\{f4(RN )} 6= R1|A\{f4(RN )}, then let R′1 : R1|A\{f4(RN )}f4(RN) and

then f(R′1, R2) = f(R′1, R2) = f 0(R′1, R2) = R′1 which is a contradiction to K-SP as by

f4(RN) = f4(R
′
1, R2) we have δ(R1, f(R′1, R2)) < δ(R1, f(RN)).

Hence, for any RN ,

f(RN) : R1|A\{f4(RN )}f4(RN). (8)

Next we show f1(RN) = top(R1). If f1(RN) 6= top(R1), then by the previous fact, f4(RN) =

top(R1) and f3(RN) = bot(R1). Let R′2 : f1(RN)f2(RN)f4(RN)f3(RN). As δ(R′2, f(RN)) = 1,

f(R1, R
′
2) must be of K-distance one or zero to R′2 which implies top(R1) 6= f1(R1, R

′
2) and

by (8), f4(R1, R
′
2) = top(R1) and f(R1, R

′
2) = f(RN). Then δ(R1, f(R1, R

′
2)) = 3. Let R′1 :

R1|A\{f3(RN )}f3(RN ). Then f(R′1, R
′
2) = f(R′1, R

′
2) = f 0(R′1, R

′
2) = R′1 and δ(R1, f(R′1, R

′
2)) <

3 = δ(R1, f(RN)) = δ(R1, f(R1, R
′
2)), a contradiction to K-SP. We further show f2(RN) =

top(R1|A\{top(R1)}). If f2(RN) 6= top(R1|A\{top(R1)}), then for R1 = abcd we obtain from

f1(RN ) = top(R1) and (8) that f(RN ) = acdb. Again let R2 = f(RN ). Then f ∈ {g0, g2}. By

considering the profile R̂N = (abcd, acbd) we then get a contradiction to f = g0 as f(R̂N) =

f(R̂N) = f 0(R̂N) = R̂1 and f(R̂N) = f(R̂N) = g0(R̂N) = R̂2. Hence, f = g2. Recall that

f(RN ) = acdb = R2 and δ(R1, f(RN )) = 2. Let R′1 : bacd. But then f1(R
′
1, R2) = top(R′1) = b.

By local unanimity then f(R′1, R2) = bacd and δ(R1, f(R′1, R2)) = 1, a contradiction to K-SP.

We have shown that for any profile RN , f1(RN ) = top(R1) and f2(RN ) = top(R1|A\{top(R1)}.

Now considering R′1 = abcd and R′2 = abdc we have f(R′N) ∈ {abcd, abdc}. If f(R′N) = abcd,

then R1 always decides the ranking of the third and fourth alternative in f(RN ): for any profile

RN by neutrality we may suppose R1 = abcd; then f1(RN) = a and f2(RN) = b; again by K-

SP we may choose R2 = f(RN ) and obtain f(RN ) = f(R1, f(RN )); hence, (R1, f(RN )) = R′

and we must have f(RN) = abcd = R1, the desired conclusion. If f(R′N) = abdc, then simi-

larly it can be shown that R2 always decides the ranking of the third and fourth alternative

in f(RN).

(III) f = f 2.

We show that for any profile RN , {f3(RN ), f4(RN )} consists of the third and fourth ranked

alternative in R1 and R2 decides the ranking of the first two alternatives in f(RN).

First, we show f1(RN ) 6= bot(R1). Let R1 : abcd and suppose f1(RN ) = d and R2 = f(RN )

(by K-SP). By f = f 2, we must have bot(R2) 6= d. Let R′1 : R1|A\{f4(RN )}f4(RN). Then

f(R′1, R2) = f(R′1, R2) which implies f3(R
′
1, R2) = d and f4(R

′
1, R2) = f4(RN). But then by
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f1(RN) = d, δ(R1, f(RN)) > δ(R1, f(R′1, R2), a contradiction to K-SP.

Second, we show f2(RN) 6= bot(R1). Let R1 : abcd and suppose f2(RN) = d and

R2 = f(RN ) (by K-SP). By f = f 2, we must have bot(R2) 6= d. Let R′1 : R1|A\{f4(RN )}f4(RN ).

Then f(R′1, R2) = f(R′1, R2) which implies f3(R
′
1, R2) = d and f4(R

′
1, R2) = f4(RN). But

then by f1(RN) = d, f(RN) = R2 and thus, f(RN)|A\{d,f4(RN )} = f(R′1, R2)|A\{d,f4(RN )}, we

obtain δ(R1, f(RN)) > δ(R1, f(R′1, R2), a contradiction to K-SP.

Thus, we have shown bot(R1) ∈ {f3(RN), f4(RN)}. We show that the third alternative

in R1 cannot be ranked first or second in f(RN), i.e. for R1 : abcd we have {c, d} =

{f3(RN ), f4(RN )} (as bot(R1) 6= f1(RN ), f2(RN )). Again, by K-SP, without loss of generality,

R2 = f(RN). If bot(R2) = d = bot(R1), then this is obvious from f = f 2. Thus, let

bot(R2) 6= d. If bot(R2) = c, then this follows from local unanimity as d ∈ {f3(RN), f4(RN)}.
Thus, let bot(R2) ∈ {a, b}.

Third, we show f1(RN) 6= c. If f1(RN) = c, then from f4(RN) = bot(R2) 6= c, d and

bot(R1) = d ∈ {f3(RN), f4(RN)} we obtain f(RN) ∈ {cadb, cbda}. Let R′2 : R2|{a,b,c}d. Then

f(R1, R
′
2) = f(R1, R

′
2) = R2|{a,b}cd. But then δ(R′2, f(RN)) = 1 < δ(R′2, f(R1, R

′
2)) (as

top(R′2) = c), a contradiction to K-SP.

Fourth, we show f2(RN ) 6= c in four steps: in the first step we show f = g2; in the second

step we show bot(R2) /∈ {f1(RN ), f2(RN )}; in the third setp we show that for any profile the

third ranked alternative in R2 can never be chosen first in f(RN); and in the fourth step we

obtain a contradiction by showing that for certain profiles no alternative can be ranked first

(using the first three steps).

