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Abstract

This article extends, in a stochastic setting, previous results in the determination of
feasible exchange ratios for merging companies. A first outcome is that shareholders of
the companies involved in the merging process face both an upper and a lower bounds for
acceptable exchange ratios. Secondly, in order for the improved ‘bargaining region’ to be
intelligibly displayed, the diagrammatic approach developed by Kulpa is exploited.

Keywords— Mergers and acquisitions, exchange ratio determination, synergy, risk-
adjusted performance, diagrammatic representation

1 Introduction, literature review and motivation

Mergers and acquisitions have been, and still are a widely studied topic in financial literature
under both a theoretical and an empirical point of view. A concise summary of contributions
in this field is virtually impossible; recent attempts are King et al. [1] and Risberg et al. [2].

Companies merge for various reasons, but with a unique goal: the creation of synergy,
that is a, hopefully positive, change in the behavior of the equity of the resulting company
(here denoted by M) when compared to those of the equities of the preexisting ones, namely
the acquiring, A, and the acquired, or target, B.

Relevant contributions to the financial evaluation of synergies are due to Gupta and
Gerchak [3], Leland [4], and are broadly summarized in Chapter 15 of Damodaran [5].

This paper focuses on the impact of synergy for shareholders of the merging companies
and extends, in a stochastic environment, known results (Larson and Gonedes, [6] and Yagil
[7]; in what follows, this approach is referred to as LG-Y).

The attention of this article resides on stock-for-stock agreements, where shareholders of
the target company swap, if the merger is finalized, r stocks of company M for each share of
company B they own. Shareholders of the acquiring company A receive, instead, one stock
of M for each share they own. Stockholders of either company A or B become shareholders
of company M .

A topic that has been almost totally neglected in financial research is the fair determi-
nation of the exchange ratio (ER) r. In a deterministic framework, the LG-Y setting is the
only known contributions. Here, companies are evaluated using the the dividend discount
model (Gordon and Shapiro, [8]). The result is the explicit determination of the bargaining
region (BR), that is the range for exchange ratios that do not reduce shareholders’ wealth.

A generalization with a dynamical extension of the LG-Y setting is due to Cigola and
Modesti [9] while a recent contribution, that encompasses a number of accounting observa-
tions, is in Taliento [10].

As noted by Amihud and Lev [11], risk reduction can be a driver pushing companies to
merge. An attempt to introduce risk in the determination of the exchange ratio has been
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proposed by Moretto and Rossi [12]. This contribution, though, does not identify a BR; it
provides, instead, a unique risk-corrected ER.

More recently, Toll and Hering [13] analyze, in a stochastic context, the effects of a merger
for shareholders by means of expected utility theory.

Entering the realm of randomness in financial markets requires a solid theory for risk
measures. The fundamental contribution in this context is provided by Artzner et al. [14];
here riskiness is measured by means of functions that translate random variables into a cash
amount that, if positive, has to be paired to the risk in order to make it acceptable.

In this contribution, no specific risk measure is chosen. Our analysis starts by mimicking
results in LG-Y replacing the deterministic result with expected values of random stock
prices and measures changes in risk the merger grants to stockholders.

In the LG-Y setting, in terms of ER determination shareholders of the acquiring and
acquired companies have clear-cut and opposite interests: the larger r, the larger the stake
of company M B’s shareholders own, and the larger the portion of synergy they receive.
This is the reason why stockholders of company A aim at keeping r as small as possible. Our
contribution shows that, when a risk measure is introduced, something completely different
and less straightforward occurs.

As a matter of fact, imposing bounds on expected values and risk measure leads to more
accurate and realistic BRs.

In finance, nothing comes for free. Adding a second dimension embeds into the stochastic
framework a drawback: BRs cannot be easily depicted, unless some appropriate methodology
is applied. Luckily, the ‘diagrammatic’ representation of intervals developed by Kulpa (see
[15], [16], and [17]) permits to transform intervals into points on a two-dimension Cartesian
plane and solve the issue.

The paper is organized as follows: Section 2 describes the theoretical framework on
which the extension in a stochastic fashion of the LG-Y model abides. Section 3 introduces
Kulpa’s diagrammatic representation, translates BRs in legible and easy-to-understand plots,
and provides some financial insights. Section 4 concludes

2 Arithmetic for merger agreements

2.1 The deterministic benchmark: Larson and Gonedes, and Yagil
setting

For the reader’s sake, in this subsection we summarize the main findings of contributions
from Larson and Gonedes, and Yagil (LG-Y from now on). Their approach is deterministic
and highlights conditions under which shareholders of the acquiring (A) and acquired (B)
companies are better off once the merger agreement is settled, leading to the birth to the
resulting company M . The LG-Y setting assumes that, in a stock-for-stock agreement, each
stock of company A translates into one stock of company M while each stock of company B
becomes r stocks of company M , where r ≥ 0 is the exchange ratio (ER).

Stock-for-stock refers to the exchange of stocks of the resulting with stocks of the acquired
company at a predetermined conversion rate. Companies that pay for their acquisitions
with stock share both the value and the risks of the transaction with the shareholders of
the company they acquire. Nevertheless, as mentioned above, the LG-Y settingis purely
deterministic, and stockholders share only the value of the transaction.

Let pi, Ni, and µi = pi ·Ni be, respectively, the stock price, the number of outstanding
stocks, and the equity value for companies i = A,B,M . The number of M ’s outstanding
stocks is

NM = NA + rNB .

A merger creates some positive synergy when the equity value of M corresponds at least
to the sum of equity values of A and B:

µM ≥ µA + µB .

A relevant quantity is ratio

r∗ = pB/pA. (1)
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Figure 1: Graphical representation of a BR (shaded area) in the LG-Y’s setting -
pA = 4, pB = 2, NA = 20, NB = 10, r∗ = 0.5, µA + µB = 100, µM ∈ [100, 200].

which represents the relative value of a stock of company B when compared with the value
of one stock of company A.

The LG-Y approach provides an explicit expression for the bounds of the bargaining
region (BR), that is the interval containing all ERs for which shareholders of companies A
and B simultaneously experience an increase in their equity values and, thus, might accept
to conclude the merger.

Existence and magnitude of this interval depend on synergy created by the merger.
Company A’s stockholders enjoy a benefit from this agreement when the price of stocks

they own after the merger is equal, at least, to the price of stocks they previously owned,
that is

pM =
µM

NA + rNB
≥ µA

NA
= pA.

Simple algebra yields an upper bound for r:

r ≤ µM − µA

µA
· NA

NB
= r∗ ·

µM − µA

µB
= rµ (µM ) . (2)

Condition (2) denotes the largest ER company A’s shareholders accept.
Company’s B shareholders, instead, obtain an increment in their wealth when

r · pM = r · µM

NA + rNB
≥ µB

NB
= pB .

This condition is equivalent to a lower bound for r:

r ≥ r∗ ·
µA

µM − µB
= rµ (µM ) . (3)

Bounds (2) and (3) depend on the equity value of M . Further, it is immediate to see
that, if µM ≥ µA + µB , then rµ(µM ) ≤ rµ(µM ). In this case, the above bounds identify set

BRµ (µM ) = [rµ(µM ), rµ(µM )]. (4)

The absence of synergy (i.e. µM = µA + µB) shrinks set BRµ (µM ) into a singleton:
BRµ (µA + µB) = {r∗}. This expression highlights the importance of ratio (1).

Shaded region in Figure 1 represents set (4) in terms of µM .

2.2 A stochastic extension

As mentioned above, in a stock-for-stock merger companies not only share the change in
expected equity values but, also, the change in risk created by this transaction.
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In order to expand the LG-Y results in a stochastic environment, we need to introduce
and measure risk.

