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GROUP SIZE AS SELECTION DEVICE

FRANCESCO DE SINOPOLIa, LEO FERRARISb, AND CLAUDIA MERONIc

ABSTRACT. In a coordination game with multiple Pareto ordered equilibria and

population uncertainty, we show that group size helps select a unique equilib-

rium, for reasons reminiscent of the global games literature. A critical mass

phenomenon emerges at equilibrium. Group size has an emboldening effect on

participants.

KEY WORDS. POISSON GAMES; COORDINATION GAMES; EQUILIBRIUM SE-

LECTION; GLOBAL GAMES

JEL CLASSIFICATION. C72, D82.

1. INTRODUCTION

Imagine you have accepted an invitation to a party, but it’s unclear whether

it’s a costume party or not. A dilemma emerges: showing up in a costume will be

fun if other guests dress up, but awkward otherwise. There is a safe but boring

choice — i.e. dress mundanely— and a potentially fun but risky choice — i.e.

dress up. Among the guests who may join the party, some can’t wait to dress up,

while the rest would be willing to dress up if enough others do but not otherwise.

Nobody, except the host, knows exactly how many people have been invited to

the party.
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This situation can be represented formally as a coordination game with pop-

ulation uncertainty.1 Following Myerson (1998), we model the uncertainty over

the actual number of guests assuming that it is drawn from a Poisson distribu-

tion with a known expected number of guests. The resulting game has a unique

equilibrium when the party is expected to be very small, with all the strategic

guests dressed mundanely, or very large, with all the guests dressed up, but has

multiple equilibria for intermediate party sizes.

It turns out that, if also the expected number of guests is unknown, but each

guest receives a slightly imprecise message from a friend of the host about how

large the party is expected to be, a unique equilibrium of the underlying game

can be selected, with an argument analogous to the one used in the global games

literature à la Carlsson and Van Damme (1993a) and Morris and Shin (1998).2

Given that the expected size of the party is not common knowledge among

the guests, the possibility that the party may be either small or large exerts an

influence on ordinary situations through the hierarchy of mutual beliefs, helping

select a unique equilibrium for any party size. Which equilibrium is selected

depends on the expected size of the party. All the guests show up in costumes

when the party is sufficiently large, as the presence of a few costume enthusiasts

exerts a pull on the undecided guests, but not otherwise.

The social dilemma gives rise to a critical mass phenomenon of the type dis-

cussed by Schelling (1978). Critical mass phenomena have been examined in the

theoretical literature under the rubric of regime change, using the terminology

of Angeletos et al (2006, 2007), as coordination games in which the status quo is

abandoned if enough players take action against it. As in global games, a unique

1 Using a terminology that goes back to the XVIII century Swiss-French philosopher, Jean

Jacques Rousseau (Binmore, 1994, p. 120), this type of coordination game is known as a stag

hunt, see Aumann (1990).
2 Originally, the result was proved in a two players stag hunt game. Carlsson and Van Damme

(1993b) have extended it to a stag hunt game with a finite number of players. Subsequently, the

result has been extended further to a continuum of players and multiple actions with strategic

complementarity. See Morris and Shin (2003) for a comprehensive survey of the literature on

global games.
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equilibrium can be selected when the strength of the status quo is not common

knowledge among the players.

In our model, it is the (actual and expected) number of participants in the

game that is not common knowledge. Hence, the selection device is the overall

size of the group rather than the strength of the status quo. There is well docu-

mented experimental evidence that group size matters for equilibrium selection

in coordination games with multiple Pareto ordered equilibria, e.g. Van Huyck

et al (1990) and Weber (2006) for experiments on the minimum effort game à la

Bryant (1983) and Arifovic et al (2023) on bank runs à la Diamond and Dybvig

(1983).

Below, we recast some critical mass phenomena, such as political protests of

the type examined in Atkeson (2001) and Edmond (2013), as stag hunt Poisson

games, finding an emboldening effect of group size. We apply the framework also

to bank runs, finding that the undecided depositors withdraw their resources if

the expected number of participants is sufficiently large but not otherwise.

Poisson games, whose main properties we summarize in the appendix, have

been applied to model scenarios with large but finite populations, such as gen-

eral elections, e.g. Myerson (2000, 2002). Battaglini (2017) contains an appli-

cation to political protests.3 In a Poisson game with strategic complementarity,

Makris (2008) has shown that the equilibrium is unique for sufficiently small

population. Here, instead, we show that, even when the underlying stag hunt

Poisson game has multiple equilibria, a small amount of incomplete information

about the expected number of players helps select a unique equilibrium for any

population size.

The paper proceeds as follows. In Section 2, we present the model. In Sec-

tion 3, we find the equilibria of the underlying stag hunt Poisson game. In Sec-

tion 4, the selection procedure is carried out. The applications are in Section 5.

Section 6 concludes. Appendix A contains a summary of Poisson games and their

main properties. Appendix B contains the proof of a key Lemma.

3 Economic applications include Makris (2009) for public good provision; Ritzberger (2009)

and De Sinopoli et al (2023) for, respectively, Bertrand and Cournot competition; Lauermann

and Speit (2023) for auctions.
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2. THE MODEL

Consider a binary action Poisson game Γ. The number of agents is a Poisson

random variable with parameter n ∈ R+, that we call population size. Given n,

the actual number of agents is m with probability

P(m | n)= e−nnm

m!
.

The interaction resembles the classical “stag hunt” game. Players can choose

between a safe action S – corresponding to hunting the hare – which yields a

certain payoff irrespective of what opponents do, and a risky action R – cor-

responding to hunting the stag – which yields a payoff that increases in the

number of agents choosing it.

