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Abstract

This paper compares digital and physical currency, focusing on a single in-
trinsic difference: digital, unlike physical, currency allows the authorities to
trace the monetary flows in and out of the accounts. We show that this techno-
logical advance in record-keeping can be used to reward active balances relative
to idle balances. This helps achieve efficiency in a wide range of circumstances.
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1 Introduction

In both academic and policy circles, there is an active debate about the implications
of introducing sovereign digital currency, also known as central bank digital currency
(CBDC), as payment instrument alongside or instead of physical currency. The lit-
erature has identified a number of benefits and costs of digital currency.! Benefits

include lower transaction costs, increased competition in the banking sector, lower
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tax evasion. Costs include the breach of privacy, infringement of personal freedom,
risk of disintermediation. Neither the benefits nor the costs are strictly connected
with the monetary nature of the instrument, that is often conceived simply as an
intangible version of cash.

In this paper, we identify a single intrinsic difference between digital and physical
currency and show how this matters for optimal monetary policy. To make it trans-
parent that this is the only driving force, we contrast two pure currency economies
that are identical except for the type of currency that is used, either physical or digi-
tal, comparing their functioning and identifying the optimal monetary policy in each
case. The only difference between the two instruments is that, with digital currency
the monetary authority can keep track of flows of money balances in and out of the
accounts, while with physical currency this is not possible.? The extra information
collected through the digital technology can always be ignored, hence, any allocation
attainable with physical currency can be reached with digital currency, but there are
robust circumstances in which digital currency allows to improve strictly upon cash.

We consider a monetary search economy a la Lagos and Wright (2005), in which
the velocity of circulation of currency is endogenous since the traders choose their
search intensity, as in Rocheteau and Wright (2005). We characterize the equilibrium
and identify the optimal intervention by the monetary authority with physical and
digital currency, respectively. With physical currency, the optimal intervention is the
Friedman rule, that, however, does not always achieve the efficient search intensity.
Moreover, any deviation from the Friedman rule always reduces search intensity and
the velocity of money.® With digital currency, instead, the efficient search intensity
can always be achieved and in some cases the optimal policy is not the Friedman rule.
The monetary authority achieves efficiency paying a positive nominal interest rate in
accounts with a higher velocity of money and no interest in accounts with a lower
velocity of money.

We show that the result holds in a robust set of circumstances, beyond the spe-
cific trading arrangement adopted for simplicity, i.e. the Kalai bargaining protocol.
Following Gu and Wright (2016), we generalize the trading protocol to a mechanism

that subsumes among other schemes, both the Kalai and Nash protocol. Interest-

2This difference in the record-keeping possibilities with different types of payment instruments is
in the spirit of Kocherlakota (1998).
3This occurs also in Liu, Wang and Wright (2011).



ingly, we show that, under the Nash bargaining protocol, digital currency allows to
improve the allocation relative to physical currency, even if the search intensity is
exogenous. Although limited to the Nash protocol, this result shows that the key
for the improvement is the presence of distortions, arising from extensive or intensive
margins, that the Friedman rule alone cannot correct. We also show that the result
survives when the taxation of balances is not feasible, as in Hu, Kennan and Wallace
(2009). Finally, the result continues to hold even if the agents can try to manipulate
the system at a cost, opening ”shadow accounts” to obtain interest on balances that
are not truly active.

A growing literature examines the impact of digital currencies, particularly CBDC.
For example, recent papers that adopt the Lagos and Wright (2005) framework in-
clude Williamson (2022), Chiu, Davoodalhosseini, Jiang and Zhu (2023), and Keister
and Sanches (2023). In these papers, interest can be paid with digital unlike physical
currency, but uniformly on all balances. We show that, if the monetary authority can
run the Friedman rule, restricting the scheme to the payment of interest uniformly
on all balances, both active and idle, digital currency cannot enlarge the set of imple-
mentable allocations relative to physical currency, as the optimal allocation coincides
with the one achieved under the Friedman rule in the corresponding physical currency
economy. However, paying interest uniformly is sub-optimal, as it does not take into
account the ability of the monetary authority to keep track of the monetary flows in
and out of the accounts that is available with digital but not physical currency. This
superior ability helps stimulate the traders’ participation, through the payment of in-
terest on active balances, allowing to achieve full efficiency on all margins, extensive
and intensive. With endogenous participation, the ability to reward active balances
is an improvement also relative to credit schemes that reward only idle balances, as in
Berentsen, Camera and Waller (2007) or Ferraris and Watanabe (2008). Intuitively,
this obtains because it is preferable to pay interest in accounts with higher rather
than lower velocity to stimulate the traders’ participation.

The paper proceeds as follows. Section 2 introduces the model. Section 3 presents
the results and Section 4 compares them with the literature. Section 5 presents two
extensions and Section 6 concludes. The Appendix contains the proofs that are not

in the text and the technical details of two of the extensions.



2 Model

The model is a version of Lagos and Wright (2005) with an endogenous participation
decision. In this section, we describe the fundamentals, the trading instruments and

derive the efficient benchmark.

2.1 Fundamentals

Time is discrete and each period is divided into two sub-periods, called day and
night. There is a continuum of infinitely lived agents who discount the future at rate
p € (0,1). During the day, the agents meet in a decentralized market to trade a com-
modity, whose non-negative quantity is denoted with ¢q. Half of the agents are sellers
of this commodity, that, to be produced, requires a cost represented by a twice differ-
entiable strictly increasing and convex function, ¢(q). The other half of the agents are
potential consumers of this commodity. Consumption of the commodity gives utility
represented by a twice differentiable strictly increasing and strictly concave function,
u(q). We assume u(0) = ¢(0) = u/(00) = ¢/(0) = 0, and u/(0) = co. The potential
consumers choose search intensity « € [0, 1] that represents the probability of meet-
ing sellers in the day market, incurring a cost represented by a twice differentiable,
strictly increasing and strictly convex function, k(a). We assume k(0) = £'(0) = 0.
The buyers and sellers meet bilaterally, and the terms of trade within meetings are
determined with the Kalai protocol, where 6 € (0,1) denotes the bargaining power
of the buyer.? The traders cannot commit to future actions and are anonymous dur-
ing the day, their trades being not observable by outsiders. At night, all the agents
meet in a centralized market where another commodity is traded that serves as the

numeraire and can be produced and consumed by all agents, with linear payoffs.

2.2 Currency

Lack of monitoring and commitment prevents trade during the day in the absence
of a trading instrument. We consider two alternative economies, one in which the
trading instrument is physical currency, and another with digital currency. These

economies are identical except for the use of the trading instrument. In particular,

4See Kalai (1977). Lagos and Wright (2005) use the Nash protocol. As discussed below, a similar
logic would be at work with Nash bargaining but the algebra would be messier. We also show that
our results hold in a larger class of trading protocols.
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in both economies, currency is introduced through accounts open by the monetary
authority for each agent at the beginning of the first period. We distinguish the trad-
ing instruments by the record-keeping technology embedded in the accounts. In the
physical currency economy the monetary authority only keeps track of balance hold-
ings in the accounts, while in the digital currency economy the monetary authority

keeps track of balance holdings and balance flows in and out of the accounts.’

