
 

Department of Economics, Management and Statistics 
University of Milano – Bicocca 

Piazza Ateneo Nuovo 1 – 2016 Milan, Italy 
http://dems.unimib.it/ 

 
 

 

 

 

DEMS WORKING PAPER SERIES 
 

 

 
Subjective expected utility and 

psychological gambles 
 
 

Gianluca Cassese 

 

No. 524 – July 2023 
 
 

 

 

 

http://dems.unimib.it/


SUBJECTIVE EXPECTED UTILITY AND PSYCHOLOGICAL GAMBLES

GIANLUCA CASSESE

Abstract. We obtain an elementary characterization of expected utility based on a representation of choice

in terms of psychological gambles, which requires no assumption other than coherence between ex-ante and

ex-post preferences. Weaker version of coherence are associated with various attitudes towards complexity

and lead to a characterization of minimax or Choquet expected utility.

Keywords: Arbitrage, Choquet expected utility, Coherence, Conglomerability, Expected utility, Gamble,

Maxmin expected utility, Multiple priors.
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1. Introduction

An agent who, by effect of his own choice, a gift or some other selection mechanism, is about to re-

ceive an item x out of a set X of possible alternatives may view the situation from an ex-ante perspective

and anticipate the level of satisfaction or disappointment. This psychological process originates from the

awareness that, independently from one’s own preferences, the actual process of choice is often bound to

details which are difficult to fully anticipate. The outcome of an evening out with friends, e.g., is likely

to depend upon the preferences of each of the participants, on the personal psychological or health status

of the decision maker on that particular evening, on the actual availability of some of the options (like

a particular restaurant being open or not) and so on. In these situations agents often rely on their own

anticipations and speculate on whether the actual outcome will be preferred to what anticipated
1
. We

refer to the mind process of evaluating the potential disappointment implicit in one’s anticipations as a

psychological gamble.

The starting point of this paper is the elementary fact that any choice process may be equivalently

written as a psychological gamble and that assigning a utility to any item x is no different than assessing

the probability that the anticipation of an outcome preferred to x will be disappointed. Although this

interpretation requires no assumption, it connects the process of choice, which we normally envision as

a behavioural process, with the mind experiment of anticipation and disappointment. On the other hand,

writing choice problems in terms of gambles naturally opens the door to the possibility of considering

more elaborate strategies involving, e.g., multiple events. In other words this reformulation embeds the

Date: July 19, 2023.

1
The impact of anticipations on choice has been investigated in both theoretical and experimental papers. Kőszegi and Rabin

[19], in accordance with a basic principle of prospect theory, propose a model of choice based on reference dependence. The

key point they make is that the reference level depends, rather than on past consumption or endowments, on agents anticipa-

tions. Concerning the experimental literature, a recent paper by Sabater-Grande et al. [22] studies the way students form their

anticipations of future grades and document the (surprisingly often) rate of disappointment.
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problem of choosing from a set into the more complex and rich setting of gambles. The discussion of the

axioms to impose in this extended setting are the core of the present paper.

We follow Savage [23] in considering the problem of choice among acts, i.e. mappings from states to

consequences. In this setting, the least controversial axiom is monotonicity: if every possible consequence

of one of two acts dominates the corresponding consequence determined by its alternative, then such act

should be preferred. We interpret this property as a criterion of simple coherence between the utility

associated ex-ante with an act and that originating ex-post from its consequences. This basic principle has

a natural extension from acts to gambles to which we refer as full coherence. We prove in Theorem 1 that

full coherence is necessary and sufficient for the subjective expected utility representation (SEU) to hold.

Our proof follows a different path than, e.g., the one proposed by Savage in which, as in most other proofs,

a rich structure of the set of acts is required while we just need minimal properties.

Full coherence may be criticized on the basis of the remark that gambles involving different levels of

complexity may not be directly comparable. We discuss different attitudes towards complexity, each trans-

lating into a corresponding weaker form of coherence. We show that every one of these criteria character-

izes a different representation of preferences, including the minimax representation (MEU) of Gilboa and

Schmeidler [16], Theorem 3, as well the Choquet expected utility (CEU) of Schmeidler [25], Theorem 4.

Our analysis permits thus to unify these important models and to compare them in terms of the different

attitudes to complexity involved. The role of complexity complements the traditional interpretation of

these models in terms of ambiguity.

Many of our results exploit tools which are widely used in financial theory, particularly asset pricing.

The connection with finance, which was first recognized by Gilboa and Samuelson [15], becomes fully

clear in the context of gambling which provides a natural bridge between these apparently distinct areas of

economic theory. Among other things, the tools we use permit to establish that every capacity is equivalent

to a subadditive one, in some appropriate sense, Corollary 3.

In section 2 we introduce and discuss gambles, in section 3 we define full coherence, prove that this

is necessary and sufficient for (SEU) and briefly discuss its limits. In section 4 we clarify the terms of

the equivalence between full coherence and absence of arbitrage opportunities
2
. Starting from section 5,

we discuss deviations from coherence based on aversion to complexity. We prove, in Theorem 2, that a

minimal coherence criterion is already enough to recover multiple priors and a slightly stronger property,

Θ0 coherence, is equivalent to (MEU). In section 6 we characterize (CEU) in terms of Θ1 coherence and

implicitly show that (MEU) and (CEU) reflect different attitudes towards complexity. In section 7 we obtain

some results on subjective capacities which do not require any form of coherence. Eventually we close in

section 8 with a short discussion of the relationship with the existing literature.