In showing the first step, f2(RN) = c implies f(RN) ∈ {acdb, bcda} (as d = bot(R1) 6=
bot(R2) = f4(RN) and d ∈ {f1(RN), f2(RN)}). If f(RN) = acdb, then f = g0 or f = g2.

For f = g0, let R′1 = abdc and then f(R′1, R2) = f(R′1, R2) = g0(R′1, R2) = acdb which is a

contradiction as c = bot(R′1) /∈ {f1(R′1, R2), f2(R
′
1, R2)}. Thus, f(RN) = acdb implies f = g2.

We show that f(RN) = bcda also implies f = g2: note that δ(R1, f(RN)) = 3 which implies

by K-SP for R′1 = bacd that f(R′1, R2) = bcda (as f1(R
′
1, R2) = b, f(R′1, R2) must rank c

above d by local unanimity, and d must be ranked before a by K-SP as otherwise agent 1

profitably misreports from f(RN) = bcda); but then f = g0 or f = g2 and again f = g0

yields a contradiction as above. Thus, f = g2.

In the second step we show that bot(R2) /∈ {f1(RN), f2(RN)} for any profile RN . Again

suppose f1(RN) = bot(R2) and f(RN) = R1 = abcd. Thus, bot(R2) = a. For R′2 : R2|{b,c}ad
we have (from f = f 2) f(R1, R

′
2) = bacd and δ(R2, f(R1, R

′
2)) < δ(R2, f(RN )), a contradiction

to K-SP. Next suppose f2(RN) = bot(R2) and f(RN) = R1 = abcd. Thus, bot(R2) = b. For

R′2 : aR2|{c,d}b we have (from f = g2) f(R1, R
′
2) = acdb and δ(R2, f(R1, R

′
2)) < δ(R2, f(RN )),

a contradiction to K-SP.
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In the third step we show that the third ranked alternative in R2 can never be chosen

first by f(RN). Suppose R2 = abcd, f1(RN) = c and R1 = f(RN) (by K-SP). But then

bot(R1) 6= bot(R2) as otherwise f(RN ) = f(RN ) and by f = f 2, R2 decides the ranking of the

first two alternatives in f(RN) and f1(RN) 6= c. Thus, from f1(RN) 6= d and R1 = f(RN),

we have f(RN) ∈ {cbda, cadb}. If f(RN) = cbda, then for R′2 = bcda we have f(R1, R
′
2) =

f(R1, R
′
2) = f 2(R1, R

′
2) = bcda and δ(R2, f(R1, R

′
2)) < δ(R2, f(RN )), a contradiction to K-SP.

If f(RN) = cadb, then for R′2 = acdb we have f(R1, R
′
2) = f(R1, R

′
2) = f 2(R1, R

′
2) = acdb

and δ(R2, f(R1, R
′
2)) < δ(R2, f(RN)), a contradiction to K-SP.

In the fourth step we now obtain a contradiction for the profile RN where R1 = abcd

and R2 = dcba as by bot(R1) 6= bot(R2) and bot(R1), bot(R2) ∈ {f3(RN), f4(RN)} we have

{a, d} = {f3(RN), f4(RN)}. On the other hand the third ranked alternative in R1 is c and

the third ranked alternative in R2 is b and f1(RN) ∈ {b, c} which is a contradiction as then

no alternative can be ranked first in f(RN) as the third ranked alternative in R1 and in R2

are never ranked first by f(RN). This concludes the proof that f2(RN) cannot be the third

ranked alternative in R1 for any profile RN .

We have shown that {f3(RN), f4(RN)} always consists of the third and fourth ranked

alternatives in R1. We next show that R2 determines the ranking of the first two alternatives

in f(RN ). Again, by K-SP, without loss of generality, R1 = f(RN ). If f(RN )|{f1(RN ),f2(RN )} 6=
R2|{f1(RN ),f2(RN )}, then letR′2 : R2|{f1(RN ),f2(RN )}f3(RN )f4(RN ) and then f(R1, R

′
2) = f(R1, R

′
2) =

f 2(R1, R
′
2) = R′2, a contradiction to K-SP. Thus, R2 always determines the ranking of the first

two alternatives. Now considering R1 = abcd and R2 = abdc we have f(RN) ∈ {abcd, abdc}.
If f(RN) = abcd, then it can be shown analogously that R1 always decides the ranking

of the third and fourth alternative in f(RN), and if f(RN) = abdc, then it can be shown

analogously that R2 always decides the ranking of the third and fourth alternative in f(RN ). �

Note that using the same argument as in Example 1, it follows that agent 2 cannot decide

both the ranking of the first and second alternative and the ranking of the third and fourth

alternative. This finishes the proof of Theorem 3 for four alternatives.

Step 3: Induction on m.

Now by induction suppose that Theorem 3 is true for k ≥ 4 alternatives (where m = k).

Let A = {a1, . . . , ak+1}. Let f satisfy the properties. Let f denote the rule where f is

restricted to the domain where both agents rank at the bottom the same alternative, i.e.

RN = {R ∈ RN : bot(R1) = bot(R2)} and f = f |RN . By local unanimity, for any RN ∈ RN ,

f ranks at the bottom the alternative bot(R1) = bot(R2). Thus, by the induction hypothesis

and neutrality, f is a semi-dictator rule. Similarly we denote by f the rule where f is

restricted to the domain where both agents rank at the top the same alternative, and again
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by the induction hypothesis, f is a semi-dictator rule. Note that in a semi-dictator rule with

semi-dictator i, for any profile RN any alternative in Ri can move at most one position up or

at most one position down in the chosen ranking.