Randomness is represented by (non-negative) random variables p̃i, i = A,B,M , that
describe stock prices. We make no a priori choice on their distribution, as long as expected
values mi assumed to be a measure of performance and homogeneous measures of risk φi, in
the sense of Artzner et al. (see [14]), for p̃i, exist. We also assume that φi ≥ 0 so that stocks
are considered a non- acceptable risk and shareholders might be interested in reducing it.

For the sake of notational simplicity, we decide to set mi = pi so that formulas (2) and
(3) are recovered. This claim is easy to justify; the deterministic approach corresponds to
the one presented in this subsection if expected values only are considered.

Similarly to expression (1), we stress the importance of ratio

r∗∗ = φB/φA, (5)

that expresses the relative risk of a share of company B w.r.t. riskiness of a stock of company
A.

Introducing a risk measure for equities allows to define ratio λi = pi/φi, that is the
coefficient of variation of random variable p̃i as well as a relative value that expresses a
stock’s risk-corrected measure of performance.

Condition λA > λB (respectively λA < λB), that is the risk-corrected performance
of stock A is better (respectively worse) than B’s, is equivalent to r∗∗ > r∗ (respectively
r∗∗ < r∗).

Let ρi = φi · Ni. Shareholders of company A benefit of a smaller risk after the merger
when

φM =
ρM

NA + rNB
≤ ρA

NA
= φA. (6)

This inequality yields a lower bound for ERs:

r ≥ r∗∗ ·
ρM − ρA

ρB
= rρ(ρM ). (7)

Here, to prevent r from becoming negative, condition ρM > ρA must hold.
Stockholders of company B obtain a reduction in their equity risk when

r · φM = r · ρM
NA + rNB

≤ ρB
NB

= φB . (8)

This inequality leads to an upper bound for exchange ratios:

r ≤ r∗∗ ·
ρA

ρM − ρB
= rρ(ρM ) (9)

where imposing ρM > ρB forbids r to become negative.
Bounds (7) and (9) yield positive ERs when ρM > max {ρA, ρB}. This constraint implies

that the reduction in riskiness a merger can achieve reduces the risk of company M at most
up to the largest risk of the merging ones.

Inequalities (7) and (9) identify a second bargaining region that is non empty whenever
ρM ≤ ρA + ρB and contains positive ERs if ρM > max {ρA, ρB}. These conditions lead to

max {ρA, ρB} < ρM ≤ ρA + ρB (10)

while this second set is
BRρ (ρM ) =

[
rρ(ρM ), rρ(ρM )

]
(11)

for max {ρA, ρB} < ρM ≤ ρA + ρB . Interval (11) collapses into a singleton when the merger
does not reduce riskiness, that is ρM = ρA + ρB . In fact, BRρ (ρA + ρB) = {r∗∗}.

A comparison between inequalities (2) and (7), that relate to company A’s stockholders,
and between inequalities (3) and (9), that identify which exchange ratios are acceptable for
company B’s stockholders, leads to a counterintuitive as well as interesting outcome.

If bound (2) suggests that stockholders of company A want the exchange ratio to be
as small as possible as this would grant them a large stake of expected synergy, bound (7)
indicates that, if the number of M ’s outstanding stocks is not large enough, the risk each
stock ends up carrying is not less than the risk of each A’s stock.
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A similar line of reasoning can be done for company B’s stockholders. Bound (3) implies
that shareholders of the acquired company want to fix the exchange ratio as large as possible
because, in this case, they seize a large portion of expected synergy. Bound (9), though,
reveals that acceptable ERs cannot exceed a given threshold. If this happens, the stocks
these stockholders obtain in exchange of each share they owned carry larger risk1.

The existence of exchange ratios upper and lower bounds for both categories of sharehold-
ers permits to introduce two more sets that we call consistency region (CR). These intervals,
when non-empty, contain all ERs that simultaneously grant both an increase in expected
equity values and a reduction in equity risk for both groups of shareholders.

These sets are defined as

CRA (µM , ρM ) =
[
rρ (ρM ) , rµ (µM )

]
(12)

with µM ≥ µA+µB and max {ρA, ρB} < ρM ≤ ρA+ρB for shareholders of company A, and

CRB (µM , ρM ) =
[
rµ (µM ) , rρ (ρM )

]
(13)

with µM ≥ µA + µB and max {ρA, ρB} < ρM ≤ ρA + ρB for those of company B.
Assuming a merger yields an improvement in terms of both larger expected wealth and

smaller risk might seem a rather ‘too-good-to-be-true’ requirement. Still, the key financial
notion of diversification is based on better performance paired with less risk.

Interval (12) is non-empty when

µM − µA

ρM − ρA
≥ pA

φA
= λA.

To proceed with this analysis, let s ≥ 0 be the expected synergy and v ≥ 0 the reduction in
risk, so that µM = µA + µB + s and ρM = ρA + ρB − v. The above condition becomes

µB + s

ρB − v
≥ λA.

Consider, at first, the limit case where s = 0 and v = 0 (that is, the merger carries no
benefit whatsoever). Interval (12) is non-empty if

µB

ρB
= λB ≥ λA,

that is when company B is preferable to A in terms of risk-corrected performance. Share-
holders of company A are favourable to complete the merger regardless of its positive synergy
creation and/or risk reduction because company M has an improved risk-corrected perfor-
mance when compared A’s one.

The trivial algebra that explains the above claim, and the one regarding company B
below, is relegated in Appendix A.3.

This, of course, holds also when s > 0 and/or 0 < v < ρB as, if λB ≥ λA,

µB + s

ρB − v
> λB ≥ λA.

Further, if λB ≥ λA (that is r∗ ≥ r∗∗)

CRA (µA + µB , ρA + ρB) = [r∗∗, r∗] .

Consider case λB < λA. Here, the no improvement due to synergy case yields

CRA (µA + µB , ρA + ρB) = ∅.

The resulting company the merger creates has a risk-corrected performance which is
smaller than λA. Company A’s shareholders agree on the merger only if they receive some
compensation that offsets their reduction in risk-corrected performance. This occurs if

s ≥ λA (ρB − v)− µB = sA,

1The trivial arithmetic explanation of this claim is in Appendix A.1.
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rρ < rµ < rµ rµ < rρ < rµ rµ < rµ < rρ

rρ < rµ < rµ ∅ case 1 -
[
rµ, rρ

]
case 2 -

[
rµ, rµ

]
CRB(µM , ρM ) BRµ(µM )

rµ < rρ < rµ NA
case 3 -

[
rρ, rρ

]
case 4 -

[
rρ, rµ

]
BRρ(ρM ) CRA(µM , ρM )

rµ < rµ < rρ NA NA ∅

Table 1: Possible cases for BRµ,ρ (µM , ρM ). Rows and columns in this table dis-
play all possible juxtapositions of endpoints rρ (ρM ) and rρ (ρM ) w.r.t. interval[
rµ (µM ) , rµ (µM )

]
. For sake of compactness, in the topmost row and leftmost col-

umn, variables µM and ρM have been dropped. NA denotes non-attainable cases.

that is the condition for non-emptiness of set CRA. Here, for each v ∈ [0, ρB) there exists a
threshold sA that linearly decreases w.r.t. v. The above inequality indicates that the larger
the reduction in risk, the smaller the minimum expected synergy that provides company A’s
stockholders with a range of acceptable ERs.

A similar analysis can be carried out for interval (13). This set is non-empty when

µM − µB

ρM − ρB
=

µA + s

ρA − v
≥ µB

ρB
= λB .

Limit case s = 0, v = 0 yields λA ≥ λB so that company B’s shareholders agree on the merger
even if there is no synergistic effect if company A has a better risk-adjusted performance.

In this case
CRB (µA + µB , ρA + ρB) = [r∗, r∗∗] .