1.1. Notation. We write F(X,Y ) to indicate the family of all functions f : X → Y and F(X) for

F(X,R). The symbol F0(X) designates the collection of functions vanishing outside some finite set which

we endow with the norm ∥f∥ =
∑

x∈X |f(x)|. The symbol ba(Ω) (resp. P(Ω)) denotes the family of

2
And this in turn is a concept strictly related to the concept of coherent betting scheme due to de Finetti [7], from which we

borrow our terminology.
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bounded, finitely additive set functions (resp. probabilities) on the power set of Ω. If H ⊂ F(Ω) we write

(1) ba(Ω,H) =
{
λ ∈ ba(Ω) : H ⊂ L1(λ)

}
Following de Finetti [7] a set is identified with its characteristic function, so that A(x) is either 1, if x ∈ A,

or else 0. If A ⊂ X and f, g ∈ F(X) we write fAg = fA+ gAc
.

2. Psychological Gambles or Anscombe and Aumann need not play roulette.

Throughout the paper we fix the set Ω of states of nature, X of outcomes (or prizes) and A ⊂ F(Ω, X)

of acts. The main assumption we make is the following

(A1). Preferences on A and X are represented by a corresponding utility function, V and u respectively.

In order to simplify notation, we define order intervals:

(2) I(f) = {h ∈ A : V (h) ≤ V (f)} and Iu(y) = {x ∈ X : u(x) ≤ u(y)}

and let I(g, f) = I(f) \ I(g) and Iu(x, y) = Iu(y) \ Iu(x).
The main reason for assuming (A1) is the following, obvious implication that we shall use repeatedly:

there exists a countable collection I of non empty order intervals such that any other non empty order

interval includes an element of I as a subset.

Definition 1. A psychological gamble on A (or simply a gamble) is just an element of the set

(3) Θ =
{
θ ∈ F0(A,R+) :

∑
f∈A

θ(f) ≤ 1
}
.

In the light of the preceding discussion, the quantity θ(f) is interpreted as the odds posted on the event

of receiving an act which is not preferred to our anticipation, f . Thus, θ produces the overall payoff

(4) I(θ) =
∑
f∈A

θ(f)I(f).

Of course, the larger its supporting set the more complex is the gamble.

The Dirac function δf sitting at f embeds A into Θ by associating each act with the event I(f). Abusing

notation, we shall often identify f with δf and view acts as gambles of a particularly simple form. Likewise,

the utility function V extends naturally to a linear functional on Θ defined as

(5) V (θ) =
∑
f∈A

θ(f)V (f), θ ∈ Θ

which we interpret as the value of the gamble θ. The next Lemma proves that this interpretation is con-

sistent with the idea that the economic value of a gamble should reflect its perspective yields.

Lemma 1. The value of a gamble is a linear function of its payoff.
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Proof. It is easily seen that both maps, V and I , assign the same value to gambles θ and θ′ which are

equivalent according to the following criterion:

(6)

∑
f∼g

θ(f) =
∑
f∼g

θ′(f), g ∈ A.

Thus, if I(θ) = I(η) we can assume, up to equivalence, assume that the support of θ and η are of the

form {f1, . . . , fn} and {g1, . . . , gk} respectively with V (fi) < V (fi+1) and V (gj) < V (gj+1). If V (f1) >

V (g1) then letting h be the least valuable act between g2 and f1 we obtain I(θ)(f1) = I(θ)(h) while

I(η)(f1) ̸= I(η)(h), a contradiction. Thus necessarilyV (f1) = V (g1) and

∑
i≥1 θ(fi) =

∑
j≥1 η(gj). Ap-

plying the same argument recursively we conclude that n = k and that V (fλ) = V (gλ) and

∑
i≥p θ(fi) =∑

j≥p η(gj) for each p = 1, . . . , n. Thus, if I(θ) = I(η) then θ and η must be equivalent in the sense of

(6) so that V (θ) = V (η) which proves the claim. □

Indirectly Lemma 1 also associates V with a unique, additive (but not necessarily bounded) set function

on the ring R generated by the order intervals in A.

The ease of the extension from acts to gambles and the linearity of the value function V (θ) suggest that

assumption (A1) may be avoided by defining preferences directly on Θ and imposing Herstein and Milnor

[17] kind of axioms thereon. This would however contribute very little to the behavioural foundations

of our approach and would make the importance of the coherence property to be introduced next less

transparent.

3. Coherence and its limits.

A gamble may be defined similarly on any partially ordered set. The special feature of Θ is that the

payoff of each gamble on A may be considered from a conditional perspective, i.e. by treating the state ω

as fixed, and identifying an act f with its consequence f(ω). The conditional value of gamble θ is defined

as in (5)
3

(7) u(θ|ω) =
∑
f∈A

θ(f)u
(
f(ω)

)
, θ ∈ Θ.

Ranking gambles by their conditional value represents a highly incomplete partial order that we denote

by writing

(8) θ ≥u η if and only if u(θ|ω) ≥ u(η|ω) for all ω ∈ Ω.

