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Abstract

We use French data over the 1994-2013 period to study how imports of industrial

robots affect firm-level outcomes. Guided by a simple model, we develop a novel

empirical strategy to identify the causal effects of robot adoption. Our results suggest

that, while demand shocks generate a positive correlation between robot imports and

employment at the firm level, exogenous exposure to automation leads to job losses.

We also find that robot exposure increases labor productivity and some evidence that

it may raise the relative demand for high-skill professions.
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1 Introduction

The widespread diffusion of industrial robots has fuelled growing concerns about the future

of work. Robots are programmable machines with the capability to move on at least three

axes. As such, unlike other pieces of equipment, they are designed to replicate human

actions. The first prototype, the Unimate, was introduced in 1961 at General Motors to

perform basic welding and carrying tasks. Other machines of this type were developed to

assist human workers with a wide array of tasks, including heavy lifting, as well as hazardous

or repetitive work, and their diffusion has grown at a staggering rate.1 Industrial robots are

technologies adopted by firms. To understand their effects, one must know how they affect

the firms using them in the first place. Do robots substitute or complement humans in firms

that automate? Are the effects heterogeneous across firms and workers? Do robots increase

the productivity of firms using them? From a theoretical perspective, the answer to these

questions is ambiguous. From an empirical perspective, the available evidence is worringly

scarce and often limited to correlations.

This paper is one of the first attempts to fill this gap. Our main innovations are to measure

automation using detailed imports of industrial robots by French manufacturing firms and

to use a novel empirical strategy for identifying causality. To guide the analysis, we build a

simple model in which heterogeneous firms invest in automation, whose effect is to replace

workers with capital in a set of tasks. Consistent with the conventional view, the employment

effect of automation is potentially ambiguous: while robots displace some workers, they also

increase productivity, which raises the demand for all factors. More importantly, the model

shows that demand shocks are likely to increase employment and automation simultaneously,

thereby generating a positive correlation between these variables. To overcome this bias, the

model also illustrates how to isolate exogenous variation in firm-level exposure to automation

that can be used to identify causal effects.

Our empirical results are consistent with the predictions of the theory. Focusing on

the manufacturing sector, where automation is more prevalent, we first find that robot

adopters are larger and have a larger employment share of high-skill professions. Second,

looking at the evolution of firm-level outcomes over time, we find that robot import occurs

after periods of expansion in firm size, suggesting that adoption may be driven by demand

1By 2018, there were an estimated 2.44 million industrial robots performing a variety of tasks that
humans used to do. The future scale of the phenomenon is diffi cult to predict. Frey and Osborne (2017)
argue that almost half of U.S. employment is at risk of being automated over the next two decades. See also
Brynjolfsson and McAfee (2014) and Baldwin (2019).

1



shocks, but is followed by a decline in employment. Third, using a new measure of exposure

to automation based on pre-determined technological characteristics, we find that firms that

are more prone to adopt robots experience a stronger employment reduction than other

firms. We also confirm that our proxy for exposure to automation is a significant predictor

of robot imports. Throughout all specifications, we find that robots increase value added per

worker and some evidence that they may raise the relative demand for high-skill professions.

These results suggest that demand shocks lead firms to both expand and automate,

resulting in a positive correlation between robot adoption and employment. However, ex-

ogenous changes in automation lead to job displacement. Hence, they warn that caution

should be exercised in interpreting the positive correlation between robot adoption and em-

ployment often found in the literature. In particular, there is a growing body of work that

studies automation at the firm level. Some papers, like ours, measure automation with ro-

bot imports. These include Humlum (2019) for Denmark, Dixen, Hong and Wu (2020) for

Canada, and Acemoglu, Lelarge and Restrepo (2020) for France. Other papers use dummies

from survey data. These include Koch, Manuylov and Smolka (2021) for Spain, Cheng et

al. (2019) for China, Dinlersoz and Wolf (2018) for the U.S., and a study by the European

Commission (2015) for 7 European countries. None of these papers uses exogenous variation

in automation across firms.

We are aware of two papers that try to identify causal effects using firm-level data. The

first is Aghion et al. (2021), who use the same French data as us, but proxy automation with

investment in industrial equipment. Employing a shift-share IV design, they find positive

employment effects. As shown in our sensitivity analysis, we believe this result to be driven by

the broader measure of capital inputs they consider, which is more likely to be complementary

to labor. The second paper is Bessen et al. (2019), who use matched employer-employee

data for the Netherlands. In line with our findings, they show that spikes in expenditure

on "third-party automation services" increase job separations. Finally, our findings are

consistent with Acemoglu and Restrepo (2020b) and Dauth et al. (2021), who identify

the causal effects of automation across commuting zones using data from the International

Federation of Robotics (IFR). By comparing firms within industries, our results reveal a new

dimension of heterogeneity that cannot be observed in more aggregated data.
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2 The Model

To guide the empirical analysis, we build a partial equilibrium model of endogenous au-

tomation across heterogeneous firms.2 Consider a firm i facing a demand function with a

constant price-elasticity, yi = Aip
−σ
i . Production requires a unit measure of symmetric tasks.

Tasks z ∈ [0, κi] are automated, and thus can be performed by capital. The remaining tasks,

z ∈ (κi, 1], can only be performed by workers. Hence, κi represents the extent of automation.

Let (ki, li) denote the quantity of capital and workers, respectively, used by firm i. Denote

with r the rental rate of capital and with w the wage of workers. We assume r < w, which

implies that automated tasks are performed by capital only. Production of task z is:

xi(z) =

{
ki(z) for z ∈ [0, κi]

li(z) for z ∈ (κi, 1]
. (1)

The production function of a firm with productivity ϕi and automation κi is:

yi = ϕi exp

(∫ 1

0

lnxi(z)dz
)

= ϕi

(
ki
κi

)κi ( li
1− κi

)1−κi
, (2)

where ki/κi (li/(1− κi)) is capital (workers) per task.
Firms are monopolistically competitive and choose capital, labor and automation so as

to maximize profits:

max
ki,li,κi

{piyi − rki − wli − hfi (κi)} ,

where hfi (κi) is the cost of automation, including managers and engineers, with price h.

The first-order conditions for capital and labor are:

rki =

(
1− 1

σ

)
κipiyi (3)

wli =

(
1− 1

σ

)
(1− κi) piyi. (4)

Eq. (3) shows that the demand for capital is increasing in automation, κi. Using (3)-(4) into

2Proofs are in Appendix A.1. The model adds firm heterogeneity to task-based theories of endogenous
automation such as Acemoglu and Restrepo (2018), Hemous and Olsen (2022), Dechezleprêtre et al. (2021),
and it shares similarities with Acemoglu, Gancia and Zilibotti (2015). See, instead, Martinez (2021) for a
model of automation embodied in capital goods generating a distribution of technologies.
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(2) also shows that output per worker is increasing in κi if w > r, as assumed:

yi = ϕi
li

1− κi

(w
r

)κi
. (5)

Eq. (4) shows that automation, κi, has two opposite effects on the demand for labor. First,

there is a direct negative displacement effect, given by the fact that more tasks are performed

by capital. Second, as (5) shows, there is a positive productivity effect: an increase in κi
raises production, which in turn increases the demand for labor. The derivative of li with

respect to κi is:
d ln li
dκi

= (σ − 1) ln
(w
r

)
− 1

1− κi
,

which is positive for κi < 1− [(σ − 1) ln (w/r)]−1. This condition is more likely to be satisfied

when σ and w/r are high, i.e., when the productivity effect is strong enough. If σ is high,

production can be scaled up without a large countervailing fall in prices; and if w/r is high,

the cost saving of automation is stronger. If (σ − 1) ln (w/r) < 1, instead, the displacement

effect always dominates.3

Finally, consider the choice of automation, κi. We assume that automating more tasks

poses an increasingly diffi cult challenge. For tractability, we focus on the functional form:

hfi (κi) = h
ρi

1− ρi

[
(1− κi)−

1−ρi
ρi − 1

]
,

with ρi ∈ (0, 1). The parameter 1/ρi captures the rate at which the marginal cost of

automation increases with κi. To see this, note that the marginal cost of automation,

hf ′i (κi) = h (1− κi)−1/ρi , increases at a faster rate with κi the lower ρi is. Hence, we inter-
pret ρi as an index of replaceability of tasks in the production process and we allow it to

vary across firms. The first-order condition for κi is:

1

1− κi
=

[(
1− 1

σ

)
piyi
h

ln
(w
r

)]ρi
. (6)

Larger firms (higher Ai and ϕi) have a stronger incentive to pay the fixed automation cost

to save on the variable production cost; automation is also increasing in the cost-saving it

entails (w/r) and decreasing in its own cost h and in 1/ρi.
4

3Acemoglu and Restrepo (2018) allow new tasks to be created when others are automated. We abstract
from this additional mechanism, which would reinforce the positive productivity effect on employment.

