©9 UNIVERSITA'

DEGLI STUDI

X

DEPARTMENT OF ECONOMICS
UNIVERSITY OF MILAN - BICOCCA

AUDENTES FORTUNA IUVAT

== ONV'IIN 1d

WORKING PAPER SERIES

Pricing of an Endogenous Peak-Load

Lorenzo Rocco

No. 54 — October 2002

Dipartimento di Economia Politica
Universita degli Studi di Milano - Bicocca
http://dipeco.economia.unimib.it




Pricing of an Endogenous Peak-Load

Lorenzo Rocco*

August, 2002

Abstract

This paper aims to explore the peak-load price results arising in
a congestion game setting. A continuum of players decide when con-
suming a service (say, during the day or the night): for instance, they
choose when connecting to internet or when driving a car in the road
network. The utility they get is a function of the individual prefer-
ences and of the aggregate behavior of the other players. Therefore
day and night demands are endogenous. We consider what prices a
social planner imposes to drive the players’ choice towards the equi-
librium distribution of first best. Moreover, we consider what prices
(and what distribution) a monopolist, maximizing his profit, chooses,
when he has to satisfy an universal service requirement and when he
may restrict his supply. Finally, we determine which capacity level is
optimal to install for either a social planner or a monopolist in this
setting.
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1 Introduction

In the literature about peak-load pricing, the demand functions for both
the peak and the off-peak periods are, very often, exogenously given and
independent (Boiteux, 1951, and Steiner, 1957, were the first to study the
peak-load pricing and assumed these features for the demand functions).
Therefore, the peak period (i.e. the period with the highest demand) is
exogenously determined.

The well known result of these studies is an efficient pricing rule which
prescribes that individuals choosing the peak period pay for both operating
and fixed costs and those choosing the off-peak pay only for the variable costs
(see Crew, Fernando, and Kleindorfer, 1995, for a recent survey).

Nevertheless, this framework is static while, actually, at least one frac-
tion of the consumers is free to decide when consuming. In fact, Shy, 2001,
considers a dynamic OLG model where the agents decide weather consuming
today, tomorrow or never. In such a way, he endogenously determines the
demand functions and what the peak period is.

In this paper, we develop the same intuition of Shy, but we wish to focus
mainly on the weak strategic interaction between consumers that, we believe,
plays a crucial role in the consumption choices.

For instance, it is an usual experience to postpone the internet connection
when we observe long delays before getting the desired results. Often, such
delays are due to the high number of users connected and to the high number
of requests. Thus, we suffer either a simple disutility or the constraint to
postpone our action, because of the others’ consumption decisions.

There is also an indirect transmission system for these externalities, via
prices, because of the nature of the cost function in the markets where a
problem of peak-load arises. In the literature, it is always well highlighted
that the peak load problem comes from the impossibility of storing the good
or the service during the low demand period to make it available during
the high demand (Crew, Fernando, and Kleindorfer, 1995, and Baumol and
Faulhaber, 1988, among others).

This storing impossibility leads to a production process that should be
able to satisfy the demand in real time. Such a constraint implies, roughly
speaking, a step and increasing cost function. To satisfy a high demand it is
necessary to operate at high production costs and therefore the prices have
to be higher in order to yield a nonnegative profit.

Indeed, the decision of a consumer has an externality on the others: when



he consumes, he may increase the prices for all the individuals, deciding to
consume at the same period. Alternatively and more interestingly, if a con-
sumer changes his choice, he will induce the price of his newly chosen period
to increase and, simultaneously, he will induce the price of his previously
chosen period to decrease.

Knowing the existence of such externalities, a rational agent may want
to act strategically in order to maximize his own utility, i.e. he may want to
take into account what the others do, before choosing when consuming. This
feature makes the choice of any individual (i.e. the demand for the service in
either periods) endogenous as well as when the peak arises. Actually, demand
results from the simultaneous interaction of the agents. The highest demand
determines the peak period.

Let us simply call congestion the global influence of the others. Conges-
tion makes our framework a game where it is possible to determine, with or
without prices, a players’ distribution of (Nash) equilibrium. This is because
it represents the aggregate behavior of the opponents, or a function of their
choices.

Here are few examples where congestion plays a role. In the internet
connection, the time necessary to reach the desired web page and to receive an
answer increases as the number of users connected at the same time increases.
In the phone service, where the lines are dedicated to pair-communications,
it may be necessary to wait a while before taking the line during the peak
hours. In the road network, the congestion effect is the traffic and the time
we spend in car (and so our satisfaction) depends on the traffic level.

As mentioned, another effect is more indirect. It is associated with the
price growth due to an high demand in a service presenting an increasing
cost function. In the deeply studied electrical market (see Borenstein and
Bushnell, 2000, for a recent contribution), during the peak periods some
additional gas power plants work to quickly satisfy the high demand. Such
plants have relatively low installation but high marginal costs. Thus, to cover
the costs, the electricity producers have to increase the peak period price.
Indeed, the cause of the high price is the concentration of the demand at the
same time.

Other similar situations can be found in the airline transport, in the hotel
service, in the airport services and in the mail system, where considerations
of peak-load pricing are jointly solved with price and quality discrimination
objectives (Crew, Fernando, and Kleindorfer, 1995). Notice that, often, qual-
ity is for how fast the service is: examples are the priority land services in
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the airports for the business class travelers and the first class or priority mail
compared with the second class or ordinary.

In terms of game theory, the player t’s payoff decreases with the number
of other players that chooses the same period of ¢, i.e. this is a game with
rivalry (see Konishi, Le Breton, and Weber, 1997).

Let us to keep the internet example, to discuss our issues in a more
apparent way.