2.3 Efficiency

Due to the linearity of the payoffs, utility is transferable at night and has no impact on
welfare. The efficient allocation consists of a participation rate a and a day quantity
g that maximize au(q) — ¢(q)] — k(). The complementary slackness condition for

the optimal participation is

(1 = a)fulq) — clq) — k()] = 0, (1)

whereby the participation is full if the gains from trade are sufficiently large relative
to the marginal cost of participating and partial otherwise. The optimum condition

for the intensive margin is
u'(q) = d(q). (2)

Let the efficient allocation that satisfies (1) and (2) be denoted by (a*, ¢*) and define

g = — KW

MCOEECaL The next Proposition characterizes the efficient allocation.

*

Proposition 1 The efficient day quantity, q
efficient participation is full, o* =1, if 0* < 1; and partial, o* = k'~ (u(q*) —c(q*)) €
(0,1), if 6* > 1.

, equates marginal utility and cost; the

3 Physical vs Digital Currency

In what follows, we first consider physical currency, and then digital currency. In both
economies, we restrict attention to stationary symmetric equilibria with constant real

balances. Throughout, we denote by ¢ the price of currency in the night market.

®We follow Andolfatto (2010) and Wallace (2014) in assuming that the monetary authority can
implement policies that condition on balances in the physical currency economy. The implementation
of these policies naturally requires the observation of balances.



3.1 Physical Currency

Consider a meeting between a buyer and a seller in the day market. Under Kalai
bargaining, a buyer holding an amount m of currency chooses a payment d < m in

exchange for a quantity ¢ to maximize u(q) — ¢d, subject to the constraint

(1= 0)[ulq) — ¢d] = b[od — c(q)]- (3)

Note that the real balances of the seller do not affect the terms of trade. Moreover,
since the seller has no use for real balances in the day market, in equilibrium it is
never the case that the seller strictly prefers to bring a positive quantity of currency.
We assume that the buyers spend all their balances during the day. Below, we will
show that this is, in fact, the optimal choice of the agents. This implies d = m, and

we can rewrite (3) as

¢m = (1 = 0)u(q) + 0c(q) = g(q), (4)

which determines the quantity produced by the seller as a function of the buyer’s real
balances.

Consider now the participation decision of a buyer with ¢m real balances at the
beginning of the day. Choosing «, he incurs the cost k(«) and meets a seller with
probability «;, in which case he spends all his balances. If he does not meet a seller,
he keeps his balances. Formally, the buyer chooses a@ < 1 to maximize au(q) + (1 —
a)pm — k(a). Using (4), we obtain the following complementary slackness condition

for the optimum,
(1= a){0[ulq) — c(g)] = K'(a)} =0, (5)

where both terms in parentheses are non-negative. If the surplus appropriated by
the buyer is sufficiently large, he chooses full participation; otherwise, the solution is
interior and there is partial participation.

We now move to the night market, and consider the buyer’s choice of the amount
of balances to bring into the day market. He chooses m to maximize —¢m—+|—k(a)+
au(q) + (1 — a)p1m]. Using equation (4), we obtain the inter-temporal condition for

the optimum,

v'(q)
m +1-— Oé:| . (6)

In words, an extra unit of currency acquired presently can be spent next period on

¢ = Pon [Oé



day consumption if the agent turns out to be a buyer or kept idle until the night
market otherwise.

In the economy with physical currency, the monetary authority can inject or tax
currency in a lump-sum fashion. If we let M denote the quantity of currency and 7
denote the growth rate of currency change, we have M,; = (1 + 7)M. Stationarity

¢ _ M

of real balances implies —*-

o a+ = 147, and we can rewrite (6) as

u'(q) 1—-pB+7+af
J(q@) af '

(7)

The existence of a monetary equilibrium requires 7 > 8 — 1 to prevent an infinite
demand for money. This condition also ensures that it is never strictly optimal
for the buyers to bring balances they do not plan to use, hence vindicating our
initial assumption that the buyers spend all their balances. A stationary symmetric
equilibrium is a pair (a,q) that satisfies (5) and (7). The next Proposition, whose

proof appears in the Appendix, shows the existence of a unique equilibrium.
Proposition 2 The equilibrium with physical currency exists and is unique.

We now determine the optimal policy 7. First, observe that 7 does not directly
enter the participation condition (5). Also observe that, for any given «, it is optimal
to set ¢ = ¢* to maximize the surplus in a trade meeting. This can be achieved by
implementing the Friedman rule, i.e., setting 7 = g — 1. At the Friedman rule, if
6 > 0*, buyers choose to fully participate in trade, and the first-best is achieved. If,
instead, 0 < 6%, buyers choose a, < o*, where k'(a.) = 0 [u(¢*) — ¢(q*)]. In this case,
the Friedman rule is optimal but it does not achieve the first-best. The following

Proposition summarizes this result.

Proposition 3 The Friedman rule is optimal. It implements the first-best if and only
if 0 <60 < 1.

The Friedman rule drives the intensive margin to efficiency rewarding balances at
the rate of time preference to compensate for the elapse of time, but is unable, in
general, to drive the participation decision towards full efficiency, as it lacks the tools

to give the buyers the right incentive to participate.



3.2 Digital Currency

With digital currency, the record-keeping technology allows the monetary authority
to track the flows of balances in and out of the accounts. In what follows, we use
this information to separate balances at the end of the day market into two groups,
labeled idle and active. A balance in an account at the end of the day market is
idle if it was already in the account at the beginning of the day market; while a
balance in an account at the end of the day market is active if it was transferred into
the account during the day market. We consider interventions where the monetary
authority treats these balances differently, offering two distinct nominal interest rates,
i, for the idle balances and 7, for the active balances. We proceed by first determining

the equilibrium and then characterizing the optimal policy.

3.2.1 Equilibrium

Consider a meeting between a seller and a buyer with m units of digital currency in
the day market. If the buyer transfers d balances to the seller and receives ¢ units
of goods, the surplus of the buyer is S, = u(q) — ¢(1 + i,)d, while the surplus of the
seller is S; = —c(q) + ¢(1 +4,)d. Observe that the surplus of the buyer includes the
interest lost in the currency that was transferred to the seller and, correspondingly,
the surplus of the seller includes the interest gained in the process. The total surplus
is S = u(q) — c(q) + ¢(ia — ip)d, namely the gain from trade and the net interest
payment to the transferred balances.