Concerning the structure of the set of acts we assume the following:

(A2). There exist two constant acts in A with values x, y ∈ X such that (a) V (y) > V (x), (b) yAf, xAf ∈ A

and (c) V (yAf) ≥ V (xAf) for each A ⊂ Ω and f ∈ A.

3
We prefer writing u(f(ω)) rather than u(f |ω).
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Property (a) is similar to (P5) of Savage while (b) is a very weak version of the sure thing principle. By

effect of (A2) we associate with V the capacity

(9) γV =
V (yAx)− V (x)

V (y)− V (x)
, A ⊂ Ω.

Differently from the rest of the literature, A is a quite arbitrary set and, in particular, it need not contain

all constant or simple acts. Borrowing terminology from Kopylov [20], this qualifiesA as a “small” domain.

Although the point may seem a minor one, it is not so, we believe, for three main reasons. First, if Ω is

infinite and A coincides with the whole space F(Ω, X), as in Savage, then the assumption that preferences

are complete is extremely restrictive and hardly plausible from a behavioural point of view
4
. Second, if A

does not contain all simple acts, the strategy of proof inaugurated by Savage (and all subsequent authors)

– namely to deduce subjective probability from preferences, prove the expected utility representation for

simple acts (gambles, in his terminology [23, p. 71]) and then extending to general acts – is simply not

feasible
5
. Eventually, one cannot identify u with the restriction of V to constant acts. In fact there is

no self evident criterion to test whether u and V are compatible with one another. The lack of a direct

link between the two utility functions may be appropriate to describe principal/agent situations in which,

as suggested in [15], an agent chooses among acts in accordance with the utility function V while the

principal evaluates the agent’s choice by considering the consequences it produces.

We formulate some general criteria for assessing whether V and u are compatible.

Definition 2. The utility functions V and u are said to be:

(a). simply coherent with one another if

(10a) f ≥u g implies V (f) ≥ V (g), f, g ∈ A;

(b). fully coherent if

(10b) θ ≥u η implies V (θ) ≥ V (η), θ, η ∈ Θ.

Simple coherence is a basic condition roughly corresponding to (P7) of Savage. In plain words it suggests

to consider acts by the consequences they produce and is often interpreted as a monotonicity assumption,

as in Anscombe and Aumann [1]. Full coherence is the natural extension of this principle from acts to

gambles. Several alternative properties, intermediate between the two, will be considered in the next

sections.

Given (A2), it is clear that coherence is unaffected if V and u are normalized so that

(11) u(x) = V (x) = 0 and u(y) = V (y) = 1

(and thus γV (A) = V (yAx)). We thus feel free to assume (11) henceforth without explicitly mentioning.

If f is any act, we shall often use Assumption (A2) to obtain the truncations:

(12) fk = f{u(f)≤k}x, fk = f{u(f)≥−k}x and f(k) = f{|u(f)|≤k}x, k ≥ 0.

4
A critical discussion of the completeness of preferences axiom, as is well known, is offered by Aumann [2] who refers to

completeness as “perhaps the most questionable” axiom.

5
Even in the subjective approach adopted by Ghirardato et al [14] all simple acts must be available.
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Theorem 1. Assume (A1) and (A2). The utility functions V and u are fully coherent if and only if

(13) V (f) = Φ
(
u(f)

)
+

∫
Ω
u(f)dm, f ∈ A

in which (a) Φ is a positive linear functional on the linear space Lu = {u(θ) : θ ∈ Θ} and vanishes on
bounded functions and (b) m ∈ P(Ω,Lu). The representation (13) is unique.

Proof. If V and u satisfy (13) they are clearly fully coherent. Conversely, assume that u and V are fully

coherent, normalized utility functions on X and A respectively. By (5) the extension of V and u to gambles

may be stretched still by replacing Θ with F0(A). It is an obvious consequence of linearity that V and u

are fully coherent relatively to Θ if and only if they are so relatively to F0(A) or, in other words, that if

ζ ∈ F0(A) and ζ ≥u 0 then necessarily V (ζ) ≥ 0. We show that F0(A) is a vector lattice relatively to ≥u.

Fix ζ ∈ F0(A), define A = {u(ζ) ≥ 0} and define ζ∗ implicitly by letting ζ∗(fAx) = 1 and ζ∗(xAf) = −1

if ζ(f) ̸= 0 and ζ∗ = 0 elsewhere. It is then clear that u(ζ∗) = |u(ζ)|.
Regarding the random quantity u(ζ) as the value of a map T : F0(A) → F(Ω) we conclude that T is a

positive linear operator acting on a vector lattice and, from (10b), that it such that

(14) V (ζ) > 0 implies sup
ω

u(ζ|ω) > 0, ζ ∈ F0(A).

In other words the linear functional induced by V on F0(A) is conglomerative with respect to T so that

it follows from [3, Theorem 3.3] that there exists a positive linear functional Φ on Lu which vanishes on

bounded functions and a positive, finitely additive set function m on the power set of Ω such that

u(θ|·) ∈ L(m) and V (θ) = Φ(u(θ)) +

∫
Ω
u(θ)dm, θ ∈ Θ(15)

from which (13) readily follows. Moreover, recalling (9) we clearly see that (15) implies m = γV so that m

is unique and is a probability. For fixed f ∈ A, it follows from the inclusion u(f) ∈ L1(m) that

(16)

∫
u(f)dm = lim

k

∫
{|u(f)|≤k}

u(f)dm = lim
k

∫
u
(
f(k)

)
dm = lim

k
V (f(k))

and therefore

(17) Φ(u(f)) = lim
k

V (f{|u(f)|>k}x).