When, instead, λA < λB , set CRB is non-empty when expected synergy fulfills condition

s ≥ λB (ρA − v)− µA = sB .

The bargaining region in the stochastic setting is the bivariate set

BRµ,ρ (µM , ρM ) = BRµ (µM ) ∩ BRρ (ρM ) .

Set BRµ,ρ can be in one of six different cases, summarized in Table 1; four of them are
non-empty. Each case corresponds to one of the sets BR and CR defined above. A detailed
description of such cases is in Section 3.

Along the lines of [7] and [6], the issue is now the geometric representation of the bar-
gaining region corresponding to the stochastic setting, BRµ,ρ (µM , ρM ), by varying µM and
ρM . Its representation is a subset of the R3 space. However, to display this set in a more
intelligible way, we decide to eliminate one dimension, and represent the bargaining region
in the R2 plane.

Fortunately, Kulpa does the trick, as he provides a methodology for representing intervals
as points on the plane. His results are summarized and applied in the next section.

3 Diagrammatic representation of the bargaining region

In his diagrammatic approach, Kulpa (see, for example, [15], [16], and [17]) develops a useful
methodology for representing bounded intervals [a, b] ⊂ R, a ≤ b as points on a plane. This
is done, as Kulpa writes, citing [18], in [15], with the idea that “solving a problem simply
means representing it so as to make the solution transparent”.

Based on this approach, each non-empty interval of the form [a, b] is set in a one-to-one
correspondence with point

(x, y) =

(
a+ b

2
,
b− a

2

)
∈ R2

where the two coordinates represent, respectively, the mid-point and the radius, or half-
length, of [a, b]. An interval which collapses to the singleton {a} corresponds, according to
Kulpa’s representation, to the point (a, 0), and lies on the horizontal axis.
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Consider now intervals[
rµ(µM ), rµ(µM )

]
and

[
rρ(ρM ), rρ(ρM )

]
, (14)

which, as described in Section 2, are the sets of exchange ratios accepted by both kinds
of shareholders that guarantee, respectively, an increase of the value and a decrease of the
overall risk of the transaction.

According to the diagrammatic approach, they are represented, respectively, by the points

Pµ (µM ) ≡
(
rµ(µM ) + rµ(µM )

2
,
rµ(µM )− rµ(µM )

2

)
=

(
r∗
2

(
µA

µM − µB
+

µM − µA

µB

)
,
r∗
2

(
µM − µA

µB
− µA

µM − µB

)) (15)

and

Pρ (ρM ) ≡
(
rρ(ρM ) + rρ(ρM )

2
,
rρ(ρM )− rρ(ρM )

2

)
=

(
r∗∗
2

(
ρM − ρA

ρB
+

ρA
ρM − ρB

)
,
r∗∗
2

(
ρA

ρM − ρB
− ρM − ρA

ρB

)) (16)

The positions of Pµ(µM ) and Pρ(ρM ) in the plane vary with the admissible values of µM

and ρM
2, thus defining two parametric curves, that we analyze in the next subsection.

We observe that, consistently with BRµ (µA + µB) = {r∗} and BRρ (ρA + ρB) = {r∗∗},
the corresponding points become

Pµ (µA + µB) = (r∗, 0) and Pρ (ρA + ρB) = (r∗∗, 0) ,

that is, the two curves intersect the horizontal axis at the points (r∗, 0) and (r∗∗, 0), since
they represent the singletons {r∗} and {r∗∗}.

The points Pµ (µM ) and Pρ (ρM ), depending respectively on µM and ρM describe the
curves γ(µM ) and δ(ρM ).

In the next subsection (see also Appendix A.2) we show that γ and δ represent two
hyperbolas.

The explicit equations of these two curves allow us to represent the intersection of intervals
in (14). This achievement allows to make readable and intelligible the set of exchange ratios
on which an agreement is possible.

The points of each hyperbola, restricted to those satisfying the conditions imposed on µM

and ρM , represent the set of exchange ratios accepted by all the shareholders with respect
to one of the two aspects (i.e., expected wealth or overall risk). Since we eliminate one
dimension, it becomes easier and more intuitive to determine the accepted exchange ratios
by varying µM and ρM , as well as those belonging to the bargaining region.

3.1 Analysis of the curves γ and δ

Consider point Pµ(µM ) in (15). As proved in Appendix A.2, observing that

x(µM )− y(µM ) =
r∗µA

µM − µB
, (17)

using trivial algebra, and removing for the sake of simplicity the dependence from µM , the
parametric curve γ is described by hyperbola

x2 − y2 + α1(x− y)− α2 = 0,

where

α1 = r∗

(
µA

µB
− 1

)
and α2 =

r2∗µA

µB
.

2Recall that µM and ρM are admissible when µM ≥ µA + µB and max{ρA, ρB} < ρM ≤ ρA + ρB .
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Figure 2: Kulpa’s diagrammatic representation of an hyperbola depicting a BR
- pA = 4, pB = 2, NA = 20, NB = 10, r∗ = 0.5, V1 ≡ (−1.75;−0.75), V2 ≡
(0.25;−0.75), case µA > µB . - The relevant portion of the hyperbola is the one that
starts from r∗ and belongs to the first quadrant. The equation of the downward
sloping asymptote is y = −x− 1.5.

We restrict this curve to those points that satisfy µM ≥ µA + µB . This condition, together
with formula (17), implies that

0 < x(µM )− y(µM ) ≤ r∗.

Therefore, the set of points in the plane that represent the exchange ratios through which
stockholders of both parties share an improvement in their expected wealth is

{(x, y) ∈ R2 | x2 − y2 + α1(x− y)− α2 = 0 and x− r∗ ≤ y < x}.

The condition y < x is strict because y = x is an asymptote of the hyperbola
A graphical depiction of these curves is provided in Figure 2.
Along the same lines, using the fact that

x(ρM )− y(ρM ) =
r∗∗(ρM − ρA)

ρB
,

the parametric curve δ is described by

x2 − y2 + β1(x+ y)− β2 = 0,

where

β1 = r∗∗

(
ρA
ρB

− 1

)
and β2 =

r2∗∗ρA
ρB

.

Again, we restrict the curve to the points satisfying max {ρA, ρB} < ρM ≤ ρA + ρB . This
condition yields

0 < x(ρM )− y(ρM ) ≤ r∗∗.

Therefore, the set of points that represent the exchange ratios on which shareholders agree
because of the associated reduction of risk is

{(x, y) ∈ R2 | x2 − y2 + β1(x+ y)− β2 = 0 and x− r∗∗ ≤ y < x}.

3.2 The bargaining region under Kulpa’s perspective

We choose now an admissible level of post-merger risk, max{ρA, ρB} < ρ̂ ≤ ρA + ρB , or, in
other words, we fix a point Pρ(ρ̂) along the curve δ, which represents all the exchange ratios
to which correspond the amount of risk ρ̂:

P (ρ̂) =

(
rρ(ρ̂) + rρ(ρ̂)

2
,
rρ(ρ̂)− rρ(ρ̂)

2

)
.

8



We now try to address the following questions. Under which conditions does there exist an
interval of exchange ratios that makes an agreement among all the shareholders acceptable?
In such a case, what is the shape of this set? Is it possible to describe its shape? To answer
these questions, we consider the points of intersection between the interval represented by
Pρ (ρ̂), and the admissible intervals on which there is an agreement with respect to the
expected wealth, that is, those intervals represented by the points Pµ (µM ) along the curve
γ, with µM ≥ µA + µB . Following Kulpa, the intersection between intervals [a, b] and [c, d]
is non-empty if

max{a, c} ≤ min{b, d}.

In such a case, Kulpa’s representation of the intersection set is given by the point (x, y),
where

x =
max{a, c}+min{b, d}

2
and y =

min{b, d} −max{a, c}
2

.