With Kalai bargaining, a buyer holding an amount m of currency chooses d < m
in exchange for a quantity ¢ to maximize u(q) — ¢(1 + i,)d subject to the constraint
(1 —0)S, = 0Ss. As with physical currency, the real balances of the seller do not
affect the terms of trade. However, the seller may want to bring real balances to the
day market, depending on the nominal interest rate paid on idle balances. We will
examine this incentive below, showing that it is never part of the optimal policy to
give the sellers the incentive to bring balances. We will also show that, as in the case
of physical currency, buyers spend all their balances during the day. This allows to

rewrite the constraint (1 — 6)S, = 0S5 as

_ 9(q)
o= G, (1 6)i, ®)




Consider now the participation decision of a buyer with balances m at the be-
ginning of the day market. Choosing «, he incurs a cost k(«), meets a seller with
probability «, and spends all his balances. If he does not meet a seller, he keeps his
balances until the night market, and receives an interest rate payment i,. Formally,
the buyer chooses a to maximize au(q) + (1 — a)(1 + i,)¢m — k(«). Using (8), we

obtain the complementary slackness condition for the optimum,

(1 +ia)u(q) — (L +14p)c(q)
1+ iy + (1 —6)i,,

(1—a) |0 — K (a)| =0, (9)
where both terms in parenthesis are non-negative. If the surplus appropriated by
the buyer is sufficiently large, he chooses full participation; otherwise, the solution
is interior and participation is less than full. Observe that, for any given ¢, the
incentive of the buyer to participate in trade increases with the interest rate paid on
active balances and decreases with the interest paid on idle balances.

We now move to the night market. The buyer chooses m to maximize —¢m +
Blau(q) + (1 — a)(1 + iy)p41m — k(a)]. Using (8), we obtain the inter-temporal

condition for the optimum,

W (q) [+ Oig + (1 — 0)i,)
9'(q)

6= 0. {a L)1+ (10)
In words, an extra unit of currency acquired presently can be spent next period on
day consumption if the agent turns out to be a buyer or kept idle until the night
market otherwise. In either case, the agent receives an interest payment for using
actively the balances or keeping them idle.

As in the economy with physical currency, the monetary authority can inject or
tax currency in a lump-sum fashion. It can also inject or tax currency by using the
nominal interest rates 7, and ¢,. If we let 7 denote the rate at which money is injected
or taxed in the economy in a lump-sum way, we have M, = [1+74(1—a)i,+ai,) M.
Stationarity of real balances implies d% =1+7+(1—a)i,+ ai,, and we can rewrite
(10) as

W(g) T1H+1-pF+af+ai,+(1—a)(l-7p)i,
70 afB [L+0iq + (1= 0)i,] |

The existence of a monetary equilibrium requires ¢ > B¢, 1(1 + i,), otherwise an

(11)

agent would have the incentive to demand an infinite amount of currency. We can



rewrite this condition as

T+Oé(la.—lp> S5-1. (12)

1471,
A stationary symmetric equilibrium is a pair (o, q) that satisfies (9) and (11). The
next Proposition, whose proof appears in the Appendix, shows the existence of a

unique equilibrium.
Proposition 4 The equilibrium with digital currency exists and is unique.

As in the physical currency economy, an increase in 7 has no direct impact on
the participation of buyers; but it reduces the surplus, with a negative impact on
the quantity produced in trade meetings. In contrast, changes in the nominal interest
rates on active and idle balances impact both the extensive and the intensive margins.

We start with the intensive margin. To provide intuition, fix the extensive margin.
An increase in interest rates leads to money creation, which negatively impacts the
real rate of return on balances. This reduces the demand for real balances, and the
quantity in trade meetings, as captured in the numerator on the right-hand side of
(11). However, an increase in interest rates increases the quantity in trade meetings,
for any given real balances ¢m. This is so because an increase in interest rates
increases the relative surplus of the seller (an increase in i, increases the surplus of
the seller, while an increase in 4, reduces the surplus of the buyer) which must be
balanced by an increase in the quantity produced in the meeting. This positive effect
is captured in the denominator on the right-hand side of (11). The overall effect is
ambiguous.

Consider now the extensive margin. To provide intuition, fix the intensive margin.
An increase in the net interest payment i, — %, has a positive impact in the partici-
pation of buyers. It does so either by increasing the region of parameters where full
participation is optimal or by increasing the participation of buyers in the region of
parameters with partial participation. This can be seen by observing that the term
in brackets in (9) is strictly increasing in ¢, and strictly decreasing in i,. Intuitively,
an increase in ¢, — %, encourages participation due to its direct positive effect on the

surplus in a trade meeting.
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3.2.2 Optimal Policy

In the digital currency economy, in addition to impacting the overall return on cur-
rency through changes in 7, the monetary authority can use ¢, and 7, to target how
the return on currency will be distributed between agents holding idle balances and
agents holding active balances. In what follows, we will show that the availability of
these additional instruments allows the monetary authority to always implement the
first-best.

We proceed using 6* and 6 to divide the parameter space into three regions.
First, if 6* < 0 < 1, Proposition 2 shows that the first-best can be achieved in the
physical currency economy. Since any policy in the physical currency economy can
be replicated in the digital currency economy if i, = i, = 0, the first-best can also be
achieved if the authority implements the Friedman rule. The next Lemma summarizes

the result.

Lemma 1 Let 6% < 0 < 1. The first-best involves full participation of the buyers and

is implemented by the Friedman rule, i.e., 7 = 3 —1 and i, = i, = 0.

Next, consider § < 6* < 1. In this region, if an intervention implements the first-
best, the efficient quantity is produced in trade meetings, and there is full participation
of buyers. Thus, the right-hand-side of (11) evaluated at & = 1 must be equal to one,

which requires
T=(B-1)(1+1ip) — (1= 50) (ia — ip) - (13)

Using (9), we also need

, (1 +idq)ulg”) — (1 +1p)c(q”)
S S T e ey T

(14)

to ensure that buyers want to fully participate. Finally, under full participation, the
existence of the monetary equilibrium requires 7+, — 8i, >  —1, which, using (13),
can be rewritten as i, > .

A natural policy candidate for the implementation of the first-best involves setting
1, = 0. This is consistent with a zero lower bound on interest rates and it provides the
buyers with the incentive to participate in trade while vindicating our initial claim
that agents have no incentive to bring balances into the day market that they do not

plan to use. Since 0* < 1 implies £'(1) < u(q*) — ¢(q*), a sufficient condition for the

11



buyers to fully participate is that u(q¢*) — ¢(¢*) equals the right hand side of (14), i.e.,

(1 +ia)ulg”) — (1 +ip)e(q”)
14 6i,+ (1 —0)i, ’

u(q”) —c(q*) =0

which can be rewritten as

The positive nominal interest rate on active balances compensates for the insufficient
bargaining power of the buyer. In fact, note that ¢ is strictly decreasing in 0, and it

goes to zero when 6 goes to one. Using (13), we also obtain
=[-8+ (1-p0)i].

Note that ¢ > ¢, = 0 implies ¢ > B¢y, and the real rate of return on currency is
lower than the discount rate. In this sense, the optimal intervention is away from the
Friedman rule. In fact, there is money creation under the optimal policy if 7* 41} > 0,

which can be rewritten as

c(q")
(1 —0)u(gr) +0c(q*)

£ >

The next Lemma summarizes our result.

Lemma 2 Let 0 < 0" < 1. The first-best involves full participation of the buyers and

” %k

it can be implemented by the policy 7 = 7%, i, = 1, and i, = 0, which deviates from

the Friedman rule.