This proves uniqueness. □

We notice three main facts. First, that the integrability of all elements of Lu is not an assumption but an

endogenous property. Second that, borrowing from the theory of finance, the component Φ(u(f)) may be

interpreted as a bubble in preferences, i.e. as a criterion for evaluating the unbounded part of the conditional

utility of the act. Eventually, even if (A2) is a rather mild condition, it could be made more general since,

as is clear from the proof, the only mixture operations needed in the proof involve the sets {u(f) > 0}
or their complement so that one may indeed considerably restrict the family of sets for which mixing is

allowed (see the discussion in [20]).
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Theorem 1 also suggests a close and unexplored connection between expected utility and subjective

conditional expectation. A version of (10b) was introduced by de Finetti in [6] under the name of conglom-
erability and its relation with disintegration properties has been studied thoroughly by Dubins [9].

We can dispose of preference bubbles with the aid of the following continuity axiom:

(A3). For every f ∈ A and every order interval I containing f , there exists an order interval Jf that contains
x and such that yAx ∈ Jf implies f

Acx ∈ I .

This property, although not strictly necessary for our results, makes it easier the comparison with the

literature. We shall occasionally briefly comment on its role. It is easily seen that, under (A1) and (A2),
the assumption (A3) is equivalent to

(18) lim
γ
V
(A)→0

V (f
Acx) = V (f), f ∈ A.

Thus, if we add (A3) to (13), the inclusion Lu ⊂ L1(m) implies γV (|u(f)| > k) → 0 so

V (f) = lim
k

V (f(k)) = lim
k

∫
{|u(f)|≤k}

u(f)dm =

∫
u(f)dm, f ∈ A

i.e. Φ = 0. Conversely, if (13) holds with Φ = 0 and if m(An) → 0 then

V (f) =

∫
u(f)dm = lim

n

∫
Ac

n

u(f)dm = lim
n

∫
u(f

Ac
n
x)dm = lim

n
V (f

Ac
n
).

Corollary 1. Assume (A1) and (A2) and let the utility functions V and u be fully coherent. Then (A3) is
satisfied if and only if the representation (13) holds with Φ = 0.

Despite the ease of extending the setting from acts to gambles, from a behavioural point of view these

are much more complex objects than acts mainly because they require taking simultaneous positions on

several different bets. One may thus conjecture that the ranking of two gambles may not be dictated by

the monotonicity criterion ≥u whenever the gamble producing the higher conditional value is way more

complex than its alternative. In other words, deviations from coherence may be justified on the basis of the

difference in the cost of complexity inherent in the two gambles to be compared. In the following sections

we shall thus formulate weaker notions of coherence, intermediate between simple and full coherence in

order to capture the attitude towards complexity.

A first, easy step in this direction consists in decomposingΘ into the union of a family of convex subsets,

Θλ, each of which closed with respect to mixing and containing the constant acts x and y. The DM may,

e.g., interpret gambles belonging to the same subset Θλ as being “similar” or satisfying some symmetric

(but not necessarily transitive) property, such as comonotonicity. On each Θλ a corresponding version of

the coherence property may be assumed, namely

Definition 3. The utility functions V and u are locally coherent given a cover {Θλ : λ ∈ Λ} of Θ if they are
coherent relatively to Θλ for each λ ∈ Λ.

By an easy corollary of Theorem 1, local coherence is equivalent to the existence, for each λ ∈ Λ, of a

pair (Φλ,mλ) with the same properties seen above. This is in line with the locally linear representation

obtained by Castagnoli and Maccheroni [5].



8 GIANLUCA CASSESE

4. Coherence and arbitrage.

Full coherence has a surprisingly natural translation into the language of financial economics and, in

particular, in the notion of an arbitrage opportunity (or lack of). To clarify this point we define the sets

(19) Z1
u =

{
ζ ∈ F0(A) : ζ ≥u 0 and ∥ζ∥ ≤ 1

}
and Zu =

⋃
λ>0

λZ1
u.

and let P (resp. P+) be the convex cone spanned by the functions of the form δb − δa where a, b ∈ A and

b ⪰ a (resp. b ≻ a).

Write Ku = −Zu − P . It is easily seen that V and u are simply coherent if and only if
6

(20) Ku ∩ P+ = ∅.

Full coherence requires a more stringent condition than (20), involving the topology on F0(A) generated

by sets of the form

(21) UH,a =
{
η ∈ F0(A) :

∑
f∈A

η(f)H(f) < a
}
, a ∈ R, H ∈ F(A).

Lemma 2. The utility functions V and u are fully coherent if and only if

(22) Ku ∩ P+ = ∅

Proof. If the utility function V on A is fully coherent with u, then V (κ) ≤ 0 for every κ ∈ Ku and, by

(21), the same inequality extends to the closure Ku so that (22) holds. Conversely, fix f0, g0 ∈ A such that

V (f0) > V (g0),let ϕ0 be a continuous linear functional on Θ such that

(23) ϕ0(δf0 − δg0) > 0 ≥ sup
ζ∈Ku

ϕ0(ζ)

and define

(24) V0(h) = ϕ0(h), h ∈ A.