Each agent compares the payoff he gets by connecting now or later. Sup-
pose that a social planner or a monopolist introduces prices, different for
the two times. Such prices not only allow to efficiently allocate the costs
among the players, but they may also modify the relative payoff of each
agent, directing their choice.

Hence, prices become a tool to distribute the demand in the time effi-
ciently (i.e. separating the agents on the basis of their willingness to pay
for consuming in either period, taking into account, at the same time, the
congestion effect).

In this paper we mainly focus on the relation between prices and players’
distribution, on what prices a social planner sets to induce the first best
allocation and on what prices a monopolist sets in order to maximize his
profits. We prove that there is a one-to-one relation between prices and
players’ distribution in each case, but the resulting allocations may be very
different.

This framework is, from a technical point of view, very different from
that of Shy, 2001, and, conceptually, the main difference is the concern on
prices. These can completely determine any equilibrium distribution and
they embody the congestion effects. Such effects are explicit rather than
implicit as in Shy.

We assume that there are no variable costs. This is the case for instance of
internet where operating and fixed costs are almost negligible (see McKnight
and Bailey, 1997) or the case of a urban road network, where the maintenance
and building costs are payed with public funds. Moreover, except for section
5, we assume also no fixed costs.

Therefore, differently from the traditional studies, the prices role is purely
distributive and does not deal with the cost covering. Thus, we can not
directly compare the prescription of the peak-load pricing literature about
the allocation of the fixed cost between the peak and the off-peak consumers.

However, if we imagine that some fixed costs exist but are low enough
(such that the budget balance constraint is slack), we obtain that they are
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completely payed by the peak period consumers, as in the traditional litera-
ture (Steiner, 1957, among others).

On the contrary, in section 6, we add installation (fixed) costs. We are
interested in determining the optimal capacity supply jointly with either
a social welfare or a private profit maximization. In this case a punctual
comparison with the habitual pricing rule is possible.

We believe that our approach is interesting for at least two reasons. First,
it recognizes that, usually, peak and off-peak demands are endogenous, i.e.
there may be some individuals that switch between periods, depending on
the prices level, without renounce to their consumption. In the traditional
literature the demand functions are assumed exogenous: thus, increasing a
price, or both, simply reduces demand. Here, roughly speaking, demand
moves and does not disappear.

Second, our approach leads us to completely determine the relation be-
tween prices and agents’ distribution, allowing us to compare what different
objective functions (social surplus or private profit) imply about individuals’
distribution and the aggregate loss of welfare due to congestion.

Let us now present how the paper is organized. In section 2, we describe
the game and prove the existence and the uniqueness of the Nash equilibrium
without prices. We also observe that, given the model formulation, the equi-
librium strategy profile is completely characterized by a pivotal individual
that shares the demand in two parts (day and night demand).

In section 3, we analyze how a social planner would allocate the demand in
order to maximize the social surplus. We get a result in terms of the pivotal
individual. He is such that his utility loss (due to the price introduction
and, so, to the new relative convenience of any available strategy) equals the
aggregate externality he imposes to the others, moving from his spontaneous
to his induced-by-prices choice.

In section 4, we look to a profit maximizer monopolist, who sets the prices
in two different contests: in the first, he has to guarantee a nonnegative utility
to any consumer; in the second, he may reduce the consumers’ access. We
assume that day and night valuations are negatively correlated in our society.
Again we obtain results in terms of the pivotal individual.

Without access reduction, the monopolist sets the prices in such a way
that the pivotal individual presents the equality between his utility loss and
the aggregate surplus variation the monopolist may extract from the other
agents. This difference is created by the passage from the pivotal individual’s
spontaneous choice to his induced-by-prices choice. It results both from a



variation of the marginal willingness to pay in the set of the players choosing
either period, and from a change of the congestion.

With access reduction, the monopolist sets the prices in order to deter-
mine two pivotal individuals. Such individuals bound and characterize the
sets of those players choosing day and night. They are such that if the mo-
nopolist renounces to serve them (and so he renounces to the price they
pay), he gains the same amounts by extracting the surplus variation of both
groups, generated by the reduced access.

Section 5 deals with the problem of an optimal capacity supply. Here we
suppose day and night valuation positively correlated among the population:
there exist people having a high valuation for day and night connection, or
a low valuation for both. Again, we consider the problem of a benevolent
social planner and that of a profit maximizing monopolist.

In the first setting, we determine two pivots such that marginal social
benefits and costs are exactly offset, where the social costs embodies the
capacity costs. This condition implies that the first best distribution is more
equilibrate than the “spontaneous” distribution obtained without planner’s
involvement.

In both settings we get that fixed costs are payed by the peak consumers,
as in the traditional peak-load literature. What is interesting is that, in
monopoly, the price peak-reverse phenomenon may arise (Bailey and White,
1974, and Shy, 2001), i.e., off-peak exceeds the peak price.

Finally section 6 concludes.

2 The game

Consider a nonatomic, anonymous, static game with complete information,
as defined by Rath, 1992. There is a set of players represented by the unit
interval ' = [0,1] in R. We assume that this interval is endowed with
the Borel o-algebra B([0,1]) and with the Lebesgue measure A. Therefore,
(T, B(]0,1]), A) is both a measure and a probability space, since A([0, 1]) = 1.

The action space is simply the binary set A = {(1,0), (0,1)} composed by
the two unit vectors in %?. In words, (1,0) is for the connection at period 1
and (0, 1) is for the connection at period 2. In the sequel, it will be clear why
we use, like Rath, this formulation. Moreover, we will often employ strategy
1 (or day) and strategy 2 (or night) to refer respectively to the unit vector
(1,0) and (0,1).