4We show in Appendix A.3 that a variant of the model where automation is a discrete choice yields
qualitatively similar results.
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The model shows that the effect of κi on li is potentially ambiguous, so that whether

or not automation raises employment is ultimately an empirical question. It also illustrates

that the key empirical challenge is the endogeneity of κi. Specifically, demand shocks trigger

automation but also have a direct positive effect on labor demand. A way to overcome this

problem is to focus on exogenous determinants of automation that have no effects on firm

outcomes other than through κi. These are the parameters capturing automation costs,

namely, the industry-level cost shifter, h, and firm-level replaceability, ρi. However, eq. (6)

shows that h and ρi do not operate separately: a lower automation cost has no effects on

firms without replaceable tasks (ρi = 0). Likewise, replaceability is immaterial in an industry

where automation costs are prohibitive. Rather, h and ρi interact with each other (proof in

Appendix A.1):
∂2κi

∂ lnh∂ρi
< 0. (7)

Based on this insight, the model suggests to identify firms as more exposed to automation

when they employ a larger share of replaceable workers (high ρi) while operating in industries

that are better suited for automation (low h).

3 Data and Preliminary Evidence

Our empirical analysis uses firm-level data for France over the 1994-2013 period and combines

several datasets administered by the French statistical agency (INSEE), covering the universe

of French firms (legal entities) that report a complete balance sheet. For each firm, we

have data on sales, material purchases, capital stock (value of physical assets) and total

employment from the BRN and FARE datasets; using this information, we also compute

firm-level value added. We complement the balance sheet data with information on the

occupational structure of employment in each firm from DADS Etablissement. For each

year, this dataset contains employment data disaggregated into five 2-digit occupations. For

the year 1994, it also contains a finer employment disaggregation into 29 occupations, which

we exploit when constructing our proxy for robot exposure.5 For the descriptive analysis,

we use the full set of years (1994-2013) while for identification we focus on the 1996-2013

period and take 1994 as a pre-sample year.

For each firm and year, we also have data on values and quantities of exports and imports

for all 8-digit products of the Combined Nomenclature (CN) classification from the French

5Yearly employment data for the 29 occupations are only available starting from the 2010s, and are thus
missing for most of our sample period.
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customs authority (DOUANE). The CN classification records trade in industrial robots into

a specific product code, CN 84795000 (CN 84798950 before 1996). Accordingly, we identify

firms that import robots in a given year as firms with positive imports for this product code.

We also measure the stock of robot capital employed by a firm at a given point in time as

the sum of robot imports by the firm up to that point.

Robot imports are recognized as a good proxy for automation because of the high con-

centration of this sector; see, e.g., Acemoglu and Restrepo (2022), Blanas, Gancia and Lee

(2019) and Bonfiglioli et al. (2022). For instance, Japan and Germany alone account for 50%

of the total volume of global exports, while France’s share is about 5% only. Yet, the use of

import data is subject to some limitations. On the one hand, they include imports by robot

integrators or resellers, which do not represent actual instances of adoption. On the other,

they do not include purchases of robots from domestic suppliers. Moreover, in the case of

intra-EU transactions, firms are not required to report the list of imported products as long

as their overall intra-EU imports are below a given threshold. To mitigate these issues, we

restrict the sample to the manufacturing sector, where robot users are more prevalent, and

drop the “Installation and Repair of Machinery and Equipment”industry. The sector of op-

eration and the characteristics of robot importers, such as sales and size, in our final sample

make it unlikely that these are just robot integrators. Although the reporting thresholds

are not very high given the average price of a robot, we further restrict the analysis to firms

with more than ten employees, for which the thresholds are less likely to be binding. More

importantly, our identification strategy will circumvent all the limitations of import data by

exploiting variation in proxies for robot exposure based on technological characteristics that

are observed for all firms and not just importers.

Consistent with other studies, Appendix Figure B1 shows that robot importers are par-

ticularly frequent in the production of motor vehicles, machinery, and electrical equipment.

However, robot importers are likely to be undercounted in the “Manufacture of Motor Ve-

hicles”industry because our data lack information for the two biggest car manufacturers in

France.6 After removing this industry, the correlation between the number of robot importers

and the stock of installed robots from the IFR is 0.79.

Our baseline sample is an unbalanced panel of 64,173 manufacturing firms, of which

765 have imported robots at least once over 1994-2013 (henceforth, "robot adopters"). This

number is consistent with Acemoglu, Lelarge and Restrepo (2020), who collected information

6For large multinational firms (e.g., Peugeot Société Anonym and Renault), INSEE reports only consol-
idated balance sheets of the entire group. Since the identity and composition of these groups is not constant
across periods, they cannot be included for comparisons over time.
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on robot adoption in France from multiple sources for the 2010-2015 period. While robot

adopters are a small minority, they account for a large and growing fraction of manufacturing

activity. Considering firms that are active in all years between 1994 and 2013, the shares

of robot adopters in manufacturing employment and value added have increased steadily to

reach 8% and 14%, respectively. This indicates that robot adopters are faring better than

other manufacturing firms. Moreover, the value added share has grown significantly more

than the employment share, suggesting that the expansion of robot adopters may have been

accompanied by the adoption of labor-saving technologies.7

Appendix Table B1 reports summary statistics separately for robot adopters and non

adopters, showing that the former firms are larger and more skill-intensive than the latter,

on average. To gain further insight into the differences between the two groups of firms, we

estimate conditional correlations between robot adoption and firm-level characteristics by

running OLS regressions of the following form:

Yit = αi + αjt + β · Adoptionit +X′it · γ + εit, (8)

where i denotes a firm; j indicates the 5-digit NACE industry in which the firm operates;

and t stands for time. Yit is an outcome and Adoptionit is a dummy that takes value 1 from

the first year in which the firm imports robots onwards, and is equal to 0 otherwise. We

control for (i) firm fixed effects, αi, to absorb time-invariant firm characteristics; (ii) 5-digit

industry×year fixed effects, αjt, to account for differences in the industry of operation and for
industry-specific shocks; and (iii) firm characteristics– log sales and dummies for firms that

export or import goods other than robots– measured in the first year in which the firm is

observed and interacted with a full set of year dummies, Xit. We estimate (8) for four major

outcomes that can be directly constructed from the data and on which we focus throughout

the paper: (i) log sales, (ii) log employment, (iii) log value added per worker and (iv) the

employment share of high-skill professions. The results are in Table 1; standard errors are

corrected for clustering at the firm level and t-statistics are shown in square brackets. All

estimates of β are positive and, with the exception of the regression for the employment

share of high-skill workers, they are also highly statistically significant.

Do robot adopters differ from other firms already before adopting robots, or do they start

diverging afterwards? To shed light on this question, we use a difference-in-differences event

7Preliminary evidence from a 2019 survey run by the U.S. Census shows similar patterns. In particular,
Acemoglu et al. (2021) report that about 2% of firms use robotics for automation and these firms account
for about 15% of employment.
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Table 1: Firm-Level Outcomes, Robot Adoption and Robot Intensity

(1) (2) (3) (4)
Ln Sales Ln No. of 

Employees
Ln VA 
per Worker

Empl. Sh. 
High Skill

Adoptionit 0.230*** 0.106*** 0.057*** 0.003
[10.458] [5.763] [3.630] [1.030]

Obs. 596,166 597,282 585,886 597,282
R2 0.95 0.87 0.85 0.70
The subscripts i and t denote firms and years, respectively. The dependent variables are annual observations of the
firm-level outcomes indicated in columns' headings. Value added is computed as sales minus changes in inventories
minus purchases of final goods minus purchases of materials plus changes in material inventories minus other
purchases. High-skill professions are scientists, managers, and engineers. Adoption it is a dummy equal to 1 for all
years since the firm starts importing robots, and equal to 0 otherwise. All specifications include firm fixed effects and
5-digit industry x year fixed effects. They also control for log sales and dummies for whether the firm is an importer
or an exporter; each control variable is observed in the first year in which the firm appears in the sample and is
interacted with a full set of year dummies. Standard errors are corrected for clustering within firms; t-statistics are
reported in square brackets. ***, **, *: denote significance at the 1, 5 and 10% level, respectively.

study approach to analyze how the four outcomes evolve over time in robot adopters relative

to other firms. We estimate the following specification:

Yit = αi + αjt +
−2∑
s=−5

βs ·Ds
it +

5∑
s=0

βs ·Ds
it + εit, (9)

where Ds
it are event-study dummies, which are equal to 1 if firm i is s periods away from

the first instance of robot imports at time t, and 0 otherwise. The coeffi cients βs illustrate

how a given outcome evolves over time within robot adopters relative to non adopters over

a ten-year window around initial adoption (s = 0).