Then, V0(f) > V0(g) while, if V (b) ≥ V (a), the inclusion δa − δb ∈ Ku implies ϕ0(δa − δb) ≤ 0 and so

V0(a) ≤ V0(b). We can then normalize ϕ0 so that |V0| ≤ 1 on some arbitrary, non empty order interval I0.

By (A1) there exist two countable collections of order intervals, I(gn, fn) and In, such that (i) any other

non empty order interval I(g, f) satisfies I(gn, fn) ⊂ I(g, f) for some n ∈ N and (ii) In ⊂ In+1 with

A ⊂
⋃

n In. Repeating the same step for each n, we obtain a linear functional ϕn separating θgn,fn from

Ku and such that the function Vn defined as in (24) satisfies Vn(a) ≤ Vn(b) for each V (b) ≥ V (a) and

|Vn| ≤ 1 on In. Let ϕ =
∑

n 2
−nϕn and define Vϕ as in (24). For each f ∈ A there exists N such that

f ∈
⋂

n≥N In. Thus,

|Vϕ(f)| ≤
∑
n

2−n|Vn(f)| ≤ 1 +
∑
n<N

2−n|Vn(f)| < +∞.

6
Condition (20) is formally identical to the mathematical definition of absence of arbitrage opportunities in mathematical

finance. Compare with [21].
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Moreover, if f ≻ g then

Vϕ(f)− Vϕ(g) = ϕ(δf − δg) ≥ sup
I(gn,fn)⊂I(g,f)

2−nϕn(δfn − δgn) > 0.

In addition, if b ⪰ a then, as seen above, Vn(b) ≥ Vn(a) for all n ∈ N. Then, Vϕ is a utility function.

Moreover if θ, η ∈ Θ and θ ≥u η then η − θ ∈ Ku so that Vϕ(θ) ≥ Vϕ(η) which proves the claim. □

The technique used to prove Lemma 2 is a common tool in mathematical finance known as Yan Theorem,

see [28] and it will be used again in what follows.

5. Multiple priors and maxmin preferences.

We shall now start discussing some popular decision models in terms of deviations from coherence. In

so doing it is useful to formulate some minimal restrictions in order to rule out pathological situations.

Definition 4. The utility functions V and u are minimally coherent if

(25) (∀θ ∈ Θ)(∃cθ ≥ 0) : θ ≥u η implies V (θ) + cθ ≥ V (η), η ∈ Θ.

In the light of the preceding discussion the parameter cθ describes the cost of complexity inherent in the

gamble θ. Definition 4 suggests that deviations from coherence are due to the need to adjust the value of a

gamble by its cost, which is assumed to be finite. All definitions of coherence we shall consider henceforth

will satisfy this minimal criterion which, despite its simplicity, has interesting implications.

Theorem 2. Assume (A1), (A2) and (A3). The utility functions V and u are minimally coherent if and only
if there exists a convex set Λ ⊂ ba(Ω)+ such that

(26) Lu ⊂
⋃
λ∈Λ

L1(λ) and V (f) ≤ inf
λ∈Λ

∫
u(f)dλ, f ∈ A.

Proof. By virtue of (25), the quantity

(27) κ0(θ) = sup{V (η) : η ∈ Θ, θ ≥u η}

is well defined and finite for each θ ∈ Θ. In order to extend the domain of this functional from Θ to

(28) Ξ1 = {ξ ∈ Θ+ Zu : ∥ξ∥ ≤ 1} and Ξ =
⋃
λ>0

λΞ1,

consider, as in the proof of Theorem 1, V and ≥u as defined over the whole of F0(A). By definition, each

ξ ∈ Ξ1 admits some η ∈ Θ such that ξ ≥u η, or, equivalently, such that ξ+/2 ≥u (η + ξ−)/2. Given that

both sides of this inequality are elements of Θ, we have V (η) ≤ 2κ0(ξ
+/2)−V (ξ−). This guarantees that

the quantity κ1(ξ), defined as in (27), is finite for each ξ ∈ Ξ1. The corresponding functional κ1 is concave

and positively homogeneous and may thus be further extended, by scaling, to a functional κ defined on Ξ.

It is easily seen that κ inherits from κ0 the properties of being convex and

(29) κ(ζ) ≥ 0 and κ(f) = V (f), ζ ∈ Zu, f ∈ A.
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Fix ξ ∈ Ξ and define

(30) Ξξ = {β ∈ F0(A) : ξ + β ∈ Ξ} and κξ(β) = κ(β + ξ)− κ(ξ) β ∈ Ξξ.

Ξξ is convex, closed with respect to truncations and such that −ζ ∈ Ξξ whenever ξ ≥u ζ . Moreover, κξ is

concave (and thus such that κξ ≥ κ on Ξ) and it satisfies

(31) κξ(ζ) ≥ 0 ζ ∈ Z1
u and − κξ(−ξ) = κ(ξ) = κξ(ξ).

