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Abstract

In nonatomic games, anonymity must be assumed in order to prove
the existence of a Nash equilibrium in pure strategies. This can be
formalized by making payoffs dependent either on the players’ dis-
tribution on the action set or on the strategy mean. An extension
of Rath’s (1992) proof to the case of limited anonymity is proposed:
the aggregate behavior of several groups of individuals, rather than
the behavior of the population as a whole, is shown sufficient to get
equilibrium existence in pure strategies.
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1 Introduction

Game theory studies the multipersonal decision problems, where a player’s
action has an effect on the other player’s payoff and vice versa, and it in-
fluences the other’s decision. This framework seems intuitively well working
in all the cases where the number of agents is not too large, such as in the
oligopoly, in the war games, in the bargaining games and so on. What hap-
pens with many players, i.e. in large games?

For instance, as the number of firms in the Cournot game increases, the
equilibrium tends, under very general conditions, to the competitive one (at
the limit). The typical outcome features of the Cournot game progressively
disappear: the aggregate and individual productions are less and less re-
stricted and the price converges to its competitive level. Then, we obtain (at
the limit) the competitive equilibrium.

Indeed, when the (countable) number of players increases, the strategic
interaction effect decreases and, at the limit, it becomes negligible. Never-
theless, it remains true that the aggregate behavior of a subset of players
large enough (at the limit, an infinite subset) has an effect on the others’
choice, at equilibrium.

This is particularly evident, in a game with positive externalities (resp.
with partial rivalry) like in Konishi, Le Breton, and Weber, 1997b, and
Konishi, Le Breton, and Weber, 1997a, i.e. a game where the payoff of player
i depends positively (resp. negatively) on the number of agents playing in
the same manner of ;.

A typical example of a game with partial rivalry is the problem of the
city traffic: when one has to decide what road to intake with his car, he
estimates how much traffic is present over any alternative. Traffic is the
distribution of all other drivers on the road network at the same time. Many
other examples can be found in the context of the use of a congestioned
good, such as internet, roads, electricity networks, when agents take into
account congestion. Congestion, as traffic, can be measured by the agents’
distribution on the networks at a given instant.

With countably many players, we can define a sequence of n-players
games. At any point of the sequence, the strategic interaction effect exists
and it is non negligeable. Only at the limit it disappears. Even for a very
large but finite n, any rational player is able to distinguish and to evaluate
it, playing accordingly. Therefore, in a sense, at the limit (and only here),
the game becomes “odd”.



Nevertheless, there are situations in the real world where the number of
players is naturally very high and each player actually knows that he has
no effect on the others. In this case it seems not conceptually correct to
consider a n-player game and then computing the limit of the finite game
outcome to approach the real world situation we are studying. What we
wish to underline is that the game is naturally “odd”. Examples can be the
voting decision, the determination of an equilibrium price in a market, the
topic choice for the whole set of young researchers in economics. In all these
cases, the player’s choice effect on the others is negligible if taken isolately.

When the situation we wish to represent is such that the strategic inter-
action between individuals is extremely poor because of the great number
of players, we can use the so called nonatomic games. The class of the
nonatomic games allows to deal with problems where there is a continuum
(i.e. uncountably many) of players. More precisely, a nonatomic game is a
game where the set of players is endowed with a nonatomic measure. Indeed,
nonatomic games allow us to model several situations where the individual
weight in the “competition” is almost nihil, but where the aggregate choice
of a “large number”, a mass, of players is relevant. In an election a single
vote is normally not relevant to determine the winner, and so the voters’
utility. On the contrary, the vote of the subset of young voters or that of the
old voters may have a great impact on the voting result.

Nonatomic games are worth of being studied for several reasons, already
highlighted by Aumann, although in a different context (Aumann, 1964).

Firstly, they well approximate real life situations, otherwise misrepre-
sented by finite settings. Secondly, they solely represent the economic idea
of negligibility: only in the continuum setting some results arise (such as the
perfect equivalence between CORE and competitive equilibria of an economys;
see Aumann, 1964, and Dubey and Shapley, 1994). Thirdly, the continuous
approximation allows to use the powerful tools and methods of “analysis”.
Finally, the existence of a Nash equilibrium, even in pure strategies, does not
require strong hypothesis (concavity) on the payoff functions. Only conti-
nuity with respect to (the Lebesgue integral or the induced distribution of)
the strategy profile is required. This is because of the convexification prop-
erties, arising when we consider a continuum of agents (see Aumann, 1964,
Aumann, 1965, and Aumann, 1966).

In this paper (section 4) we wish to make a critical survey over two
different approaches of proving Nash equilibrium existence in pure strategy,
one based on the concept of strategies average (Schmeidler, 1973) and the
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other based on the players’ distribution (Mas Colell, 1984). Furthermore, we
discuss the Rath’s work which represents, at least conceptually, a mixture of
the two (Rath, 1992).

Thereafter (section 5), starting from a remark of Schmeidler, following
the Rath’s approach, we extend the existence result (in pure strategies) to
the class of games where payoffs depend on the average strategy of a finite
number of disjoint subsets of players, defined a priori. This generalization
allows to greatly extend the domain of applicability of the nonatomic games
to a quite large set of situations at little mathematical cost. It allows to
reduce the anonymity in these games: belonging to a particular subset may
be a feature that gives a different relative weight to different players.

One may imagine several examples: for instance, the “common” re-
searcher’s topic choice may depend on the distribution of the “stars” and on
the distribution of the other “common” researchers; yet, the driver’s route
choice may depend on the distribution of several groups that are traveling
on the same road network, such as car drivers and heavy truck drivers.

Since the partition of the players’ set, unique for all the players, has to be
defined a priori, we cannot deal, for instance, with games where the player’s
choice depends primarily on the choices of the players close to him!, i.e.,
where the individual ¢’s choice depends on the actions of those belonging to
a neighborhood of t.