Let f : T"— A be the pure strategy profile and F' the set of all the
possible pure profiles f, i.e. f € F assigns to each player t € T a pure
strategy (a,1 —a) € A with a =0, 1.

We call S the set of the Lebesgue integrals of all functions f € F. Notice
that, by definition, the Lebesgue integral of any f represents the distribution
of the players over the two pure strategies (day and night) and it can be write
as a vector (qi,g2) with ¢; € [0,1] for i = 1,2 and ¢; + go = 1. Therefore, the
set S is nothing else that the unit simplex in R2.

Each player is endowed with a private valuation for both periods, i.e.
each player is endowed with the vector (V;(t), Va(t)). Moreover, we suppose
that V; : T'— R are positive and continuous functions, for ¢ = 1,2. To avoid
trivial results, we assume that this two functions have a (unique) intersection
point internal in 7', and that AV (t) = Vi(t) — Va(t) is a strictly increasing
function.

In this setting, the anonymity of the game means that the players’ payoff
functions depend on the Lebesgue integral of the strategy profile. Two con-
sequences have to be pointed out: first, each player’s action has a negligible
effect on the others, because a single individual forms a zero-measure set;
second, what matters for a player, in order to make his choice, is simply the
distribution of the others and not what any single agent does.

Indeed, the payoff function u : T x A x S — R are specified as u;(t,¢;) =
Vi(t) — h(g;) for i = 1,2, representing, as usual, the two available pure
strategies and ¢; representing the -th coordinate of fT fdA. We assume that
h :[0,1] — R* is continuous and increasing. Therefore the u is continuous
in T'x A x S. The function h represents the effect of the strategic interaction
on the players’ payoff and on the their choice at equilibrium.

Given the specification of u; and the fact that h is increasing, this is a
game of congestion or of rivalry, i.e. the ¢t payoff is higher the lower is the
measure of the set of the players choosing the same period of agent ¢. Indeed,
—h(g;) is a measure for the congestion.

Assumption 1 At least one of the actions available for the players yields a
positive payoff, for any (g1, g2).

This assumption is absolutely weak and its meaning is simply that the
service has an economic value at each distribution.
We are interested in determining the Nash equilibrium of this game.



Definition 1 A pure strategy Nash equilz’bm’um of this game s a pure strateqy
profile f* such that for almost allt € T, u(t, f*(t), [ f*dX) = u(t,a, [, f*d))
for all a € A.

Proposition 1 In this game there exists a unique Nash Equilibrium in pure
strategies and it can be written as

2 fort < trash

;0= {1 for t > tnash

Proof. Following Rath, 1992, we first determine the best reply corre-
spondence, then we consider an auxiliary correspondence obtained as the
Lebesgue integral of the best reply and we look for a fixed point. If it exists,
then it is possible to find a pure strategy profile which satisfies the definition
1. In this simplified setting the Lebesgue integral of the best replay corre-
spondence is a binary vector with the i-th coordinate (i = 1,2) equal to the
Lebesgue measure of the players’ set preferring the i-th strategy. Hence, the
best reply function is

1 ifuy(t,q1) = ual(t, go)
B =
(a1, Q2) {2 otherwise

Given the formalization of the strategies described above, the best reply func-
tion (of t) can also be represented as the pair of characteristic functions I' =
(171(t), 1\ 71(t)), where the set T'1 is the set {t € T, u1(t,q1) = us(t, q2)},
i.e. the set of all those players that prefer the strategy 1, given the strategy
profile f such that [, fd\ = (qi,¢2). It is clear that the Lebesgue integral
of (171(t), L\ (2)) is (M(T1), A(T\T'1)). It is, thus, simple to determine the
condition for a fixed point of I, i.e.:

AMT1) =

T1 is equivalent to {t € T, AV(t) > h(q1) — h(g2)} . Since AV () is an in-
creasing function and it is continuous, the set T'1 is the interval [t 1]. We
can think to AV/(t) as to a stochastic variable. Its probability law is noth-
ing else that the measure induced by the function AV (t), i.e. Aay(4') =
AMAVL(A")) is the probability of AV (t) € A’

Now, let us define the cumulative distribution of AV as

Fv) = Xav([—oo,v]) = A{t € T, AV(t) < v})



This function is continuous and strictly increasing because AV (t) is. We can
rewrite the fixed point condition as

F(h(q1) —hg)) =1—q

Now, F(h(q1)—h(1—gq)) is valued over [0, 1] and it is continuous and increas-
ing in ¢; because h(-) and F(-) are both continuous and strictly increasing.
Since 1 — ¢; is also valued on [0, 1] and it is decreasing, there exists a unique
pair (¢, ¢3) satisfying the equality. Therefore, this is the unique fixed point.
To conclude, since AV (%) is increasing, the strategy profile of equilibrium f*,
i.e. the strategy profile such that fT f*dX = (¢7,43), is unique and can be
written as

2 for t < trash
1 for t > trash

rio={
where t"*" is such that AV (¢"*") = h(q}) — h(g}). =
Two remarks are needed. First, the agent labeled t"%*" is a pivotal in-
dividual that shares the strategy profile and fully determines the players’
distribution on the two periods. Second, the economic interpretation of the
implicit condition for ¢"**" is included in the following:

Proposition 2 The pivotal individual t"**" is such that his payoff is exactly
the same for both possible periods, or t"*" is the indifferent agent, given the
strategy profile of equilibrium f*.