First, we show that f and f have the same semi-dictator. Suppose not, say agent 1 is

the semi-dictator of f and agent 2 is the semi-dictator of f . Consider R1 : a1 . . . ak+1 and

R2 : a1 . . . ak−3akak−1ak−2ak+1. Note that we have f(RN) = f(RN) = f(RN). Thus, by local

unanimity and the fact that both ak and ak−2 can move at most one position up in f(RN),

we have f(RN) ∈ {a1 . . . ak−1ak−2akak+1, a1 . . . ak−1akak−2ak+1}. But then either ak moves

down two positions from R2 to f(RN) or ak−2 moves two positions down from R1 to f(RN),

a contradiction.

Hence, f and f have the same semi-dictator say agent 1. But then the positions p where

agent 2 is decisive with 1 < p < k coincide in f and f (by considering profiles RN where

top(R1) = top(R2) and bot(R1) = bot(R2) and f(RN ) = f(RN ) = f(RN ) noting p+ 1 ≤ k by

p < k). Using the same argument as above, it also follows that if p = 1 is a position in f

where agent 2 is decisive, then position 2 does not belong to f .

Now consider any profile RN . By neutrality, we may suppose R1 : a1 . . . ak+1. By K-

SP again we may suppose R2 = f(RN) (because otherwise R2 6= f(RN) and f(RN) =

f(R1, f(RN)) by K-SP). If fk+1(RN) = ak+1 = bot(R1), then bot(R1) = bot(R2) as R2 =

f(RN) and f(RN) = f(RN); and we are done by the induction hypothesis. Otherwise

(fk+1(RN) 6= ak+1) we show fk(RN) = ak+1. If not, i.e. fl(R) = ak+1 with l < k, then

let R′1 : f(RN)|A\{ak+1}ak+1. Then R′1 ∈ [R1, f(RN)] and by K-SP and local unanimity,

f(R′1, R2) = f(RN). If f1(RN) = top(R′1), then this is a contradiction to the fact that

agent 1 is the semi-dictator of f and ak+1 moves more than one position up in f(RN).

If f1(RN) 6= top(R′1), then f1(RN) = ak+1 and by k ≥ 4 we obtain a contradiction to

K-SP when we exchange in R′1 the positions of the last two alternatives, i.e. for R′′1 :

f(RN)|A\{ak+1,fk+1(RN )}ak+1fk+1(RN) we obtain f(R′′1, R2) = f(R′′1, R2).

Hence, fk+1(RN) 6= ak+1 implies fk(RN) = ak+1. Similarly, by considering f this also

implies fk+1(RN) = ak (as otherwise fk+1(RN) = al for l < k and al moves more than

one position down from R1 to f(RN)). But then we are done as now we consider R2 :

a1 . . . ak−1ak+1ak. If f(RN) = R2, then k is a position in f where agent 2 is decisive and

otherwise not. Furthermore, note that the ranking of f(RN) over {a1, . . . , ak−1} is decided

by f .

Note that using the same argument as in Example 1, it follows that any two positions

where agent 2 decides the ranking must have distance greater than two. �

Proof of Theorem 4:
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Consider a semi-dictator rule f = f (i,P,C). That local unanimity and neutrality are satisfied

is obvious from Definitions 5 and 6, so we focus on proving K-SP. Without loss of generality

assume i = 1 and R1 = a1a2...am. By Proposition 2 it is sufficient to prove that f is Min-SP

and Locally K-SP.

As before with local unanimity, Min-SP follows immediately from Definitions 5 and 6.

We turn to proving Local K-SP.

Consider a profile RN and suppose agent j changes his preferences to R′j , where δ(Rj, R
′
j) =

1. If j 6= 1, then by the definition of semi-dictator rules and committees, it is clear that this

agent cannot profit from misreporting. In fact, δ(Rj, f(R′j, R−j))− δ(Rj, f(RN)) ∈ {0, 1}.
Thus, suppose j = 1, meaning that the semi-dictator is the agent who misreports. Suppose

R′1 is identical to R1 except that the order of two adjacent alternatives ak and ak+1 is flipped

for some k = 1, 2, ...,m− 1. We distinguish between four cases:

1. k − 1 6∈ P , k 6∈ P and k + 1 6∈ P . In this case, fl(RN) = fl(R
′
1, R−1) for all

l 6∈ {k, k + 1}. Since k − 1, k and k + 1 do not belong to P , it is immediate that

fk(RN) = ak, fk+1(RN) = ak+1 and fk(R
′
1, R−1) = ak+1, fk+1(R

′
1, R−1) = ak. This

implies δ(R1, f(R′1, R−1))− δ(R1, f(RN)) = 1.

2. k ∈ P . In this case, fl(RN ) = fl(R
′
1, R−1) for all l 6∈ {k, k+ 1}. In both profiles RN and

(R′1, R−1) the relative order of adjacent alternatives (ak, ak+1) is decided by committee

Ck. Eq. (2) and the definition of committees imply that agent 1’s misreport can never

be profitable.

3. k + 1 ∈ P . In this case, fl(RN) = fl(R
′
1, R−1) for all l 6∈ {k, k + 1, k + 2}. So let us

focus on those three ranks and the alternatives that occupy them. As k 6∈ P , we have

fk(RN ) = ak and fk(R
′
1, R−1) = ak+1. Subsequently, we focus on alternatives occupying

ranks k + 1 and k + 2. In profile RN , the rule f determines the relative order of

adjacent alternatives (ak+1, ak+2) via the committee Ck+1 whereas in profile (R′1, R−1),

the rule f determines the relative order of (ak, ak+2) via the committee Ck+1. The

most profitable misreport occurs when committee Ck+1 ranks ak+2 before ak+1 (meaning

fk+1(RN ) = ak+2, fk+2(RN ) = ak+1) and committee Ck+1 ranks ak before ak+2 (meaning

fk+1(R
′
1, R−1) = ak, fk+2(R

′
1, R−1) = ak+2). In that case, truthful reporting results

in the triplet akak+2ak+1 occupying ranks k, k + 1, k + 2, whereas misreporting in the

triplet ak+1akak+2 in those same ranks. Putting together the various possible outcomes

of committees Ck+1 and Ck+1 implies δ(R1, f(R′1, R−1))− δ(R1, f(RN)) ∈ {0, 1, 2}.