The results are in Figure 1 and the estimation coeffi cients in Appendix Table B2. Robot

adoption is antedated by significant differences in the trends of sales and employment between

robot adopters and non adopters. Specifically, the former firms grow faster than the latter

in terms of both variables over the five-year period preceding adoption. Conversely, no clear

differential pre-trend is detected in terms of value added per worker and the skill composition

of the workforce. After adoption, the diverging trend in employment is reversed: while robot

adopters still grow faster than non adopters, the differential gradually vanishes. Robot

adopters also experience a relatively stronger shift in the skill composition of the workforce

towards high-skill professions, and a faster increase in value added per worker. These results

show that robot adoption occurs after periods of expansion in firm size, and is followed by

employment losses, improvements in effi ciency, and labor demand shifts towards high-skill

8



Each graph plots coefficients and confidence intervals on event-study dummies, estimated using eq. (9) for a

different outcome variable (indicated in the heading of the graph). Each event-study dummy D s
it is equal to 1 if

firm i is s periods away from the first instance of robot imports at time t and is equal to 0 otherwise. The
estimated coefficients corresponding to each graph are reported in Appendix Table B2. 

Ln Sales Ln No. Of Employees

Ln VA per Worker Empl. Sh. High Skill

Figure 1: Difference-in-Differences Event Studies

workers, with limited changes in total sales.8

4 The Effect of Robot Exposure

The results in Figure 1 suggest that the positive correlation between automation and em-

ployment may be spurious. We now exploit differential cross-firm variation in robot exposure

stemming from pre-determined technological characteristics to identify causal effects.

4.1 Variables and Specification

Our model suggests that exposure to automation depends on the interaction between industry-

level suitability to automation and firm-level replaceability of employment. On the one hand,

some industries have lower automation costs than others (low h in the model) due to the

8In Appendix Figure B2, we repeat the analysis using the estimator developed by Borusyak et al. (2022)
to exploit the staggered nature of adoption across firms. While this estimator fails to converge when we
control for 5-digit industry×year fixed effects, a more parsimonious specification without these fixed effects
delivers results qualitatively similar to those in Figure 1.
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nature of their production process. This is the case of industries that use assembly lines

compared to those that rely more on batch production or make customized items. On the

other hand, within any given industry, firms differ in the extent to which their activities

can be assigned to robots (ρi in the model). For example, some firms outsource the assem-

bly stage or are specialized in complex tasks that cannot be automated. Building on these

insights, our robot exposure measure, RobExp, exploits the interplay between a proxy for

automation suitability in each industry, RobSuit, and a proxy for employment replaceability

within each firm, Repl. With this variable, we study how robot exposure affects firm-level

outcomes and adoption decisions.

In a given 5-digit industry j, we measure RobSuit as the average robot intensity of all

firms i′ 6= i ∈ j in the initial year, namely,

RobSuitj−i = sinh−1

(∑
i′ 6=i∈j RobStocki′∑
i′ 6=i∈j CapStocki′

)
, (10)

where RobStocki′ and CapStocki′ denote firm i
′
’s initial stocks of imported robots and total

capital, respectively. Sectors with a lower cost of automation will naturally have a higher

stock of robots. Normalizing it by total capital ensures that RobSuitj−i is not affected by

differences in scale or capital intensity and the hyperbolic sine transformation preserves the

zeros.

Our replaceability measure, Repl, is similar to the indicator of Graetz andMichaels (2018)

but is defined at the firm-level. We source from Graetz and Michaels (2018) information on

whether each of 377 U.S. Census occupations is replaceable or not; an occupation is defined

as replaceable if its title corresponds to at least one of the robot application categories

identified by the IFR (e.g., welding, painting, assembling). We map each U.S. occupation

into the 29 French occupations for which we have employment data in 1994, and construct

firm-level replaceability as

Repli =

29∑
o=1

ωoi ·Replo, (11)

where Replo is the replaceability of French occupation o and ωoi its share in firm i’s em-

ployment in 1994. The values of Replo are in Appendix B (Table B3), where we argue that

mapping from U.S. Census occupations induces only a minimal loss of variation in Repli
across firms. Finally, we obtain RobExp as

RobExpi = RobSuitj−i ·Repli. (12)
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Appendix Table B4 provides descriptive statistics on RobExpi and the other variables used

in this section.

We focus on long-run changes and estimate specifications of the following form:

∆Yi = αj + β1 ·RobExpi + β2 ·RobSuitj−i + β3 ·Repli +X′i · γ + εi, (13)

where ∆Yi is the annualized change in outcome Y for firm i between the first and last year in

which the firm is present in the sample. The use of long differences implies that identification

exploits cross-sectional (across firms) variation in the pre-determined level of robot exposure

and in the long-run growth of outcomes. We control for 5-digit industry fixed effects, αj, to

absorb differential trends in outcomes across industries. Moreover, we control for start-of-

period values of log firm sales and of indicators for exporting and importing firms, included

in the vector Xi. While firms with high and low replaceability are comparable in terms

of these characteristics in the first year (Appendix Table B5), it is possible that initially

larger and more trade-oriented firms will follow different paths in terms of adoption and

outcomes in subsequent periods; controlling for Xi absorbs possible heterogeneous trends

across firms within the same industry. We correct the standard errors for clustering within

5-digit industries to account for possibly correlated shocks among firms within industries.9

As suggested by the model (eq. 7), we believe that neither Repli nor RobSuitj−i alone

fully captures a firm’s exposure to robots. For instance, replaceability of employment cannot

trigger automation in industries where robots are not available. Recognizing this, our em-

pirical approach goes beyond the level effect of these variables and focuses instead on their

interaction in a difference-in-differences specification. Moreover, while Repli and RobSuitj−i
are pre-determined and thus do not respond to subsequent changes in firm-level outcomes,

they could still be correlated with other firm or industry variables affecting outcomes. Being

identified by both firm- and industry-level variation, the interaction coeffi cients β1 are less

likely to be confounded by omitted firm or industry characteristics than the linear compo-

nents.

9We winsorize the change in each outcome at the top and bottom 5% of the distribution to prevent
results from being driven by extreme observations.
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4.2 Baseline Results and Sensitivity Analysis

The baseline estimates of β1 are in Table 2, panel a). The change in each outcome is mul-

tiplied by 100 to express it in percentages.10 The full list of coeffi cients is in Appendix

Table B7. The coeffi cient on RobExpi is negative and precisely estimated in the employ-

ment regression, indicating that more robot exposed firms experience a relatively larger and

statistically significant reduction in employment over the sample period. As for the other

outcomes, β1 is positive and precisely estimated in the regression for value added per worker,

suggesting that higher robot exposure may induce effi ciency gains within firms. The effect

of robot exposure on sales, albeit positive, is not statistically significant. This suggests that

productivity gains need not always translate into lower prices. Finally, the results point to-

wards a positive, albeit imprecisely estimated, effect of robot exposure on the skill structure

of employment. As for the other regressors, Appendix Table B7 shows that the coeffi cient

on Repli generally has the same sign as that on our preferred measure of robot exposure,

RobExpi.11

Our working hypothesis is that robot exposure affects outcomes by inducing firms to

adopt robots. In column (5), we study this mechanism by estimating (13) with a different

dependent variable, Adopteri, a dummy equal to 1 for firms that start importing robots

over the sample period. The coeffi cient on RobExpi is positive and very precisely estimated,

implying that firms that are more exposed to robots do indeed show a greater tendency

to adopt robots in subsequent years. We refrain from interpreting these estimates as the

first stage in a 2SLS framework because Adopteri only captures the extensive margin of

automation and is driven by a small number of firms. Reassuringly, Appendix Table B8

shows that robot exposure is also associated with an increase in robot intensity (stock of

robot capital over total capital stock) among adopters.

The estimates in Table 2 imply that a change in automation suitability equal to the

interquartile range of its distribution (12.12) is associated with a 67% higher adoption prob-

ability and an employment fall of 0.36 percentage points (p.p.) per year in firms at the 75th

percentile of the replaceability distribution (0.52) relative to firms at the 25th percentile

(0.20). As an example, the firm with average replaceability in the "Manufacture of Parts

10In Appendix Table B6, we estimate (13) replacing RobExpi, RobSuitj−i and Repli with a dummy
for firms that adopt robots over the sample period. Consistent with our preliminary evidence, these firms
experience a relatively larger increase in size and value added per worker, and a somewhat faster shift in
labor demand towards high-skill workers.