Proof. Simply rearranging AV ("*") = h(q}) — h(g3), we obtain

tnash tnash ’ q;) (1)

ul( 7q;<) :u2(

]

Finally, pay attention to a feature that will be very useful in the sequel.
Given the form of T'1 and the fixed point condition A(7'1) = ¢;, in equilibrium
we have that 1 — ¢"*" = g% or simply

nash *



3 The planner’s solution

Consider now a simple two stage game, where a social planner aims to max-
imize the utilitarian social welfare, choosing in the first stage two prices P;
and P, for respectively period 1 and period 2. In the second stage the con-
tinuum of players [0,1] decides in what period connecting to the service,
observing the planner’s prices.

Firstly, we discuss the link between the prices and the Nash Equilibrium
distribution. We simply apply the proof of proposition 2. The best reply
function becomes:

ifu(t,q1) — P = ua(t,q2) — B

1
B -
(91, q2) { 2 otherwise

Theset T1is {t € T, AV(t) > h(q:) — h(q2) + AP} where AP = P, —
Ps.

Thus, what determines the players choice, from the planner’s perspective,
is only AP and not the absolute value of P, and P». Since AP is a constant,
the equilibrium condition in terms of cumulative distribution is

1= F(h(q1) — h(q2) + AP) = q

Using the same arguments presented in the proof of proposition 2, for any
AP, a unique equilibrium exists. Notice that the equilibrium distribution
depends on the prices. We are interested in looking for the function that
links AP with the equilibrium distribution.

By now, we only know that we can associate to each AP an equilibrium
distribution, i.e. we know that there is a function that links AP to an
equilibrium distribution, but we can not yet assert, for instance, that there
is a one-to-one relation between them. However, suppose that (¢7,q3) is a
fixed point and that both AP’ and AP"! imply (q;, g3)-

Therefore, because of the monotonicity of AV (), we have two distinct
set T'1 of the form [t,1], say TV ={t € T, AV (t) > h(q}) — h(¢5) + AP’}
and T1" ={teT, AV(t) > h(q¢)— h(g)+ AP"}. But, since (¢}, q;) is a
fixed point, it has to be that A(T'1") = ¢f = A(T'1"). Thus Tl =T1".

'Here, to avoid uninteresting results (i.e. full concetration of players on only one period)
assume that AP is low enough. This assumption will be formalized in the sequel.
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It clearly follows that AP’ = AP" and so for any equilibrium distribution
there exists a unique AP in relation with it. Then, the relation between AP
and (¢f(AP), ¢5(AP)) is a bijection. Also, the strategy profile of equilibrium
is univoquely defined by

2 fort <thp
1 fort>th,

[t AP) = {
where th, = ¢(AP), given the form of 71 and T\7T'1. We resume this
argument in the following:

Proposition 3 In the two stages game presented in this section, there is
a one-to-one relation between the AP chosen by the first mover and the
equilitbrium distribution resulting by the strategic interaction of the continuum
of second movers, i.e. (qi(AP),q(AP)).

Note two issues. First, from the social planner’s perspective, there is
a degree of freedom in choosing the prices because what matters is their
difference and not their absolute value. Secondly, we do not care about the
absolute utility level that each agent gets in equilibrium: it may also be
negative, due to the prices.

To deal with the two above remarks, we made the following assumption:

Assumption 2 The social planner sets the prices that induce the first best
distribution in such a way to minimize the size of his own intermedia-
tion.

Under this assumption, the prices pair is uniquely defined since it solves
the program of minimizing P; 4+ P, under the constraints that P, i = 1,2, is
nonnegative and that P, — P, = APB_ where AP is the particular value
of AP inducing the equilibrium distribution of first best. The solution of
this program is clearly P; = |AP*#| and P; = 0, with ¢ # j. More precisely,
i equals 1 and j equals 2 if the first best allocation is such that ¢} > ¢f'?
(and vice versa) where ¢} is the “number” of those choosing the strategy 1
at the Nash equilibrium of the one-stage game without social planner and
qF'P is the first component of the first best allocation chosen by the social
planner. Notice also that having at least one zero price ensures that, at the
equilibrium, any player gets a nonnegative utility.
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Now, we are ready to solve completely the two-stage game and so to
determine the first best allocation. Following the chain of the one-to-one
relations presented, we have finally determined a one-to-one relation between
any prices pair and any strategy profile of equilibrium.

Actually, there is a bijection between A P and the equilibrium distribution
and a bijection between AP and (P, P,), given assumption 2. The social
planner’s problem of determining the efficient prices is equivalent to choose
the equilibrium strategy profile or simply the pivotal individual completely
characterizing it.

Thus, the social planner chooses the ¢ , that maximizes

 p 1
/ us(t, t*AP)dt + / ul(t, 1-— t*AP)dt
0 tap

The prices payed by the agents are not wasted and simultaneously repre-
sent a negative and a positive component in the planner’s objective function
that completely off-set each other. A sufficient but not necessary condition
for the strictly concavity of the above function is that h(:) is convex. The
first order condition yields:

uy (877, g ) —ua (177,45 ) = ¢ PR (a1 P) — @ P (05 7) (2)

Since the equilibrium strategy profile is a Nash equilibrium, the condition
of indifference for the pivotal individual of first best must be verified. His net
utility is u;(t2, ¢f'P) — B for i = 1,2 and the indifference condition results
to be uy ('8, qf'P) — uy(tFP gf'P) = APFB. Therefore, we have that

AP = 1 (0T®) - a5 af)

Let us analyze the economic meaning of the previous conditions. We have
two symmetric cases included in the following:

Proposition 4 Consider the first best distribution as determined by (2):

o ift"ash < tF'B _then there will be t¥'P — ™" players that will be induced
by the prices to change their strategy from 1 to 2. The optimal prices
are P, = APYP and P, = 0. The pivotal individual of first best t'P is
such that his utility loss, due to the change of strateqy, equals the gain
enjoyed by those players remained in the period 1, due to the decreased
congestion in pertod 1, minus the loss suffered by all the players in the
period 2, due to the increased congestion in period 2.
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o if t"sh > tF'B then there will be t"*h — "B players that will be induced
by the prices to change their strategy from 2 to 1. The optimal prices
are P, = 0 and P, = —APTB. The pivotal individual of first best t*'P
is such that his utility loss, due to the change of strateqy, equals the
loss suffered by all the players in the period 1, due to the increased
congestion in period 1, plus the gain enjoyed by those players remained
wn the period 2, due to the decreased congestion in period 2.