4. k − 1 ∈ P . In this case, fl(RN) = fl(R
′
1, R−1) for all l 6∈ {k − 1, k, k + 1}. So let us

focus on those three ranks and the alternatives that occupy them. As k + 1 6∈ P , we
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Figure 5: An illustration of Case 3. Orderings f(RN ) and f(R′1, R−1) are identical at all ranks l 6∈
{k, k + 1, k + 2}. Committee Ck+1 determines the alternatives occupying ranks k + 1 and k + 2.

have fk+1(RN) = ak+1 and fk(R
′
1, R−1) = ak. Subsequently, we focus on alternatives

occupying ranks k − 1 and k. In profile RN , the rule f determines the relative order

of adjacent alternatives (ak−1, ak) via the committee Ck−1 whereas in profile (R′1, R−1),

the rule f determines the relative order of (ak−1, ak+1) via the committee Ck−1. The

most profitable misreport occurs when committee Ck−1 ranks ak before ak−1 (meaning

fk−1(RN) = ak, fk(RN) = ak−1) and committee Ck−1 ranks ak−1 before ak+1 (meaning

fk−1(R
′
1, R−1) = ak−1, fk(R

′
1, R−1) = ak+1). In that case, truthful reporting results in

the triplet akak−1ak occupying ranks k − 1, k, k + 1, whereas misreporting in the triplet

ak−1ak+1ak in those same ranks. Putting together the various possible outcomes of

committees Ck−1 and Ck−1 implies δ(R1, f(R′1, R−1))− δ(R1, f(RN)) ∈ {0, 1, 2}.

Figure 6: An illustration of Case 4. Orderings f(RN ) and f(R′1, R−1) are identical at all ranks l 6∈
{k − 1, k, k + 1}. Committee Ck−1 determines the alternatives occupying ranks k − 1 and k.

�

Proof of Proposition 3:
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We begin with part (1). Suppose g is a Condorcet-Kemeny rule with ordering �. Let

A = {a, b, c} and RN ∈ RN . We will first argue that if K-SP is violated, then the ordering �
must fail regularity.

Suppose, without loss of generality, that agent i’s preferences are given by Ri = abc and

that there exists R′i ∈ R such that δ(Ri, g(RN )) > δ(Ri, g(R′i, R−i)). We distinguish between

4 cases:

(i) δ(Ri, g(RN)) = 0. But since 0 ≤ δ(Ri, R) for all R ∈ R, we immediately reach a

contradiction.

(ii) δ(Ri, g(RN)) = 1. Then, we must have δ(Ri, g(R
′
i, R−i)) = 0. Hence, Ri = g(R′i, R−i).

This implies that rule g is not Btw-SP which contradicts Proposition 5 in [12].

(iii) δ(Ri, g(RN)) = 3. Then, we must have δ(Ri, g(R
′
i, R−i)) < 3. Let R̃i denote the

ordering which is exactly the opposite of Ri (which reverses the direction of all binary

comparisons). Then, it must be the case that g(RN) = R̃i and g(R′i, R−i) 6= R̃i. This

again contradicts the Btw-SP of g.

(iv) δ(Ri, g(RN)) = 2. This is the only nontrivial case and we address it in what follows.

To violate K-SP we must have δ(Ri, g(R′i, R−i)) < 2. Suppose, first, that δ(Ri, g(R′i, R−i)) = 0.

Repeating the argument of case (ii), we arrive at a contradiction.

Thus, we must have δ(Ri, g(R′i, R−i)) = 1. Now, δ(Ri, g(RN)) = 2 implies that we must

have either g(RN) = cab or g(RN) = bca. Suppose that g(RN) = cab (the proof for case

g(RN) = bca is similar). Then, to avoid violating Btw-SP we must have g(R′i, R−i) = bac.

We will argue how this cannot happen unless the ordering � violates regularity.

Given profile RN , define the 3 × 3 matrix E, where Exy denotes the number of agents

ranking alternative x over y. For all pairs (x, y) ∈ A × A such that x 6= y we must have

Exy+Eyx = |N | (the diagonal elements of E are defined to equal 0). Hence, matrix E tabulates

the results of all head-to-head contests between alternatives under truthful preferences. Now,

denote by E ′ the altered matrix w.r.t. to E, in which agent i misreports her true preferences

Ri = abc by submitting R′i 6= Ri. We have the following five possibilities:

(I) R′i = bac, implying E ′ab = Eab − 1, E ′ca = Eca, E
′
cb = Ecb;

(II) R′i = bca, implying E ′ab = Eab − 1, E ′ca = Eca + 1, E ′cb = Ecb;

(III) R′i = acb, implying E ′ab = Eab, E
′
ca = Eca, E

′
cb = Ecb + 1.

(IV) R′i = cba, implying E ′ab = Eab − 1, E ′ca = Eca + 1, E ′cb = Ecb + 1.
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(V) R′i = cab, implying E ′ab = Eab, E
′
ca = Eca + 1, E ′cb = Ecb + 1.

Now, since g(RN) = cab and g(R′i, R−i) = bac, it must be the case that:

Eca + Ecb + Eab ≥ Eac + Ebc + Eba (9)

E ′ca + E ′cb + E ′ab ≤ E ′ac + E ′bc + E ′ba. (10)

Given agent i’s five possible modifications to matrix E listed above, the only way that

Eqs. (9)-(10) do not lead to a contradiction is if either case (I) or (II) applies.21 If case (II)

applies then we must have Eca + Ecb + Eab = E ′ca + E ′cb + E ′ab in turn implying that both

Eqs. (9)-(10) are equalities. But then we cannot have g(RN) = cab and g(R′i, R−i) = bac

(this would imply that cab � bac � cab, a contradiction).