In the following, we will refer to the nonatomic games belonging to the
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generalized class defined above, as nonatomic games with “limited anonymity”.

2 The relevant and related literature

In the General Economic Equilibrium literature there are several papers that
model the price formation and the trading in a large economy as a non
atomic game. In particular, Dubey and Shapley, 1994 give some interesting
extensions, in the non atomic framework, of the finite market game proposed
by Shapley and Shubik, 1977, considering two different ways of payment (by
paper money and by a valuable commodity).

The fundamental feature of this approach is that players do not take the
prices as given. They have an initial endowment of goods, they place it on
the goods markets, receiving the right to an amount of money when the

IWe think to a sort of influence with a limited extent of diffusion.



prices will be fixed. Then, they demand an amount of each commodity (this
is the players’ strategy), depending on their preferences, bidding an amount
of money.

Prices are formed in such a way of clearing all the markets, i.e. the price
of each good equals the ratio between the aggregate bid for that good and
the aggregate endowment of it. Since the obtained bundle will depend on
the formed prices, the players’ utility, i.e. the players’ payoff, will depend
on the others’ aggregate behavior. Under fairly weak conditions, Dubey and
Shapley find that the Walrasian equilibria class and the strategic equilibria
class are equivalent.

Furthermore, Codognato and Ghosal, 2001, extend the Forges and Minelli,
1997 paper (“Self-Fulfilling Mechanisms and Rational Expectation” in an ex-
change economy with private information) in the non atomic game frame-
work.

Non atomic games have been already applied to several other economic
and social issues. Constantinides and Rosenthal, 1984, study the strategic
exercise of warrants and convertible bonds; Rob, 1987, considers the entry
problem in a market of uncertain size. Pascoa, 1993, deals with the problem
of existence of a Bertand equilibrium in a setting of monopolistic competition.
Karni and Schmeidler, 1990, present a model to explain the existence of
“fashions” even if preferences are fixed. Finally, Karni and Levine, 1994,
analyse a restaurant pricing model.

All these papers explicitly consider and study the effects of the network
and consumption externalities produced by the players’ choices.

As noticed by Mas Colell, 1984, “the setting of games with a continuum
of players can accommodate games with incomplete information played by
a finite number of participants receiving independent signals”. Khan and
Sun, 1995, and Khan, Rath, and Sun, 1999 show that, only assuming at
most countably many possible actions, a pure strategy Nash equilibrium of
such a game exists.

In the literature, we may also find relevant contribution on dynamic non
atomic games.

Many situation could be well formalized by a (infinitely) repeated non
atomic game. Nevertheless, it is clear that a proof of the existence of a
subgame perfect equilibrium can not be obtained simply by generalizing a
standard folk-theorem. This is because in an atomless setting, it would be
impossible to detect a deviator, since anyone is negligible and his actions
have no effect on the others’ payoff. Intuitively, the sole equilibria of a



repeated game will be sequences composed of one-shot Nash equilibria. In-
deed, such results are found by the so called anti-folk-theorem literature
(Green, 1980,Kaneko, 1982, Dubey and Kaneko, 1984, Masso’ and Rosen-
thal, 1989,Sabourian, 1990 and Masso’, 1993, among others).

Likely, Levine and Pesendorfer, 1995, point out the fact that deviations
are undetectable in a nonatomic context and use this issue to explain why
equilibria can be very different using a finite players or a continuum frame-
work?. They resolve this paradox by introducing, in a finite game, a noise.
Indeed, a nonatomic game can be thought as a representation of a finite
players game with imperfect actions observability.

Nonatomic anonymous sequential games are studied by Jovanovic and
Rosenthal, 1988, and by Bergin and Bernhardt, 1992, among others. They
prove the existence of a sequential equilibrium. Both assume that transition
functions have an individualistic aspect; otherwise, each individual would
perceive that his actions have no effects on the continuation of the game.
Only the former assumes also that players’ characteristics distribution evolves
deterministically over time (absence of aggregate uncertainty).

The proof of the Nash equilibrium existence for the nonatomic games
(general and in pure strategies), came only in 1973 with the paper of Schmei-
dler ( Schmeidler, 1973). Thereafter, other authors gave proofs of the exis-
tence in pure strategies, following different approaches, such as Rath, 1992,
and Mas Colell, 1984. Moreover, Codognato and Ghosal, 2002, assume het-
erogeneous individual action sets, compact subsets of a finite dimensional
Euclidean space. They show that a (Pareto) undominated pure strategy
Nash equilibria exists.

Refer to Kahn and Sun, 2001 for a good and comprehensive survey of the
whole non atomic games theory.

3 Anonymity and nonatomicity

The existence of a Nash equilibrium in pure strategies depends on the prop-
erty of anonymity. Roughly speaking, anonymity means that the single
player’s characteristics are not relevant in determining his impact. Only

2This is the case, for instance, of the free-rider problem in corporate takeovers
(Grossman and Hart, 1980): whenever there is a finite number of shareholders, the rider
may appropriate at least a part of the future efficiency gains; with a continuum, his ap-
propriation level will be nihil.



actions matter, not who does them. Everyone is symmetric to all the others.
Therefore every individual is interchangeable.

Such a property has to be differently formalized in different contexts.
Here are two examples.

In the already mentioned finite games with positive externalities consid-
ered by Konishi, Le Breton, and Weber, 1997b, the strategic interaction is
captured only by the fact that the player i’s payoff is a (increasing) function
of the number of agents that play the alternative chosen by i; considering
just the number of individuals is a way to formalize the idea of anonymity:
who chooses a certain alternative is irrelevant and only how many agents
choose it is taken into account.

The second example comes from the social choice theory. We are inter-
ested in finding a good aggregator of preferences, a social welfare functional.
Consider the majority voting rule: it is anonymous since if you permute the
preference profile in any possible way, the result does not change because,
again, what matters is the number of people preferring a particular alterna-
tive and not the characteristics of such people.