Therefore, according to Kulpa’s approach, the intersection between the intervals represented
by Pρ (ρ̂) and Pµ (µM ) is non-empty if the condition

max
{
rµ(µM ), rρ(ρ̂)

}
≤ min {rµ(µM ), rρ(ρ̂)} , (18)

is satisfied, and each point belonging to the bargaining region has x-coordinate

x(µM , ρ̂) =
max

{
rµ(µM ), rρ(ρ̂)

}
+min {rµ(µM ), rρ(ρ̂)}
2

and y-coordinate

y(µM , ρ̂) =
min {rµ(µM ), rρ(ρ̂)} −max

{
rµ(µM ), rρ(ρ̂)

}
2

.

We now consider all the cases that may arise from condition (18). For each possible scenario,
we explicit what condition µM (respectively ρM ) has to satisfy, and describe the type of
intersection accordingly to Table 1. We refer to Appendix A.4 for the details.
Case 1: Consistency region CRB (µM , ρ̂)
Assume that rµ(µM ) ≥ rρ(ρ̂) and rµ(µM ) ≥ rρ(ρ̂). This situation is consistent, together
with µM ≥ µA + µB , with the condition

max

{
r∗∗
r∗

· µBρA
ρ̂− ρB

+ µA,
r∗
r∗∗

· µA(ρ̂− ρB)

ρA
+ µB

}
≤ µM ≤ r∗

r∗∗
· µAρB
ρ̂− ρA

+ µB .

The same condition, written in terms of expected synergy, becomes

max

{
µB

(
r∗∗
r∗

· ρA
ρ̂− ρB

− 1

)
, µA

(
r∗
r∗∗

· ρ̂− ρB
ρA

− 1

)}
≤ µM − µA − µB

≤ µA

(
r∗
r∗∗

· µAρB
ρ̂− ρA

− 1

)
.

The set of exchange ratios on which all shareholders agree, represented, according to Kulpa,
by the points (

rµ(µM ) + rρ(ρ̂)

2
,
rρ(ρ̂)− rµ(µM )

2

)
,

lies on the straight line of equation

y = −x+
r∗∗ρA
ρ̂− ρB

,

which corresponds to the region CRB (µM , ρ̂) in Table 1.
The diagrammatic representation for this case is in Figure 3.

Case 2: Bargaining region BRµ (µM )
Assume that rµ(µM ) ≥ rρ(ρ̂) and rµ(µM ) ≤ rρ(ρ̂). This situation is consistent, together
with µM ≥ µA + µB , with the condition

µA + µB ≤ µM ≤ min

{
r∗
r∗∗

· µAρB
ρ̂− ρA

+ µB ,
r∗∗
r∗

· µBρA
ρ̂− ρB

+ µA

}

9
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Figure 3: Kulpa’s diagrammatic representation of set BRµ,ρ - pA = 4, pB = 2,
φA = 4, φb = 3, NA = 20, NB = 10, r∗ = 0.5, r∗∗ = 0.6667, µM = 120, ρM = 94.
The resulting interval CRB is denoted with the blue dot and segment.
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Diagrammatic representation of BR

Figure 4: Kulpa’s diagrammatic representation of set BRµ,ρ - pA = 4, pB = 2,
φA = 4, φb = 3, NA = 20, NB = 10, r∗ = 0.5, r∗∗ = 0.6667, µM = 120, ρM = 86.
The resulting interval BRµ is denoted with the blue dot and segment.

The same condition, written in terms of expected synergy, becomes

0 ≤ µM − µA − µB ≤ min

{
µA

(
r∗
r∗∗

· ρB
ρ̂− ρA

− 1

)
, µB

(
r∗∗
r∗

· ρA
ρ̂− ρB

− 1

)}
.

The set of exchange ratios on which all shareholders agree on lies on the curve γ, and
corresponds to the region BRµ (µM ) in Table 1.

The diagrammatic representation for this case is in Figure 4.
Case 3: Bargaining region BRρ (ρ̂)
Assume that rµ(µM ) ≤ rρ(ρ̂) and rµ(µM ) ≥ rρ(ρ̂). This situation is consistent, together
with µM ≥ µA + µB , with the condition

µM ≥ max

{
r∗
r∗∗

· µAρB
ρ̂− ρA

+ µB ,
r∗∗
r∗

· µBρA
ρ̂− ρB

+ µA

}
The same condition, written in terms of expected synergy, becomes

µM − µA − µB ≥ max

{
µA

(
r∗
r∗∗

· ρB
ρ̂− ρA

− 1

)
, µB

(
r∗∗
r∗

· ρA
ρ̂− ρB

− 1

)}
.
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Figure 5: Kulpa’s diagrammatic representation of set BRµ,ρ - pA = 4, pB = 2,
φA = 4, φb = 3, NA = 20, NB = 10, r∗ = 0.5, r∗∗ = 0.6667, µM = 120, ρM = 98.
The resulting interval BRρ is denoted with the blue dot and segment.

The (unique) interval of exchange ratios on which all shareholders agree on corresponds to
a point on the curve δ, represented by(

rρ(ρ̂) + rρ(ρ̂)

2
,
rρ(ρ̂)− rρ(ρ̂)

2

)
,

and corresponds to the region BRρ (ρ̂), which shrinks to a singleton, in Table 1.
The diagrammatic representation for this case is in Figure 5.

Case 4: Consistency region CRA (µM , ρ̂)
Assume that rµ(µM ) ≤ rρ(ρ̂) and rµ(µM ) ≤ rρ(ρ̂). This situation is consistent, together
with µM ≥ µA + µB , with the condition

max

{
r∗
r∗∗

· µAρB
ρ̂− ρA

+ µB ,
r∗∗
r∗

· µB(ρ̂− ρA)

ρB
+ µA

}
≤ µM ≤ r∗∗

r∗
· µBρA
ρ̂− ρB

+ µA.

The same condition, written in terms of expected synergy, becomes

max

{
µA

(
r∗
r∗∗

· ρB
ρ̂− ρA

− 1

)
, µB

(
r∗∗
r∗

· ρ̂− ρA
ρB

− 1

)}
≤ µM − µA − µB

≤ µB

(
r∗∗
r∗

· ρA
ρ̂− ρB

− 1

)
.

The set of exchange ratios on which all shareholders agree, represented, according to Kulpa,
by the points (

rρ(ρ̂) + rµ(µM )

2
,
rµ(µM )− rρ(ρ̂)

2

)
,

lies on the straight line of equation

y = x− r∗∗(ρ̂− ρA)

ρB
,

which corresponds to the region CRA (µM , ρ̂) in Table 1.
If we fix instead µ̂ ≥ µA + µB , we can consider the point Pµ(µ̂), corresponding to the

bargaining region BRµ(µ̂). Recall that the intersection of the sets is not empty if (18) holds,
then, again, this represents the starting point for the analysis of the possible scenarios. The
details can be found in Appendix A.4.

The diagrammatic representation for this case is in Figure 6.
Case 1: Consistency region CRB (µ̂, ρM )

11
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Figure 6: Kulpa’s diagrammatic representation of set BRµ,ρ - pA = 4, pB = 2,
φA = 4, φb = 3, NA = 20, NB = 10, r∗ = 0.5, r∗∗ = 0.6667, µM = 112, ρM = 99.
The resulting interval CRA is denoted with the blue dot and segment.

Assume that rµ(µ̂) ≥ rρ(ρM ) and rµ(µ̂) ≥ rρ(ρM ). This situation is consistent, together
with max{ρA, ρB} < ρM ≤ ρA + ρB , with the condition

r∗∗
r∗

· µBρA
µ̂− µA

+ ρB ≤ ρM ≤ min

{
r∗
r∗∗

· µAρB
µ̂− µB

+ ρA,
r∗∗
r∗

· (µ̂− µB)ρA
µA

+ ρB

}
.