Thus it must be that case (I) applies. Since g(RN) = cab we must have Eab ≥ Eba

(otherwise, f(RN) 6= cab because ordering cba would have better Kemeny performance for

profile RN). For similar reasons, we must also have Eca + Ecb ≥ Eac + Ebc, and Eca ≥ Eac.

We now distinguish between two cases:

1. Eca + Ecb > Eac + Ebc. In this case we cannot have bac 6= f(R′i, R−i), since ordering

cba would have a better Kemeny score for profile (R′i, R−i).

2. Eca + Ecb = Eac + Ebc. Here, suppose first that Eca > Eac. Then we cannot have

bac ∈ K(R′i, R−i) since bca would have better Kemeny performance for profile (R′i, R−i).

Hence, it must be that Eac = Eca implying Ecb = Ebc. Thus, |N | must be even. If

Eab = Eba, then � must rank cab first, and bac before cba or bca. If Eab = Eba + 2, then

� must rank bac first, and cab before abc or acb. In either case, the ordering � is not

regular.

Now, suppose that � fails regularity. For ease of exposition and without loss of generality,

suppose the first-ranked ordering of � is cab and bac � cba and bac � bca and consider the

associated �-Condorcet-Kemeny rule (call it g). Construct a profile RN such that Eac = Eca,

Ecb = Ebc, and Eab = Eba and where there exists an agent i with preferences Ri = abc. We

will have g(RN) = cab. Suppose this agent misreports by submitting R′i = bac, leading to

g(R′i, R−i) = bac and implying that the rule is not K-SP.

Now we address part (2). Suppose g is a �-fixed-benchmark rule. Without loss of

generality, suppose that Ri = abc and agent i can profitably Kemeny misreport. Since

f satisfies Btw-SP [5], the only way that K-SP can be violated is if f(RN) = cab and

21Recall that pairs of elements symmetric to the main diagonals of E and E′ must sum to |N |.
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f(R′i, R−i) = bac or f(RN) = bca and f(R′i, R−i) = acb. Suppose that the former case holds

(the latter is handled with a similar argument).

Since f satisfies Btw-SP, we will have f(R′i, R−i) = bac ⇒ f(bac, R−i) = bac. Now

distinguish between the following two cases:

(i) bac � cab. Here, f(RN) = cab implies that bac violated local unanimity in profile RN .

Since (b, a) 6∈ Ri, this means that either (c, b) ∈
⋂
i∈N

Ri or (c, a) ∈
⋂
i∈N

Ri or both. But

this contradicts Ri = abc.

(ii) cab � bac. Here, f(RN ) = cab implies that there exist j, k 6= i such that (c, a) ∈ Rj and

(c, b) ∈ Rk. Since f(bac, R−i) 6= cab = f(abc, R−i), this means that bac∩
⋂
j 6=i
Rj = {(b, a)}

and abc ∩
⋂
j 6=i
Rj = ∅. Hence, ordering cab is ranked first and f(bac, R−i) = bac implies

that bac � bca and bac � cba. Thus, � is not regular.

Now, suppose we have a �-fixed-benchmark rule, call it f , such that � is not regular.

For ease of exposition, and without loss of generality, suppose that � ranks cab first and

bac before both bca and cba. Consider now the profile RN , where Ri = abc, (b, a) ∈ Rj for

all j 6= i and
⋂
l∈N

Rl = ∅. Then g(RN) = cab. Now, suppose agent i misreports and submits

R′i = bac, leading to bac ∩
⋂
j 6=i
Rj = {(b, a)}. The ordering � ensures that g(R′i, R−i) = bac

leading to a violation of K-SP. �

Proof of Theorem 6: Consider two agents and three alternatives, say N = {1, 2} and

A = {a, b, c}.
Consider the opposite profile RN = (R1, R2) = (abc, cba). By preference selection,

f(RN ) ∈ {R1, R2}, say f(RN ) = cba. Now by K-SP and preference selection, f(abc, bca) = bca.

Again by K-SP and preference selection we have f(acb, bca) = bca. Now applying the same

arguments repetitively we obtain f(cba, abc) = abc which is now a contradiction to anonymity

(as f(abc, cba) = cba).

Now for arbitrary number m of alternatives, we may enlarge the above profiles by letting

all agents rank the same m-3 alternatives in the same order at the bottom and by preference

selection f(RN) has to rank those alternatives at the bottom with the same ranking. But

then we can do the same arguments as above.

For an arbitrary number n of agents, if n is even then half of the agents play the role of

agent 1 and half of the agents play the role of agent 2 and this induces a K-SP, preference

selection and anonymous rule, a contradiction to the above. �
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Before proceeding with the proof of Theorem 7, we consider the special case of three

alternatives and three agents and show Proposition 4.

Proof of Proposition 4: For part (i) it is easy to verify that the described rules satisfy all

the properties.

For the other direction, we first show f(abc, cba, cba) = cba. If f(abc, cba, cba) 6= cba, then

by preference selection, f(abc, cba, cba) = abc. Then by neutrality, f(cba, abc, abc) = cba.

Now using both preference selection and K-SP it can be shown that f(bac, cab, cab) = bac,

f(acb, bca, bca) = acb and f is dictatorial with dictator 1, i.e. f(RN) = R1 for all RN ∈ RN ,

a contradiction. Hence, f(abc, cba, cba) = cba. Similarly, we obtain f(cba, abc, cba) = cba and

f(cba, cba, abc) = cba. Using preference selection and K-SP we then obtain for any preference

R ∈ R and any profile RN ∈ RN such that for N = {i, j, k} we have Ri = Rj = R and

Rk = −R, f(RN ) = R. Furthermore, by preference selection f(abc, cab, bca) ∈ {abc, cab, bca},
say f(abc, cab, bca) = abc, and then by neutrality for all RN ∈ 4′, f(RN) = R1, and similar

for the triangular profiles in4′′. Now it is easy to see that f is a median rule with agent-based

tie-breaking.