In the context of nonatomic games, anonymity shares part of its mean-
ing with nonatomicity. Nonatomicity is actually the representation of the
economic idea of weak strategic interaction, where a large number of players
participate but each one is so small that can be neglected (as in competi-
tive markets). Indeed, since any player, alone, is irrelevant, it follows that
any two individuals are symmetric in the sense that they are both unable to
influence the situation. In this view, nonatomicity, then, already embodies
some of the anonymity features (this is not the case in finite games, where
each player has a non negligible impact on any other)?.

Nonatomicity has to be represented with a nonatomic measure, i.e. roughly
speaking with a measure assigning a null value to any singleton. It is there-
fore obvious to consider the, naturally nonatomic, Lebesgue measure, at least
when we model the players’ set as a real interval?.

3Some more insights on this dualism can be found on the anti-folk-theorem literature:
there are so many players that a single deviator is undetectable. A single player looses his
identity in the “ocean” of the players’set.

4Consider a real interval endowed with a Borel o-algebra. In this context any subset
of players can be obtained by a countable union of disjoint intervals. Then, the Lebesgue
measure is appropriate, because it associates to each interval its lenght, and to each subset
the lenght of the composing intervals. A singleton is a degenerated interval with zero
measure.



Once the nonatomic setting has been established, requiring anonymity
means that, we are interested on the aggregate behavior i.e. on the measure
of the players’ set which chooses a particular alternative. In this sense, none
is relevant per se, but what matters is societal conduct.

In the nonatomic games the anonymity property is formalized making the
payoff functions dependent on the players’ distribution over the alternatives.
More precisely, in Schmeidler, 1973, and in Rath, 1992, the payoff functions
depend on the Lebesgue integral of the (vector valued) strategy profile over
the players’ set, while in Mas Colell, 1984, and in Khan, Rath, and Sun,
1997, the induced distribution generated by the strategy profile is directly
employed.

4 Three proofs of existence

In this section we discuss about the different approaches to prove the exis-
tence of a Nash equilibrium in a normal form nonatomic game.

The point is how to formalize anonymity. Two ways have been considered
in literature: we may aggregate the players behavior either taking an average
of the “societal response” or dealing with the complete distribution of the
players over the alternatives.

Schmeidler interprets anonymity following the first method, while Mas
Colell formalizes anonymity as a distribution of the players on the alterna-
tives. Rath makes use of the strategy profile integral, but we may interpret
it as a distribution.

As Khan, Rath, and Sun, 1997, emphasize, whenever we assume the ac-
tion space finite, the two approaches are perfectly equivalent, at least when
we formalize pure strategies as unit vectors in the n-dimensional Euclidean
space. Thus, the strategy profile will be a vector-valued function whose inte-
gral is a n-dimensional vector, with the measure of the players set choosing
the i-th action at the i-th coordinate. Such vector is nothing else than the
distribution induced by the strategy profile. Nevertheless, we may also inter-
pret this integral as a mean of a vector-valued random variable. Therefore, in
this case, referring to averages or distributions is a matter of interpretation.

When the action space is countably infinite it is possible to show the ex-
istence with both the distribution and the average approaches. Distributions
of correspondences have to be considered when we use the first strategy (see
Khan and Sun, 1995) and adequate integration tools (respectively Lebesgue



integral in the finite dimensional Euclidean space and Gel’fand and Bochner
integral in infinite dimensional general spaces) when averages are employed
(Khan, Rath, and Sun, 1997).

A new problem arises when we deal with an uncountable action set: there
is no difficulty in building a distribution, but it is impossible to prove the
existence of a pure strategy Nash equilibrium (Khan, Rath, and Sun, 1997).
On the other hand, how to formalize a notion of average of a vector random
variable taking uncountably infinite possible values on an infinite dimensional
space”?

The only positive result is that of Rath, 1992, (Theorem 2), who assumes
the action space as a compact (uncountable) subset of " and, working with
Lebesgue integrals, gets the proof of existence in pure strategies.

Here, we wish to focus mainly on the simplest case of finite actions, be-
cause it contains the principal insights of the nonatomic game theory and
because it will be sufficient to understand the applications of Chapters 2 and
3 (as well as all applications mentioned in the previous subsection).

Then, we first consider Schmeidler’s proof, pointing out as he finds a
pure strategy Nash equilibrium through a purification process of the mixed
strategy equilibria. He uses anonymity, in the sense of average, only to make
use of the Lebesgue integral properties in the purification. In principle, any
linear operator having the same properties of the correspondence Lebesgue
integral (Aumann, 1965) could be used.

Secondly, following Rath, we show an application of the explained equiv-
alence between integrals of vector valued functions and distributions. This
author exploits the property of a subset of the Euclidean space (the set of
the strategy profiles integrals) from the beginning of his proof, making use
neither of function spaces nor of weak topology. Moreover, no purification is
required.

Finally, we show an extreme use of the distribution formulation, proposed
by Mas Colell, 1984, although infinite actions are assumed in this formula-
tion. Mas Colell is the first to fully recognize the power of the distribution
formulation. He defines a game as a distribution on the space of payoffs,
i.e. there are no individual names. Each individual payoff depends on the
players’ distribution on the alternatives and a Nash equilibrium distribution
is such that, given the players’ distribution, almost every player obtains his
highest payoff.

We mention that Khan and Sun, 1994, provide a synthesis of the two
approaches.



The common framework and notation for the three proofs are the follow-
ing. Specifications and particularities will be remarked for each one.

T = [0,1] is, without loss of generality, the set of players endowed with
the Lebesgue measure A. We consider this measure because it is atomless,
indeed well representing the notion of negligibility®.

There are n possible alternatives (actions), each of them represented by
a unit vectors in ", that is, the vector e; is the unit vector with 1 as i-th
coordinate and zero otherwise and it is associated with the i-th alternative.
Therefore, the set of alternatives is F = {eq, ..., e, }.