The same condition, written in terms of reduction of the overall risk, becomes

max

{
ρB

(
1− r∗

r∗∗
· µA

µ̂− µB

)
, ρA

(
1− r∗∗

r∗
· µ̂− µB

µA

)}
≤ ρA + ρB − ρM

≤ ρA

(
1− r∗∗

r∗
· µB

µ̂− µA

)
.

The set of exchange ratios on which all shareholders agree, represented, according to Kulpa,
by the points (

rµ(µ̂) + rρ(ρM )

2
,
rρ(ρM )− rµ(µ̂)

2

)
,

lies on the straight line of equation

y = x− r∗µA

µ̂− µB
,

which corresponds to the region CRB (µ̂, ρM ) in Table 1.
Case 2: Bargaining region BRµ (µ̂)
Assume that rµ(µ̂) ≥ rρ(ρM ) and rµ(µ̂) ≤ rρ(ρM ). This situation is consistent, together
with max{ρA, ρB} < ρM ≤ ρA + ρB , with the condition

max{ρA, ρB} ≤ ρM ≤ min

{
r∗
r∗∗

· ρBµA

µ̂− µB
+ ρA,

r∗∗
r∗

· ρAµB

µ̂− µA
+ ρB

}
.

The same condition, written in terms of overall risk, becomes

max

{
ρB

(
1− r∗

r∗∗
· ρBµA

µ̂− µB

)
, ρA

(
1− r∗∗

r∗
· ρAµB

µ̂− µA

)}
≤ ρA + ρB − ρM < min{ρA, ρB}.

The (unique) interval of exchange ratios on which all shareholders agree on corresponds to
the point on the curve γ (

rµ(µ̂) + rµ(µ̂)

2
,
rµ(µ̂)− rµ(µ̂)

2

)
,

12



representing the region BRµ (µ̂) in Table 1.
Case 3: Bargaining region BRρ (ρM )
Assume that rµ(µ̂) ≤ rρ(ρM ) and rµ(µ̂) ≥ rρ(ρM ). This situation is consistent, together
with max{ρA, ρB} < ρM ≤ ρA + ρB , with the condition

ρM ≥ max

{
r∗
r∗∗

· ρBµA

µ̂− µB
+ ρA,

r∗∗
r∗

· ρAµB

µ̂− µA
+ ρB

}
.

The same condition, written in terms of overall risk, becomes

ρA + ρB − ρM ≤ min

{
ρB

(
1− r∗

r∗∗
· ρBµA

µ̂− µB

)
, ρA

(
1− r∗∗

r∗
· ρAµB

µ̂− µA

)}
.

The set of exchange ratios on which all shareholders agree on lies on the curve δ, and
corresponds to the region BRρ (ρM ) in Table 1.
Case 4: Consistency region CRA (µ̂, ρM )
Assume that rµ(µ̂) ≤ rρ(ρM ) and rµ(µ̂) ≤ rρ(ρM ). This situation is consistent, together
with max{ρA, ρB} < ρM ≤ ρA + ρB , with the condition

r∗
r∗∗

· ρBµA

µ̂− µB
+ ρA ≤ ρM ≤ min

{
r∗∗
r∗

· ρAµB

µ̂− µA
+ ρB ,

r∗
r∗∗

· ρB(µ̂− µA)

µB
+ ρA

}
.

The same condition, written in terms of reduction of the overall risk, becomes

max

{
ρA

(
1− r∗∗

r∗
· µB

µ̂− µA

)
, ρB

(
1− r∗

r∗∗
· µ̂− µA

µB

)}
≤ ρA + ρB − ρM

≤ ρB

(
1− r∗

r∗∗
· µA

µ̂− µB

)
.

The set of exchange ratios on which all shareholders agree, represented, according to Kulpa,
by the points (

rρ(ρM ) + rµ(µ̂)

2
,
rµ(µ̂)− rρ(ρM )

2

)
,

lies on the straight line of equation

y = −x+
r∗(µ̂− µA)

µB
,

which corresponds to the region CRA (µ̂, ρM ) in Table 1.
Two more cases are displayed in this Table: in both, sets BRµ,ρ (µ, ρ) is empty. Figure 7

shows one of them. As it is clear from the above presentation, this set is empty due to the
limited increase in expected equity value and/or limited reduction in overall risk.

The last case resembles the one just presented, with the only difference that r∗∗ < r∗.
For sake of paucity, its diagrammatic representation is omitted.

4 Conclusions

In this article, we present an attempt to extend, in a stochastic setting, deterministic models
for exchange ratios determination for merger agreements.

Under a financial point of view, an important result we achieve is that the introduction of
a risk measure changes the attitude shareholders of the merging companies have toward the
agreed exchange ratio. For shareholders of the acquiring company, smaller exchange ratios
result in both larger expected equity value and equity risk. For shareholders of the acquired
company, larger exchange ratio yield both a larger expected equity value and equity risk.
This introduces a trade-off that makes the negotiation for settling on the definitive exchange
ratio more fitting to a risky environment.

As far as the bargaining region is concerned, being here dependent on two quantities,
its effective representation is obtained exploiting the Kulpa’s diagrammatic technique as it
transforms bounded intervals into points in a bi-dimensional plane and allows to plainly
represent all possible cases.

13



0 0.2 0.4 0.6 0.8 1 1.2

mid point

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ra
d
iu

s

Diagrammatic representation of BR

Figure 7: Kulpa’s diagrammatic representation of set BRµ,ρ - pA = 4, pB = 2,
φA = 4, φb = 3, NA = 20, NB = 10, r∗ = 0.5, r∗∗ = 0.6667, µM = 104, ρM = 106.
The resulting set is empty.

Even if it can be argued that, in real financial markets, imposing that a merger creates
both a positive expected synergy and a reduction in the overall equity value risk rarely
occurs, our contribution can be intended as a theoretical framework under which mergers
can be analyzed, a result that lacks in financial literature.

To conclude, results presented here must be intended as a first step further research devel-
opment in this field. For instance, ranges of acceptable exchange ratios might be determined
following an expected utility approach, where a trade-off between expected value and risk of
an investor’s wealth can be established.
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A Appendices

A.1 Appendix 1

To justify the claim about Company B’s stockholders in subsection 2.2, consider at first what
happens in the left-hand side of (8) if r = 0: company B’s shareholders receive no stock,
carry no risk, and experience a reduction in their riskiness.

As
∂

∂r

[
r · ρM

NA + rNB

]
=

ρMNA

(NA + rNB)2
> 0,

the left-hand side of expression (8) is strictly increasing with respect to r ≥ 0 so that the
larger r, the larger the risk for B’s stockholders.

Finally, being, in accordance with (10), ρM > ρB ,

lim
r→+∞

r · ρM
NA + rNB

=
ρM
NB

>
ρB
NB

.

Then, it results that sufficiently large values for r bring about larger risk to company B’s
stockholders when compared to the risk level they bore before companies merged.
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A.2 Appendix 2

Consider point Pµ(µM ) in (15). The difference between its coordinates is

x(µM )− y(µM ) =
r∗µA

µM − µB
, (19)

from which (removing the dependence from µM for the sake of simplicity) we get

µM =
r∗µA

x− y
+ µB .

Recalling that

x =
r∗
2

(
µA

µM − µB
+

µM − µA

µB

)
y =

r∗
2

(
µM − µA

µB
− µA

µM − µB

)
and replacing the expression of µM found above, we obtain

x+ y = r∗

(
r∗µA

µB
· 1

x− y
+ 1− µA

µB

)
and multiplying by x− y the following equation is obtained

x2 − y2 = r∗

(
1− µA

µB

)
(x− y) + r2∗

µA

µB
,

so that γ is given by

x2 − y2 − r∗

(
1− µA

µB

)
(x− y)− r2∗

µA

µB
= 0. (20)

This is the equation of the quadratic curve

c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6 = 0

with c1 = 1, c2 = 0, c3 = −1, c4 = −r∗ (µB − µA) /µB , c5 = r∗ (µB − µA) /µB , and
c6 = −r2∗µA/µB .