11Appendix Table B8 also reports small and insignificant effects of RobExpi on the labor share of value
added. As we show in Appendix A.2, this result is consistent with the model if the automation cost is in
terms of high-skill workers.
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Table 2: Firm-Level Outcomes and Robot Exposure, Main Results and Robustness

(1) (2) (3) (4) (5)
D Ln Sales Δ Ln No. of 

Employees
D Ln VA per 
Worker

D Empl. Sh. 
High Skill

Adopter

RobExpi 0.148 -0.094** 0.302*** 0.006 0.174***

[1.343] [-2.095] [2.702] [1.106] [2.893]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.142 -0.108** 0.310*** 0.008 0.224***

[1.192] [-2.230] [2.629] [1.396] [2.666]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.06 0.05 0.07

RobExpi 0.148 -0.095** 0.303*** 0.005 0.171***

[1.329] [-2.101] [2.695] [0.837] [2.847]
Obs. 35,759 36,040 34,647 36,040 36,040
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.127 -0.038 0.187* 0.010** 0.261*

[1.314] [-0.810] [1.768] [2.096] [1.830]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.11

RobExpi -0.160 -0.203** -0.061 0.001 0.065

[-0.737] [-2.020] [-0.270] [0.111] [0.414]
RobExpi x Elasth 0.069* 0.023 0.076* 0.002 0.023

[1.963] [1.405] [1.955] [0.774] [0.838]
Obs. 32,427 32,679 31,365 32,679 32,679
R2 0.11 0.04 0.07 0.04 0.05

RobExpi 3.331*** 0.248 3.537*** 0.070** 0.625***

[9.669] [1.043] [11.543] [2.537] [3.469]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05
The subscript i denotes firms. In columns (1)-(4), the dependent variables are 100 x the annualized changes in the firm-level
outcomes indicated in columns' headings. In columns (5), the dependent variable is Adopter i , a dummy equal to 1 for firms that
start importing robots over the sample period and equal to 0 for non importers. With the exception of panel f), RobExp i is the
product between the initial firm-level replaceability of employment by robots (Repl i ) and the initial ratio between the overall
stock of robots and the total capital stock of all other firms in each 5-digit industry j (RobSuit j-i ). In panel f), RobExp i is
constructed by replacing RobSuit j-i with the log stock of installed robots in each firm's sector in the U.S., based on data from
the International Federation of Robotics (IFR) for 13 manufacturing sectors. The regressions in panel b) are weighted by the
initial number of employees in each firm. The sample in panel c) excludes firms in the "Manufacture of Motor Vehicles"
industry. In panel d), robot imports include CN codes 842489, 842890, 851580, 847950, 851531, 851521 and 848640. In panel
e), Elast h is the elasticity of demand, defined at the 3-digit sector level, h ; the specification also includes interactions of Elast h 

with Repl i and RobSuit j-i (coefficients unreported). All regressions also include the linear terms in Repl i and RobSuit j-i , initial
values of log sales and of dummies for importing and exporting firms, and 5-digit industry fixed effects. Standard errors are
corrected for clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote significance at the
1, 5 and 10% level, respectively.

a) Baseline Regressions

b) Weighted Regressions

c) Excluding Manufacturing of Motor Vehicles

d) Broader Definition of Robot Imports

e) Interactions with Demand Elasticity

f) Alternative Proxy for Robot Exposure (IFR)
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and Accessories for Motor Vehicles" industry (high suitability) would have a 56% higher

adoption probability and experience a 0.30 p.p. per year employment fall relative to the firm

with average replaceability in the "Manufacture of Wine from Grape" industry (low suit-

ability). Moreover, the average increase in RobSuitj−i over 1994-2013 (8.55) would induce

a 48% higher adoption probability and a 0.26 p.p. per year employment fall at the 75th

percentile of the replaceability distribution relative to the 25th percentile.

The remaining panels of Table 2 contain an extensive sensitivity analysis. In panel b),

we weigh the observations by each firm’s initial number of employees. In panel c), we further

exclude firms in the "Manufacture of Motor Vehicles" industry. The results are largely

unchanged. In panel d), we extend the definition of automation suitability to include all types

of machinery designed for lifting, handling, loading, unloading and welding. Robot exposure

no longer has a statistically significant effect on employment but induces a stronger shift in

labor demand towards high-skill professions. These results are consistent with the finding in

Aghion et al. (2021) that broader forms of capital equipment are more complementary to

labor.

The model predicts that in industries where demand is more elastic, the productivity

effect of automation should be stronger because firms can scale up production without large

reductions in prices (Bessen, 2019). We therefore extend (13) by interacting RobExpi, Repli,

and RobSuitj−i with the elasticity of substitution in each sector (Broda and Weinstein,

2006). The results confirm that robot exposure causes a relatively larger increase in sales in

sectors where products are more substitutable (panel e)). Similarly, it has a relatively less

negative employment effect in sectors where demand is more elastic, although the interaction

coeffi cient is marginally insignificant. The effect of robot exposure on value added per worker

is also relatively stronger in sectors where products are more substitutable.

Finally, we use an alternative proxy for robot exposure obtained by replacing RobSuitj−i
with the log initial stock of installed robots in each firm’s sector in the U.S., sourced from

the IFR. This variable includes domestically sourced robots and, being based on U.S. rather

than French data, may be more exogenous. However, the IFR data are only available for

13 aggregate manufacturing sectors, so variation is much more limited. The coeffi cient on

RobExpi in the employment regression is not statistically significant, though the coeffi cient

on Repli alone remains strongly negative (not reported). The effect of RobExpi on all other

outcomes, including now sales, are strongly positive. These results suggest that the IFR

sectors may be too coarse to dispel the concern of correlations with positive shocks.
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4.3 Threats to Identification

We now discuss the main threats to identification. A first concern is that the fixed effects

and controls in (13) might not fully account for heterogeneous trends across firms. In Table

3, we thus augment (13) with additional covariates and fixed effects, and study how the

coeffi cient on RobExpi is affected. In panel a), we add each firm’s initial employment share

of high-skill workers and capital-labor ratio. Initial differences in skill and capital intensities

may reflect various factors leading to heterogeneous trends, such as differences in production

organization, product quality and firms’stage within the life cycle. Yet, these controls do

not significantly alter our main findings.

Despite our highly disaggregated industry fixed effects, some differences might persist in

the types of goods produced by firms within an industry. For the sub-sample of exporting

firms, the customs data provide us with the full list of exported products according to the

highly detailed CN classification. In panel b), we thus focus on firms that export goods at

least once, and include a fixed effect for each firm’s main export product (by total export

value) at the CN 6-digit level, along with a dummy for multi-product exporters. Accordingly,

we compare firms that export similar goods within an industry and control for product-

specific trends. The main results are preserved in this very demanding specification.

Differences in initial characteristics may give rise to heterogeneous trends also by intro-

ducing variation in the quality of imported robots or by influencing firms’decisions to source

robots from domestic integrators rather than foreign suppliers. In a first exercise, we lever-

age again our rich customs data augmenting the specification with the average unit value of

imported robots as a proxy for their quality (panel c)). In a second exercise, we re-estimate

(13) on firms that never import robots (panel d)). This is possible because our robot ex-

posure variable, RobExpi, is defined for all firms, not just for importers. Our evidence is

confirmed in both cases. In panel e), we interact RobExpi, Repli, and RobSuitj−i with

Adopteri; consistent with panel d), all coeffi cients on the RobExpi × Adopteri interaction

are statistically insignificant.

A second identification concern is that, even after accounting for fixed effects and co-

variates, RobExpi might be correlated with omitted variables that impact outcomes. Since

RobExpi is the interaction between Repli and RobSuitj−i, two cases pose threats to identifi-

cation: (i) if Repli is correlated with other firm characteristics that differentially affect out-

comes across industries with varying levels of automation suitability; and (ii) if RobSuitj−i
captures other industry characteristics that heterogeneously affect outcomes across firms

15



Table 3: Threats to Identification: Additional Controls and Alternative Samples

(1) (2) (3) (4) (5)
D Ln Sales Δ Ln No. of 

Employees
D Ln VA per 
Worker

D Empl. Sh. 
High Skill

Adopter

RobExpi 0.124 -0.092** 0.263** 0.004 0.184***

[1.186] [-2.015] [2.505] [0.494] [2.939]
Obs. 35,747 36,023 34,663 36,023 36,023
R2 0.10 0.04 0.07 0.07 0.05

RobExpi 0.033 -0.143*** 0.254*** 0.009 0.241***

[0.384] [-2.689] [2.620] [1.291] [3.817]
Obs. 27,534 27,758 26,515 27,758 28,761
R2 0.21 0.15 0.16 0.14 0.16

RobExpi 0.148 -0.095** 0.303*** 0.006 0.164***

[1.349] [-2.104] [2.707] [1.106] [3.575]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.79

RobExpi 0.153 -0.094** 0.310*** 0.008 -

[1.366] [-2.034] [2.752] [1.246] -
Obs. 35,729 36,008 34,633 36,008 -
R2 0.10 0.04 0.07 0.04 -

RobExpi 0.146 -0.095** 0.306*** 0.007 -

[1.319] [-2.101] [2.734] [1.162] -
RobExpi x Adopteri -0.184 -0.131 -0.243 -0.015 -