The convex hull E = conv({e1, ..., e, }) is the set of the all possible mixed
strategies, with elements denoted e = (my, ...m,), where 7; is the probability
of playing the alternative i. Therefore, the pure strategy e; is a particular
mixed strategy, as usual. R R

A mixed strategy profile is a measurable function f : T" — E that as-
sociates to each player ¢ € T an element of E denoted as the n-vector
(fY, ..., f™), where fis the real valued component from 7T to [0,1]. In other
words, we associate to each ¢ the probability of playing each alternative. F
is the set of all mixed strategy profiles.

A pure strategy profile is a measurable function f : T — FE that associates
to each t € T an element of E denoted as the n-vector (f!,..., f*), where f!
is the integer valued component from 7 to {0,1}. F is the set of all possible
strategy profiles. Obviously, since F/ C E , it follows that F' C F.

4.1 Schmeidler (1973)

Schmeidler proves two results: the existence of a Nash equilibrium and the
existence of a Nash equilibrium in pure strategies for the nonatomic games.

He first determines the equilibrium existence in mixed strategies. He
considers n possible actions, a mixed strategy as a vector in ", where the
i-th coordinate value is the probability assigned to the i-th alternative. The
(mixed) strategy profile is then an n-vector valued function that associates
an n-vector to each player ¢ € T'. The payoff depends on the individual strat-
egy and on the strategy profile, and, therefore, it is defined over a function

9We recall that a measure is a real function defined on a family of subsets. It has the
properties of positivity and o-additivity (i.e. the measure of a countable union of disjoint
sets is the sum of the sets measures).

Whenever the space of use is real, the Lebesgue measure is the natural atomless measure
to employ.
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space. Schmeidler uses the Fan Glicksberg fixed point (a generalization of
Kakutani’s fixed point) to show the existence of a Nash equilibrium. The
existence of a pure strategy Nash equilibrium is obtained through a process
of purification of the mixed strategy profiles, using the convexity properties
of the Lebesgue integral. This process is possible only under the assumption
that the individual payoff depends on the integral of the strategy profile.
Explicitly, the author interprets the strategy profile integral as a strategy
average.

Nevertheless, the individual payoff continues to depend on the function
space of the strategy profiles, while it is the payoff function that embodies
the integral operator. Formally, anonymity is represented as ugchmeidier =
uof:TxE’\xﬁ—NR[andnotasu’:TxEx{fod)\:fEﬁ}e%like
one may misunderstand given the oblique formulation of Schmeidler].

The set F , the set of all mixed strategy profiles, is endowed with the L,
weak topology. This set is a compact, convex subset of a locally convex linear

topological space.
Now, we define the payoff function as

w TXEXEF—%R

and we require u(t, -, fA) to be a Von Neumann-Morgenstern utility function,

ie u(t,e f)= ZW u(t, e;, f).

Each player t 1s then endowed with a specific payoff function, dependent
on his mixed strategy e € E and on the mixed strategy profile f € Fb.

By now we have described the normal form of the game.

We need two assumptions.

6Schmeidler first defines an auxiliary function v(-,-) : T x F — R Its component
vi(t, f),for i =1,...,n, describes the utility of player ¢t € T playing e; when almost every
player chooses f, i.e. each player plays his mixed strategy, and player t chooses the pure
strategy e;. Then the payoff of player ¢ is defined as

~

w(f) = F(t) - o(t, f)

or the inner product in R™. Thus, the payoff, when one playes a mixed strategy, is expected.
It is obtained using the probability distribution represented by the mixed strategy.

To be consistent with Shmeidler’s formulation, here we assume u(t, -, f) a Von Neumann-
Morgenstern (VNM) function.
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Assumption 1 (Schmeidler) Forallt e T, u(t,-,-) is continuous on E x
F w.r.t. the weak topology”.

Assumption 2 (Schmeidler) For all fAin F and i,7=1,...,n the set {t €
T|u(t,e;, f) > u(t,e;, f)} is measurable. In words, this is the set of all
those players preferring the pure strategy e; to the pure strategy e;,

given f is measurable.

Both assumptions have just a technical meaning, as we will indicate in
the sketch of proof. Here it is sufficient to notice that they are quite mild.
Similar versions of them will be substantially present in any proof we discuss.

Definition 1 A mized strategy profile f is a Nash equilibrium iff
YmeE  ult, f(t),f) >ult,m, f) A— a.e.

At equilibrium, given the strategies played by all players, summarized
by the function f, almost everyone (a.e.) estimates unprofitable to deviate.
When we say “almost everyone” we mean that all agents, except, eventually,
a zero-measure set, choose the equilibrium strategy. We content with this
condition, weaker than the requirement we used in finite games, because in
nonatomic games a zero-measure set of players has no effect on the strategic
interaction. Intuitively, since any individual is negligible, also a small enough
set (i.e. of zero-measure) is uninfluential.

Now, we can state the first result of Schmeidler.

Theorem 1 A nonatomic game in normal form fulfilling assumptions (1)
and (2) has a Nash equilibrium.

The proof of the Theorem 1 is, as usual, based on a fixed point argument.

Schmeidler first defines the best reply correspondence for the player ¢ and
given the strategy profile f as

B(t,f) ={m € E|‘v’m' cE: u(t,m,f) > u(t,m',]/”\)}

"This assumption is equivalent to that of Schmeidler (he assumes just continuity of

v(t,-) on F), because we have assumed u(-) a VNM function. Indeed, continuity on E is
not a restiction, given the kind of linearity required.
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The best reply correspondence is nonempty (because of continuity of
u(t,-)) and convex valued (i.e. if any two strategies belong to it, then all
their convex combinations are best responses, given the linearity with re-
spect to the second argument). Furthermore, since u(t,-) is continuous on
E x F it is non empty and has closed graph. The main interest of the proof
lies in the following correspondence « : F — F defined as:

a(f) = {g € F| ae. §(t) € B(t, f)}

Such a function associates to each mixed strategy profile the set of the mixed
strategy profiles with the property that for almost every player, the mixed
strategy played by player ¢ belongs to the best reply correspondence of ¢,
given the strategy profile f. That is «(f) is the set of the best responses
profile of all agents facing the profile f It is clear from now that if the best
response profile to f is f , then f is a Nash equilibrium. Hence, we want the
function a(f) having a fixed point. Indeed, Schmeidler shows that a(f) is
non empty, convex and it has closed graph. Therefore, by the Fan-Glicksberg
fixed point theorem a fixed point exists and the proof is done.