Let β1, . . . , βn be a collection of elements of Ξξ satisfying supω u(βi|ω) < +∞ and let w1, . . . , wn be

convex weights. Then, β =
∑n

i=1wiβi ∈ Ξξ and supω u(β|ω)δy ≥u β. From all this we deduce

n∑
i=1

wiκξ(βi) ≤ κξ(β) ≤ sup
ω

u(β|ω)κξ(y).

As a consequence of [4, Theorem 4.1] there exists λξ ∈ ba(Ω)+ such that ∥λξ∥ = κξ(y) and that

(32) sup
ω

u(β|ω) < +∞ implies u(β) ∈ L1(λξ) and κξ(β) ≤
∫

u(β)dλξ, β ∈ Ξξ.

Using truncations we generalize this conclusion to

(33) u(ζ) ∈ L1(ξ) and κξ(ζ
k) ≤

∫
u(ζ)dλξ ≤ −κξ(−ζk), ξ ≥u ζ.

Let

(34) Λ = co{λf : f ∈ A}.

It follows that
7

(35) Lu ⊂
⋃
λ∈Λ

L1(λ) and V (fk) ≤ κ(fk) ≤ inf
h∈A

κh(f
k) = inf

λ∈Λ

∫
u(f)dλ, f ∈ A.

But then (39) follows from (A3).
Conversely, let Λ satisfy (39) and choose θ, η ∈ Θ such that θ ≥u η. Then,

V (η) ≤
∑
h∈A

η(h) inf
λ∈Λ

∫
u(h)dλ ≤ inf

λ∈Λ

∫
u(η)dλ ≤ inf

λ∈Λ

∫
u(θ)dλ = V (θ) + cθ

where we have implicitly set cθ = infλ∈Λ
∫
u(θ)dλ− V (θ) ≥ 0. □

The last line of the proof implicitly provides a precise estimate of the cost of complexity implicit in the

gamble θ. Notice that each λ ∈ Λ satisfies

(36) γV (A) ≤ λ(A), A ⊂ Ω

but, that notwithstanding, need not a probability and thus an element of core(γV ).

If gambles bear a complexity cost, cθ , there may be a class of gambles whom the decision maker considers

particularly simple, i.e. for which cθ = 0. Different agents may of course have different views on what is it

7
For the sake of mathematical precision, given that u(f) need not be integrable with respect to all λ ∈ Λ but u(fk) is so for

every k, the integral on the right hand side of (33) should be written as limk

∫
u(fk)dλ and may well be +∞ for some λ. This

detail is irrelevant since f ∈ L1(λf ).
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that makes a gamble simple but they may perhaps agree to include among simple gambles those involving,

further to y, only one non constant act. Denote this class of gambles by

(37) Θ0 = {tδf + (1− t)δy : 0 ≤ t ≤ 1, f ∈ A}.

Definition 5. The utility functions V and u are Θ0 coherent if they are minimally coherent and satisfy:

(38) θ ≥u η implies V (θ) ≥ V (η), θ ∈ Θ0, η ∈ Θ.

This property is clearly intermediate between full coherence and simple coherence. It suggests that a

gamble which dominates another one should definitely be preferred to the latter only if simple. Notice

that this concept is asymmetric and is thus particularly weak.

Theorem 3. Assume (A1), (A2) and (A3). Then, V and u are Θ0 coherent if and only if there exists a set
Λ ⊂ P(Ω) such that

(39) Lu ⊂
⋃
λ∈Λ

L1(λ) and V (f) = inf
λ∈Λ

∫
Ω
u(f)dλ f ∈ A.

Proof. We take advantage of the findings and notation of the proof of Theorem 2. In particular, under (38)

κ(δf + δy) = V (f) + 1 so that κf (y) = 1 and the collection Λ defined in (34) consists of probabilities.

From (33) we conclude that

inf
λ∈Λ

∫
u(fk)dλ ≤

∫
u(fk)dλfk ≤ −κfk(−fk) = κ(fk) ≤ inf

λ∈Λ

∫
u(fk)dλ.(40)

Exploiting (A3) and (38) we conclude

V (f) = lim
k

V (fk) = lim
k

κ(fk) = lim
k

inf
λ∈Λ

∫
u(fk)dλ = inf

λ∈Λ

∫
u(f)dλ.

The representation (39) implies minimal coherence, by Theorem 2. In addition, if θ ≥u η and θ ∈ Θ0 it

also implies

V (θ) = inf
λ∈Λ

∫
u(θ)dλ ≥ inf

λ∈Λ

∫
u(η)dλ ≥

∑
h∈A

η(h) inf
λ∈Λ

∫
u(h)dλ = V (η).

□

A version of the preceding results may be established without invoking (A3).

Corollary 2. Assume (A1) and (A2). Then, V and u are Θ0 coherent if and only if there exist (a) a concave
functional Φ ∈ F(Lu) which vanishes on bounded functions and (b) a convex set Λ ⊂ P(Ω) such that

(41) Lu ⊂
⋃
λ∈Λ

L1(λ) and V (f) = Φ(u(f)) + inf
λ∈Λ

∫
Ω
u(f)dλ f ∈ A.