[-1.176] [-0.893] [-1.472] [-0.883] -
Obs. 36,301 36,584 35,180 36,584 -
R2 0.10 0.04 0.07 0.04 -
The subscript i denotes firms. In columns (1)-(4), the dependent variables are 100 x the annualized changes in the firm-
level outcomes indicated in columns' headings. In columns (5), the dependent variable is Adopter i , a dummy equal to 1 for
firms that start importing robots over the sample period and equal to 0 for non importers. RobExp i is the product between
the initial firm-level replaceability of employment by robots (Repl i ) and the initial ratio between the overall stock of robots
and the total capital stock of all other firms in each 5-digit industry j (RobSuit j-i ). The specification in panel a) includes the
initial skill intensity (employment share of high-skill workers) and the initial capital intensity (capital-to-labor ratio) of each
firm. The specification in panel b) is estimated on the sub-sample of firms that export goods at least once over the sample
period and includes both a fixed effect for each firm's main export product (by total export value) at the CN 6-digit level
and an indicator variable for multi-product exporters. The specification in panel c) includes the average unit value of
imported robots (hyperbolic sine transformation). The sample used in panel d) consists of firms that do not import robots
over the sample period. The specification in panel e) also includes the interactions of Repl i and RobSuit j-i with Adopter i

(coefficients unreported). Column (5) is missing in panels d) and e) because the dependent variable, Adopter i is always zero
(one) among non robot adopters (adopters). All regressions also include the linear terms in Repl i and RobSuit j-i , initial
values of log sales and of dummies for importing and exporting firms, and 5-digit industry fixed effects. Standard errors are
corrected for clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote significance at
the 1, 5 and 10% level, respectively.

a) Controls for Initial Skill and Capital Intensities

b) Exported Products Fixed Effects, Sub-Sample of Exporting Firms

c) Control for Average Robot Import Price

d) Sub-Sample of Non Robot Adopters

e) Robot Adopters vs. Non Robot Adopters
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with different degrees of replaceability. We now extend the specification by adding interac-

tions of Repli and RobSuitj−i with some of the most plausible confounders, and study how

this influences the coeffi cient on RobExpi.

In Table 4, panel a), we interact RobSuitj−i with each firm’s routine intensity– the share

of routine-intensive occupations in total employment in 1994. We construct this variable by

mapping Autor and Dorn’s (2013) data on occupational routine intensity to the 29 French

occupations; the linear term in routine intensity is included but untabulated. While routine

intensity is correlated with the adoption of skill-intensive technologies such as computers

(e.g., Autor, Levy and Murnane, 2003), Cheng et al. (2019) find that robots are more

prevalent at firms where employees commonly perform manual rather than routine tasks.

Consistently, the new interaction has no significant effect on robot adoption, and its inclu-

sion leaves the evidence on RobExpi unaffected. In panel b), we add interactions between

RobSuitj−i and all the control variables in Xi. Consistent with size and trade orientation

being comparable across firms with high and low replaceability (Appendix Table B5), the

main results are preserved. Similarly, panel c) shows that the results are unchanged when

controlling for the interaction between each variable in Xi and Repli.

Next, we consider the possibility that Repli interacts with industry characteristics other

than RobSuitj−i. In panel d), we add interactions between Repli and: (i) total imports

and exports; (ii) average unit values of imports and exports; and (iii) imports of capital

and technology goods. We construct these variables in the initial year by aggregating across

firms other than i in each 5-digit industry. These characteristics also enter the specification

linearly. The coeffi cients on RobExpi remain close to the baseline estimates. Finally, we

add interactions between Repli and 2-digit sector dummies (panel e)). Contributing to the

identification of β1 is now only the remaining variation in RobSuitj−i across narrow (5-digit)

industries within the same 2-digit sector. Our main results are unchanged.

5 Conclusions

We have studied the effects of industrial robots using data for French firms between 1994 and

2013. Our results suggest that, while robot adopters are growing in employment relative to

other firms, exogenous exposure to automation leads to significant job losses. There is also

some evidence that automation may increase the relative demand for high-skill professions.

These results are important because the normative literature has shown that automation may

call for corrective measures if it displaces workers and/or increases inequality (e.g., Beraja
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Table 4: Firm-Level Outcomes and Robot Exposure, Threats to Identification

(1) (2) (3) (4) (5)
D Ln Sales Δ Ln No. of 

Employees
D Ln VA per 
Worker

D Empl. Sh. 
High Skill

Adopter

RobExpi 0.151 -0.090** 0.297*** 0.006 0.181***

[1.385] [-1.994] [2.676] [1.005] [3.055]
RobSuitj-i x Routinei -2.934 4.864 9.589 1.193*** 2.545

[-0.129] [0.829] [0.433] [2.781] [0.355]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.137 -0.091** 0.283** 0.007 0.167***

[1.260] [-2.006] [2.564] [1.174] [2.730]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.148 -0.095** 0.304** 0.008 0.169***

[1.245] [-2.070] [2.534] [1.286] [2.906]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.173 -0.137*** 0.399*** 0.012* 0.136**

[1.591] [-2.771] [3.969] [1.795] [2.252]
Obs. 36,254 36,537 35,134 36,537 36,903
R2 0.10 0.04 0.07 0.04 0.05

RobExpi 0.155 -0.089* 0.306*** 0.006 0.175***

[1.353] [-1.934] [2.620] [0.968] [2.853]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05
The subscripts i and j denote firms and 5-digit industries, respectively. In columns (1)-(4), the dependent variables are
100 x the annualized changes in the firm-level outcomes indicated in columns' headings. In columns (5), the dependent
variable is Adopter i , a dummy equal to 1 for firms that start importing robots over the sample period and equal to 0 for
non importers. RobExp i is the product between the initial firm-level employment share of occupations that can be
replaced by robots (Repl i ) and the initial ratio between the overall stock of robots and the total capital stock of all other
firms in each 5-digit industry j (RobSuit j-i ). In panel a), Routine i is the initial firm-level employment share of routine-
intensive occupations; the specification also includes the linear term in Routine i (coefficient unreported). The 
specifications in panels b) and c) include interactions of RobSuit j-i and Repl i , respectively, with the initial values of log
sales and of dummies for importing and exporting firms. The specification in panel d) includes the initial values of
sectoral exports and imports, export and import unit values, capital goods and technology goods imports, as well as the
interactions of these variables with Repl i . The specification in panel e) includes interactions of Repl i with a full set of 2-
digit sector dummies. All regressions also include the linear terms in Repl i and RobSuit j-i , initial values of log sales and of
dummies for importing and exporting firms, and 5-digit industry fixed effects. Standard errors are corrected for
clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote significance at the 1, 5
and 10% level, respectively.

a) Interaction of Robot Suitability with Routine Intensity

c) Interactions of Replaceability with Firm Characteristics

e) Interactions of Replaceability with Sector Dummies

b) Interactions of Robot Suitability with Firm Characteristics

d) Interactions of Replaceability with Industry Characteristics
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and Zorzi, 2022, Costinot and Werning, 2018, Thuemmel, 2018, and Guerreiro, Rebelo, and

Teles, 2022). We also view them as a building block in studying the macroeconomic effects

of automation (e.g., Moll, Rachel and Restrepo, 2022). While we have focused attention to

firms that use robots, so as to shed light on the micro adjustment, it would be interesting

to study what happens to other firms in the same industry. Robot adoption is likely to

induce a reallocation away from non adopters, with further negative effects on employment.

Estimating these industry-level effects seems an important avenue for future research.12 We

have also found that, while robot adoption increases labor productivity, its effect on sales

is weaker. This suggests that the effi ciency gains may be partly offset by an increase in

markups. Since automation is prevalent among top firms, investigating its relationship with

market power seems another important avenue for future research.

12See Hubmer and Restrepo (2022), Acemoglu, Lelarge and Restrepo (2020) and Koch, Manuylov and
Smolka (2021) for some evidence on this reallocation.
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A Model

A.1 Derivations and Proofs

Using (5) into (4) yields:

li = w−σ
(

1− 1

σ

)σ
Aiϕ

σ−1
i

(w
r

)κi(σ−1)
(1− κi) . (A1)

This equation shows how employment depends on κi and other exogenous parameters, and
can be used to compute d ln li

dκi
.

Substituting (A1) in (5) we can express output as a function of automation and other
exogenous parameters:

yi = Aiϕ
σ
i w
−σ
(

1− 1

σ

)σ (w
r

)κiσ
. (A2)

This equation confirms that automation raises output as long as capital is cheaper than
production workers:

d ln yi
dκi

= σ ln
(w
r

)
, (A3)

and it illustrates that the productivty effect is stronger in industries where demand is more
elastic (σ).
Consider now the choice of automation. Firms choose the level of κi that maximizes

profits:
max
κi

{piyi
σ
− hfi (κi)

}
.

The first-order condition for κi is:(
1− 1

σ

)
piyi ln

(w
r

)
= hf ′i (κi) .