The main result, as emphasized by Schmeidler himself, is:

Theorem 2 If, in addition to the conditions of Theorem 1, a.e., u(t, f(t), f\)
depends only on fT f, then there i1s a Nash equilibrium in pure strategies.

Theorem 2 is a corollary of Theorem 1. We have to show that there
exists a pure strategy profile p having the same Lebesgue integral of the
mixed strategy equilibrium f* and belonging, for almost all players, to the
respective best reply correspondence, given f*. In other words, we need
the effect of the two strategies on the payoff to be the same, since we have
assumed that the u(-) depends on [, f, and that the player is indifferent
between the pure or the mixed strategy of equilibrium, because both p and
f* belong to B(t, f*). Roughly speaking, p is an “alternative” as good as f*
for almost all players.

Since B(t, f*) is convex valued, when more than one pure strategy be-
longs to B(+,-), all the mixed strategies (=convex combinations) that assign
positive probabilities only to these alternatives, belong to B(-,-). More for-
mally,

B(t, f*) = conv({ei|e; € B(t, [*)})

13



Moreover, we have:
| Be.F) = [fele e .7
T T

To show this, we use an intuitive argument. Suppose that B(t, f*) ={eg,ea}.
By the definition of integration of correspondence, we know that fT{el, exdA =
{(a,1—a,0,...,0) for all a € [0, 1]}. This is noting else that the convex hull of
{e1,e2}. Now, if we integrate the set {(a,1— a,0,...,0) for all a € [0,1]}, we
obtain the same set, because a linear combination of two elements of another
linear combination belongs to the last.

By definition, the Lebesgue integral of a correspondence is the set of
Lebesgue integrals of all integrable selections belonging to the correspon-
dence. Therefore we have that:

/TB(L; 7y = {/Tp | pe P and ace. p(t) € B(t,f*)}

/T{ei|ez~ € B(t, )} = {/Tp | pe Fandae. p(t) € {eile; € B(t,f*)}}

Clearly, a selection of the set {ez\ez € B(t, f* *)} is a profile of pure strate-
gies. Recall that [, e JB(t, f*), since f* is a selection of B(t, F* ).

Combining the two equalities above, we have that fT f Y e { pr | pe 2

and a.e. p(t) € {e;le; € B(t, fA*)} and, therefore, there exists a pure strat-

egy profile with the same integral of fA* that also belongs to B(t,fA*) for
almost all ¢.

The measurability condition (2) ensures that everything is integrable.

Since the relevant result, in our perspective, is surely the existence in
pure strategies (theorem 2), we have focused on the purification process. It
is based on Aumann, 1965, (Theorem 3), which makes use of the convexity
property of the Lyapunov’s Theorem.

Notice that the linearity assumed for the payoff functions determines the
starting point of this process: it enables us to represent, for each ¢, the
best replay correspondence as the convex hull of some pure strategies®. But

8Recall that, with a VNM function, if a mixed strategy is chosen, then it will mean
that the player is indifferent among all pure strategies receiving a positive probability.
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then, any player has at least one pure strategy in his best reply. Hence,
what remains is just to pick the “good” pure strategy from any player best
response set.

4.2 Rath (1992)

Rath proves the existence of a pure strategy Nash equilibrium, assuming that
the payoff functions depend on the Lebesgue integral of the strategy profile.

He uses the same setting as Schmeidler to formalize the individual pure
strategy; moreover, the agents are supposed to play only pure strategies.
Contrary to Schmeidler, he directly exploits the properties of the Lebesgue
integral of the vector valued strategy profile. Hence, this yields a distribution
of the players on the alternatives because its outcome is a n-vector with in
each coordinate ¢ = 1, ...n the measure of the set of players choosing the i-th
action.

Given this interpretation, we claim that the Rath, conceptually, matches
the average and the distributional approach.

We denote by S = { [, fd\|f € F'} the set of all Lebesgue integrals of the
strategy profile, defined as ([, f'dA, ..., [ f"d)), or, in words, the Lebesgue
integral of the vector f is the integral of all its coordinates. Finally, we denote
with s an element of S. It is important to remark that S can be identified
by the simplex in R".

Then, the individual payoff directly depends on the players distribution,
ie. uRath:TxEx{fod)\:fGF}H%.

What differs from the Schmeidler’s procedure is the fact that, here, the
existence in pure strategies is proved directly, i.e., there is no process of pu-
rification of the equilibrium in mixed strategies: this is important from a
conceptual point of view because mixed strategies “have a limited appeal in
many practical situations, and it thus seems paradoxical to show the exis-
tence of a pure strategy equilibrium by focusing on equilibrium in [mixed|
strategies first and then purifying it later.”( Khan and Sun, 1995, p.637).
Furthermore, “On a more technical level, the direct proof requires that the
players search only among their set of pure strategies, thus leading to the
computation of the fixed point of a correspondence coming only from their
pure strategies, and hence free from all of the objections against using [mixed|
strategies.” (ibidem).

Given the simplification implied by the use of an Euclidean space, rather
than a function space, the proof calls “only” for the classic Kakutani’s fixed
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point theorem.

Assumption 1 (Rath) We denote u : T'x E x S — R the payoff function;
u(+) is real valued and continuous on E X S.

This assumption parallels Schmeidler assumption 1.

Remark 1 Under anonymity, Schmeidler’s assumption 1 is equivalent to
Rath’s assumption 1.