We now turn to the region where 8* > 1. In this case, the first-best involves
efficient production of ¢* in trade meetings but partial participation of buyers, i.e.,

the efficient search intensity is given by a* < 1, where
K () = u(q") — e(q"). (15)

If a policy implements the efficient quantity, the right hand side of (11) evaluated at

o must be equal to one, i.e.,

r=(B=1)(1+ip) — (1= B0)a* (ia — ip).- (16)

12



In turn, in order to give buyers the incentive to search efficiently, the term in brackets

in (9) must be satisfied at ¢* and o* with equality, i.e.,

011 +ia)ulq”) — (1 +dp)c(q)]
1+ 0, + (1 — 0)iy, '

K(a) = (17)
Finally, the existence of the monetary equilibrium requires (12) which, using (16),
can be rewritten as ig > %,.

As in the region where 6* < 1, a natural policy candidate for the implementation
of the first-best has i, = 0. Using i, to equate the right-hand side of (15) with the

right-hand side of (17), we obtain i, = ¢*. In turn, using (16), we obtain
™ ==-[1-F+a"(1-750)i].

As in the case where 0 < 6* <1, % > 7, = 0 implies ¢ > B¢, and the real rate
of return on balances is lower than the discount rate, so the economy is away from

the Friedman rule. The next Lemma summarizes our results.

Lemma 3 Let 0* > 1. The first-best involves partial participation of the buyers and
it can be implemented by the policy T = 7, i, = %), and i, = 0, which deviates from

the Friedman rule.
The previous three Lemmas together imply the following Proposition.

Proposition 5 If 0 < 0%, there exist policy schemes that deviate from the Friedman
rule and implement the first-best rewarding active balances with positive interest and

idle balances with zero interest.

3.3 Velocity of circulation

It is well known from the work of Levine (1991), Kehoe, Levine and Woodford (1992)
and Wallace (2014) that extensive margins play a key role in monetary economies.
In our framework, the extensive margin is captured by the endogenous participation
decision of the buyers. The ability to observe the flows of money balances allows to
implement intervention schemes that improve welfare by giving extra incentives to
the buyers to participate in trade, thus, increasing the velocity of money. To see this,

compare the velocity of circulation of currency across economies under the optimal

13



intervention. In both economies, there is a proportion « of traders who end up in
meetings in which currency changes hands for sure, with unit velocity of circulation,
and a fraction 1 — « of traders who keep their currency in the account, in which case
the velocity is nil. Therefore, the velocity of circulation of either physical or digital
currency is given by v = a x 1+ (1 —a) x 0 = a. If * < 6 < 1, both economies
implement the first-best and velocity is the same. If, instead, 8 < 6*, the velocity is
higher in the digital currency economy because participation is inefficiently low in the
physical currency economy. Thus, the key message of our paper can be interpreted
as follows. The observation of balance holdings, which is feasible in the physical
currency economy, impacts the intensive margin, as it allows to set a positive real
rate of return on currency, thus reducing the cost of carrying balances across periods.
In turn, the observation of balance flows, which is feasible in the digital currency
economy, allows to set a spread between interest rates on active and idle balances
that impacts the extensive margin, giving the buyers the incentive to participate in

trade and, as a consequence, increasing the velocity of money.

4 Constrained Intervention

In this section, we compare our results with the literature by exploring constrained
intervention schemes. First, we examine interventions that pay the same interest rate
on idle and active balances. Second, we consider interventions that pay interest only
on idle balances. Finally, we examine interventions that do not involve the taxation

of balances.

4.1 Uniform Interest on Balances

The potential impact of the introduction of CBDC on financial intermediation has
spurred a large literature. The idea is that CBDC may compete with banks on the
liability side, thus affecting their ability to fund investments, as, for instance, in
Andolfatto (2021), Williamson (2022), Keister and Sanches (2023), and Chiu et al.
(2023). For the most part, this literature distinguishes CBDC and cash assuming
that they are imperfect substitutes as means of payment. In particular, CBDC is a
closer substitute to bank issued debt than cash. Apart from this difference, CBDC

is treated as a digital form of cash, and the only notable difference between them is

14



the fact that interest can be paid on CBDC.

In our model, treating digital currency as physical currency in digital form means
assuming that the former embeds the same record-keeping technology as the latter,
which implies that the monetary authority can no longer distinguish between idle and

active balances, and must set i, = 4,. Letting i, =i, = 7 in (11), we obtain

u(g _1-B+i;+ab
9'(q) af3 '

(18)

Note that the only difference between (18) and (7) is in the first-term in the numerator
of these equations. In fact, while in the physical currency economy, the rate 7 at
which money is injected or taxed in the economy in a lump-sum way is the only
policy instrument; in the digital currency economy with uniform interest the policy
instrument is given by 7 divided by the gross nominal interest rate.

Consider now the extensive margin of the digital currency economy. If ¢, = i, =i
in (9), we obtain

(1 —a){f[ulq) — c(q)] = K(a)} =0,

which coincides with (5), the extensive margin in the physical currency economy. We

have immediately the following proposition.

Proposition 6 Let 7. (resp. 74) be the rate at which money is injected or taxed in
a lump sum way in the physical currency (resp. digital currency) economy, and let
1 be the uniform interest payment on balances in the digital currency economy. An
outcome (o, q) is an equilibrium in the physical currency economy if and only if it is

also an equilibrium in the digital currency economy.

This result highlights that, if one restricts attention to intrinsic properties, a key
fundamental difference between physical and digital currency is the fact that the
latter embeds a technology which allows to keep track of flows and holdings across
accounts. In turn, this allows the monetary authority to implement interventions that
condition on this information. In other words, if one assumes that digital currency
is simply a digital form of physical currency, differences between these instruments
must be related to extrinsic features of the economys, i.e., frictions that make physical

and digital currencies imperfect substitutes as means of payments.
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4.2 Rewarding Idle Balances

The literature has examined the role of banks and liquidity markets to reallocate idle
balances in a model based on Lagos and Wright (2005), as in Berentsen, Camera and
Waller (2007), Ferraris and Watanabe (2008) and Geromichalos and Herrenbrueck
(2017). These models usually feature an exogenous intensive margin and competitive
markets, so the Friedman rule implements the first-best. Away from the Friedman
rule, it is shown that banks and liquidity markets can improve the allocation by
transferring balances from the agents without to those with a consumption oppor-
tunity. This transfer is beneficial as it allows the payment of positive interest to
agents without a consumption opportunity, who would otherwise keep their balances
idle. Intuitively, paying interest on idle balances is beneficial because it insures agents
against the risk of not participating in trade.

To replicate the role of banks and liquidity markets in reallocating balances with
digital currency, consider an intervention by the monetary authority that pays positive
interest on idle balances but no interest on active balances. To make the insurance
effect of paying interest on idle balances relevant, we restrict attention to the region
of parameters where 0* > 1 and full participation is not efficient.