Using yi = Aip
−σ
i , (A2) and hf

′
i (κi) = h (1− κi)−1/ρi yields:(

1− 1

σ

)σ
Ai

(ϕi
w

)(σ−1) (w
r

)κi(σ−1)
ln
(w
r

)
= h (1− κi)−1/ρi . (A4)

This expression shows the exogenous determinants of the marginal benefit of automation and
can be used to solve implicitly for the equilibrium level of κi. The second-order condition is
necessarily satisfied if (σ − 1) ln (w/r) < 1/ρi and the unique solution is interior if:(

1− 1

σ

)σ
Ai

(ϕi
w

)(σ−1)
ln
(w
r

)
> h.
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We assume both conditions to be satisfied. Denote the marginal benefit and the marginal
cost of automation as MBi and MCi, respectively. Then:

∂MBi

∂κi
= MBi × (σ − 1) ln

(w
r

)
∂MCi
∂κi

=
MCi

ρi (1− κi)
.

Under the assumption (σ − 1) ln
(
w
r

)
< 1/ρi, profits are concave in κi so that:

∂MBi

∂κi
<
∂MCi
∂κi

.

We now derive the comparative statics for the optimal level of automation, κ∗i , with
respect to the primitives of the model and prove that:

dκ∗i
dAi

> 0;
dκ∗i
dϕi

> 0;
dκ∗i

d(w/r)
> 0;

dκ∗i
dρi

> 0 ;
dκ∗i
dh

< 0.

Differentiating the first-order condition, we obtain the implicit derivative of κ∗i with respect
to any parameter v as

dκ∗i
dv

=
∂MC
∂v
− ∂MB

∂v
∂MB
∂κi
− ∂MC

∂κi

.

The denominator is always negative. Hence, to find the sign of the derivatives of interest,
we just need to compute the numerator of the expression above for Ai, ϕi, (w/r), ρi and h
as follows:

∂MC

∂Ai
− ∂MB

∂Ai
= −MB

Ai
< 0→ dκ∗i

dAi
> 0

∂MC

∂ϕi
− ∂MB

∂ϕi
= − (σ − 1)

MB

ϕi
< 0→ dκ∗i

dϕi
> 0

∂MC

∂ (w/r)
− ∂MB

∂ (w/r)
= − MB

(w/r)

[
κi (σ − 1) +

1

ln (w/r)

]
< 0→ dκ∗i

d(w/r)
> 0

∂MC

∂ρi
− ∂MB

∂ρi
=

h

ρ2i

ln (1− κi)
(1− κi)1/ρi

< 0→ dκ∗i
dρi

> 0

∂MC

∂h
− ∂MB

∂h
=

MC

h
> 0→ dκ∗i

dh
< 0.

Implicit differentiation of (A4) yields:

dκi
d lnh

=
−1

ρ−1i (1− κi)−1 − (σ − 1) ln (w/r)
< 0
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and
∂2κi

∂ρi∂ lnh
=

κi − 1

[1− (1− κi)(1− σ)ρi ln (w/r)]2
< 0.

Hence, a decrease in the cost of automation h triggers automation more in firms with higher
replaceability.

A.2 Implications for the Labor Share

We now study the effect of automation on the labor share. Recall that automation affects
the demand for production workers but also for managers and engineers (non-production
workers). Assuming that the cost of automation is in terms of non-production workers, the
overall labor share, denoted by λi, is then:

λi ≡
wli + hf (κi, ρi)

piyi
=

(
1− 1

σ

)
(1− κi) +

h

piyi

ρi
1− ρi

[
(1− κi)−

1−ρi
ρi − 1

]
.

An increase in κi lowers the revenue share of production workers (the first term) but raises
the share of non-production workers (the second term). As a result, the overall effect on the
labor share is ambiguous. To see this, use h/(piyi) from the first-order condition for κi to
express λi as a function of κi and exogenous parameters only:

λi =

(
1− 1

σ

)[
(1− κi) + ln

(w
r

) ρi
1− ρi

[
1− κi − (1− κi)1/ρi

]]
.

Then compute:

dλi
dκi

=

(
1− 1

σ

)[
−1 + ln

(w
r

) 1

1− ρi

[
(1− κi)

1
ρi
−1 − ρi

]]
.

The labor share is decreasing in automation if κi is suffi ciently high:

κi > 1−
[

1− ρi
ln (w/r)

+ ρi

] 1−ρi
ρi

.

However, at low levels of κi, the labor share may increase with automation.

A.3 Discrete Choice of Automation

We now consider the case in which firm i can choose whether to keep the current level of
automation κ0 at no additional cost or increase it to κ1 > κ0, subject to the cost hκ1

ρi
. The

discrete choice problem facing firm i is

max
κi∈{κ0,κ1}

{
pi (κi) yi (κi)

σ
− hfi (κi)

}
.
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The condition for i to choose κ1 is

pi (κ1) yi (κ1)− pi (κ0) yi (κ0)
σ

>
hκ1
ρi
,

which, after using yi = Aip
−σ
i and (A2), becomes

Ai
σ

[
ϕσw−σ

(
1− 1

σ

)σ]1−1/σ [(w
r

)κ1σ
−
(w
r

)κ0σ]1−1/σ
>
hκ1
ρi
.

The left-hand side captures the benefit of further automation, while the right-hand side
corresponds to its cost.
In this case, we can express the comparative statics in terms of the probability that an

increase in any parameter induces a switch from κ0 to κ1. In particular, we are interested in
the effect of an increase in (w/r) and its interaction with Ai, ϕi and ρi. It is easy to show
that the left-hand side, denoted by Bi, is increasing in (w/r):

∂Bi

∂
(
w
r

) =
(σ − 1)Ai

σ

[
ϕσi w

−σ
(

1− 1

σ

)σ]1−1/σ [κ1 (wr )κ1σ−1 − κ0 (wr )κ0σ−1][(
w
r

)κ1σ − (w
r

)κ0σ]1/σ > 0.

This means that increasing automation is more likely to be optimal for lower relative cost of
capital (r/w).
To characterize the interaction with Ai and ϕi, we compute the cross derivatives of Bi,

∂2Bi

∂
(
w
r

)
∂Ai

=
∂Bi

∂
(
w
r

)A−1i > 0,

∂2Bi

∂
(
w
r

)
∂ϕi

=
∂Bi

∂
(
w
r

)σϕ−1i > 0,

which imply that the likelihood of further automation increases more with (w/r) for larger
and more productive firms.
The derivative of the automation cost with respect to ρi,

∂

∂ρi

(
hκ1
ρi

)
= −hκ1

ρ2i
< 0,

suggests that an increase in (w/r) increases more the likelihood of further automation for
firms with higher replaceability ρi, since these face a lower cost.
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Table B1: Descriptive Statistics, Whole Sample

Obs. No. Firms Mean Median Std. Dev.  Mean D  
(annualized)

Adoption 6,373  765   1 1   1 0
No. of Employees 6,373  765  852  191  3,129  -0.016
Empl. Sh. High Skill 6,373  765  0.153  0.108  0.142  0.006
Sales (€'000) 6,373  765  761,597  46,050  6,812,860  -0.075
VA per Worker (€'000) 6,225  761  178  65  2,715  -0.070
Dummy Importer 6,373  765  0.972  1  0.164  0.001
Dummy Exporter 6,373  765  0.947  1  0.224  0.002

Adoption 598,925  63,408  0 0 0 0
No. of Employees 598,925  63,448  78  27  313  -0.030
Empl. Sh. High Skill 598,925  63,448  0.081  0.056  0.106  0.003
Sales (€'000) 598,922  63,448  54,703  7,615  683,130  -0.092
VA per Worker (€'000) 587,342  62,741  190  71  1,973  -0.066
Dummy Importer 598,925  63,448  0.568  1  0.495  0.001
Dummy Exporter 598,925  63,448  0.561  1  0.496  0.004

Robot Adopters

Non Robot Adopters

The whole sample consists of all manufacturing firms with more than 10 employees excluding firms in the "Installation and
Repair of Machinery and Equipment" industry (64,173 firms). Adoption is a dummy taking value 1 since the first year in which a
firm imports robots. Importer and Exporter are dummies taking value 1 if the firm imports (resp. exports) goods other than robots
in a given year and 0 otherwise. Value added is computed as sales minus changes in inventories minus purchases of final goods
minus purchases of materials plus changes in material inventories minus other purchases. High-skill professions are scientists,
managers, and engineers. All statistics are computed on firm-level observations for the 1994-2013 period. Changes are computed
as annualized log differences, except for Employment Sh. High Skill , Exporter and Importer dummies, for which annualized changes
in levels are reported.