Proof. Since uschmeidier 18 continuous on E x F then it is continuous
also on £ x F, being £ X F C E x F. Then we focus on F x F. Under
anonymity, uschmeidier = U0 f :T'x B x F. This is equivalent to usechmeidier =
u:TxFE X {fod)\:feF}. Since S = {fod)\:fEF}, we conclude
that Ugemeidier 1S continuous on £ x S. m

Notice that the Rath’s payoff functions are defined on S, the set of the
Lebesgue integrals of the strategy profiles’. This definition really means that
distributional nature of the Lebesgue integral is considered, rather than its
meaning of average.

Here is the definition of a Nash equilibrium (in pure strategies) in the Rath
setting. What differs from Schmeidler, is, obviously, the third argument of
the payoff function and the focus on pure, rather than mixed, strategies.

Definition 2 A (pure strateqy) Nash equilibrium of a game 1S a pure strategy
profile f € F such that for almost every t, u(t, f(t), [ f) > u(t,e;, [ f)
Ve; € I.

We need the following assumption, equivalent, under anonymity, to the
Schmeidler’s assumption 2.

Assumption 2 (Rath) For any s € S and e;,e; € E, the set {t € T |
u(t,e;, s) > ult,e;, s)} is measurable!'’

Given this framework, the main result is:

9Notice also that the set of Lebesgue integrals of mixed strategy profiles coincides with
the set of Lebesgue integrals of pure strategy profiles.
10 Equlvalence is easily verified representig Schmeidler payoff not as wo [(¢, f(t), f), but

as u(t, f(t), [ ).
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Theorem 3 Under Rath’s assumptions 1 and 2, every nonatomic game has
a pure strateqy Nash equilibrium.

As mentioned above, the proof is based on a fixed point argument and
calls for the Kakutani’s fixed point theorem. Since from the beginning only
the anonymous nonatomic games are considered, the proof is greatly simpli-
fied. The identification of S with the simplex in " allows us to consider
only a finite dimension Euclidean space.

The first step is to define the best reply correspondence B : T'x S — E
by

B(t,s) ={a € Elu(t,a,s) > u(t,e;,s) Ve; € E}

Notice that s, representing the Lebesgue integral of a strategy profile, is
the distribution of the players over the alternatives. Indeed, B(t, s) is the set
of the best responses for ¢.

Given the continuity of the utility function, this correspondence is non
empty and has closed graph.

The second and interesting step of the proof is to define the correspon-
dence I': S — S by

I(s) = /TB(t,s)d)\

If the correspondence I' had a fixed point, then it would exist a pure
strategy profile f* such that [.f*d\ = s* € [, B(t,s*)d\. This would
mean that f*is a selection of B(t,s*) or that for almost all ¢, the strategy
f*(t) belongs to the best reply of ¢. Then, the profile f* would be a Nash
equilibrium. In fact, Rath shows that I'(s) is non empty and convex and has
closed graph. Therefore, by the Kakutani’s theorem, I'(s) has a fixed point.

We will use this kind of proof to demonstrate the extension mentioned in
the introduction and discussed in the next section.

Note that, here, nothing guarantees that B(¢,s) is convex (because we
have not assumed any concavity of u, unlike in finite games). Convexification
is the integral role in I'.

4.3 Mas-Colell (1984)

The Mas-Colell’s work is quite different from the previous two because he
explicitly considers the (probability) distribution of the players rather than
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the Lebesgue integral of the strategy profile as an argument of the payoff
functions. Therefore, the proof is not based on the properties of the Lebesgue
integration. As Rath, he directly shows the existence of an equilibrium in
pure strategies.

Moreover, the game itself is intended as a distribution. We have seen that
in Schmeidler and in Rath there is an, implicit, rule that associates to each
player a payoff function. Therefore, we have to name any individual (7" is the
set of players’ names) and to give to each name a specific utility. However,
in a nonatomic and anonymous context this is, actually, unnecessary. What
really matters is how many players have the same preferences and not who
these individuals are. Indeed, we may consider the (induced) distribution of
the players on the space of payoffs.

Let us present the framework.

E is always the set of actions''. We consider the set of all possible prob-
ability distribution on E. Clearly, such a set is the simplex in R", i.e. the set
S12,

A player is completely characterized by (or his name is) a continuous
utility function

u:ExS—R

Notice that there is no more a dependence on 7. In particular, given an
action e; € E and a distribution s € S, u(e;, s) is the utility enjoyed by the
player.

Ug is the space of all continuous utility function u(-, ) endowed with the
supremum norm. This represents also the space of players characteristics.

A game with a continuum of players is then characterized by a Borel
measure p on Ug. Notice that here the global “number” of players does
not matter. What matters are the characteristics of the players or their
heterogeneity. If such heterogeneity is not too large, i.e. if the characteristics
set is not “dispersed”, clearly p may present some atoms: in other words, a
given characteristic may have a strictly positive measure. This only means

11 Actually, Mas-Colell is much more general, allowing for any non empty and compact
metric space.

12 Again, the author is much more general and considers the set of the Borel probability
measures on the action space, endowed with the weak convergence topology. Here we
make this simplification to unify our presentation of the three approaches to prove the
Nash Equilibrium existence in the nonatomic games.

18



that a strictly positive measure set of players has the same utility function,
but it is not in contradiction with the nonatomic feature of the game, i.e. it
remains true that each individual is negligible.

Definition 3 Given a game p, a Borel measure T on Ug X E is a Nash
equilibrium distribution if, denoting Ty, T the marginals of T on Ug and E
respectively, we have

(i) Tv=p

(1) T({(u, a)|u(a, 7g) > u(d’,7g) Ve; € E}) =1

Notice that, even here, we are interested on the Nash equilibrium distri-
bution and not on the strategy profile of equilibrium. This is because, there
is no actual worth in knowing what each individual plays. Mas Colell is the
first to exploit this feature.