As c22 − 4c1c3 = 4 > 0, equation (20) identifies a hyperbola whose eccentricity is
√
2 and

that can be rewritten as (
x− r∗

µB−µA

2µB

)2

r2∗
µA

µB

−

(
y − r∗

µB−µA

2µB

)2

r2∗
µA

µB

= 1 (21)

Its two vertices are

V1 ≡
(
r∗ (µB − µA)

2µB
− r∗

√
µA

µB
,
r∗ (µB − µA)

2µB

)
,

and

V2 ≡
(
r∗ (µB − µA)

2µB
+ r∗

√
µA

µB
,
r∗ (µB − µA)

2µB

)
The abscissa of V1 is smaller then the abscissa of V2. In terms of diagrammatic repre-

sentation (see Figure 2), the relevant branch of hyperbola (21) is the one whose vertex is
V2. This is the case as there exist points on the hyperbola’s branch that contains V1 with
negative abscissas, a condition that is not compatible with the fact that points belonging to
Pµ (µM ) must have positive x−values.

Focusing on V2, its abscissa is surely positive if µB > µA. If, instead, µB < µA then the
abscissa of V2 is positive as long as µB ≥

(
3− 2

√
2
)
µA.

As far as the ordinate of V2 is concerned, it is positive (respectively negative) when
µB > µA (respectively µB < µA).
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The asymptotes of (21) are

y = x, y = −x+
r∗ (µB − µA)

µB
.

Similarly, consider point Pρ(ρM ) in (16). The sum of its coordinates is

x(ρM ) + y(ρM ) = r∗∗
ρA

ρM − ρB
,

from which (removing the dependence from ρM for the sake of simplicity) we get

ρM =
r∗∗ρA
x+ y

+ ρB .

Recalling that

x =
r∗∗
2

(
ρM − ρA

ρB
+

ρA
ρM − ρB

)
y =

r∗∗
2

(
ρA

ρM − ρB
− ρM − ρA

ρB

)
and replacing the expression of ρM found above, we obtain

x− y = r∗∗

(
r∗∗ρA
ρB

· 1

x+ y
+ 1− ρA

ρB

)
and multiplying by x+ y the following equation is obtained

x2 − y2 = r∗∗

(
1− ρA

ρB

)
(x+ y) + r2∗∗

ρA
ρB

,

so that δ is given by

x2 − y2 − r∗∗

(
1− ρA

ρB

)
(x+ y)− r2∗∗

ρA
ρB

= 0, (22)

which is, again, a hyperbola with equation(
x− r∗∗

ρB−ρA

2ρB

)2

r2∗∗
ρA

ρB

−

(
y + r∗∗

ρB−ρA

2ρB

)2

r2∗∗
ρA

ρB

= 1.

Its vertices are

V3 ≡
(
r∗∗ (ρB − ρA)

2ρB
− r∗∗

√
ρA
ρB

,
r∗∗ (ρB − ρA)

2ρB

)
and

V4 ≡
(
r∗∗ (ρB − ρA)

2ρB
+ r∗∗

√
ρA
ρB

,
r∗∗ (ρB − ρA)

2ρB

)
while the asymptotes are

y = −x, y = x− r∗∗ (ρB − ρA)

ρB
.

The abscissa of V3 is smaller then the abscissa of V4. In terms of diagrammatic representation
(see Figure 2), the relevant branch of hyperbola (22) is the one whose vertex is V4. This
is the case as there exist points on the hyperbola’s branch that contains V3 with negative
abscissas, a condition that is not compatible with the fact that points belonging to Pρ (ρM )
must have positive x−values.

Focusing on V4, its abscissa is surely positive if ρB > ρA. If, instead, ρB < ρA then the
abscissa of V4 is positive as long as ρB ≥

(
3− 2

√
2
)
ρA.

16



A.3 Appendix 3

In terms of risk-adjusted performance, the resulting company performs better then the pre-
existing ones when

λM =
µA + µB + s

ρA + ρB − v
≥ µA

ρA
= λA,

and

λM =
µA + µB + s

ρA + ρB − v
≥ µB

ρB
= λB .

Recalling the notation for expected synergy and risk reduction introduced in Subsection
(2.2), these inequalities are respectively equivalent to

µB + s

ρB − v
≥ λA,

and
µA + s

ρA − v
≥ λB .

If, now, s = 0 and v = 0, the first inequality becomes

µB

ρB
= λB ≥ λA

while the second reads
µA

ρA
= λA ≥ λB .

These expressions explain why, in the absence of any improvement in terms of either positive
expected synergy or risk reduction, stockholders of company A (respectively B) experience
an improvement in the risk-corrected performance of the shares they own if company B
(respectively A) better behaves, in terms of risk-corrected performance.

A.4 Appendix 4

Consider max{ρA, ρB} < ρ̂ ≤ ρA + ρB . In Case 1, the intersection is the set CRB (µM , ρ̂) =[
rµ(µM ), rρ(ρ̂)

]
. This interval is represented, under Kulpa’s approach, by the point

(x, y) =

(
rµ(µM ) + rρ(ρ̂)

2
,
rρ(ρ̂)− rµ(µM )

2

)
,

that is,

x =
1

2

(
r∗µA

µM − µB
+

r∗∗ρA
ρ̂− ρB

)
,

y =
1

2

(
r∗∗ρA
ρ̂− ρB

− r∗µA

µM − µB

)
.

The sum of its coordinates is

x+ y =
r∗∗ρA
ρ̂− ρB

;

that is, on varying µM we move along the straight line of equation

y = −x+
r∗∗ρA
ρ̂− ρB

.

The conditions under which this situation is possible are
rµ(µM ) ≥ rρ(ρ̂)

rµ(µM ) ≥ rρ(ρ̂)

rµ(µM ) ≤ rρ(ρ̂),
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that is, 

r∗µA

µM − µB
≥ r∗∗(ρ̂− ρA)

ρB

r∗(µM − µA)

µB
≥ r∗∗ρA

ρ̂− ρB
r∗µA

µM − µB
≤ r∗∗ρA

ρ̂− ρB
,

that is,



µM ≤ r∗
r∗∗

· µAρB
ρ̂− ρA

+ µB

µM ≥ r∗∗
r∗

· µBρA
ρ̂− ρB

+ µA

µM ≥ r∗
r∗∗

· µA(ρ̂− ρB)

ρA
+ µB ,

which can be summarized as follows:

max

{
r∗∗
r∗

· µBρA
ρ̂− ρB

+ µA,
r∗
r∗∗

· µA(ρ̂− ρB)

ρA
+ µB

}
≤ µM ≤ r∗

r∗∗
· µAρB
ρ̂− ρA

+ µB .

To obtain the condition about the expected synergy, we subtract µA + µB :

max

{
r∗∗
r∗

· µBρA
ρ̂− ρB

− µB ,
r∗
r∗∗

· µA(ρ̂− ρB)

ρA
− µA

}
≤ µM − µA − µB ≤ r∗

r∗∗
· µAρB
ρ̂− ρA

− µA,

that is,

max

{
µB

(
r∗∗
r∗

· ρA
ρ̂− ρB

− 1

)
, µA

(
r∗
r∗∗

· ρ̂− ρB
ρA

− 1

)}
≤ µM − µA − µB

≤ µA

(
r∗
r∗∗

· µAρB
ρ̂− ρA

− 1

)
.