B Additional Empirical Results

Table B1 contains summary statistics on the firm-level variables, separately for firms that
import robots at least once over 1994-2013 ("robot adopters") and for firms that do not
("non robot adopters"). The statistics are computed on the whole sample, comprising 64,173
manufacturing firms, of which 765 are robot adopters. The average robot adopter is around
11 times larger than the average non adopter in terms of employment and around 14 times
larger in terms of sales. The skill composition of employment also differs between robot
adopters and non adopters, with the employment share of high-skill professions roughly
twice as high on average in the former group of firms than in the latter. Robot adopters are
also more likely to import and export goods other than robots.
Table B1 also reports the average annualized change in each variable over 1994-2013,

separately for the two sets of firms. While employment decreased in both groups of firms,
robot adopters shed workers at a slower rate than non adopters (0.016 vs. 0.03 log points
per year, respectively).13 Robot adopters also experienced a relatively slower reduction in
sales and a relatively faster increase in the employment share of high-skill professions. As
for the sectoral distribution of robot adopters, Figure B1 shows that these firms are present
in all 2-digit manufacturing sectors but are particularly frequent in the production of motor

13Manufacturing employment significantly declined in France during the sample period.
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Figure B1: Cumulative Number of French Robot Importers by Sector (1994-2013)

vehicles, machinery, and electrical equipment.
Table B2 contains the estimation coeffi cients corresponding to the difference-in-differences

event studies shown in Figure 1. Figure B2 presents instead the results from difference-in-
differences event studies that exploit the staggered nature of adoption across firms, using
the approach developed by Borusyak et al. (2022); 5-digit industry×year fixed effects are
excluded in this case due to convergence issues. Despite the use of a more parsimonious
specification, the qualitative evidence is similar to that emerging from Figure 1. Pre-trends
in employment and sales clearly violate the parallel trends assumption.
Table B3 lists the 29 French occupations for which we have employment data in 1994,

along with their replaceability level, Replo. The latter is the aritmethic mean of the Graetz
and Michaels (2018) replaceability indicator across all U.S. Census occupations associated
with each French occupation o. As expected, unskilled industrial workers are the most
replaceable occupation, with a value of Replo equal to 0.70. Among the remaining occu-
pations, a few have very low levels of replaceability and the majority are not replaceable
at all. This pattern implies that the loss of variation in replaceability that results from
mapping the detailed 377 U.S. occupations to the broader 29 French occupations ends up
being minimal. To have a sense of this, we exploit individual-level data from the 1990 U.S.
Census of Population (Ruggles et al., 2023) to compute average replaceability within 459
4-digit NACE industries, using replaceability data at both levels of occupational detail (377
U.S. occupations and the 29 French occupations corresponding to them according to our
mapping). For each industry, average replaceability is calculated as the weighted mean of
replaceability across occupations, with weights given by their shares in the total number of
hours worked in the industry. The resulting measures of industry-level replaceability exhibit
a very high correlation coeffi cient, equal to 0.93 across the 459 industries. This suggests that
the cross-firm variation in replaceability, Repli, would not be largely different if our data
allowed us to use the finer occupational classification available for the U.S..
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Table B2: Difference-in-Differences Event Studies

(1) (2) (3) (4)
Ln Sales Ln No. of 

Employees
Ln VA 
per Worker

Empl. Sh. 
High Skill

D-5
it -0.153*** -0.090*** -0.015 -0.006**

[-4.679] [-3.851] [-0.517] [-2.399]

D-4
it -0.087*** -0.075*** 0.036 -0.004

[-3.610] [-3.382] [1.273] [-1.539]

D-3
it -0.063*** -0.023 0.007 -0.005**

[-3.117] [-1.293] [0.284] [-2.255]

D-2
it -0.042** -0.018 -0.005 -0.002

[-2.126] [-1.157] [-0.229] [-1.440]

D0
it 0.051*** 0.031 0.003 -0.000

[2.805] [1.601] [0.116] [-0.129]

D1
it 0.060*** 0.037* -0.014 0.003

[2.682] [1.842] [-0.579] [1.230]

D2
it 0.046* -0.000 0.019 0.006**

[1.812] [-0.005] [0.652] [2.211]

D3
it 0.051* -0.039 0.066** 0.011***

[1.912] [-1.366] [2.091] [3.159]

D4
it 0.037 -0.053 0.058* 0.012***

[1.320] [-1.534] [1.698] [2.789]

D5
it 0.060* -0.037 0.058* 0.007

[1.958] [-1.169] [1.855] [1.583]
Obs. 689,846 593,312 581,715 593,312
R2 0.93 0.88 0.82 0.67
The subscripts i and t denote firms and years, respectively. The dependent variables are
annual observations at time t of the firm-level outcomes indicated in columns' headings.

D s
it are event-study dummies, which are equal to 1 if firm i is s periods away from the first

instance of robot imports at time t and are equal to 0 otherwise. All specifications include
firm fixed effects and 5-digit industry x year fixed effect. Standard errors are robust to
heteroskedasticity; t-statistics are reported in square brackets. ***, **, *: denote significance
at the 1, 5 and 10% level, respectively.
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Each graph plots coefficients and confidence intervals on event-study dummies, obtained by estimating eq. (9)

using the approach developed by Borusyak et al. (2022). Each event-study dummy D s
it is equal to 1 if firm i is s

periods away from the first instance of robot imports at time t and is equal to 0 otherwise. The specification
excludes 5-digit industry x year fixed effects due to convergence issues. 

Ln Sales Ln No. Of Employees

Ln VA per Worker Empl. Sh. High Skill

Figure B2: Difference-in-Differences Event Studies, Staggered Adoption

Table B4 contains descriptive statistics for the variables used in the long-differences spec-
ifications. Both replaceability, Repli, and robot exposure, RobExpi, are higher on average for
robot adopters. Employment, sales and value added per worker have decreased less among
robot adopters than among other firms, and robot adopters have experienced a relatively
larger increase in the employment share of high-skill professions. Table B5 reports summary
statistics on the start-of-period values of firm characteristics, separately for firms with Repli
above or below the sample median. The table suggests that firms with high and low levels
of replaceability are largely comparable in terms of these variables.
The differences in outcomes between robot adopters and other firms documented in Table

B4 persist even after controlling for initial characteristics of the firm and its industry of
operation. Specifically, Table B6 reports estimates of (13), in which RobExpi, RobSuitj−i
and Repli are replaced with a dummy, Adopteri, which takes value 1 if firm i starts importing
robots over the sample period, and is equal to 0 both for non-adopters and for firms that
were already using robots initially. The control variables are 5-digit industry fixed effects and
initial values of log sales and of dummies for importing and exporting firms. The standard
errors are corrected for clustering within 5-digit industries to account for possibly correlated
shocks among firms in the same industry. The coeffi cients on Adopteri reflect cross-sectional
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differences in the growth of outcomes between robot adopters and other firms. The results
show that firms that adopt robots over the sample period experience a relatively larger
increase in size and value added per worker, and a somewhat faster shift in labor demand
towards high-skill labor.
Table B7 contains the full list of estimated coeffi cients from the baseline specifications

reported in panel a) of Table 2. Consistent with Graetz and Michaels (2018), the coeffi cient
on the linear term in Repli generally has the same sign as that on our preferred measure of
robot exposure, RobExpi, implying that firms with higher initial replaceability adopt more
robots, and experience larger increases in value added per worker and larger employment
reductions, in subsequent years. Finally, Table B8 shows the baseline estimates of (13) and
the main robustness checks using two additional firm-level outcomes, namely, the labor share
(odd-numbered columns) and robot intensity (even-numbered columns). The labor share is
the ratio between wage bill and total sales net of raw material purchases. Robot intensity is
the ratio between the stock of robot capital and the total capital stock; the stock of robot
capital is constructed as the sum of robot imports over time. The specifications for robot
intensity are estimated on the sub-sample of robot adopters. The coeffi cient on RobExpi is
small and statistically not significant across all specifications for the labor share. This results
is consistent with the model if the cost of automation is in terms of high-skill workers, as
shown in Appendix A.2. On the contrary, the coeffi cient on RobExpi is positive and precisely
estimated in all specifications for robot intensity. This suggests that a higher robot exposure
is associated not only with a greater tendency to adopt robots (as documented in the text)
but also with a more intensive use of robots in production.
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Table B3: Replaceability of French Occupations

Occupation Replo
Farmers (employees of their own farm) 0.000
Artisans (employees of their own business) 0.071
Merchants and similar professions (employees of their own business) 0.000
Business owners with 10 or more employees (employees of their own business) 0.000
Liberal professions (practiced under an employee status) 0.000
Public sector executives 0.000
Teachers, scientific professions 0.000
Information, arts, and entertainment professions 0.000
Administrative and commercial executives in companies 0.000
Engineers and technical executives in companies 0.000
Primary school teachers and similar professions 0.000
Intermediate healthcare and social work professions 0.000
Clergy, religious professionals 0.000
Intermediate administrative professions in the public sector 0.100
Intermediate administrative and commercial professions in companies 0.000
Technicians (excluding tertiary technicians) 0.000
Foremen, supervisory staff (excluding administrative supervisory roles) 0.000
Civil employees and service agents in the public sector 0.000
Surveillance agents 0.000
Administrative employees in companies 0.000
Commercial employees 0.000
Direct services to individuals personnel 0.100
Skilled industrial workers 0.375
Skilled artisanal workers 0.250
Drivers 0.000
Skilled handling, warehousing, and transportation workers 0.000
Unskilled industrial workers 0.705
Unskilled artisanal workers 0.233
Agricultural and related workers 0.000
Repl o is the aritmethic mean of the Graetz and Michaels (2018) replaceability indicator across all U.S. Census
occupations corresponding to each French occupation o .
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Table B4: Descriptive Statistics, Sample Used for Specifications in Long Differences