Agents can be of three types. Agents of type 1 are the actual players of the

game with action set A = {S,R}.4 Agents of type 2 are automata who always

play the risky action, while agents of type 3 are automata who always play the

safe action. A randomly sampled agent is an actual player with probability p,

a type 2 automaton with probability r, and a type 3 automaton with probability

s = 1− p− r.

Let x be the total number of agents choosing action R.5 The payoff of choosing

S is independent of x, while the payoff of choosing R increases in steps in x, with

finitely many steps. Let k = (k1, ...,kI), where ki ∈ Z+ for i = 1, . . . , I. Players’

payoffs are normalized to

u(S, x)= v for every x,

with v ∈ (0,1), and

u(R, x)= 0 if x ≤ k1,

u(R, x)= ui if ki < x ≤ ki+1 for i = 1, . . . , I −1,

u(R, x)= 1 if x > kI ,

with ui ∈ [0,1] for i = 1, . . . , I −1 and ui′ ≥ ui for i′ > i. We let u0 = 0 and uI = 1.

4 We will often refer to type 1 players simply as players.
5 In the description of Poisson games in Appendix A, x denotes the entire action profile. We

slightly abuse notation since only the number of agents choosing R is relevant for the analysis.
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Population uncertainty implies that all (type 1) players choose the same strat-

egy σ ∈∆(A). A strategy σ induces the population average behavior τ(σ) ∈∆(A)

which is defined by

τ(σ)(S)= pσ(S)+ s,

τ(σ)(R)= pσ(R)+ r = 1−τ(σ)(S).

When players play according to σ, τ(σ)(a) is the probability that a randomly

sampled agent chooses action a. We will often avoid to specify the dependence

of τ on σ, and we let τR = τ(σ)(R). The probability that exactly x agents choose

the risky action is given by

P(x | nτR)= e−nτR
(nτR)x

x!
,

and the players’ expected payoffs are given by

U(S,τ | n)= v,

U(R,τ | n)=
∞∑

x=0
P(x | nτR)u(R, x).

We recall the standard concepts of dominated strategy and Nash equilibrium.

Definition 1. Strategy σ is dominated by strategy σ′ if U(σ,τ | n) ≤U(σ′,τ | n)

for every τ ∈∆(A) and U(σ,τ′ | n)<U(σ′,τ′ | n) for some τ′ ∈∆(A).

Definition 2. Strategy σ is a Nash equilibrium of the Poisson game Γ if U(σ,τ(σ) |
n)≥U(σ′,τ(σ) | n) for every σ′ ∈∆(A).

We say that the average behavior τ is an equilibrium behavior (or, simply, an

equilibrium) if it is induced by a Nash equilibrium.

3. EQUILIBRIA

The space of population sizes R+ can be partitioned into three intervals ac-

cording to the equilibrium outcome induced in the corresponding Poisson game

Γ(n).

Let the Poisson cumulative distribution function be given by

F(m̄ | n)=
m̄∑

m=0
P(m | n)
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for every m̄ ∈Z+. The expected payoff of choosing R can be written as

U(R,τ | n)=
I−1∑
i=1

[
F(ki+1 | nτR)−F(ki | nτR)

]
ui +1−F(kI | nτR)

= 1−
I∑

i=1
F(ki | nτR)(ui −ui−1).

For every i = 1, . . . , I, the function F(ki | nτR) is continuous and strictly decreas-

ing in nτR .6 Moreover, F(0 | 0)= 1 and limn→∞ F(ki | n)= 0.

Let n be the value of the population size such that

1−
I∑

i=1
F(ki | n(p+ r))(ui −ui−1)= v,

that is, type 1 players are indifferent between R and S when τR = p+ r. For

every n < n, the players always prefer the safe action to the risky one, even

when all the opponents are playing R. The game Γ(n) has therefore a unique

equilibrium, in which all type 1 players choose the safe action, i.e. τR = r. If

n = n, type 1 players are indifferent between the safe and the risky actions when

all opponents are playing R, while they prefer the safe action to the risky one for

all other behaviors. Thus, the game Γ(n) has two equilibria, one with τR = r and

one with τR = p+ r. Note that the first equilibrium is strict, while the second

equilibrium is dominated.

Now, let n be the value of the population size such that

1−
I∑

i=1
F(ki | nr)(ui −ui−1)= v,

that is, type 1 players are indifferent between R and S when τR = r. Note that

we have n = n(p + r)/r. For every n > n, the players always prefer the risky

action to the safe one, even when no opponent is playing R. The game Γ(n)

has therefore a unique equilibrium, in which all type 1 players choose the risky

action, i.e. τR = p + r.7 If n = n, type 1 players are indifferent between the

safe and the risky actions when no other type 1 player is playing R, while they

prefer the risky action to the safe one for all other behaviors. Thus, Γ(n) has two
6 Given n′ > n, the Poisson distribution with parameter n′ first order stochastically dominates

the one with parameter n.
7 We need r > 0 to guarantee the existence of this dominance solvable region of population

sizes where every player chooses the risky action with probability 1, while s could be nil.



GROUP SIZE AS SELECTION DEVICE 7

equilibria, a dominated equilibrium with τR = r and a strict equilibrium with

τR = p+ r.

Consider now n ∈ (n,n). Since

1−
I∑

i=1
F(ki | n(p+ r))(ui −ui−1)> v

and

1−
I∑

i=1
F(ki | nr)(ui −ui−1)< v,

the game Γ(n) has three equilibria. There are two strict equilibria with τR = r

and τR = p+r, in which type 1 players choose, respectively, the safe and the risky

action with probability 1. In addition, there is a mixed strategy equilibrium with

τR = τ∗R such that

1−
I∑

i=1
F(ki | nτ∗R)(ui −ui−1)= v,

where type 1 players choose R with probability (τ∗R−r)/p. Note that, given n, we

have

τ∗R = n
n

r = n
n

(p+ r).