Let us discuss on this definition.

The point (i) requires simply that all player characteristics are taken
into account in the equilibrium distribution. The point (ii) requires that for
almost all characteristics, there is a best reply alternative a € F given the
marginal distribution of the players over the alternative set. We can also
read such a condition as “the probability of the set of the pairs (u,a) such
that u(a,7g) > u(e;, 7i) Ve; € E is one”.

The main result is:

Theorem 4 Given a game p on Ug there exists a Nash equilibrium distri-
bution.

The proof is an application of the Ky Fan fixed point theorem.

Let us denote by €2 the set of all probability measures on Ug x E with
the property that 7, = p, i.e., the set of all the distribution that verifies the
condition (i).

Given 7 € Q, B; = {(u,a)|u(a,7g) > u(e;,7g) Ve; € E} is the set of
all the pairs (u,a) considered above. Now, a correspondence ® : Q — € is
defined by

O(r)={r" e Q7 (B,) =1}

Such a correspondence draws all the joint distributions that verify the
condition (i) and (ii), given the joint distribution 7. It is the equivalent in
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this context of the a(-) function of Schmeidler: it associates to each dis-
tribution 7 the (set of its) best reply distribution. Clearly, if a fixed point
exists, the distribution 7 is a Nash equilibrium distribution. In fact, such a
correspondence is shown convex valued, upper hemicontinuous and compact
valued. Therefore there exists a fixed point by the Ky Fan theorem.

Note how in such framework is very general and relatively low demanding
to show the existence of a Nash equilibrium in pure strategies. What is de-
terminant is the way to define the Nash equilibrium distribution. Thereafter,
the procedure is quite usual.

Furthermore, if we give again a name to each player and then we make u
dependent also on 7', we are in the setting of Rath.

5 An extension to limited anonymity

In what precedes, it is apparent that the existence of a pure strategy equilib-
rium in a nonatomic game is a consequence of the payoff function dependence
over the average strategy or over the distribution of the players on the al-
ternatives. In other words, the existence of an equilibrium in pure strategies
depends on the anonymity assumption'®.

Nevertheless, anonymity is not always a good requirement, if we are in-
terested in modelling settings, where there are different groups of players
having different impacts on the payoff function and so on the choice of a
given player. We remember two examples: the researcher’s topic choice may
depend on the distribution of the stars and on the distribution of the other
researchers; still, the driver’s route choice may depend of the distribution of
several groups that are moving at his same time, such as students, workers,
employees etc.

Inside each group there is no reason to give up anonymity, but, between
the groups, having complete anonymity impedes to model correctly the set-
ting. A way to introduce a “limited anonymity” is to consider that the
payoff functions depend over several average responses, one for each group.
In this way is possible to consider the different weight that a particular group
decision has on the choice of a given player.

13 Actually, D’Agata, 2002, shows that a pure strategy Nash equilibrium also exists in
games where the players’ space exibits some atoms. This is possible when the atoms are
“small enough” to make the correspondence integral star-shaped valued.
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In Schmeidler, 1973, there is a remark suggesting a easy generalization
of the existence proof in pure strategies in this sense. In what follows, we
will state the framework and prove the existence of a such equilibrium. The
proof is an extension of the Rath’s proof.

Our strategy is different from Khan and Sun, 1995. They prove equi-
librium existence in pure strategies in a setting of countably many possible
actions. Nevertheless, their generalization requires a different formal implant,
dealing directly with distributions. Moreover they develop a set of theorems
on the distributions of a correspondence from a nonatomic probability space
to a countable compact metric space. All this is based on a original extension
of the Bollobas and Varopoulos, 1974, version of the marriage lemma.

On the contrary, as Rath, we formalize distributions by the mean of
Lebesgue integrals of measurable vector-valued functions and we consider
only finite alternatives. Despite this last limitation, the interest of our ex-
tension is its simplicity: since it follows the Rath’s approach, it embodies its
features. Only standard tools on correspondence integration and the clas-
sic Kakutany’s fixed point theorem are applied. In any case, the interest of
dealing with countably many alternatives is mostly mathematical.

Consider a set T' = [0, 1] that represents the set of all players in the game.
Such a set is endowed with the atomless Lebesgue measure A. Consider k
real numbers in 7', denoted as 71 < ... < 7. Let 79 be 0 and 74 be 1 (the
boundaries of the 7" interval).

Denote Ty = [0, 71] and T}, the subset |71, 75]'*. By construction, we

k

have that |J T, = T. Therefore, the T}, subsets represent the groups of
h=1

players discussed above.

It is worth to remark that the group definition has to be a fixed partition,
i.e. it cannot be player-dependent. For instance, it is not possible, in the
context of this extension, to consider situations where the player t’s payoft
mainly depends on the strategies adopted by the players close to him, i.e.
belonging to a symmetric neighborhood N; C T of t. In this case, we would
have a binary partition {N;, T\ N;}, for each t.

We recall that the set of alternatives is the set of the unit vectors in R"
where the vector e; has one at the i-th coordinate. A pure strategy profile

14We can equivalently deal with a general parition of measurable sets, rather than
intervals, as suggested by Schmeidler, 1973. Here we use this formulation only to unify
the exposition with the applications presented in the following chapters.
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is a measurable function f : 7" — E which associates an alternative to each
player.

Since a function integrable on T is integrable on any 7T}, (Aliprantis and
Burkinshaw, 1998), we denote with S, = {[,, fd\|f € F} for h = 1,....k
the set of the Lebesgue integrals for any possible strategy profile f. We label
also an element of .S;, as s,. Notice that S; X ... X Sy is a compact and convex

subset of R¥*™ and that S, = {(s},...,s%) € RT| Y. sl = 7, — Th_1} or the
iz

(Th — Th_1)—simplex in R".
We define the payoff function as

u:TxEXS; X...xS,—R

and we require that it is continuous on E x S; X ... x S;'°.
We assume that {t € T|u(t,e;, s1, ..., Sg) > u(t,ej, s1,...,s5)} is measur-
able for any sy, ..., sy and for any e;,e; € E'°.