Shortly, the pivotal individual of first best is such that his loss of utility,
after the planner’s intervention, equals the aggregate externality on all the
other players due to his change of strategy (i.e. of consumption period).
Finally, it is worth to remark that the pivotal individual gets a null net
utility at equilibrium, while all the others obtain a strictly positive payoff.

Positive prices are imposed to the peak period consumers. This is because
the planner wants to move players from the more congested period towards
the less congested, in order to get better as many agents as possible and,
symmetrically, to get worse as less as possible. This implies that a quantity
peak reversal situation is never optimal (as in Shy, 2001), i.e. the first best
distribution presents the same peak period as the Nash equilibrium distri-
bution, even if the former is more equilibrated than the latter. Hence, the
social planner is only interested in an efficient allocation of the congestion
losses over the whole set of players.

4 Two problems for a monopolist

Consider, now, the following two stage game: in the first stage a monopolist
chooses the prices in order to maximize his own profit; in the second stage, a
continuum of players observes the prices and chooses to consume in period 1,
in period 2 or never. We deal with two situations: in the first, the monopolist
is obliged to guarantee a nonnegative utility to each player, so that any player
participates; in the second, the monopolist may exclude someone from the
consumption.

4.1 Full participation

The second stage game, when the monopolist is constrained to guarantee a
nonnegative utility, is like the game presented in the social planner’s problem,
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because the strategy 'mo participation’ is dominated. Indeed, we can simply
consider the same game, with two possible strategies, and the results stated
in section 3. What remains is to explicit the participation constraint.

There are three relevant players’ subsets: we call T'1 the set of those
players choosing period 1, given the monopoly prices; we call T2 the set of
those choosing period 2, given the monopoly prices; we call T; the set of
players moving from period i to period j, because of the monopoly prices.
Remember that, given the payoff specification, such three sets are convex,
disjoints and form a partition for 7.

We recall that the measure of the players’ set choosing period ¢ without
prices is, in equilibrium, ¢; (i.e. the i —th component of the Nash equilibrium
distribution, as determined in section 2) and the measure of the players’ set
choosing period 7 with the monopoly prices is, in equilibrium, ¢* < ¢,
because of the definition of T}.

To simplify some notational problems, we separate two cases: before we
analyze ¢3" > ¢; and after ¢J' < ¢3.

Firstly, let be ¢5* > q5.

To obtain the monopoly distribution (¢}, ¢5") the monopolist has to set
Py and P, such that, for all t € Ty = [q35, ¢5"],

Vi(t) — h(g") — Py < Va(t) — h(gh) — Py

In fact, he wants that some players move from period 1 to period 2. Therefore
the implementability condition amounts to be

AP > AV(t) — h(q1") + h(g3") (3)
The sufficient condition so that (3) is valid for all ¢ € T is that
AP > AV(t"™) = h(q") + h(q3") (4)
where t™ = ¢, i.e. it is sufficient that (3) is true at the sup(Ty), given
AV (t) increasing,.
The participation constraints are now discussed. We need a new assump-

tion:

Assumption 3 Vi(t) is increasing and V;(t) is decreasing, i.e. in the popu-
lation, the covariance cov(V1, V3) is negative.
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We then suppose that among our population there are individuals with
opposite valuation for day and night connection: someone assigns high im-
portance to day (resp. night) and low value to night (resp. day) consumption.
For instance, workers can browse (for their private pleasure or utility) only
after their work-time, while firms pay extreme attention exactly to work-time
connection.

However, it may also be reasonable (depending of the contexts that one
studies) assuming a positive correlation. This would mean that connection
(or consumption) has always high value for someone, or it has a value per se,
independently of its timing (and vice versa low value for others). A student
may appreciate browsing for research in the daytime as well sending e-mails
and chatting at home in the evening. On the other hand, a heremit may
attribute no value at all to internet.

We will assume this view in section 5.

For t € T}, if t™ = ¢&* participates, then any other ¢ € T; will do, and he
chooses period 2, because V5(t) is decreasing. Therefore, the participation
condition is simply

By < Va(t™) = h(g3") ()

As explained in section 2 and 3, t™ is the pivotal individual in the mo-
nopolist game and he is indifferent between period 1 and period 2.

For t € T1 =gy, 1], if t™ = ¢}* has a nonnegative utility choosing period
1, then all others ¢ € T7 will have a positive payoff and they will choose
period 1, because Vi (t) is increasing. Therefore, the participation condition
is

P < Vi(t™) — h(qi") (6)
Finally, for t € Ty = [0, ¢5[ the participation condition is
Py < Va(t*) — h(q3")

that is verified as long as (5) is.
From (3), (5) and (6) we have that the monopoly distribution can be
obtained only for

AP = AV (t™) — h(q]") + h(q5")
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Therefore, the highest possible prices that can be set by the monopolist,
given (5) and (6) are

Py =Vi(t™) — h(¢") and Py = Vu(t™) — h(qy")

In the second case, i.e. ¢i* < g5, some players have to move from period
2 to period 1.