For part (ii) it is easy to verify that the described rules satisfy all the properties.

For the other direction, note that by anonymity, for any RN , R
′
N ∈ 4̂′, f(RN ) = f(R′N ) ≡

R̂′0, and for any RN , R
′
N ∈ 4̂′′, f(RN) = f(R′N) ≡ R̂′′0. For any R ∈ RN\4, if the me-

dian is not chosen, then by preference selection and anonymity, say f(R) = R1 6= R2, R3

and R1 /∈ [R2, R3]. Using K-SP and preference selection, then without loss of generality,

f(abc, acb, cab) = abc. Applying K-SP and preference selection, we obtain f(bac, acb, cab) =

bac and f(bac, acb, cba) = bac. On the other hand we may use K-SP and preference selection

repetitively (by moving agent 1 first and then agents 2 and 3) to obtain f(cab, cba, bca) = cab.

But now f(acb, cba, bca) = acb and by K-SP, f(acb, cba, bac) 6= bac. This is a contradiction

to anonymity as f(bac, acb, cab) = bac. �

Proof of Theorem 7: Let N = {1, 2, 3} and A = {a, b, c, d}. Suppose that f satisfies K-SP,

preference selection and anonymity. Let f defined for profiles where all agents rank d at the

bottom. By Proposition 4 (ii), f must be median rule with preference-based tie-breaking.

Consider the following profile RN = (R1, R2, R3) = (abcd, cabd, bcad). Without loss

of generality (by preference selection), let f(RN) = R1 = f(RN). Consider the profile

R̂N = (R̂1, R̂2, R̂3) = (dabc, abdc, badc).

Starting from profile RN we have for R′1 = abdc by K-SP and preference selection

f(R′1, R2, R3) = R′1 (as δ(R′1, R1) = 1, δ(R′1, R2) > 1 and δ(R′1, R3) > 1). Similarly, for

R′′1 = adbc we obtain f(R′′1, R2, R3) = R′′1 and finally f(R̂1, R2, R3) = R̂1. Then we have
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δ(R3, R̂1) = 5 > max{δ(R3, R2), δ(R3, R̂3)}, and from K-SP and preference selection we obtain

f(R̂1, R2, R̂3) = R̂1. Similarly, we then have δ(R2, R̂1) = 5 > max{δ(R2, R̂3), δ(R2, R̂2)}, and

from K-SP and preference selection we obtain f(R̂1, R̂2, R̂3) = R̂1. At profile R̂N all agents

rank c at the bottom and f(R̂N) restricted to {a, b, d} shall be the median of R̂N restricted

to {a, b, d}, but f1(R̂N) = d and agents 2 and 3 rank d last among {a, b, d}, a contradiction

(as the median rule would require f3(R̂N) = d.

Now if |N | = 3k and m ≥ 4, then k agents play the role of agent 1 (by reporting the same

preference), k agents play the role of agent 2 and k agents play the role of agent 3 and we

obtain a three-agents rule satisfying K-SP, preference selection and AN. By letting all agents

rank the same m− 4 alternatives at the bottom, then we obtain a contradiction as above

(since by preference selection those alternatives must be ranked at the bottom of the social

ranking as well). �
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Online Appendix for “Strategy-proof preference
aggregation and the anonymity-neutrality tradeoff”

A Can and Storcken (2018) axiomatization of Kemeny

distance

Let function α : R×R 7→ < denote the distance between two orderings. Consider now the following four

conditions on α.

Condition 1 (Metric conditions). For all R,R′, R′′ ∈ R, we have:

(i) Non-negativity: α(R,R′) ≥ 0.

(ii) Identity of indiscernibles: α(R,R′) = 0 if and only if R = R′.

(iii) Symmetry: α(R,R′) = α(R′, R).

(iv) Triangle inequality: α(R,R′′) ≤ α(R,R′) + α(R′, R′′).

Condition 2 (Betweeness). For all R,R′, R′′ ∈ R such that R′ ∈ [R,R′′] we have α(R,R′′) = α(R,R′) +

α(R′, R′′).

Condition 3 (Neutrality). For all R,R′ ∈ R and all permutations π on A, we have α(R,R′) = α(πR, πR′).

Condition 4 (Normalization). min{α(R,R′) : R 6= R′} = 1.

We now state the characterization of Kemeny distance by Can and Storcken [14], who in turn build on

earlier work by Kemeny and Snell [21].

Theorem 1 (Can and Storcken [14]) A distance function α satisfies Conditions 1-2-3-4 if and only α is the

Kemeny distance.
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B Example of a rule that is Local K-SP but not Min-

SP

Suppose m = 4 and consider a function f : R 7→ R satisfying:

f(abcd) = adbc, f(abdc) = badc, f(acbd) = acdb, f(adbc) = adcb

f(bacd) = badc, f(bdca) = bcda, f(cbad) = cabd, f(cdab) = dcab

f(dbca) = dabc, f(dcba) = cdab, f(dacb) = dcab, f(dbac) = dabc

f(R) = R, for all other R ∈ R

Define the rule g : RN 7→ R such that for all RN ∈ RN , we have g(RN ) = f(R1). To verify its stated

properties we only need to check deviations by agent 1. To check Local K-SP it suffices to examine the

profitability of adjacent deviations for agent 1 when R1 is such that f(R1) 6= R1. There are 12*3=36 such

deviations and none of them imply a violation of Local K-SP. For example, when R1 = abcd, we have

g(RN ) = f(abcd) = adbc, δ(R1, g(RN )) = 2, and three possible local misreports: R′1 ∈ {bacd, acbd, abdc}.
If R′1 = bacd then g(R′1, R−1) = badc; if R′1 = acbd then g(R′1, R−1) = acdb; and if R′1 = abdc then

g(R′1, R−1) = badc. In all three cases, the Kemeny distance between R1 and g(R′1, R−1) is exactly equal to 2.