Let i, = 0. We can rewrite (11) as

u'(q) _ l1-B+af+7+(1—0a)(l—-75)i
9'(q) af [1+ (1 —0)ip] ’

(19)

and we can rewrite (9) as

ulg) = (1 +ip)e(q)
1+(1-0),

K (a) =10 (20)
The existence of the monetary equilibrium requires ¢ > S¢41(1 + i), which can
be rewritten as 7 > (8 — 1) (1 +1,) + ai, = 7(ip). It follows immediately that the
optimal policy if 7, = 0 is the Friedman rule, given by 7 = 8 — 1 and ¢, = 0. This
policy achieves the efficient quantity and it encourages participation by offering zero
interest on idle balances. As shown in the previous section, this policy is dominated
by an intervention that sets positive interest on active balances and zero interest on
idle balances.

Now, let i, = 0 and consider the scenario where ¢ > ¢, 1(1+14,) and the economy
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is away from the Friedman rule. In particular, fix 7 = 7 (i,) + 6. We can rewrite (19)

as _ 5
ulg) 1+ t3s

g@ 1+1=0)i,

and an increase in i, leads to an increase in the quantity produced by the seller if

and only if § > %, and the economy is sufficiently away from the Friedman rule.

Intuitively, an increase in 7, insures buyers against the risk of not meeting a seller.

However, unlike banks, the insurance provided by the monetary authority requires
the injection of currency into the economy, which reduces its real rate of return.
The overall effect on the intensive margin is thus ambiguous. If the economy is
not too far away from the Friedman rule, the insurance benefit is less relevant and a
higher interest rate on idle balances reduces the quantity in trade meetings. Since the
increase in 4, also reduces participation in trade, welfare decreases. However, if the
economy is farther away from the Friedman rule, the insurance effect dominates and
an increase in 4, increases the quantity in trade meetings. However, since participation
goes down, the overall welfare effect is ambiguous.

Summarizing, digital currency may replicate the insurance role of banks in im-
proving the intensive margin by paying interest on idle balances, but it does so at
the cost of creating currency to fund the payment of the interest. Allowing for the
payment of interest on active balances, instead, digital currency can improve both

the intensive and the extensive margins of trade.

4.3 No taxation of Balances

The taxation of balances may not be feasible in pure currency economies, as pointed
out, among others, by Hu, Kennan and Wallace (2009), Andolfatto (2010), Wallace
(2014), and Bajaj et al. (2017). The idea is that the same frictions on commitment
and monitoring that render money essential prevent also the working of lump-sum
taxation schemes. In our case, this translates into a restriction to policies with 7 > 0.
In Appendix B, we show that, even if balances cannot be taxed, there still exists an
open region of parameters that replicates the results obtained in the previous section,
i.e., the observation of balance flows still allows digital currency to dominate physical
currency and implement the first-best. The intuition is the following.

In the physical currency economy, we consider a scheme where the monetary

authority makes a transfer of real balances to each account that conditions on the real
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balance in the account. As in Bajaj et al. (2017), the optimal scheme compensates
for the inflation tax accounts with real balances larger than or equal to the socially
optimal amount, i.e., the amount of real balances that induces the sellers to produce
the efficient quantity. This ensures that the efficient quantity is produced. However,
since this transfer scheme cannot separate between idle and active balances, it fails to
directly give the buyers the incentive to participate. In the digital currency economy,
instead, since flows in an out of accounts are also observed by the authority, the
optimal scheme compensates for the inflation tax only active balances. This ensures
not only an efficient production in trade meetings but also an efficient participation
of buyers.

Finally, the only difference between these schemes and the optimal interventions
considered in the case where real balances can be taxed, is that agents must be
sufficiently patient, both in the physical currency and in the digital currency economy.
This is so because, unlike the scenario where real balances can be taxed and the
optimal intervention can condition on the agent’s discount factor, here the injection
of real balances must be sufficiently large to convert the decision of a buyer on how
much real balances to bring, into a binary choice between bringing the socially optimal
amount and bringing zero balances. Patience is required for the former option to

dominate.

5 Robustness

In this section, we extend the result to a larger class of bargaining procedures than
just Kalai bargaining and show that the scheme with the payment of interest on
active balances is robust to manipulation attempts that involve the opening of shadow

accounts.

5.1 Bargaining

In the search and matching monetary literature, since trade is not mediated by the
Walrasian auctioneer, the pricing mechanisms are key. In our setting, trade meetings
are bilateral and we have adopted the Kalai bargaining procedure for simplicity, as
it makes computations easier. Other bargaining schemes could be adopted without

altering the main results. In Appendix C, we adapt to our setting the monetary
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mechanisms proposed by Gu and Wright (2016) and show that our results remain
valid. Particular cases of their mechanism include Kalai bargaining, Nash bargaining,
and competitive price taking. In what follows, we consider Nash bargaining in more
detail, since it unveils an additional channel through which the observation of balance
flows allows the implementation of policies that improve welfare.

It is well known from Aruoba, Rocheteau and Waller (2007) that, even without
the endogenous participation decision, i.e. when the extensive margin plays no role,
the Friedman rule implements the efficient quantity within trade meetings under
Kalai but not Nash bargaining, unless the buyers have full bargaining power. This
occurs because the traders’ payoffs are non-monotonic in real balances under Nash
bargaining.® Hence, under Nash bargaining, there may be room for digital currency
to allow the implementation of the efficient allocation even without the endogenous
participation decision.

Consider the digital currency economy with an exogenous extensive margin, so
a buyer meets a seller in the day market with an exogenous probability «. It is
straightforward to show that, under Nash bargaining, if a buyer with an amount m

of currency meets a seller, terms of trade are given by

om =

(1= 0ulg)c(q) +bc(gu'(e)  _ N(q,iasiy) (21)
j I

(1 +ia)u'(q) + (1 +p)(1 = 0)c'(q)

In turn, in the previous night market, the buyer chooses m to maximize —¢m +
Blau(q) + (1 — a)¢p11(1 + 4,)m]. Using the derivative of (21) with respect to ¢, we

obtain the intertemporal condition for the optimum,

u'(q) 1 -B4af+1+ai,+ (1 —a)(l - B)i,
Ny(q,ia,ip) af '

(22)

We can replicate the allocation in the economy with physical currency by letting

tq = 1p = 0, which delivers

ul(lg) 1-PB+aB+r
NQ(Q7070) N O‘ﬁ ‘ <23)

It is straightforward to show that the solution g. to (23) is strictly lower than ¢*,

6See Hu and Rocheteau (2020) for a unified strategic foundation of the Kalai and Nash protocols
that shed further light on their differences.
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even if 7 = f — 1 and the economy is at the Friedman rule. Moreover, . converges
to ¢* as 6 goes to one. These are well known results in the literature. Notice that
(21) implies that an increase in the interest rates allows the buyer to consume the
same quantity with lower real balances, since an increase in i, increases the surplus
in trade meetings, while an increase in ¢, increases the outside option of the buyer.
This suggests that the buyer may be encouraged to bring more real balances to the
day market if he expects positive interest rates. However, positive interest rates
require currency creation, which reduces the real rate of return on currency and
lowers the incentive to bring real balances. The overall effect is ambiguous. Should
the monetary authority set i, = 4, = i > 0, (22) would collapse into (23), leading
to the same allocation as in the physical currency economy. Thus, under uniform
interest rates, it is still the case that the surplus of the buyer may decrease while the
total surplus increases, which is at the root of the inefficiency under Nash bargaining.
In the following Proposition, whose proof is in the Appendix, we show that setting
different interest rates on active and passive balances allows the monetary authority

to achieve the efficient quantity.