Fort € T = [¢%", ¢3], to obtain the monopoly distribution, the monopolist
has to set P, and P, in such a way that

Vi(t) — h(g) — Py = Va(t) — h(gh) — Py

Again, this condition is verified if it is true for t™ = ¢3*. The implementability
condition becomes

AP < AV(E™) = h(q") + h(g3") (7)
The participation conditions are:
1. for t € T} the condition is

Py < W(™) — h(q)") (8)

2. for t € T the condition is

Py < Va(t™) — h(dy") (9)
3. for t € T} the participation constraint is slack if (8) is verified.

Notice that (8) and (9) imply (7). Furthermore, the highest possible
prices are defined as before

Py = Vi(t") = h(q") and Py = V5(t™) — h(q3") (10)

The optimal monopoly prices are such that the pivotal individual, what-
ever choice he makes, gets a null utility, i.e. the monopolist extracts the
whole surplus from the pivotal individual, while he has to give up a strictly
positive surplus to all others players. Differently from the social planner
prices, here the concern is put on the surplus extractable and not on the
congestion effect.
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We are now ready to state and solve the problem of a monopolist that
sets the prices in order to maximize his profit under the constraint that
the whole set of players has to participate. This constraint implies that no
demand restriction is available and so the best to do is to set the prices as
high as possible.

As in the problem of the social planner, there is a bijection that links the
prices and the equilibrium distributions: fixed the pair (P, %), as defined
in (10), we get the unique equilibrium distribution (¢i*, ¢3*). This result
is directly implied by proposition 3 and by the fact that the monopolist
maximizes his own profit. His profit function is

(P, P) = Pr1i(AP) + Poq2(AP)

Since for any AP the total demand is ¢;(AP) + ¢2(AP) = 1, the profit
is maximal for (P, P») as high as possible, i.e. as defined in (10). Now, the
only remained degree of freedom for the monopolist is to set the AP that
yields the profit maximizing equilibrium distribution. Given the one-to-one
function between AP and (¢7",¢3"), the choice of AP is equivalent to the
choice of the equilibrium strategy profile that maximizes the profits. We
have already seen that any equilibrium strategy profile with prices has the
form

2 fort <tRp
1 fort > tRp

frtAP) = {

where % is the pivotal individual indifferent between the two periods.
Indeed, the monopolist’s problem reduces simply to determine ¢’y or

tap = argmax {m(t") = [Vi(t") — h(g")](1 — ™) + [Va(t™) — h(g5") [t}

The first order condition yields:

ur(tap, @) — w2(tRp, 43") = ¢"ui (FXp) + ¢5'us (R p) (11)

The economic interpretation of this condition is immediate. We include
it in the following:

Proposition 5 The pivotal individual t'Rp is such that the utility variation
he suffers for the passage from period 1 to period 2 equals the variation of
the aggregate surplus the monopolist is able to extract from all other players,

variation due to the tRp’s change of strategy. The optimal prices are defined
in (10).
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The variation of the aggregate surplus is due to two distinct factors. To
be simple, suppose that the monopoly prices induce some players to move
from day to night. Players remained in period 1 are those with the highest
Vi(t), given the form of the sets T}, Ty and T}, and so they can pay a higher
price. This is the first factor that we call willingness to pay effect (WE), i.e.
the pivotal player, as determined in monopoly, has a higher willingness to
pay.

The second factor is due to the congestion (congestion effect, CE): those
remained in period 1 suffer less congestion and so they enjoy a higher utility.
Vice versa, the players’ number in period 2 grows. These individuals have
both a lower marginal V;(¢) and suffers from a higher congestion. Therefore,
the monopolist is able to increase P; but he has to decrease P, because the
whole demand has to be satisfied.

In other words, to raise the day price it is necessary to expand night
participation and the sole tool to do so is to decrease the night price. Because
of the full participation constraint, it is not possible to isolate the players
with the highest valuation either for period 1 or for period 2 and set both P;
and P, to a higher level, as we will see possible in the following subsection.
Indeed, the monopolist cannot operate a bilateral discrimination.

Let us rewrite (11) to explicit the two effects:

Au(thp, i, q3") = (" VI (tAp) + 45" Vo (tap)] + [a7"h' (1 — tRp) — g5 h'( ’X(p)])
12

Both effects can be positive or negative and may offset or strengthen each
other. Depending of the combination of W E and C'E, the monopolist may
either equilibrate the players’ distribution, to extract the increased aggregate
surplus, or may even widen the demand of the peak period, if the players
choosing the off-peak have a quite high willingness to pay.

Furthermore, the quantity peak reverse phenomenon may occur, i.e. in
monopoly the Nash equilibrium off-peak period may become the peak. This
is because what matters is how much surplus can be extracted and not only
how efficiently the congestion costs can be distributed.

Remark 1 In any equilibrium profile the utility variation of the pivotal in-
dividual t* (with or without prices) is a function of t* only. Moreover,
Au(tr,qf = 1 —t" ¢ = t*) = Au(t’) = AV(t*) — h(1 — t*) + h(t*) is

increasing in t*. In particular, the Nash equilibrium condition (1) becomes
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Au(t"sh) = 0; the Social Planner condition is Au(t!'®) = CEYP; the mo-
nopolist condition is Au(tRp) = WE™ + CE™

If WE™+ CE™ > 0, the monopoly effect increases the peak demand if
tmesh > 2 and equilibrate the distribution if ¢"**" < 1. In this last case we
may have quantity peak reverse. Here, we present some examples:

| Functions | ¢mesh [P [ ¢, | peak reverse |
Vi=t2+t
Vo=1—t 0,449 | 0,472 | 0,523 yes
h = t?
Vi=t>+t
Vo=1—t 0,472 | 0,485 | 0,513 yes
h=1t*+2t
Vi=t>+2t
Vo=1—t 0,372 | 0,424 | 0,519 yes
h = t?
Vi=t?+2t
Vo=1—t 0,424 | 0,458 | 0,511 yes
h=t>+2t
Vi =t
Vo =2—2t 0,646 | 0,583 | 0,523 no
h = t?
Vi =t
Vo =2—2t 0,583 | 0,544 | 0,513 no
h=1t*+2t
Vi=t?+t+1
Vo=3—1t 0,345 | 0,416 | 0,477 no
h = t?