On the other hand, if R1 = adbc, and agent 1 misreports R′1 = abcd, then g(RN ) 6= R1 and g(R′1, R−1) =

R1, in violation of Min-SP. Note that δ(R1, R
′
1) = 2, so that this violation of Min-SP has no bearing on Local

K-SP. Note, finally, that the rule g is not onto (e.g., there is no profile RN such that g(RN ) = abcd).

C Integer programming formulation and application to

n = 2,m = 4 case

A rule f is a function f : RN 7→ R, determining for every profile a social ordering. If a rule f , when applied to

profile RN , ranks ai before aj then we write aif(RN )aj . Equivalently, we may introduce the binary variables

dfRN
(ai, aj) ∈ {0, 1} and require that :

dfRN
(ai, aj) = 1⇔ aif(RN )aj .

In this way we can express f by associating with it a vector df ≡
[
dfRN

(x, y)
]

where RN ranges throughout

RN and (ai, aj) ∈ A×A with i 6= j. As a result df is a vector of dimension (m!)n ·m(m−1) that must satisfy

the binary integer requirement dfRN
(ai, aj) ∈ {0, 1} for all profiles RN and pairs of alternatives (ai, aj).

22

Each rule f is uniquely defined by its corresponding d vector. For instance, take a dictatorial rule which,

no matter what other agents submit, always selects agent 1’s ordering. This rule is described by a d vector

such that for all profiles RN and pairs (ai, aj) we have dRN
(ai, aj) = 1 if and only if (ai, aj) ∈ R1.

We define the rule properties that were discussed in the main text, each time translating them to the

integer-vector framework mentioned above.23

22In what follows for convenience we drop the superscript f from the vector df .
23Completeness and Transitivity are explicitly listed because the integer-vector formulation does not a

priori ensure they hold.
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(C) Completeness. For all profiles RN ∈ RN and pairs of alternatives (ai, aj) ∈ A×A and i 6= j, either

aif(RN )aj or ajf(RN )ai.

Equivalently, for all RN ∈ RN :

dRN
(ai, aj) + dRN

(aj , ai) = 1, ∀(ai, aj) ∈ A×A, i 6= j. (11)

(T) Transitivity. For all profiles RN ∈ RN and triplets of alternatives (ai, aj , ak) ∈ A × A × A, if

aif(RN )aj and ajf(RN )ak, then aif(RN )ak.

Equivalently for all RN ∈ RN :

dRN
(ai, aj) + dRN

(aj , ak) + dRN
(ak, ai) ≤ 2, ∀(ai, aj , ak) ∈ A×A×A, i 6= j, k, j 6= k. (12)

(A) Anonymity. Consider the set of permutations on N , and call it ΣN . For any element σ ∈ ΣN and

profile RN , let σ(RN ) denote the profile in which agent 1 is given the ordering of agent σ(1), agent 2

of σ(2) and so on. I.e., σ(RN ) = (Rσ(1), Rσ(2), ..., Rσ(n)).

Anonymity requires that for all RN ∈ RN we have:

dRN
(ai, aj) = dσ(RN )(ai, aj), ∀σ ∈ ΣN , (ai, aj) ∈ A×A, i 6= j. (13)

(N) Neutrality. Consider now the set of permutations on A, call it ΠA. For any element π ∈ ΠA and profile

RN , let π(RN ) denote the profile in which agents’ rankings are rewritten in a way that alternative a1 is

now named π(a1), alternative a2 is named π(a2) and so on. That is, π(RN ) = (π(R1), π(R2), ..., π(Rn)),

where π(Rk) = {(π(ai), π(aj)) : ∀(ai, aj) ∈ Rk)}. Neutrality requires that for all RN ∈ RN we have:

dRN
(ai, aj) = dπ(RN )(π(ai), π(aj)), ∀π ∈ ΠA, (ai, aj) ∈ A×A, i 6= j. (14)

(U) Unanimity. If all agents submit the same ordering then the rule also assigns this ordering.

Equivalently, for all RN ∈ RN and R ∈ R:

{Rk = R, ∀k = 1, 2..., n} ⇒ {dRN
(ai, aj) = 1, ∀(ai, aj) ∈ R} . (15)

(LU) Local Unanimity. If all agents prefer an alternative ai to aj then the rule must also respect this

binary comparison.

Equivalently, for all RN ∈ RN and (ai, aj) ∈ A×A:

{aiRkaj , ∀k = 1, 2, ..., n} ⇒ dRN
(ai, aj) = 1. (16)

Clearly, LU implies the U property above.

(K-SP) Kemeny strategy-proofness. Consider a profile RN = (R1, R2, ..., Rn) and within this profile

an agent k with preferences Rk. Denote by R−k the preferences of all other agents, i.e., R−k =

(R1, R2, .., Rk−1, Rk+1, ..., Rn). Suppose now agent k misreports his preferences by submitting an

ordering R′k 6= Rk. This will give rise to a profile (R′k, R−k) ≡ (R1, R2, .., Rk−1, R
′
k, Rk+1, ..., Rn).
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K-SP requires that for all RN ∈ RN and k ∈ N all such misreports not be profitable so that:∑
(ai,aj)∈Rk

dRN
(ai, aj) ≥

∑
(ai,aj)∈Rk

d(R′k,R−k)(ai, aj), ∀R
′
k 6= Rk. (17)

The Integer Program. Set A = {a, b, c, d} and N = {1, 2}. We wish to explore whether there exists

a rule satisfying Anonymity, Local Unanimity and K-SP.

Using an integer-programming framework, this problem can be reformulated in the following way: Does

there exist a 0-1 d vector that simultaneously satisfies (C)-(T)-(A)-(LU)-(K-SP)? Since m = 4, n = 2, the

associated d vector will have dimension (4!)2 ∗ 4 ∗ 3 = 6912. To answer this question, we set up an integer

program. One particularly simple way of doing this is to we introduce a scalar variable y ≥ 0 and define

problem P:

P = min
d,y

y

s.t. (C)-(T)-(A)-(LU)∑
(ai,aj)∈Rk

dRN
(ai, aj)−

∑
(ai,aj)∈Rk

d(R′k,R−k)(ai, aj) + y ≥ 0, ∀RN ∈ RN , k ∈ N, R′k 6= Rk.

d ∈ {0, 1}, y ≥ 0.