Proposition 7 Fiz o and assume the Nash bargaining protocol, with 6 < 1. Setting
T=p8—1andi, =0, there exists a unique i, > 0 that achieves the first best, ¢ = q*.

Summarizing, the observation of balance flows offers an additional instrument to
the monetary authority, i.e., the spread between the interest rate on active and idle
balances. If the extensive margin is endogenous, this additional instrument can be
used to improve welfare by increasing the participation of buyers and the velocity
of money. If the extensive margin is exogenous and terms of trade are determined
by Nash bargaining, this additional instrument can be used to improve welfare by

aligning the surplus of the buyer and the total surplus in trade meetings.

5.2 Manipulation

We would like to find out whether our results are robust to the possibility of manip-
ulation, whereby agents try to obtain interest on idle balances equal to the interest
paid on active balances. For example, if an agent is allowed to open more than one ac-

count with the monetary authority, she can transfer unused balances across accounts
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and be paid an interest i, on those balances. We prevent this possibility by assuming
that each agent has only one account with the monetary authority.”

In what follows, we introduce the possibility of manipulation by assuming that
agents can open a shadow account that the authority cannot associate with the owner
of any existing account. However, in order to do so, they incur a cost v > 0 during
the night market. This account can then be used in the next day market to transfer
balances in order to receive the interest i,.

Consider the incentive of a single buyer to deviate and incur the cost v. To
make it transparent the benefits of incurring this cost, we consider the region of
parameters where 8* > 1 and full participation is not efficient. In this case, Lemma
3 implies that the optimal policy is given by ¢, = 0, i, = i and 7 = 7. If the
deviant buyer holds an amount m of currency, he chooses ¢ and d < 1 to maximize
u(§) —@(1+i*)d subject to the constraint (1—6)S, = 6S,, where S, = u(§) —p(1+4*)d
and S, = —c(§) + ¢(1 + i*)d. Note that the buyer receives interest i* on his passive
balances. This allows to rewrite the constraint (1—6)S, = S, as ¢in = %. Consider
now the participation decision. Optimization leads to the complementary slackness
condition for the participation rate {8[u(§) — ¢(¢)] — ¥'(&)} (1 — &) = 0, where both
terms in parenthesis are non-negative. Finally, moving to the night market, the

intertemporal condition for the optimum can be written as

W(q) _ 1+7+a%;—B(L+iy) (1-a)
9'(q) Ba(1 +1y) '

(24)

If the buyer chooses not to incur the cost, his participation is given by (9) and the
intertemporal condition is given by (11), both evaluated at the optimal policy. Since
the optimal policy implements the first-best, the net benefit of not incurring the cost

is
147 +at; - B(1—a)
1+ 0i

Blau(q) — k(a™)] g(q"), (25)

"In principle, an agent could circumvent the restriction that she can only have one account
by forming a partnership with another agent, and transferring her balances to the account of her
partner. These balances would be paid an interest ¢,. In our economy, these partnerships cannot
form in equilibrium because agents meet randomly and bilaterally and cannot commit to future
actions. In other words, the same frictions that render currency essential as a medium of exchange
prevents the formation of partnerships.
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while the net benefit if the buyer chooses to incur the cost is

1T+t - B0 - @)+ i)
1+i;

—7 + Blou(q) — k(a)] 9(q)- (26)
Provided (25) is not smaller than (26), the buyer has no incentive to incur the cost.
The next Proposition, whose proof appears in the appendix, shows that there exists
an open region of parameters under which the buyer has no incentive to deviate and

create a shadow account.

Proposition 8 Suppose the system can be manipulated at a cost, v > 0. For any
v > 0, there exists an open interval of values of 6 in which the optimal policy with

digital currency identified above is incentive compatible.

The optimal policy that reproduces the Friedman rule and achieves the best alloca-
tion attainable with physical currency is always available. Hence, for any positive cost
of manipulation, the optimal policy with digital currency can always at least repli-
cate the outcome with physical currency and, in an open set of economies, strictly
improve upon it. Intuitively, this is achieved when the interest payments that induce
efficiency can be kept small. If the digital system can be manipulated at no cost,
obviously, the digital technology cannot constitute an effective improvement over tra-
ditional currency. If it is even slightly costly to game the system, however, there are
robust circumstances in which the extra information provided by the digital technol-
ogy can be exploited to achieve the fully efficient allocation, while discouraging the

manipulation.

6 Conclusion

We have argued that the key difference between digital currency and cash consists in
the technological ability to trace monetary flows in and out of the accounts. Since
the extra information collected with this superior technology can be ignored, any
allocation achieved with cash can be attained also with digital currency. However,
if the extra information is used to stimulate the velocity of circulation of money,
there are robust circumstances in which digital currency can help attain the efficient

allocation that would be unattainable with cash.
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The banking system plays no special role in our environment. Indeed, we show
that the efficient allocation can be achieved without banks. However, this does not
mean that the adoption of CBDC would necessarily lead to disintermediation. On
the contrary, banks could play a key role in the actual implementation of the system,
as the digital payments could continue to work exactly as they currently do with the

interest on active balances being paid through the banking system.

7 Appendix

In Appendix A, we provide the proofs omitted in the main text. In Appendix B,
absent taxation of balances, we adapt the transfer scheme of Bajaj et al.(2017) to our
setting. In Appendix C, we show that our results are valid in a more general class of

trading mechanisms than the Kalai bargaining procedure.

7.1 Appendix A

Proof of Proposition 1. Suppose a* > 0. Define ®(q) = u'(q¢) — (q), a contin-
uous function with ®(0) = oo, ®(o0) < 0 and ®’(¢) < 0 by the properties of the
fundamentals. Hence, a ¢* € (0,00) that satisfies ®(¢) = 0 exists and is unique. The
function £’(«) is monotonic in «, hence, invertible. By equation (1), if 0* < 1, o* =1,
otherwise o* = K~ (u(q*) — c(q*)) € (0,1). In both cases, a* > 0. QED