In the third example the difference between the distributions are striking:
there are many players with a relatively high valuation for day; the Nash
equilibrium is dominated and determined by this feature. The monopoly
equilibrium is reversed because the monopolist finds optimal to extract as
much surplus as possible from the players with the high day valuation.

The aggregate congestion loss can simply be calculated as ¢1h(q1) +
q2h(ge): it is 0,299 in the spontaneous Nash equilibrium, 0,267 in the so-
cial planner’s distribution and only 0,251 in the monopolist’s distribution (in
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fact the most equilibrated among the three, as in all the presented exam-
ples). Note also how an increased congestion function reduces the dispersion
of the three presented distributions: the reader may appreciate it from the
first example to the second, from the third to the fourth and from the fifth to
the sixth. The reason is that a high congestion disutility reduces the players’
heterogeneity in terms of private valuation.

4.2 Reduced participation

A more general setting is worth to discuss. In the first stage the monopolist
chooses his prices and in the second stage the continuum of players chooses
whether and when to participate. Each player can guarantee to himself at
least a null utility by not participating. More formally the second stage is
a static game, with complete information, where the strategy space contains
three strategies: consume in period 1 (strategy 1), consume in period 2
(strategy 2), do not consume at all (strategy 3). The payoff functions are
defined as in section 2 except for uz(t) = 0. The best reply function is

1 ifu(t,q1) — Pr 2> uo(t,q2) — Py and us(t,q1) — P >0
Bi(q1,q2,q3) = 2 ifw(t,q1) — Pr < ua(t,qe) — Py and ua(t,q2) — P >0
3 if ui(t,q;) — P, <0 fori=1,2

We define:

Ti={teT, wl(t,q)— P =us(t,qz) — P and u(t,q1) — P > 0}

T2 = {t S T, Ul(t,ql) —P< Ug(t,QQ) — P, and UQ(t,gQ) - P> O}

T3 is simply 7\(71 U T2). The Nash equilibrium conditions, using the
same argument of section 2, are

AMT1)=q and XT2)=q
We now state the following:

Proposition 6 In this game any best reply pure strategy profile (and so any
equilibrium pure strategy profile) has the form

2 fort <t
ff=<1 fort >t
3 forty <t <t
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Proof. The proposition is equivalent to say that T'1 is a set such that:
teTl=1t >teTl; T2is aset such that: t e T2 = t' <t € T2 and T3
is such that: t € T3 =t ¢ Tl and t ¢ T2. Nowt € T1 < wy(t) — P, >
uy(t) — P,. Since wuy(t,-) is increasing in ¢ and uy(t,-) is decreasing in t,
whenever ¢’ > t we have uy(t',-) > uy(t,-) > ua(t,-) > us(t',-). Therefore,
t' € T1 and in particular t =1 € T'1 if T'1 is non empty. Symmetrically, we
prove for 72. Finally, 7'3 can be written as | sup 72, inf T'1[ with sup 72 = ¢J’
and inf 7'1 = t*. The pivotal individual ¢* is such that u;(¢", ¢) — P, = 0.
]

We have now to prove the existence and the uniqueness of the Nash
equilibrium in pure strategies. Existence is guaranteed by the continuity
of the payoff function and by the measurability of the sets 71, T2, T3 (
Rath, 1992).

Lemma 1 Given (P, P,), f™ is the unique equilibrium in pure strategies.

Proof. Suppose that two equilibria exist. They are completely described
by the pairs (¢t7*,t5") and (t7",t7"). We need that us(t5*,t5') — P, = 0 as
well as ug(t5,1 — t7¥) — P, = 0. Therefore, we have that V5(t7') — Va(t5") =
h(t5)—h(t5"). If t7* > ¢7" | the lhs is negative and the rhs is positive, because
V5(t) is decreasing and h(-) is increasing. If ¢5* < ¢5”, the lhs is positive and
the rhs is negative. Hence, it has to be that ¢ = ¢J¥. In the same way we
prove that {7 =¢7". m

Now, we can define the pair (P, P») that induces the monopoly equilib-
rium with reduced demand.

Lemma 2 The unique pair (P, Py) inducing the equilibrium allocation (q7",
@', 45') is

Pl = ul(ﬂlnu q71n) and P2 = UQ(an7 q;n)

Proof. Suppose Py < uy(t]*,¢}*). Then 3t € T'3 such that uy(¢,-) > 0 >
ua(t, ). This is a contradiction because such ¢ should belong to T'1. Suppose
now that P, > uy (7", ¢7"). Then, u (7", ¢*) — P, < 0 and so ¢7" should belong
to T3 since us(th',¢5") — Py < uy(t7",¢") — P1 < 0. This is a contradiction.
Similarly, we prove for P,. ®

Given these two last results, we again have a one-to-one function between
prices and equilibrium strategy profile. The monopolist’s problem is simply
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that of choosing ¢]" and t7' to maximize the profit, i.e.
(", 15") =
argmax {m(t™) = [Vi(#1") — h(q")](1 — £1") + [Va(t5") — h(qz")Jt5'}

the first order conditions give:
ur (0, ") = wa (07", ")’ (13)

us(t57,¢5") = —us (85", ¢5") g™ (14)

Proposition 7 The pivotal individuals (t7**,t5*) are such that the monopo-

list’s loss, reducing the demand for period i of the individual t]"*, equals the
marginal surplus that the monopolist can extract from all those still consum-
ing in period 1.