Proof. The direct implication holds unchanged up to (40). From this we obtain

inf
λ∈Λ

∫
u(f)dλ = lim

k
V (fk) = V (f)− Φ(u(f)),

the last equality amounting to the definition of Φ(u(f)). In so writing we use the fact that V and u are

simply coherent so that V (f) only depends on u(f). The extension to gambles is obtained by letting

Φ(u(θ)) = V (θ)− lim infk V (θk) which is clearly concave. □
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6. Choquet expected utility.

Upon replacing Θ0 with some another set of gambles in Definition 5 we obtain a different notion of

simplicity and of coherence. In a gamble θ ∈ Θ0 there is essentially only one source of randomness. One

may extend this principle and consider positions in several different acts which are “similar” to one another

in that they are affected by randomness in quite the same way. A popular criterion is comonotonicity and

it is obvious that all gambles in Θ0 are formed by monotonic acts. By Θ1 we thus designate the set of

gambles θ such that any two acts in the support of θ are comonotonic.

Theorem 4. Assume (A1), (A2) and (A3). Then V and u are Θ1 coherent if and only if γV is a convex
capacity and satisfies the Choquet expected utility representation

(42) V (f) =

∫
u(f)dγV , f ∈ A.

Proof. The proof is quite elementary and is based on a stepwise approximation of u(f). We easily establish

(43)

2−nδy + ηkn
1 + k

≥u
f(k) + kδy

1 + k
≥u

ηkn
1 + k

in which the gamble ηkn is defined to be identically equal to 2−n
at each act

(44) fi = y
{u(f)≥i2−n−k}

x, i = 0, . . . , k2n − 1

and null elsewhere. Given that all terms intervening in (43) are gambles included in Θ1 we can invoke Θ1

coherence so that V (f(k)) ≥ V (ηnk )− k ≥ V (f(k))− 2−n
. In addition it is easy to see that

lim
n

V (ηkn)− k = lim
n

k2n−1∑
i=1

2−nγV

(
u(f) ≥ i2−n − k

)
− k

=

∫ k

0
γV (u(f(k)) ≥ t− k)dt− k

=

∫ k

0
γV (u(f) ≥ t)dt−

∫ 0

−k
[1− γV (u(f) ≥ t)]dt

=

∫ k

−k
u(f)dγV .

From this we deduce (42) by letting k → +∞ and exploiting (A3).
Convexity of γV follows from the inclusion Λ ⊂ core(γV ), Theorem 3 and ordinary rules of Choquet

integration by which

(45)

∫
u(f)dγV ≤ inf

µ∈core(γ
V
)

∫
u(f)dµ ≤ inf

λ∈Λ

∫
u(f)dλ =

∫
u(f)dγV , f ∈ A.

If, conversely, the Choquet representation (42) holds, θ ≥u η and θ ∈ Θ1 then V (θ) =
∫
u(θ)dγV ≥∫

u(η)dγV ≥ V (η). □

The importance of Choquet expected utility formula (42), introduced in the theory of decisions by

Schmeidler [25], justifies some historical comments. In his seminal contribution Schmeidler [24] rightly

attributes a special importance to convex capacities in view of two facts: (i) these are the infimum of
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the elements of their core and (ii) the corresponding Choquet integral is superadditive and additive over

comonotonic functions. Following Schmeidler, the credit for discovering these two important properties

has thenceforth unanimously been ascribed to Shapley [27] (the paper was originally published in 1965)

and to Dellacherie [8], respectively. As a matter of fact (and quite curiously) both results were already well

known at the time the above references were published since they had been proved, and in more general

terms, by Eisenstadt and Lorentz [12] in 1959 (see Theorem 2 in that paper which fully anticipates the

main result of [24]). Even the term convex (or rather concave), attributed to Shapley, had already been

introduced by Eisenstadt and Lorentz.

7. The structure of subjective capacities.

In the preceding sections we have repeatedly used the capacity γV defined in (9), which, depending

on the degree of coherence assumed, may or not be additive or convex. A different utility representation

of the same preference system will in general induce a capacity with different properties. The following

result provides another illustration of the connection between decision theory and finance. Notice that a

weaker property than (A2) is actually needed.

Lemma 3. Under (A1) and (A2) there exists a utility function V∗ on A which is equivalent to V and is
associated with a subadditive capacity.

Proof. Consider a function H ∈ F(A) of the form

(46) H =
N∑

n=1

tn{I(yBn
x, yAn∪Bn

x)− I(x, yAn
x)}

where tn ≥ 0, γV (Bn) ≥ γV (An) and, upon rearranging terms, γV (AN ) ≥ . . . ≥ γV (A1) > 0. Then,

minH +maxH ≤ H(yA1
x) + maxH = −

N∑
n=1

tn +maxH ≤ 0.

This inequality applies a fortiori to all elements of the convex cone of functions dominated by some H as

in (46) as well as to the closure of such cone in the topology of uniform distance. As in the proof of Lemma

2 we can apply Yan Theorem and obtain the existence of some µ ∈ ba(A)+ such that

(47) sup
A⊂B

µ
(
I(yBx, yA∪Bx)− I(x, yAx)

)
≤ 0 < µ(I(g, f)), f, g ∈ A, f ≻ g.