In Case 2, the intersection is the interval BRµ (µM ) =
[
rµ(µM ), rµ(µM )

]
. This is represented,

under Kulpa’s approach, by the point

(x, y) =

(
rµ(µM ) + rµ(µM )

2
,
rµ(µM )− rµ(µM )

2

)
,

which, varying µM , leads to the curve γ (see A.2). The conditions under which this situation
is possible are {

rµ(µM ) ≥ rρ(ρ̂)

rµ(µM ) ≤ rρ(ρ̂),

that is, 
r∗µA

µM − µB
≥ r∗∗(ρ̂− ρA)

ρB

r∗(µM − µA)

µB
≤ r∗∗ρA

ρ̂− ρB
,

that is,


µM ≤ r∗

r∗∗
· µAρB
ρ̂− ρA

+ µB

µM ≤ r∗∗
r∗

· µBρA
ρ̂− ρB

+ µA,

which can be summarized as follows:

µA + µB ≤ µM ≤ min

{
r∗
r∗∗

· µAρB
ρ̂− ρA

+ µB ,
r∗∗
r∗

· µBρA
ρ̂− ρB

+ µA

}
.

To obtain the condition about the expected synergy, we subtract µA + µB :

0 ≤ µM − µA − µB ≤ min

{
r∗
r∗∗

· µAρB
ρ̂− ρA

− µA,
r∗∗
r∗

· µBρA
ρ̂− ρB

− µB

}
,

that is,

0 ≤ µM − µA − µB ≤ min

{
µA

(
r∗
r∗∗

· ρB
ρ̂− ρA

− 1

)
, µB

(
r∗∗
r∗

· ρA
ρ̂− ρB

− 1

)}
.

In Case 3, the intersection is the interval BRρ (ρ̂) =
[
rρ(ρ̂), rρ(ρ̂)

]
. This is represented, under

Kulpa’s approach, by the point

(x, y) =

(
rρ(ρ̂) + rρ(ρ̂)

2
,
rρ(ρ̂)− rρ(ρ̂)

2

)
.
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This point is unique, that is, the bargaining region does not depend on µM . The conditions
under which this situation is possible are{

rµ(µM ) ≤ rρ(ρ̂)

rµ(µM ) ≥ rρ(ρ̂),

that is, 
r∗µA

µM − µB
≤ r∗∗(ρ̂− ρA)

ρB

r∗(µM − µA)

µB
≥ r∗∗ρA

ρ̂− ρB
,

that is,


µM ≥ r∗

r∗∗
· µAρB
ρ̂− ρA

+ µB

µM ≥ r∗∗
r∗

· µBρA
ρ̂− ρB

+ µA,

which can be summarized as follows:

µM ≥ max

{
r∗
r∗∗

· µAρB
ρ̂− ρA

+ µB ,
r∗∗
r∗

· µBρA
ρ̂− ρB

+ µA

}
.

To obtain the condition about the expected synergy, we subtract µA + µB :

µM − µA − µB ≥ max

{
r∗
r∗∗

· µAρB
ρ̂− ρA

− µA,
r∗∗
r∗

· µBρA
ρ̂− ρB

− µB

}
,

that is,

µM − µA − µB ≥ max

{
µA

(
r∗
r∗∗

· ρB
ρ̂− ρA

− 1

)
, µB

(
r∗∗
r∗

· ρA
ρ̂− ρB

− 1

)}
.

In Case 4, the intersection is the interval CRA (µM , ρ̂) =
[
rρ(ρ̂), rµ(µM )

]
. This is represented,

under Kulpa’s approach, by the point

(x, y) =

(
rρ(ρ̂) + rµ(µM )

2
,
rµ(µM )− rρ(ρ̂)

2

)
,

that is,

x =
1

2

(
r∗∗(ρ̂− ρA)

ρB
+

r∗(µM − µA)

µB

)
,

y =
1

2

(
r∗(µM − µA)

µB
− r∗∗(ρ̂− ρA)

ρB

)
.

The difference between its coordinates is

x− y =
r∗∗(ρ̂− ρA)

ρB
;

that is, on varying µM we move along the straight line of equation

y = x− r∗∗(ρ̂− ρA)

ρB
.

The conditions under which this situation is possible are
rµ(µM ) ≤ rρ(ρ̂)

rµ(µM ) ≤ rρ(ρ̂)

rρ(ρ̂) ≤ rµ(µM ),

that is,

r∗µA

µM − µB
≤ r∗∗(ρ̂− ρA)

ρB

r∗(µM − µA)

µB
≤ r∗∗ρA

ρ̂− ρB

r∗∗(ρ̂− ρA)

ρB
≤ r∗(µM − µA)

µB
,

that is,



µM ≥ r∗
r∗∗

· µAρB
ρ̂− ρA

+ µB

µM ≤ r∗∗
r∗

· µBρA
ρ̂− ρB

+ µA

µM ≥ r∗∗
r∗

· µB(ρ̂− ρA)

ρB
+ µA,
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which can be summarized as follows:

max

{
r∗
r∗∗

· µAρB
ρ̂− ρA

+ µB ,
r∗∗
r∗

· µB(ρ̂− ρA)

ρB
+ µA

}
≤ µM ≤ r∗∗

r∗
· µBρA
ρ̂− ρB

+ µA.

To obtain the condition about the expected synergy, we subtract µA + µB :

max

{
r∗
r∗∗

· µAρB
ρ̂− ρA

− µA,
r∗∗
r∗

· µB(ρ̂− ρA)

ρB
− µB

}
≤ µM − µA − µB ≤ r∗∗

r∗
· µBρA
ρ̂− ρB

− µB ,

that is,

max

{
µA

(
r∗
r∗∗

· ρB
ρ̂− ρA

− 1

)
, µB

(
r∗∗
r∗

· ρ̂− ρA
ρB

− 1

)}
≤ µM − µA − µB

≤ µB

(
r∗∗
r∗

· ρA
ρ̂− ρB

− 1

)
.

Consider now µ̂ ≥ µA + µB . In Case 1, the intersection is the interval CRB (µ̂, ρM ) =[
rµ(µ̂), rρ(ρM )

]
. This is represented, under Kulpa’s approach, by the point

(x, y) =

(
rµ(µ̂) + rρ(ρM )

2
,
rρ(ρM )− rµ(µ̂)

2

)
,

that is,

x =
1

2

(
r∗µA

µ̂− µB
+

r∗∗ρA
ρM − ρB

)
,

y =
1

2

(
r∗∗ρA

ρM − ρB
− r∗µA

µ̂− µB

)
.

The difference between its coordinates is

x− y =
r∗µA

µ̂− µB
;

that is, on varying ρM we move along the straight line of equation

y = x− r∗µA

µ̂− µB
.