The multiplicity of equilibria in the region (n,n) cannot be addressed using

standard strategic stability principles, as all the three equilibrium points are

stable sets as defined in De Sinopoli et al (2014). In broad terms, a stable set

of a Poisson game is a minimal subset of Nash equilibria such that every close-

by game obtained through perturbations of the average behavior has a Nash

equilibrium close to the stable set. As in standard games, also in Poisson games

strict equilibria are robust to any possible perturbation. For the equilibrium

in mixed strategy, any perturbation of the average behavior in the definition of

stable set can be compensated by the players’ mixed action.

In Section 4 we will see that the equilibrium selection problem can be solved

by introducing some uncertainty about the parameter n.

3.1. Example: the party dilemma

Consider the party dilemma illustrated in the Introduction. Although, strictly

speaking, only the costume enthusiasts are necessary for our result, for the sake

of symmetry we will assume that there are both people who hate and people who
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love costume parties. Suppose the probabilities of the different personalities are

p = 5/7 and r = s = 1/7. Let the payoff of dressing mundanely be equal to 0.6, and

the payoff of wearing a costume be equal to 0 in case no other guest does so and

to 1 if at least another guest does. If all the other guests except those who hate

costume parties show up wearing costumes, the payoff of doing so is given by

1−P
(
0

∣∣∣ 6
7

n
)
,

which is the probability that at least another guest wears a costume. The above

expression is equal to 0.6 for n ≈ 1.069. Thus, whenever the expected number

of invitees is smaller than 1.069, an undecided guest will always be better off

dressing up safely, as the probability of feeling misfit wearing a costume even in

the most favorable event is too high. On the other hand, in the least favorable

event in which only people who love to wear costumes do so, the payoff of wearing

a costume is

1−P
(
0

∣∣∣ 1
7

n
)
.

This is equal to 0.6 for n ≈ 6.414. So, whenever the expected number of invitees

is larger than 6.414, an undecided guest will always be better off dressing up in

a costume, as the probability of having fun at the party is always high enough.

For intermediate party sizes, the outcome of the party is undetermined. There

is an equilibrium where all the guests in a dilemma dress normally, since

1−P
(
0

∣∣∣ 1
7

n
)
< 0.6,

an equilibrium where they all wear costumes, since

1−P
(
0

∣∣∣ 6
7

n
)
> 0.6,

and an equilibrium where they choose to wear a costume with probability σR =
n−n
2n , since

1−P
(
0

∣∣∣ (
1
7
+ 5

7
σR

)
n
)
= 0.6.

At the end of the next section, it will be possible to determine a unique equilib-

rium outcome for every given party size.
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4. EQUILIBRIUM SELECTION

4.1. Uncertainty in the population size

Assume that all the parameters of the Poisson game Γ are common knowledge

except the population size n, which is observed by the players only with some

slight noise. The resulting incomplete information game is denoted Γ̃ and can

be described as follows:

1. Nature selects the population size n according to the uniform density

over the interval [n′,n′′], where n′ < n and n′′ > n.

2. When the population size is n, each player observes a signal that is drawn

uniformly from the interval [n−ε,n+ε] for some small ε> 0.8 Conditional

on n, the signals are identical and independent across players.

3. Based on the observed signal, the players choose between the safe and

the risky action. Agents of types 2 and 3 choose, respectively, actions R

and S with probability 1 independently of their observation.

4. Payoffs are determined by Γ and the players’ choices.

A strategy for players in the game Γ̃ is a measurable function σ̃ : [n′,n′′] →
∆(A) that assigns a mixed action to each observation. Given the strategy func-

tion σ̃, we denote with P̃ñ(x | σ̃,n) the probability for a player with signal ñ that

the number of other agents choosing R is x, when the population size is n.9 A

player’s posterior of n if he observes signal ñ ∈ [n′+ε,n′′−ε] will be uniform on

[ñ−ε, ñ+ε].10 The player’s conditional expected payoffs when the other players

play according to σ̃ are given by

Ũñ(S, σ̃)= v,

Ũñ(R, σ̃)= 1
2ε

∫ ñ+ε

ñ−ε

∞∑
x=0

P̃ñ(x | σ̃,n)u(R, x)dn.

8 We need 2ε<min{n−n′,n′′−n}.
9 Differently from before, the number of agents who choose a given action is not necessarily

a Poisson random variable. In fact, we lose the independent actions property that is specific of

Poisson games, as the numbers of agents who choose each action are not mutually independent

for every strategy function.
10 The endpoints of such interval must be appropriately adjusted if ñ < n′+ε or ñ > n′′−ε.
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Definition 3. The strategy function σ̃ is a Nash equilibrium of Γ̃ if Ũñ(σ̃(ñ), σ̃)≥
Ũñ(σ′, σ̃) for every σ′ ∈∆(A) and ñ ∈ [n′,n′′].

We can show that the game Γ̃ has a unique equilibrium outcome.

4.2. Unique equilibrium

Suppose a player observes a signal that is sufficiently small, i.e. ñ < n− ε.
Then, the player’s conditional payoff of choosing R is always lower than v, as it

is lower for the strategy that prescribes players to choose R for every possible

observation.11 In fact, given such a strategy, we have P̃ñ(x | σ̃,n) = P(x | n(p+
r)) for every x, since every realized player chooses R with probability 1, and

1−∑I
i=1 F(ki | n(p+ r))(ui − ui−1) < v for every n ∈ [ñ− ε, ñ+ ε]. It follows that

S is conditionally strictly dominant at ñ. On the other hand, suppose a player

observes a signal that is sufficiently large, i.e. ñ > n+ε. Then action R is strictly

dominant at that observation, as the payoff of choosing R is higher than v for

every n in the region. Now, consider a strategy that prescribes players to play

S for every observation below a given signal and to play R for every observation

above it. We can show that the payoff of choosing R for a player at the margin

of switching from S to R increases strictly and continuously in the cutoff signal.