If P yields an optimal solution (d∗, y∗) with y∗ > 0, we will know that anonymity, local unanimity and K-SP

cannot be simultaneously satisfied. Conversely, if y∗ = 0 then the vector d∗ defines a rule that satisfies

the desired properties. It is thus clear that finding an optimal solution for P is equivalent to resolving the

existence of an anonymous, locally unanimous, K-SP rule.

So our goal is to solve mixed-integer program P or closely-related variants thereof. To this end, we

use Matlab and its built-in mixed-integer linear programming solver intlinprog to solve a more involved

version of P in which there is a non-negative variable yh for each K-SP constraint h,24 and a linear objective

function c ·y, where c > 0. We do this for computational reasons, as the simpler model seemed to be yielding

suboptimal results.

P ′ = min
d,y

c · y

s.t. (C)-(T)-(A)-(LU)

∑
(ai,aj)∈Rk

dRN
(ai, aj)−

∑
(ai,aj)∈Rk

d(R′k,R−k)(ai, aj) + yh ≥ 0, ∀RN ∈ RN , k ∈ N, R′k 6= Rk.

d ∈ {0, 1}, y ≥ 0.

Problem P ′ shares the appealing properties of P: the existence of an anonymous, locally unanimous,

K-SP rule is equivalent to an optimal solution (d∗,y∗) of P ′ such that y∗ = 0. After a few iterations and

various modifications of vector c, the solver converges to the rule discussed in the text and listed in the Excel

24There are (4!)2 ∗ 2 ∗ 23 = 26496 such constraints.
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file, and we have a proof of existence.

Below we give the complete formal definition of the rule found as a solution to the above problem. First,

we define fixed-status-quo rules with tie-breaking for three alternatives.

Definition 10 Let N = {1, 2} and A = {a1, a2, a3}. Fix a status-quo ordering R0 and denote by rk(R)

the k’th-ranked alternative of R ∈ R. The R0-fixed-status-quo rule with tie-breaking, SQR0 , is the

anonymous rule such that for all RN = (R1, R2) ∈ RN :

(i) if R0 is locally unanimous for RN , then SQR0(RN ) = R0;

(ii) if R0 is not locally unanimous for RN and R1 ∈ [R0, R2], then SQR0(RN ) = R1;

(iii) if R0 is not locally unanimous for RN and R2 ∈ [R0, R1], then SQR0(RN ) = R2; and

(iv) otherwise, we have R1 6= R2 and δ(R1, R0) = δ(R2, R0) = 2, and we set SQR0(RN ) = Ri, where i ∈ N
is such that r3(Ri) = r1(R0).25

It is obvious that the above rules satisfy local unanimity and anonymity, and one can also check K-SP.

Second, for four alternatives we provide below a formal description of the anonymous, locally unanimous

and K-SP rule.

Definition 11 Let N = {1, 2} and A = {a, b, c, d}. Specify a ∈ A as the losing alternative. For all non-losing

alternatives x ∈ {b, c, d}, introduce the orderings Rx0 and R
x

0 as follows:

Rb0 = dca, R
b

0 = cda

Rc0 = bda, R
c

0 = dba

Rd0 = cba, R
d

0 = bca.

Let f be an anonymous rule such that, for any profile RN = (R1, R2) ∈ RN ,

(I) if R1 ∩R2 = {(b, a), (c, a), (d, a)}, then there are three kinds of possible profiles26 and the rule sets:

f(bcda, dbca) = cdba, f(bdca, cdba) = dbca, f(cbda, dbca) = bcda;

(II) if R1 ∩R2 = {(a, b), (a, c), (a, d)}, then there are three kinds of possible profiles and the rule sets:

f(abcd, adcb) = abdc, f(acbd, adbc) = adbc, f(acdb, abdc) = acbd;

(III) if R1 ∩R2 ∩ {(a, b), (a, c), (a, d)} = {(a, x)} (where x ∈ {b, c, d}), then

f(R1, R2) = SQR
x
0 (R1|A\{x}, R2|A\{x}) x,

i.e., the non-losing alternative x is placed at the bottom of the social ordering and is preceded by the

outcome of the Rx0-fixed-order-status-quo rule applied to profile (R1|A\{x}, R2|A\{x});

25To illustrate part (iv) of the definition, if R0 = bca, then the R0-fixed-status-quo rule with tie-breaking
is given by SQR0(abc, cab) = cab.

26Recall that the rule is anonymous.
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(IV) if R1 ∩R2 ∩ {(a, b), (a, c), (a, d)} = {(a, y), (a, z)} (where {b, c, d} = {x, y, z}), then

f(R1, R2) = x SQR
x
0 (R1|A\{x}, R2|A\{x}),

i.e., the non-losing alternative x is placed at the top of the social ordering and is succeeded by the

outcome of the R
x

0-fixed-status-quo rule applied to profile (R1|A\{x}, R2|A\{x});

(V) if R1 ∩R2 = ∅, then there are twelve possible profiles and the rule sets:

f(abcd, dcba) = cdba, f(abdc, cdba) = dbca, f(acbd, dbca) = bcda, f(acdb, bdca) = dbca

f(adbc, cbda) = bcda, f(adcb, bcda) = cdba, f(bacd, dcab) = cdba, f(badc, cdab) = dbca

f(bcad, dacb) = cdba, f(bdac, cadb) = dbca, f(cabd, dbac) = bcda, f(cbad, dabc) = bcda.

The rule’s output for any other profile is given in the excel-file but can also be derived from the fact that

losing alternative a is always placed as low as possible subject to local unanimity, from points (I)-(II)-(III)-

(IV)-(V), and from properties anonymity, local unanimity and K-SP of the rule.
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