Since µ ̸= 0 we can normalize µ so that µ
(
I(x, y)

)
= 1. The set function γ∗(A) = µ(I(x, yAx)) possesses

then the following properties, valid for all A,B ⊂ Ω:

(48) (a) γ∗(∅) = 0, (b) γ∗(A) ≤ γ∗(B) when A ⊂ B and (c) γ∗(A ∪B) ≤ γ∗(A) + γ∗(B).

Define

(49) V∗(f) = µ
(
I(x, f)

)
− µ

(
I(f, x)

)
, f ∈ A,

so that V∗(yAx) = γ∗(A) and

V ∗(f)− V ∗(g) = µ
(
I(g, f)

)
− µ

(
I(f, g)

)
, g, f ∈ A.
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Thus V ∗
is a normalized utility function equivalent to V . □

A set function satisfying (48) is often called a submeasure. It is possible to reformulate the preceding

result in a purely measure theoretic language.

Corollary 3. Every capacity γ on an algebra A of subsets of Ω admits a submeasure γ∗ on A such that

(50) γ(A) > γ(B) if and only if γ∗(A) > γ∗(B), A,B ∈ A .

Proof. Take the space of bounded, real valued, A measurable functions as the collection of acts and for

each such function b let V (b) =
∫
bdγ and apply Lemma 3. □

One interesting property of γV is connected with the following axiom.

(A4). For every set B such that γV (B) > 0 there exists N ∈ N with the property that any partition π of Ω of
size ≥ N satisfies

(51) γV (B \A) > γV (A) for some A ∈ π.

It is natural to compare (A4) with the apparently similar axiom (P6) of Savage. In plain terms, (A4)
asserts that any large partition of Ω contains at least one “small” set (possibly null). Savage (P6) requires

instead the existence of a partition (necessarily of large size) all of whose elements are equally “small”.

Despite its relative weakness, assumption (A4) is sufficient to put in relation utility from acts with prob-

ability. Although such probability may not be unique it need not be atomless either, thus avoiding an

artificial implication of Savage construction.

Lemma 4. Assume (A1) and (A2). Then (A4) is equivalent to the existence of P ∈ P(Ω) such that

(52) lim
n

P (An) = 0 if and only if lim
n

γV (An) = 0.

Proof. It is obvious that γV satisfies either (A3) or (52) if and only if so does the submeasure γ∗ defined

in Lemma 3. Fix then B such that γ∗(B) > 0 and assume (A4). Then, there exists N ∈ N such that

for every disjoint collection A1, . . . , AN of subsets of Ω we can find an index 1 ≤ i ≤ N such that

γ∗(B \ Ai) > γ∗(Ai) and thus γ∗(Ai) < γ∗(B \ Ai) ≤ γ∗(B). This inequality, being true for all B with

γ∗(B) > 0, implies that for each ε > 0 any partition of sufficiently large size contains an element A such

that γ∗(A) < ε. In other words, γ∗ is uniformly exhaustive and it thus satisfies (52) for some P ∈ P(Ω),
by [18, Theorem 3.4].

Conversely, assume (52) and fix B such that γV (B) > 0. Choose 0 < 3ε < γV (B) and let P (A)

is sufficiently small so that γV (A) ≤ ε and γV (B) ≤ γV (B \ A) + ε, which we may do by choosing

appropriately A from any partition of sufficiently large size. Then, γV (A) < γV (A) + ε < γV (A) +

γV (B)− 2ε ≤ γV (B)− ε ≤ γV (B \A). □
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8. Relation with the literature

Introducing a linear structure on the set of acts, e.g. via the embedding of acts into gambles, is, of course,

not a new idea. Most of the papers which adopt it, however, end up with justifications which are mainly of

an objective nature. This raises the criticism that introducing objective elements into a purely subjective

framework is somewhat contradictory. The best example of this state of things is the classical work of

Anscombe and Aumann [1] in which, as is well known, prizes are tickets to roulette lotteries. Scott [26]

presents a totally abstract (but extremely appealing) framework to choice based on formal sums which can

be applied to several problems involving the numerical representation of binary relations over a finite set,

such as non transitive preferences. His paper is perhaps the first attempt to obtain a choice theoretic model

from simple separating arguments, later followed by Fishburn [13] who considered the problem of choice

among probability distributions. The best attempt to obtain a linear structure with purely behavioural

assumptions is the paper by Ghirardato et al. [14] in which the concept of utility mixtures is introduced

based on the assumption that the image of X under u is convex. But even in this setting one needs the

assumption that acts include all simple functions.

In relatively recent times a number of papers have looked at decision problems from a financial point

of view and are thus indirectly related to our interpretation of utility as the value of a gamble. Echenique

et al. [10] propose to test revealed preference theory by measuring the profits that could be made in case

of violations of its axioms. Echenique and Saito [11] implement a similar approach for expected utility

under risk aversion. The paper that comes closer to the present one is the recent work of Gilboa and

Samuelson [15]. They investigate whether the utility functions u and V satisfy the integral representation

(to which they refer to as coherence) or the maxmin representation. They interpret this as a problem of

an agent trying to justify his choices, based on V , to some principal who evaluates the results through u.

They assume that both set X and Ω are finite (acts are in fact matrices) and that acts include all functions

Ω → X . The conditions they obtain are mainly interpreted in geometric terms. However, it is the first

paper that recognizes explicitly the connection with finance.
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