Since that payoff is lower than v for sufficiently small signals and higher than v

for sufficiently large ones, this implies that there is a unique cutoff signal such

that a marginal player is indifferent between the two actions. We can show that

this signal characterizes the equilibrium of the game Γ̃.

Given the signal ñ, let σ̃ñ be the strategy function that prescribes players to

choose action S for all observations smaller than ñ and action R for all observa-

tions larger than ñ. We call σ̃ñ the cutpoint strategy at ñ, and ñ the cutpoint.

Lemma 1. Ũñ(R, σ̃ñ) is continuous and strictly increasing in ñ.

The formal proof of this result is in Appendix B. The intuition is the follow-

ing. For a player with marginal signal equal to the cutpoint, the probability
11 It is clear that the probability that, given a strategy function, the number of agents choos-

ing R is above a given threshold increases in the set of signals for which the strategy function

prescribes action R.
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that exactly x other players choose R is equal to the probability that exactly x

other players have made larger observations. Uniform priors imply that, for any

realization of the number of other players, the probability that x of them have

made larger observations depends only on the difference between the player’s

signal and the true population size, independently of the signal. As the signal

increases, the values that the player assigns to the true population size become

larger. Consequently, for any given threshold, the probability that the popula-

tion realization is above that threshold increases and, therefore, the probability

for the marginal player that the number of opponents with larger observations

is above that threshold also increases. Moreover, the probability that the real-

ization of type 2 agents is above the given threshold increases as well. It follows

that, the higher is the cutoff signal on the population size, the higher is the

probability for the player with that signal that the total number of opponents

choosing R is above any given threshold and, hence, the higher is his expected

payoff of choosing R.

We can use the above result to prove that the equilibrium outcome is unique.

In fact, Lemma 1 implies that there exists essentially a unique equilibrium

where players play according to a cutpoint strategy. We can show that there

exists no equilibrium where players play according to a different strategy func-

tion.

Theorem 1. There exists a unique n∗ such that, in every equilibrium of Γ̃, a

player with signal ñ plays action S if ñ < n∗ and action R if ñ > n∗.

Proof. Let σ̃a be the strategy function that prescribes to choose action a ∈ A with

probability 1 for every observed signal. For every ñ < n−ε we have

Ũñ(R, σ̃ñ)≤ Ũñ(R, σ̃R)< v.

On the other hand, for every ñ > n+ε we have

Ũñ(R, σ̃ñ)≥ Ũñ(R, σ̃S)> v.

Lemma 1 implies that there exists a unique value n∗ such that

Ũn∗(R, σ̃n∗)= v.
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Note that for every ñ < n∗ we have

Ũñ(R, σ̃n∗) ≤ Ũñ(R, σ̃ñ)< v,

while for every ñ > n∗ we have

Ũñ(R, σ̃n∗) ≥ Ũñ(R, σ̃ñ)> v,

so σ̃n∗ is an equilibrium of Γ̃.

Suppose there exists another equilibrium σ̃ that is not a cutpoint strategy.

Let ñ1 be the largest signal such that σ̃(ñ)(S) = 1 for all ñ < ñ1 and let ñ2 be

the smallest signal such that σ̃(ñ)(R) = 1 for all ñ > ñ2. Clearly, ñ1 < ñ2. By

continuity of the payoff function in the signal, we have

Ũñ1(R, σ̃)= Ũñ2(R, σ̃)= v.

Note that

Ũñ1(R, σ̃) ≤ Ũñ1(R, σ̃ñ1)

and

Ũñ2(R, σ̃) ≥ Ũñ2(R, σ̃ñ2).

But, by Lemma 1, we have

Ũñ1(R, σ̃ñ1)< Ũñ2(R, σ̃ñ2),

which leads to a contradiction. □

Remark 1. In the stag hunt model we have considered, the payoff associated to

the safe action is fixed. Our selection result can be extended to a different payoff

function as long as two main conditions hold. First, the payoff gain of choosing

the risky action rather than the safe action

Π(τ | n)=U(R,τ | n)−U(S,τ | n)

must be continuous and strictly increasing in nτR . Second, the initial class of

games must be large enough to contain games with different equilibrium struc-

tures, that is, there must exist n and n such that, for every τ,

Π(τ | n)< 0 for every n < n
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and

Π(τ | n)> 0 for every n > n.

In particular, the payoff of choosing the safe action may depend on the number

of agents choosing the risky action x, provided that

(1) u(S,0)> u(R,0),

(2) u(R, x)> u(S, x) for all x ≥ x̄ > 0, and

(3) u(R, x)−u(S, x) is weakly increasing in x.

Given that u(R, x) increases with x, this last assumption is clearly satisfied

whenever the payoff of choosing the safe action decreases with the number of

agents choosing the risky action.12 However, the payoff of choosing the safe ac-

tion may also increase with x, as long as condition (3) holds.