Obs. Mean Median Std. Dev.
Δ Ln No. of Employees 497 -0.009 0.003 0.077
Δ Empl. Sh. High Skill 497 0.005 0.003 0.009
Δ Ln Sales 493 -0.093 -0.081 0.093
Δ Ln VA per Worker 470 -0.096 -0.094 0.095
D Labor Share 497 0.001 -0.001 0.019
Δ Robot Intensity 481 0.041 0.006 0.134
Average Robot Import Price (HST) 497 4.911 4.764 1.590
Ln Initial Sales 497 11.778 11.644 1.768
Ln Initial Skill Intensity 497 0.102 0.070 0.104
Ln Initial Capital Intensity 491 -12.603 -12.748 1.144
Dummy Initial Importer 497 0.924 1.000 0.266
Dummy Initial Exporter 497 0.889 1.000 0.314
Replaceability 497 0.378 0.416 0.183
Robot Exposure 497 -5.872 -5.330 3.730

Δ Ln No. of Employees 36,087 -0.033 -0.012 0.095
Δ Empl. Sh. High Skill 36,087 0.003 0.001 0.011
Δ Ln Sales 35,808 -0.132 -0.108 0.131
Δ Ln VA per Worker 34,710 -0.104 -0.101 0.141
D Labor Share 36,087 0.003 0.001 0.031
Δ Robot Intensity 35,532 0.000 0.000 0.000
Average Robot Import Price (HST) 36,087 0.010 0.000 0.233
Ln Initial Sales 36,087 9.882 9.686 1.376
Ln Initial Skill Intensity 37,087 0.064 0.046 0.081
Ln Initial Capital Intensity 35,532 -11.819 -11.908 1.157
Dummy Initial Importer 36,087 0.550 1.000 0.498
Dummy Initial Exporter 36,087 0.519 1.000 0.500
Replaceability 36,087 0.358 0.360 0.190
Robot Exposure 36,087 -6.681 -5.946 4.300

Robot Adopters

Non Robot Adopters

The sample for specifications in long differences consists of 36,584 manufacturing firms with more than 10
employees excluding firms in the "Installation and Repair of Machinery and Equipment" industry. Labor Share
is the ratio between wage bill and total sales net of raw material purchases. Robot Intensity is the ratio between
stock of robot capital and total capital stock; the stock of robot capital is constructed as the sum of robot
imports over time. Average Robot Import Price is the average unit value of imported robots, transformed using
the hyperbolic sine transformation (HST). Skill Intensity and Capital Intensity are the employment share of high-
skill workers and the capital-to-labor ratio, respectively. Robot Exposure is the product between the initial firm-
level replaceability of employment by robots (Replaceability ) and the initial ratio between the overall stock of
robots and the total capital stock of all other firms in each 5-digit industry (Robot Suitability ). 
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Table B5: Descriptive Statistics on Initial Firm Characteristics by Level of Replaceability

Obs. Mean Median Std. Dev.
Replaceability 18,292 0.195 0.203 0.102
Ln Initial Sales 18,292 9.790 9.544 1.451
Ln Initial Skill Intensity 18,292 0.079 0.057 0.101
Ln Initial Capital Intensity 18,046 -11.714 -11.783 1.181
Dummy Initial Importer 18,292 0.511 1.000 0.500
Dummy Initial Exporter 18,292 0.491 0.000 0.500

Replaceability 18,292 0.521 0.523 0.091
Ln Initial Sales 18,292 10.025 9.858 1.337
Ln Initial Skill Intensity 18,292 0.048 0.039 0.053
Ln Initial Capital Intensity 17,977 -11.945 -12.055 1.127
Dummy Initial Importer 18,292 0.600 1.000 0.490
Dummy Initial Exporter 18,292 0.558 1.000 0.497

Firms with Below-Median Replaceability

Firms with Above-Median Replaceability

The sample is the one used for specifications in long differences and consists of 36,584 manufacturing firms
with more than 10 employees excluding firms in the "Installation and Repair of Machinery and Equipment"
industry. Statistics are reported separately for firms with Replaceability above or below the sample median. 

Table B6: Firm-Level Outcomes and Robot Adoption, Long Differences

(1) (2) (3) (4)
D Ln Sales Δ Ln No. of 

Employees
D Ln VA per 
Worker

D Empl. Sh. 
High Skill

Adopteri 4.438*** 2.434*** 1.517*** 0.007
[11.032] [7.775] [3.609] [0.155]

Obs. 36,301 36,584 35,180 36,584
R2 0.10 0.04 0.06 0.04
The subscript i denotes firms. In each regression, the dependent variable is 100 x the annualized
change in the firm-level outcome indicated in the corresponding column. Adopter i is a dummy
equal to 1 for firms that start importing robots over the sample period and equal to 0 for non
importers. All specifications include 5-digit industry fixed effects as well as initial values of log
sales and of dummies for importing and exporting firms. Standard errors are corrected for
clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote
significance at the 1, 5 and 10% level, respectively.
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Table B7: Firm-Level Outcomes and Robot Exposure, Baseline Regressions

(1) (2) (3) (4) (5)
D Ln Sales Δ Ln No. of 

Employees
D Ln VA per 
Worker

D Empl. Sh. 
High Skill

Adopter

RobExpi 0.148 -0.094** 0.302*** 0.006 0.174***

[1.343] [-2.095] [2.702] [1.106] [2.893]
Repli 0.193 -3.798*** 4.595** -0.139 3.379***

[0.092] [-4.698] [2.246] [-1.230] [2.660]
RobSuitj-i 0.974 -65.304*** 23.771 16.035*** 5.147

[0.016] [-5.018] [0.352] [11.205] [0.362]
Ln Initial Salesi -1.271*** -0.015 -1.199*** 0.072*** 1.349***

[-10.145] [-0.268] [-9.353] [10.298] [7.275]
Dummy Initial Importeri 1.073*** 0.040 1.087*** 0.049** -0.076

[4.720] [0.297] [5.496] [2.395] [-0.477]
Dummy Initial Exporteri 0.436** -0.403*** 0.746*** 0.059*** 0.014

[2.214] [-2.963] [3.658] [3.206] [0.118]
Obs. 36,301 36,584 35,180 36,584 36,584
R2 0.10 0.04 0.07 0.04 0.05
The subscript i denotes firms. In columns (1)-(4), the dependent variables are 100 x the annualized changes in the firm-level
outcomes indicated in columns' headings. In columns (5), the dependent variable is Adopter i , a dummy equal to 1 for firms that
start importing robots over the sample period and equal to 0 for non importers. RobExp i is the product between the initial firm-
level replaceability of employment by robots (Repl i ) and the initial ratio between the overall stock of robots and the total capital
stock of all other firms in each 5-digit industry j (RobSuit j-i ). The other regressors are the initial values of Ln Sales and of the
Importer and Exporter dummies. All regressions also include 5-digit industry fixed effects. Standard errors are corrected for
clustering within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote significance at the 1, 5 and 10%
level, respectively.

Table B8: Additional Firm-Level Outcomes and Robot Exposure
(1) (2) (3) (4) (5) (6)

D Labor 
Share

D Robot 
Intensity

D Labor 
Share

D Robot 
Intensity

D Labor 
Share

D Robot 
Intensity

RobExpi 0.009 0.726** 0.008 0.577** 0.008 0.748**

[1.148] [2.132] [0.906] [2.106] [1.027] [2.181]
Obs. 36,584 481 36,584 481 36,040 475
R2 0.02 0.18 0.03 0.16 0.03 0.18

a) Baseline Regressions b) Weighted Regressions c) Excl. Manuf. of Motor Vehicles

The subscript i denotes firms. In each regression, the dependent variable is 100 x the annualized change in the firm-level outcome indicated in the
corresponding column. The sample used in columns (2), (4) and (6) consists of firms that start importing robots over the sample period. RobExp i is the
product between the initial firm-level replaceability of employment by robots (Repl i ) and the initial ratio between the overall stock of robots and the total
capital stock of all other firms in each 5-digit industry j (RobSuit j-i ). The regressions in panel b) are weighted by the initial number of employees in each firm.
The sample in panel c) excludes firms in the "Manufacture of Motor Vehicles" industry. All regressions also include the linear terms in Repl i and RobSuit j-i , 
initial values of log sales and of dummies for importing and exporting firms, and 5-digit industry fixed effects. Standard errors are corrected for clustering
within 5-digit industries; t-statistics are reported in square brackets. ***, **, *: denote significance at the 1, 5 and 10% level, respectively.
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