Proof of Proposition 2. Solve (7) for the quantity ¢ = f~!(«, 7) and plug it
into (5). Define A(7) as the unique value of # that satisfies the first term at equality
in equation (5) with @ = 1. Such a cutoff that exists and is unique by the properties
of the fundamentals is at least as large as #*. There are two possible cases. Suppose,
first, 6 > é(T), then, « = 1 and ¢ = f~!(1,7). The existence and uniqueness of the
solution of (7) for any 7 > 5 — 1 in this case follows immediately from the continuity
of the function f(-), with f(co) = 0, f(0) = oo and f’(¢) < 0. Second, suppose
0 < 0(7), then o < 1 solves A(a, 7) = 0[u(f(a, 7)) — e(f e, 7))] — k(o) = 0 and
q = f~'(a, 7). The solution exists for any 7 > 3 — 1 since A(+, 7) is continuous in «,
with A(0,7) =0, A(1,7) < 0 and A,(0,7) = co. Uniqueness can be guaranteed for
7 not too large. Once « is determined, equation (7) gives uniquely ¢. Let a(7) and
q(7) denote the equilibrium variables as function of policy, 7. Implicit differentiation
shows that ¢’(7) < 0 and o/(7) < 0 when o < 1. QED
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Proof of Proposition 4. Define ¢+ = (7,4,,7,). Solve (11) for the quantity
q = f'(a,¢). and plug it into (9). Define §(¢) as the unique value of § that satisfies
the first term at equality in equation (9) with o = 1. Such a cutoff that exists and
is unique by the properties of the fundamentals is at least as large as 6*. There are
two possible cases. Suppose, first, § > 6(¢), then, ¢ = f~'(1,:) and o = 1. The
existence and uniqueness of the solution of (11) for any 7 that satisfies (12) in this
case follows immediately from the continuity of the function f(-), with f(co) = 0,
f(0) = oo and f'(q) < 0. Second, suppose 6§ < 6(i), then o < 1 solves I'(a,1) =
Olu(f~ (a, 1)) — e(fHa,1))] — K (a) = 0 and ¢ = f~'(a,¢). The solution exists for
any 7 that satisfies (12) since I'(+,¢) is continuous in «, with I'(0,¢) =0, I'(1,¢) < 0
and I'4(0,¢) = oco. Uniqueness can be guaranteed for 7 not too large. Once « is
determined, equation (11) gives uniquely ¢. Let a(¢) and ¢(¢) denote the equilibrium
variables as function of policy. Implicit differentiation shows that ¢,(:) < 0 and
a-(t) <0 when a < 1; ¢;,(¢) > 0 and «;,(¢) > 0; the signs of the derivatives of ¢(¢)
and «a(¢) wrt ¢, are ambiguous. QED

Proof of Proposition 7. Consider the equation (22) evaluated at ¢*, 7 = 5 — 1
and i, = 0. Manipulating such a condition, we obtain a quadratic equation of the
interest on active balances, i,, ®(i,) = 0. Since ®(0) < 0, ®(c0) > 0, ¥’(i,) > 0 for
all 7, > 0, we conclude that there exists a unique 7, > 0 that induces the efficient
allocation. QED

Proof of Proposition 8. Consider the case #* > 1. Let the authority adopt
the optimal policy that implements the first-best. Use (25) to define the function
W(0) and use (24) and (26) to define W(A). The function ¥ () — W(H) is continuous
in # and (1) — ¥(1) = 4. Hence, for v > 0, by continuity there is an interval of
values of § ~ 1 so that ¥(#) — ¥(d) > 0. Finally, to guarantee that the agents do
not create shadow accounts even if they do not want to participate in trade, it has
to be that (HT)’# > 1+ 1,, that is satisfied for v > 0 if § =~ 1. Consider the case
0* <1 with 6 < #*. Let the authority adopt the optimal policy that implements the
first-best with 7 = 8 —1, i, > 0 and 7, < 0. Taking 6 — 6" from below, an analogous
continuity argument applies for 6 ~ 6*. QED
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7.2 Appendix B

Suppose taxation of balances is not feasible. For simplicity, we assume that 0 < §* <
1, implying that the first-best involves full participation of buyers, and it cannot be
achieved in the physical currency economy. We begin with physical currency. The
transfer scheme we use is adapted from Bajaj et al. (2017). Assume that the monetary
authority transfers 7.(¢m) > 0 real balances to each account with ¢m real balances at
the end of the day market, for all m > 0.® Thus, if the buyer gives ¢m real balances
to a seller with zero balances during the day market, the seller anticipates that she
will receive a transfer of 7.(¢m) real balances at the end of the day market. Under

Kalai bargaining, the quantity produced in the meeting satisfies

¢m + 7.(¢m) = (1 = O)u (q) + bc(q) = g(q)- (27)

Bajaj et al. (2017) propose a transfer scheme that compensates for the inflation tax
the buyers who bring at least the socially optimal amount of real balances, i.e., the
amount of real balances that induces sellers to produce the efficient quantity. In our

setting, this translates into the following transfer scheme

0 if ¢pm < 2L
7. (¢m) :{ T9(¢") f >1+T( I (28)
147 ) 1 qu 1471
where M, = (1 + 7)M. Note that (27) implies that this transfer scheme gives the
seller the incentive to produce the efficient quantity if the buyer brings % real

balances, since 91(+T) + 7. ( ﬁT)) = g(¢*). Moreover, since 7.(¢pm) > 0 is a step
9(q") 9(q)

472 1+
additional transfers if she receives more than

9(q)
1+7

the day market, the buyer with ¢m real balances makes his participation decision,

is costly and the seller does not receive

9(q*)
1+7

real balances into the day market. In

function at £ carrying balances above 2
) from the buyer. As a result, the

buyer has no incentive to bring more than £

solving
max {au(g) + (1 — @) [pm + 7e(¢m)] — k(a)} .

8This transfer scheme is feasible because balances can be observed in a physical currency economy.
In Bajaj et al. (2017) transfers are given to agents at the beginning of the day market, while we are
considering a slightly modified version, where agents receive their transfers at the end of the day
market. As it will become clear, this change is immaterial in the physical currency economy but it
matters in the digital currency economy.

25



Using (27) and (28), the optimum satisfies

K (o) = 0u(q) — clq)], (29)

so that the participation decision of the buyer only depends on the surplus in the

trade meeting. In the night market, the buyer chooses the money balances. There

9(q*)

T4 real balances, his payoff is’

are two scenarios. If the buyer brings

Ul = —g(q") + Bloculd”) + (1 — ac)g(q”) — k(ae)]

where a. solves (29) evaluated at ¢ = ¢*. Since the efficient quantity is produced in

trade meetings, and a. < 1 solves (5), we obtain the same allocation achieved under

the Friedman rule when the balances can be taxed. If, instead, the buyer brings
9(q)

¢m < T, his payoff is

U™ =—¢_1m+ flau(q) + (1 —a)g(q) — k(a)],

where « solves (29) evaluated at ¢. Note that, since ¢ — 0 when 7 — oo, (27) implies

that ¢ — 0 when 7 — oco. Thus, there exists 7 such that U~ < 0 for all 7 > 7. As
9(¢”)

a result, if 7 > 7, a sufficient condition for the buyer to bring 5> real balances is
n . . — 9(a*)
that U > 0, which can be rewritten as 5 > (5 (a.) = CRET NI CAETrnE Therefore,

if0 <6*<1 If 7 >7and S > f(a.), there exists a transfer scheme that replicates
the allocation achieved under the optimal policy in the physical currency economy
with taxation of balances.