Remark 2. Our selection result can be extended also to the case in which the

payoff yielded by the risky action decreases with the number of agents choosing

the safe action.13 Formally, let x denote now the number of agents choosing

action S. The payoffs of type 1 players are given by

u(S, x)= v for every x,

with v ∈ (0,1), and

u(R, x)= 1 if x ≤ k1,

u(R, x)= ui if ki < x ≤ ki+1 for i = 1, . . . , I −1,

u(R, x)= 0 if x > kI ,

with ui ∈ [0,1] for i = 1, . . . , I − 1, and ui′ ≤ ui for i′ > i. As before, in the re-

mote regions of population sizes, players have a strictly dominant strategy and,

12 This is analogous to Kim (1996), where, precisely, the payoff of choosing the safe action

increases with the number of players choosing it. In our model with population uncertainty,

that precise assumption would not guarantee the existence of the dominance solvable regions of

population sizes.
13 As we show later in the paper, this setting fits a bank run scenario à la Diamond and

Dybvig (1983).
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hence, the corresponding Poisson games have a unique Nash equilibrium. Dif-

ferently from before, for sufficiently small values of n the equilibrium is such

that every player chooses action R, while for sufficiently large values of n every

player chooses action S.14 For values of n in the intermediate region, the Poisson

games still have multiple equilibria, precisely, the two pure strategy equilibria

in which the players choose each action with probability 1 and the equilibrium in

which the players randomize. As above, we can solve the equilibrium selection

problem adding vanishing noise about n through the (properly modified) incom-

plete information game Γ̃. In particular, the payoffs of a player with signal ñ are

given by

Ũñ(S, σ̃)= v,

Ũñ(R, σ̃)= 1
2ε

∫ ñ+ε

ñ−ε

kI∑
x=0

P̃ñ(x | σ̃,n)u(R, x)dn,

where P̃ñ(x | σ̃,n) is now the probability that the number of opponents choosing

S is x, given the strategy function σ̃ and the population size n. Let σ̃ñ be the

strategy function that prescribes to choose action R for all observations smaller

than ñ and action S for all observations larger than ñ. The proof of Lemma

1 implies that Ũñ(R, σ̃ñ) is continuous and strictly decreasing in the cutpoint

signal ñ. Then, a proof analogous to that of Theorem 1 leads to the following

result.

Corollary 1. There exists a unique n∗ such that, in every equilibrium of Γ̃, a

player with signal ñ plays action R if ñ < n∗ and action S if ñ > n∗.

4.3. Limiting behavior

In the limit, as the noise becomes negligible, the equilibrium strategy can be

characterized in a fairly simple way.

Fix the realization y of the number of other players. The fact that the prior

distribution of n is uniform implies that a signal ñ gives to a player no addi-

tional information on his ranking within the population of signals. Thus, the

14 In this case we need s > 0 to guarantee the existence of the dominance solvable region of

population sizes where every player chooses the safe action with probability 1.
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player believes that the number of opponents with larger signals is distributed

uniformly on the interval [0, y]. If the player expects the opponents to follow the

cutpoint strategy at ñ, he will assign probability 1
y+1 to the event that exactly z

opponents choose the risky action, for every z ≤ y. This is true for every ε, and so

it remains valid for observation errors that are infinitesimally small. As ε tends

to zero, the players’ observations become perfectly correlated and, in the limit,

they coincide with the actual value of n. The probability for a player that the

realized number of type 1 opponents is equal to y tends to P(y | np), while the

probability that the realized number of type 2 agents is equal to a given value l

tends to P(l | nr). It follows that, in the limit, the probability for the marginal

player that the total number of opponents choosing the risky action is equal to x

is approximated by

Pn(x | σ̃n)=
x∑

z=0

∞∑
y=z

1
y+1

P(y | np)P(x− z | nr).

The player’s utility of choosing R is given by

Un(R, σ̃n)= 1−
I∑

i=1
Fn(ki | σ̃n)(ui −ui−1),

where

Fn(ki | σ̃n)=
ki∑

x=0
Pn(x | σ̃n).

Thus, the limit value of n∗ as ε tends to zero solves the indifference condition

Un∗(R, σ̃n∗)= v,

that is,
I∑

i=1
Fn∗(ki | σ̃n∗)(ui −ui−1)= 1−v. (4.1)

Introducing vanishing uncertainty about the population size n offers an equi-

librium selection criterion for the stag hunt Poisson games Γ(n) in the inde-

terminacy region (n,n). The criterion selects the equilibrium in which every

player chooses the safe action if n < n∗ and the equilibrium in which every player

chooses the risky action if n > n∗, where n∗ is implicitly given by Equation (4.1).
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4.4. Example (cont.): two’s a party, three’s a crowd

We can now solve the indeterminacy problem of the party dilemma. Recall

that the indeterminacy region goes from n ≈ 1.069 to n ≈ 6.414. Suppose that

every party guest receives some noisy information about the expected party size

n, as in the model described above. As the noise vanishes, the payoff of wearing

a costume for a guest who expects all the invitees with higher signals to do so

and all those with lower signals to dress normally is approximated by

1−P
(
0

∣∣∣ 1
7

n
) ∞∑

x=0
P

(
x

∣∣∣ 5
7

n
)

1
x+1

,

which is the probability that at least one other guest will show up wearing a

costume in that event. The limit value of n for which the guest is indifferent

between dressing safely and wearing a costume solves

1−P
(
0

∣∣∣ 1
7

n
) ∞∑

x=0
P

(
x

∣∣∣ 5
7

n
)

1
x+1

= 0.6

and is given by n∗ ≈ 2, which determines the outcome of the party. All the guests

in a dilemma will dress normally if the expected number of invitees is at most

2, while they will all show up in a costume for larger party sizes.

The main freebie of a theory of equilibrium selection is the possibility to per-

form comparative-statics exercises. A natural exercise in our setting is to ask

what are the effects on the equilibrium of variations of the safe payoff v, the

probability r of having agents who single-mindedly take the risky action, and

the thresholds ki.

First, suppose that v rises to 0.7. Not surprisingly, the group size threshold

increases to n∗ ≈ 2.711, i.e. the region in which all the guests in a dilemma will

dress normally expands as the safe action becomes more attractive. This holds

in general, as Un∗(R, σ̃n∗) increases in v.

Suppose, next, that r rises to 2/7, while p falls to 4/7. As expected, the thresh-

old falls to n∗ ≈ 1.669, i.e. the region in which all the guests dress up expands

when more costume enthusiasts are likely to show up. In fact, Un∗(R, σ̃n∗) in-

creases in r.