The conditions under which this situation is possible are
rµ(µ̂) ≥ rρ(ρM )

rµ(µ̂) ≥ rρ(ρM )

rµ(µ̂) ≤ rρ(ρM ),

that is, 

r∗µA

µ̂− µB
≥ r∗∗(ρM − ρA)

ρB

r∗(µ̂− µA)

µB
≥ r∗∗ρA

ρM − ρB
r∗µA

µ̂− µB
≤ r∗∗ρA

ρM − ρB
,

that is,



ρM ≤ r∗
r∗∗

· ρBµA

µ̂− µB
+ ρA

ρM ≥ r∗∗
r∗

· ρAµB

µ̂− µA
+ ρB

ρM ≤ r∗∗
r∗

· ρA(µ̂− µB)

µA
+ ρB ,

which can be summarized as follows:

r∗∗
r∗

· ρAµB

µ̂− µA
+ ρB ≤ ρM ≤ min

{
r∗
r∗∗

· ρBµA

µ̂− µB
+ ρA,

r∗∗
r∗

· ρA(µ̂− µB)

µA
+ ρB

}
,

or, equivalently,

max

{
− r∗
r∗∗

· ρBµA

µ̂− µB
− ρA, −

r∗∗
r∗

· ρA(µ̂− µB)

µA
− ρB

}
≤ −ρM ≤ −r∗∗

r∗
· ρAµB

µ̂− µA
− ρB .
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To obtain the condition about the overall risk, we sum ρA + ρB :

max

{
ρB − r∗

r∗∗
· ρBµA

µ̂− µB
, ρA − r∗∗

r∗
· ρA(µ̂− µB)

µA

}
≤ ρA + ρB − ρM ≤ ρA − r∗∗

r∗
· ρAµB

µ̂− µA
,

that is,

max

{
ρB

(
1− r∗

r∗∗
· µA

µ̂− µB

)
, ρA

(
1− r∗∗

r∗
· µ̂− µB

µA

)}
≤ ρA + ρB − ρM

≤ ρA

(
1− r∗∗

r∗
· µB

µ̂− µA

)
.

In Case 2, the intersection is the interval BRµ (µ̂) =
[
rµ(µ̂), rµ(µ̂)

]
. This is represented,

under Kulpa’s approach, by the point

(x, y) =

(
rµ(µ̂) + rµ(µ̂)

2
,
rµ(µ̂)− rµ(µ̂)

2

)
.

This point is unique, that is, the bargaining region does not depend on ρM . The conditions
under which this situation is possible are{

rµ(µ̂) ≥ rρ(ρM )

rµ(µ̂) ≤ rρ(ρM ),

that is, 
r∗µA

µ̂− µB
≥ r∗∗(ρM − ρA)

ρB

r∗(µ̂− µA)

µB
≤ r∗∗ρA

ρM − ρB
,

that is,


ρM ≤ r∗

r∗∗
· ρBµA

µ̂− µB
+ ρA

ρM ≤ r∗∗
r∗

· ρAµB

µ̂− µA
+ ρB ,

which can be summarized as follows:

max{ρA, ρB} < ρM ≤ min

{
r∗
r∗∗

· ρBµA

µ̂− µB
+ ρA,

r∗∗
r∗

· ρAµB

µ̂− µA
+ ρB

}
,

or, equivalently,

max

{
− r∗
r∗∗

· ρBµA

µ̂− µB
− ρA, −

r∗∗
r∗

· ρAµB

µ̂− µA
− ρB

}
≤ −ρM < min{−ρA,−ρB}.

To obtain the condition about the overall risk, we sum ρA + ρB :

max

{
ρB − r∗

r∗∗
· ρBµA

µ̂− µB
, ρA − r∗∗

r∗
· ρAµB

µ̂− µA

}
≤ ρA + ρB − ρM < min{ρA, ρB},

that is,

max

{
ρB

(
1− r∗

r∗∗
· ρBµA

µ̂− µB

)
, ρA

(
1− r∗∗

r∗
· ρAµB

µ̂− µA

)}
≤ ρA + ρB − ρM < min{ρA, ρB}.

In Case 3, the intersection is the interval BRρ (ρM ) =
[
rρ(ρM ), rρ(ρM )

]
. This is represented,

under Kulpa’s approach, by the point

(x, y) =

(
rρ(ρM ) + rρ(ρM )

2
,
rρ(ρM )− rρ(ρM )

2

)
,

which, varying ρM , leads to the curve δ (see A.2). The conditions under which this situation
is possible are {

rµ(µ̂) ≤ rρ(ρM )

rµ(µ̂) ≥ rρ(ρM ),
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that is, 
r∗µA

µ̂− µB
≤ r∗∗(ρM − ρA)

ρB

r∗(µ̂− µA)

µB
≥ r∗∗ρA

ρM − ρB
,

that is,


ρM ≥ r∗

r∗∗
· ρBµA

µ̂− µB
+ ρA

ρM ≥ r∗∗
r∗

· ρAµB

µ̂− µA
+ ρB ,

which can be summarized as follows:

ρM ≥ max

{
r∗
r∗∗

· ρBµA

µ̂− µB
+ ρA,

r∗∗
r∗

· ρAµB

µ̂− µA
+ ρB

}
,

or, equivalently,

−ρM ≤ min

{
− r∗
r∗∗

· ρBµA

µ̂− µB
− ρA, −

r∗∗
r∗

· ρAµB

µ̂− µA
− ρB

}
.

To obtain the condition about the overall risk, we sum ρA + ρB :

ρA + ρB − ρM ≤ min

{
ρB − r∗

r∗∗
· ρBµA

µ̂− µB
, ρA − r∗∗

r∗
· ρAµB

µ̂− µA

}
,

that is,

ρA + ρB − ρM ≤ min

{
ρB

(
1− r∗

r∗∗
· µA

µ̂− µB

)
, ρA

(
1− r∗∗

r∗
· µB

µ̂− µA

)}
.

In Case 4, the intersection is the interval CRA (µ̂, ρM ) =
[
rρ(ρM ), rµ(µ̂)

]
. This is represented,

under Kulpa’s approach, by the point

(x, y) =

(
rρ(ρM ) + rµ(µ̂)

2
,
rµ(µ̂)− rρ(ρM )

2

)
,

that is,

x =
1

2

(
r∗∗(ρM − ρA)

ρB
+

r∗(µ̂− µA)

µB

)
,

y =
1

2

(
r∗(µ̂− µA)

µB
− r∗∗(ρM − ρA)

ρB

)
.

The sum of its coordinates is

x+ y =
r∗(µ̂− µA)

µB
;

that is, on varying ρM we move along the straight line of equation

y = −x+
r∗(µ̂− µA)

µB
.

The conditions under which this situation is possible are
rµ(µ̂) ≤ rρ(ρM )

rµ(µ̂) ≤ rρ(ρM )

rρ(ρM ) ≤ rµ(µ̂),

that is,

r∗µA

µ̂− µB
≤ r∗∗(ρM − ρA)

ρB

r∗(µ̂− µA)

µB
≤ r∗∗ρA

ρM − ρB

r∗∗(ρM − ρA)

ρB
≤ r∗(µ̂− µA)

µB
,

that is,



ρM ≥ r∗
r∗∗

· ρBµA

µ̂− µB
+ ρA

ρM ≤ r∗∗
r∗

· µBρA
µ̂− µA

+ ρB

ρM ≤ r∗
r∗∗

· ρB(µ̂− µA)

µB
+ ρA,

22



which can be summarized as follows:

r∗
r∗∗

· ρBµA

µ̂− µB
+ ρA ≤ ρM ≤ min

{
r∗∗
r∗

· µBρA
µ̂− µA

+ ρB ,
r∗
r∗∗

· ρB(µ̂− µA)

µB
+ ρA

}
,

or, equivalently,

max

{
−r∗∗

r∗
· µBρA
µ̂− µA

− ρB , −
r∗
r∗∗

· ρB(µ̂− µA)

µB
− ρA

}
≤ −ρM ≤ − r∗

r∗∗
· ρBµA

µ̂− µB
− ρA.

To obtain the condition about the overall risk, we sum ρA + ρB :

max

{
ρA − r∗∗

r∗
· µBρA
µ̂− µA

, ρB − r∗
r∗∗

· ρB(µ̂− µA)

µB

}
≤ ρA + ρB − ρM ≤ ρB − r∗

r∗∗
· ρBµA

µ̂− µB
,

that is,

max

{
ρA

(
1− r∗∗

r∗
· µB

µ̂− µA

)
, ρB

(
1− r∗

r∗∗
· µ̂− µA

µB

)}
≤ ρA + ρB − ρM

≤ ρB

(
1− r∗

r∗∗
· µA

µ̂− µB

)
.
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