Definition 4 A non atomic game with limited anonymity in normal form is
a family G =A{T, (71, ..., 7x), E,u}.

Now we are ready to state the appropriate Nash equilibrium definition
for G.

Definition 5 A profile f € F is a pure strateqy Nash equilibrium of G if for
almost all't € T, u(t, f(t), |7, [, ...,ka f) > ult e, [4, f, ...,ka f) Ve; € E.

In other words, at equilibrium, almost all players have no incentives to
deviate, given the distribution of each subset of agents over the alternatives.
The result of this extension is:

Theorem 5 G has a Nash equilibrium in pure strategies.

Proof. Define the best reply correspondence B : T' X §1 X ... x Sy — F
as

B(ta 81, "'ask) = {a\u(t,a,sl, ---,Sk) 2 u(taeiasla “'7S/€) vei € E}

15Continuity is a requirement always present. It is necessary for the best reply corre-
spondence to be nonempty (“Theorem of Maximum”: Berge, 1962)

16We require mesurability to build mesurable (an integrable) selections of the best reply
correspondence. More precisely, we need that any image set of a selection g : T — E is
measurable. If it is the case, g is a measurable function by definition.
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For any (t,s1,...,sk), B(t,s1,...,5¢) is non empty because of the finite
number of alternatives and because of the continuity of the utility function.
For any t € T, B(t,-) has closed graph. Indeed, for any pair of sequences
{s", ..., 0"} — (s1,..., sx) and {a™} — a such that a™ € B(t,s]", ..., s}') Vm
we have that u(t,a™, s, ..., s7) > u(t,e;, s7, ..., s7) Ve; € E. Since u(t, -) is
continuous on F X S; X ... X Sg at the limit we have that u(t, a, s1, ..., sx) >
u(t, e;, 51, ..., Sx) Ve; € E and thus the graph is closed.

Let us define the correspondence I' : S X ... X Sy — S1 X ... X S} as

k

D(s1, - 5%) = || [/Th B(t, s1, ...,sk)}

h=1

e [ is non empty for all sq, ..., s.

Fix a profile (s, ...,s) € S X ... x Sg. For any e;, ¢; € E define the set
Vij =A{t € T|u(t, e;, 51, ..., Sg) > u(t,e;, s1,...,55)} or the set of all those
players that prefer e; to e; when facing the profile (s1, ..., sy). Because
of the assumption of measurability, such a set is measurable. Now we

construct a partition of T" starting from the family of set V;;. V; = (| V};
i

is the set of players that prefer e; to any other alternative. Such a set
is measurable. Let V] = V; and V/ = V; N (U;; V)¢ for i =2,...,n. By
construction {V/,...,V'} is a partition of T of measurable subsets.

Let us define the function g : T — E as g(t) = e; if t € V. Therefore,
g(+) is measurable by definition and ¢(t) € B(t, s1,...,s) for all t € T,
since g(t) represents the best response for ¢, by construction. Then, for
any (s1, ..., i) there exists a measurable selection of B(-, s1, ..., Sg) rep-
resented by ¢(t). Finally, I'(sq, ..., sg) is non empty for any (s1, ..., sk).

e I'(+) is convex valued.
Since A is atomless I'(+) is convex valued (this comes from the definition
of Lebesgue integral of a correspondence)

e I'(+) has closed graph (and it is upper hemicontinuous since the image
set is compact).

Let the function H : T'— R" defined as h(t) = (1,...,1) = eVt € T\
Clearly, h(-) is bounded as well as [, h(t)dA. Therefore, we have f(t) <
h(t) Vt € T and Vf € F, because f(t) is a unit vector for all ¢. Since we
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showed that B(t,-) has closed graph, I' too has closed graph because
any possible selection is bounded (Aumann’s theorem (Aumann, 1976)
or “integration preserves upper hemicontinuity”).

By the Kakutani’s fixed point theorem, I' has a fixed point (s7, ..., s}).
k

Indeed, it exists a pure strategy profile f* € F such that [] fTh frd\ =
h=1

(s7,..,85) € I'(s],...,s5) and thus f* € B(t,s],...,s;) for almost all ¢ € T
or, equivalently, f*(¢) is a selection of B(t, s3, ..., s;) for almost all t € T', or,
again, f* is a pure strategy Nash equilibrium. m

This proof closely follows the procedure found by Rath. The main exten-
sion is represented by the definition of the I' correspondence as a Cartesian
product of Lebesgue integrals, rather than a simple Lebesgue integral of the
best reply correspondence.

6 Conclusions

This paper mainly analyzes the existence of a Nash equilibrium in pure strate-
gies for the class of normal form nonatomic games.

Anonymity is the fundamental requirement to get the result. We present
two different approaches to formalize anonymity, one dealing with the no-
tion of average of the “societal response” and the other with the concept of
distribution induced by the strategy profile.

Three different proofs of existence are discussed. We wish to point out
the connection between the Rath’s and Mas Colell’s settings, at least when
we limit to finite action spaces. Actually, both consider players’ distribution,
although the former builds it as an integral of a strategy profile taking values
in 1", while the latter directly employes a distribution.

On the other hand, Schmeidler’s work makes use of anonymity, in the
sense of strategy profile integral, only to exploit Lebesgue integration proper-
ties in the purification process. Indeed, he shows mixed strategy equilibrium
existence without assuming anonymity.

Thereafter, following the Rath’s approach, we prove, in a natural and
simple way, the existence of a Nash equilibrium in pure strategies for the class
of nonatomic games with limited anonymity whose payoff functions depend
on the distributions of a finite number of players’ subsets. This extension
allows to model a much larger set of problems, given the fact that it permits
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to differentiate the players in groups, avoiding the limitation implied by a
complete anonymity (or symmetry) among players.
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