Finally, suppose that having fun in a costume requires at least two other peo-

ple dressed up instead of one. In this case, the threshold increases to n∗ ≈ 4.437,
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i.e. the region in which all the guests dress up shrinks. This is intuitive, as

Un∗(R, σ̃n∗) decreases in the minimum number of dressed up guests that guar-

antees fun, everything else equal.

Overall, if dressing mundanely becomes less appealing or dressing up more

appealing or having some costume enthusiasts becomes more likely, the guests

will show up in costumes for relatively smaller expected party sizes.

Remark 3. Our result suggests a key role for communicating the information

about the expected party size when this takes intermediate values. Suppose the

host loves costume parties, but does not want to force her guests one way or

another. The host could choose to convey information to the guests about the

expected size of the party to influence indirectly their behavior.

When there is no noise, the outcome of the party is indeterminate, as the game

has multiple equilibria for intermediate party sizes. Suppose that the outcome

is selected as a focal point following the realization of a publicly observable ran-

dom variable that is unrelated to the fundamentals, i.e. a sunspot event. For

instance, the guests will wear costumes if and only if there is a clearly visible

full moon on the night of the party.

With (vanishing) noise, the outcome is determinate and the guests will dress

up if the party is expected to be larger than n∗ ≈ 2, but not otherwise. Given

uniform priors, the former event occurs with probability π∗ = n−n∗
n−n ≈ 0.83, while

the latter with the complementary probability. Then, if the probability that the

party will take place with the full moon is larger than π∗, the party host may

decide to reveal the expected party size publicly. Otherwise, she may decide to

communicate privately with the participants.

By revealing publicly the information about the expected party size, the host

can create common knowledge among the guests, thus, destroying the selection

procedure. This may be in the interest of the host if the expected outcome of

the interaction as selected by the public focal point mechanism is more likely

to cater to her preferences than the alternative selection based on the absence

of common knowledge. Otherwise, making the information about the expected

party size fuzzier will help the host achieve her preferred outcome.
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5. APPLICATIONS

Finally, we present some applications of our theory to economic and socio-

political situations in which the assumption of population uncertainty seems

natural.

5.1. Brain drain

After obtaining their university degree, some graduates are deciding whether

to move out or stay in their country. Leaving the country entails a positive value

net of moving costs, v ∈ (0,1), independent of how many other graduates decide

to leave the country, while staying gives a benefit that is increasing in the num-

ber of other graduates who decide to stay. This may reflect a positive externality

generated by human capital as argued in the endogenous growth literature à la

Romer (1986), where the growth of income per capita of the country is increas-

ing in the number of graduates operating in the country. Nobody knows exactly

how many graduates are deciding to stay or leave. The number is drawn from a

Poisson distribution. Some people will move out of the country in any case and

others will stay no matter what others will do, but a fraction of the graduates

of the country will decide strategically what to do depending on the behavior of

their peers. If, except those who would leave anyway, everybody else stays in

the country, the benefit of staying is unitary, while if nobody stays, except a few

sedentary die-hards, the benefit is nil. The expected number of graduates is not

common knowledge among the players who receive slightly disturbed signals

about its value. Our selection argument and, hence, the uniqueness result ap-

plies directly to this setting. The unique equilibrium features the critical mass

property, whereby the strategic players decide to stay if the number of graduates

is expected to be sufficiently large but not otherwise.

5.2. Political protest

A political demonstration has been organised to oppose an authoritarian gov-

ernment, as discussed in Atkeson (2001). The demonstration may turn into
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a full-fledged protest against the government or not. The Poisson game rep-

resenting this situation has the following features. The demonstrators decide

whether to actively protest against the government or not. If a person does

not join the protest, gets nothing. If the person joins the protest and the gov-

ernment backs down, enjoys the benefit at the cost of getting hurt during the

protest, with payoff 1− v ∈ (0,1), otherwise gets hurt without any benefit, with

payoff −v. The protest succeeds and the government backs down if enough peo-

ple join the protest, otherwise the measure is implemented. Nobody knows how

many citizens will show up at the demonstration. The number is drawn from

a Poisson distribution. The expected number of demonstrators is not common

knowledge among the players who receive slightly disturbed signals about its

value. There is a group of political activists who will join the protest for sure,

while the rest decide strategically what to do. Adding v uniformly to all pay-

offs, we have the same setting considered above with a single step function, i.e.

I = 1. The uniqueness result derived above applies directly to this setting. At

the unique equilibrium, the strategic participants join the protest if the demon-

stration is expected to be sufficiently large but not otherwise. Hence, there is an

emboldening effect of group size, due to the presence of some activists who exert

an indirect influence on the undecided participants.

5.3. Bank run

The previous examples were direct applications of the stag hunt Poisson game

analysed earlier. The next example fits the setting described in Remark 2.

We build on the version of the bank run model of Diamond and Dybvig (1983)

that appears in Morris and Shin (2001).15 Some of the current account holders

of a bank who have deposited a unit of their resources in the past are deciding

whether to withdraw immediately or wait until later. If people decide to with-

draw immediately, they always get their deposit back no matter what the others

will do, but if they decide to wait, they get a return that is decreasing in the

number of depositors who decide to withdraw immediately. Thus, withdrawing

15 See also Goldstein and Pauzner (2005).
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corresponds to the safe action while waiting corresponds to the risky one. No-

body knows exactly how many depositors are deciding what to do. The number

of participants is drawn from a Poisson distribution. Also the expected number

of participants is not common knowledge among the players who receive slightly

disturbed signals about its value. There is a group of depositors with urgent liq-

uidity needs who will withdraw immediately no matter what the others will do,

while the rest choose strategically whether to withdraw immediately or wait un-

til later. If only the depositors with urgent liquidity needs end up withdrawing

their deposits, the bank has enough resources to reimburse all the others who

have decided to wait with a gross interest payment R = v−1 > 1, but if all the

depositors decide to withdraw their deposits immediately the bank goes bank-

rupt. Multiplying by v all the payoffs we obtain exactly the model in Remark 2.