Consider now the digital currency economy. The analysis is similar to the one in
the physical currency economy, but with a modified transfer scheme,

: (a%)
0if pm < §L-

74 (pm) = 0, if pm > % and the balance is passive

(¢"), if pm > % and the balance is active

_T_
1+7

This scheme only gives transfers to active balances that are at least equal to the

9In more detail, if ¢pm = gl(j_:), then m = (;i(l‘iz) and the cost of acquiring m units of currency
in the previous night market is ¢_1m = t&ﬂiy = g(¢*), since ‘tl = MA{I =1+ 7. In turn, since

9(q™)

the buyer receives a transfer % if he holds 5 e real balances at the end of the day market, his

total balances if he does not participate in a trade meeting is given by g(q*).
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socially optimal amount. This is the case of the balances held by the seller that par-
ticipated in a trade meeting where the buyer brought the socially optimal amount of
real balances. As in the physical currency economy, the sellers reciprocate by produc-

ing the efficient quantity in exchange for these balances. Moreover, since 74 (¢m) > 0
9(q")

is a step function at £ = , the buyer has no incentive to bring more than %) real
balances into the day market. Consider now the participation decision of the buyer. If
g(q )

real balances, his participation solves (29), as in the physical
( )

he brings less than

currency economy. Thmgs are different if a buyer brings £ In this case, he solves

max [au(q*) -l k(a)] ,

a 1+71

and the optimum satisfies

(10 [ute) - 220 @] =0,

147

where both terms in parenthesis are non-negative. Full participation requires

9(q")
147

K (1) <u(q) —

Since 0* < 1 implies k(1) < u(q¢*) — c¢(q*), a sufficient condition for buyers to fully
participate is

s (1 =0)[ulg”) —clg”)]

B c(q*) '

A higher rate of money growth gives the incentive for full participation by imposing

an inflation tax on idle balances, even if the balances are equal to the socially optimal

amount. In the night market, the buyer chooses his balances. There are two scenarios.

: 9(a
If the buyer brings ¢m < T’ his payoff is the same as in the physical currency

economy, given by U~. Thus, since ¢ — 0 when 7 — oo, (27) implies that ¢ — 0

when 7 — oo and there exists 7 such that U~ < 0 for all 7 > 7. If, instead, the buyer

(q)

brings £ real balances, his payoff is

Uf =—9(q") + Blulg") — k(1)].

(q)

T real balances is that

Thus, if 7 > 7, a sufficient condition for the buyer to bring £
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U j > 0, which can be rewritten as

9(q*)
9(q*) + K (1) — k(1)

Therefore, in the case § < 0* < 1,if 7 > 7 and 8 > (1), there exists a transfer

scheme that replicates the allocation achieved under the optimal policy in the digital

p1) =

currency economy with the taxation of balances.

7.3 Appendix C

Gu and Wright (2016) propose a trading mechanism that satisfies a few desirable ax-
ioms, namely feasibility, individual rationality, monotonicity and bilateral efficiency,
and subsumes, as particular cases, both Kalai and Nash bargaining, and competitive
price taking, among other solution concepts. In what follows, we first provide a gen-
eral form of their mechanism that is consistent with the record keeping technology
under digital currency. We then show that our main result holds, i.e., the observa-
tion of balance flows allows to achieve the first best. Consider the following trading
mechanism I' = (I',(2),'y(2)), where I',(2) sets the real balances transferred from

the buyer to the seller, and is given by

ro(2) zif z < p*
Z) =
g p*if 2 > p*

where p* is defined as the minimum payment required for a buyer to receive ¢* units

of goods from the seller. In turn, I';(z) sets the quantity produced by the seller and
is given by

)

71 . . p*
v 1+1,)z2) if 2 < £
ro=q ¢ W<

q"if 2 > 75
where v(-) is a strictly increasing, twice continuously differentiable function, with
v(0) =0 and v(¢*) = lfia. This is the same trading mechanism as in Gu and Wright
(2016) if i, = 0. In the digital currency economy, we need to take into account

that, if the buyer transfers z real balances to the seller in the day market, at the
beginning of the night market, the seller will have (1 + i,)z real balances. Note that
the terms of trade do not depend on the real balances of the seller, and the efficient

quantity is produced if (1 4 i,)z > p*. In turn, without loss in generality insofar as
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optimal allocations are concerned, henceforth, we restrict attention to interventions
that pay zero interest on idle balances. This implies that, in equilibrium, the sellers
do not bring balances and the buyers do not bring balances they are not planning to
use. We start with the participation decision of a buyer with real balances z at the
beginning of the day market. He chooses « to maximize au(q)+ (1 —«a)z —k(«). The

complementary slackness condition for the optimum is

v(a)
l—a)|u(q) — —————kK(a)| =0,
(1-0) fu(o) - 142 = K(a)
where both terms in parenthesis are non-negative. Note that, given ¢, an increase in
1, increases the incentive of the buyer to participate in trade. Consider now the night
market. The buyer chooses z to maximize —¢_12/¢ + Blau(q) + (1 — @)z — k(a)].

The intertemporal condition for the optimum is

u'(q)  1—B+af+1+ai,
v(g) af(l+ia)

where we used M1 = (1 + 7 + «ai,)M and the stationarity of real balances. We now
determine the optimal intervention. First, let #* > 1, so the first-best involves ¢ = ¢*

and o* < 1, where
u(q") — c(g”) = K'(a”). (30)

If a policy implements the first-best, we must have

u(g") 1-B+a'B+7+ 0%,

o) Al oy
and @)
u(q') ~ i = K@) (32)

If i, = 0, efficient participation requires v(¢*) = ¢(¢*), which is not generically satis-
fied. For example, if v(q) is determined by Kalai bargaining or Nash bargaining, this
is only possible if # = 1, and the buyer has full bargaining power. Thus, the first-best
cannot be implemented if the authority cannot distinguish between active and idle
balances. If, instead, 7, > 0, we can equate the left hand side of (30) and (32) and
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achieve efficient participation by setting

Using (31), we determine the optimal 7, which is given by

MBM@ﬂ—U@ﬂf
v'(q*) v'(q¥) “

The existence of the monetary equilibrium requires 7% > 8 — 1 — o*¢;. Thus, the

T*:ﬁ—1+a*ﬁu

first-best can be implemented by the policy (7%,4) if and only if
Ul(q*)

/(q*> —
Consider Kalai bargaining, as in the text. In this case, we have

(1+43) [(1 — O)ulq) + bc(q)]
1+ 0ix

(1471} 1. (33)

<

v(q) =

Y

1-0 u(q*)—c(q*)
0 c(q*)
case, we have proved that the first-best can be implemented. Given the regularity of

which implies ¢ = , 1.e. the optimal policy considered in the text. In this

the solution, a transversality argument shows that the same occurs for an open and
dense set of mechanisms that are close to the Kalai protocol. Consider now the Nash

bargaining protocol. We have

(1 +dz) [(1 — O)u(q)(q) + Oc(g)u'(9)]

v = B )
=TT R i) (-0
which implies ¥ = %%, as in the case of Kalai. Computing v'(¢*) and
inserting it into (33) together with i} = %%, we obtain the condition I' () >

0. Since I' (1) > 0, by continuity there exists a non-empty interval of values of € such
that (33) is satisfied. Finally, under competitive pricing, we have v(q) = pgq, where p

is taken as given but is equal to ¢/(¢) in equilibrium. In this case, (33) becomes

>1

which is always satisfied under our assumptions on the fundamentals.
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