Hence, the selection procedure applies to this setting as well. There is a unique

equilibrium in which the strategic depositors withdraw their resources if the

expected number of participants is sufficiently large, but not otherwise.

6. CONCLUSION

We have shown that modelling some economic and political situations that

require the participants to coordinate their decisions on whether to alter the

status quo or not as Poisson games in which the expected number of players is

not common knowledge helps select a unique equilibrium in a way that parallels

what happens in global games, allowing to interpret these situations as critical

mass phenomena in which the overall expected number of participants plays a

key role in determining whether the status quo is abandoned or not. Our result

suggests an important role for the information concerning the size of the group

that participates in the interaction.

APPENDIX A. POISSON GAMES

This appendix summarizes the basic structure of Poisson games and their

main properties.16

16 We refer to Myerson (1998).
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A Poisson game is given by a tuple Γ = (n,T , q, A,u). The number of players

is a Poisson random variable with parameter n, so the actual number of players

is m with probability

P(m | n)= e−nnm

m!
.

The set T = {1, . . . ,T} is the set of players’ types. The probability that a randomly

selected player is of each type is given by the vector q = (q1, . . . , qT) ∈∆(T ). That

is, a player is of type t ∈T with probability qt. A type profile y ∈ZT+ is a vector

that specifies for each type t ∈T the number of players yt of that type. The finite

set of actions is A. An action profile x ∈ Z(A)=Z|A|
+ specifies for each action a ∈ A

the number of players x(a) that choose that action. Players’ preferences are

summarized by the vector u = (u1, . . . ,uT), where ut : A × Z(A) → R for every

t ∈ T . That is, ut(a, x) is the payoff for a type t player when he chooses action

a and the realization resulting from the rest of the population’s behavior is the

action profile x ∈ Z(A).

The set of mixed actions is ∆(A). A strategy function σ maps each type to

the set of mixed actions, and induces the average behavior τ(σ) ∈∆(A) which is

defined by τ(σ)(a) = ∑
t∈T qtσt(a). When players play according to σ, τ(σ)(a) is

the probability that a randomly sampled agent chooses action a. Since a player’s

payoff depends only on the number of other players who choose each action,

independently of their specific types, τ is a sufficient statistic for the analysis of

players’ optimal behavior.

A Poisson game is characterized by the following properties.

Decomposition property. Let each player be independently assigned some char-

acteristic in a set S according to the probability distribution (θ(s))s∈S. Let w(s)

be the number of players with characteristic s. For every s ∈ S, the random vari-

ables w(s) are mutually independent, and each w(s) has a Poisson distribution

with mean nθ(s).

Independent actions property. For every strategy function σ and action a, the

random variables x(a) are independent.
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Environmental equivalence property. A player of any type assesses the same

probability distribution for the type profile of the other players as an external

observer assesses for the type profile of the whole game.

The decomposition and independent actions properties imply that, when the

population’s aggregate behavior is τ, the number of players who choose action a

is a Poisson random variable with mean nτ(a) and is independent of the number

of players who choose any other action. Then, the probability that the action

profile x ∈ Z(A) is realized is equal to

P(x | τ)= ∏
a∈A

(
e−nτ(a) (nτ(a))x(a)

x(a)!

)
.

Environmental equivalence implies that P(x | τ) is also the probability that each

player assigns to the event that the action profile resulting from the other play-

ers’ behavior is x. Hence, the expected payoff to a player of type t who plays

a ∈ At is given by

Ut(a,τ | n)= ∑
x∈Z(A)

P(x | τ)ut(a, x).

APPENDIX B. PROOF OF LEMMA 1

Lemma 1. Ũñ(R, σ̃ñ) is continuous and strictly increasing in ñ.

Proof. Given a cutpoint strategy σ̃ñ, the probability for a player with signal ñ

that the number of opponents choosing R is equal to x is the probability for the

player that the realizations of type 2 agents and of other type 1 players with

signal larger than ñ sum up to x.

Let Pñ(z | np) be the probability for the player that z other (type 1) players

have made larger observations, if the population size is n. We have

Pñ(z | np)=
∞∑

y=z
P(y | np)B(y, z | ñ,n),

where P(y | np) is the probability that there are y other players in the game

when the population size is n, and B(y, z | ñ,n) is the probability that z out of y

realized players have observed a signal larger than ñ. The assumption of uni-

form priors on n implies that, given y and z, B(y, z | ·) depends only on the differ-

ence between the player’s signal and the actual population size, independently
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of the signal.17 In particular, we have

B(y, z | ñ,n)= B(y, z | ñ−n)=
(

y
z

)
P(ñ−n)y−z [1−P(ñ−n)]z,

where

P(ñ−n)= ñ−n+ε
2ε

.

Let P̃ñ(x | σ̃ñ,n) be the probability for a player with signal ñ that the number

of opponents choosing R is equal to x, given the cutoff strategy σ̃ñ and if the

population size is n. Since types are independent, we have

P̃ñ(0 | σ̃ñ,n)= Pñ(0 | np)P(0 | nr),

P̃ñ(1 | σ̃ñ,n)= Pñ(0 | np)P(1 | nr)+Pñ(1 | np)P(0 | nr),

P̃ñ(2 | σ̃ñ,n)= Pñ(0 | np)P(2 | nr)+Pñ(1 | np)P(1 | nr)+Pñ(2 | np)P(0 | nr),

...

P̃ñ(x | σ̃ñ,n)=
x∑

z=0
Pñ(z | np)P(x− z | nr).

For ki ∈Z+, let the cumulative distribution at ki be

F̃ñ(ki | σ̃ñ,n)=
ki∑

x=0
P̃ñ(x | σ̃ñ,n).

We can express F̃ñ(ki | σ̃ñ,n) as a function of the signal ñ and the difference

δ= ñ−n and denote it F(ki | ñ,δ), obtaining

F(ki | ñ,δ)=
ki∑

x=0

x∑
z=0

∞∑
y=z

P(y | (ñ−δ)p) B(y, z | δ) P(x− z | (ñ−δ)r).

The utility of choosing R for a player with marginal signal ñ is equal to

Ũñ(R, σ̃ñ)= 1− 1
2ε

∫ ε

−ε

I∑
i=1

F(ki | ñ,δ)(ui −ui−1) dδ.

Fix δ and let ñ′ > ñ. We can show that, for every ki ∈Z+,

F(ki | ñ,δ)>F(ki | ñ′,δ).

Since ui−ui−1 ≥ 0 for every i = 1, . . . , I, this will imply that Ũñ(R, σ̃ñ)< Ũñ′(R, σ̃ñ′).

17 At least if the signal is at least ε inside the support of n.
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Note from the above expressions that the formula of F(ki | ñ,δ) can be ex-

pressed both as

P(0 | (ñ−δ)r)
ki∑

z=0
Pñ(z | (ñ−δ)p)+P(1 | (ñ−δ)r)

ki−1∑
z=0

Pñ(z | (ñ−δ)p)+ . . .

+P(ki | (ñ−δ)r)Pñ(0 | (ñ−δ)p)=
ki∑

x=0
P(x | (ñ−δ)r)

ki−x∑
z=0

Pñ(z | (ñ−δ)p),

and as

Pñ(0 | (ñ−δ)p)
ki∑

z=0
P(z | (ñ−δ)r)+Pñ(1 | (ñ−δ)p)

ki−1∑
z=0

P(z | (ñ−δ)r)+ . . .

+Pñ(ki | (ñ−δ)p)P(0 | (ñ−δ)r)=
ki∑

z=0
Pñ(z | (ñ−δ)p)

ki−z∑
x=0

P(x | (ñ−δ)r).

Moreover, note that
∑ki

z=0 Pñ(z | (ñ−δ)p) is given by

P(0 | (ñ−δ)p)B(0,0 | δ)+P(1 | (ñ−δ)p)B(1,0 | δ)+P(2 | (ñ−δ)p)B(2,0 | δ)+ . . .

+P(1 | (ñ−δ)p)B(1,1 | δ)+P(2 | (ñ−δ)p)B(2,1 | δ)+P(3 | (ñ−δ)p)B(3,1 | δ)+ . . .

+P(2 | (ñ−δ)p)B(2,2 | δ)+P(3 | (ñ−δ)p)B(3,2 | δ)+P(4 | (ñ−δ)p)B(4,2 | δ)+ . . .

...

+P(ki | (ñ−δ)p)B(ki,ki | δ)+P(ki +1 | (ñ−δ)p)B(ki +1,ki | δ)+

P(ki +2 | (ñ−δ)p)B(ki +2,ki | δ)+ . . .

= P(0 | (ñ−δ)p)+P(1 | (ñ−δ)p)+P(2 | (ñ−δ)p)+ . . .+P(ki | (ñ−δ)p)+

P(ki +1 | (ñ−δ)p)
[
1−B(ki +1,ki +1 | δ)

]+
P(ki +2 | (ñ−δ)p)

[
1−B(ki +2,ki +1 | δ)−B(ki +2,ki +2 | δ)

]+
P(ki+3 | (ñ−δ)p)

[
1−B(ki+3,ki+1 | δ)−B(ki+3,ki+2 | δ)−B(ki+3,ki+3 | δ)

]+
...
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For every y ∈Z+ and ki ∈Z+, let F(y,ki | δ)=∑ki
x=0 B(y, x | δ). After some algebraic

manipulations, we have

ki∑
z=0

Pñ(z | (ñ−δ)p)= 1−
∞∑

y=ki+1
P(y | (ñ−δ)p)

(
1−F(y,ki | δ)

)
= 1−

∞∑
y=ki

(
F(y,ki | δ)−F(y+1,ki | δ)

)[
1−F(y | (ñ−δ)p)

]
.

Since F(y,ki | δ)−F(y+1,ki | δ) > 0 for every y ∈ Z+ and ki ∈ Z+, and F(y | (ñ−
δ)p)> F(y | (ñ′−δ)p) for every y ∈Z+, we have

ki∑
z=0

Pñ(z | (ñ−δ)p)>
ki∑

z=0
Pñ′(z | (ñ′−δ)p)

for every ki ∈Z+. Therefore, for every ki ∈Z+, we have

F(ki | ñ,δ)=
ki∑

x=0
P(x | (ñ−δ)r)

ki−x∑
z=0

Pñ(z | (ñ−δ)p)>

ki∑
x=0

P(x | (ñ−δ)r)
ki−x∑
z=0

Pñ′(z | (ñ′−δ)p)=
ki∑

z=0
Pñ′(z | (ñ′−δ)p)

ki−z∑
x=0

P(x | (ñ−δ)r)>

ki∑
z=0

Pñ′(z | (ñ′−δ)p)
ki−z∑
x=0

P(x | (ñ′−δ)r)=F(ki | ñ′,δ).

It follows that, given the cutoff strategy σ̃ñ, the payoff of choosing R for a

player with signal ñ is strictly increasing in the cutoff ñ. Continuity derives

from the fact that the Poisson probabilities are continuous in the parameter. □
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