In such a setting, the monopolist can reduce the demand for both periods.
Then a higher price for period 7 simply induces some players to pass from 1'%
towards T'3. In other words, T3 is a sort of buffer that absorbs all reduction
in period ¢ without consequences in period j, as was the case in the previous
subsection.

A high supply level reduces the per capita surplus the monopolist can ex-
tract, because of the congestion effect and the lower valuation of the marginal
consumer; nevertheless, many people pay for connecting. On the other hand,
a low supply level increases the per capita surplus that can be extracted, be-
cause of a lower congestion and a higher valuation of the marginal consumer;
symmetrically, few people pay for connecting.

Hence, given the preceding first order conditions, we can conclude that
congestion worsen the access reduction of monopoly, because it reduces the
price elasticity of the aggregate demand. In other words, increasing a price
has two opposite effects on the individuals: it reduces their surplus, but,
lowering the congestion, it makes the service more valuable.

5 Supply Side

In this section we add to our model the supply issues. Until now we have
assumed that enough capacity was installed and that its fixed costs were
negligible. This allowed us to focus only on the demand distribution.
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On the contrary, the problem is now to decide the network size, knowing
that we can direct the demand, using appropriate prices.

We deal now with a slightly different setting. Differently from section
4, we endow our continuum of agents with two increasing valuations (for
both day and night consumption). As mentioned, we aim to represent the
fact that connection per se has a high value for some people whereas other
people attribute to it a low value. However, we keep the hypothesis that
some people strictly prefer daily connection and others night connection.
More formally, we suppose:

Assumption 3bis V;(t), V;4(t) are increasing, i.e. in the population, the
covariance cov(Vy,V5) is positive.

We keep AV (t) increasing; moreover, there exists ¢ € [0,1] such that
AV (t) =0.

Consider again a two stage game. In the second stage a continuum of
agents chooses how to distribute in the network, provided that the agents’
payoff is positive. Players’ utility is an additive function of the individual’s
valuation, the congestion effect and the imposed price. An individual can
always get a null utility by non connecting. Indeed, three actions are possible:
day connection (strategy 1), night connection (strategy 2), no connection
(strategy 3).

In the first stage of the game, either a benevolent social planner or a
monopolist, maximizes his objective function by choosing prices (people dis-
tribution) and the network size.

Lemma 3 In the second stage, there exists a unique Nash equilibrium strat-
eqy profile characterized by two pivotal agents t; and to:

1 fort >t
ft)y=4 2 forty <t <t
3 fort <t
determined in such a way that
Vi(ty) — h(1 —t1) — PL = Va(ty) — h(ty — ta) — P (15)
and
Vo(ta) = h(ty —ta) — P, =0 (16)
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Proof. We show that any best response strategy profile has to be char-
acterized by two pivotal individuals. Given any distribution (g1, go,g3), if ¢
chooses strategy 1, then any ¢’ > ¢ will choose strategy 1, being h(q;) and Py
fixed and V;(-) being increasing. On the other hand, if ¢ chooses strategy 3,
i.e. for ¢t both strategy 1 and 2 present negative payoff, then any ¢’ < ¢ will
choose strategy 3, being V;(-) and Va(+) increasing.

Let the lower ¢ choosing strategy 1 be ¢; and the higher ¢ choosing strategy
3 be ty. It is clear that ¢; > t9. Otherwise, there should exist t; < t < 5
receiving a positive payoff by playing strategy 1, while 5 is assumed to obtain
a negative payoff. This is impossible.

Being t; > t5, we get that people choosing strategy 2 are located between
tg and tl-

Using Rath, 1992, we have that a pure strategy Nash Equilibrium ex-
ists. Any equilibrium has the structure presented above, because a Nash
equilibrium is a particular best response strategy profile.

Let (t1,t2) be a Nash Equilibrium. We said that any ¢ > ¢; prefers the
strategy 1. Any t, < t < t; prefers strategy 2. Therefore, t; has to be
indifferent between the two. The indifference condition is simply the (15).
Moreover, ty < t < t; preferring strategy 2 to strategy 1, connects until when
his payoff from strategy 2 is positive. Since any ¢ < ¢, does not connect, to
has to be indifferent between strategy 2 (night connection) and strategy 3
(no connection). The indifference condition is represented by (16).

Suppose that there exist two pure strategy Nash equilibria and denote
them simply with (¢;,%2) and (T3,Ts). Suppose Ty > t,. Now evaluating
(16) at T, and ¢, and subtracting the latter from the former, we get V5(7%) —
Vo(ta) = h(Th —T5) — h(t; —ts). Here, the left hand side (lhs) is positive, since
Vo(+) is increasing. For the right hand side (rhs) to be positive a necessary
condition is that 77 > ¢;. Assume the rhs positive. Now, evaluating (15)
at T} and t; subtracting again the latter from the former, we get AV (T}) —
AV(tl) = h(]_ - Tl) - h(]_ - tl) - [h(Tl - TQ) - h(tl - tg)] Here the lhs
is positive because AV(-) is increasing. Nevertheless, the rhs is negative
because h(-) is increasing. Therefore T, cannot be greater than ts.

On the other hand, if T, < t; the same procedure can be applied. This
condition implies also 17 < t; and a contradiction is obtained.

Indeed, a unique Nash equilibrium exists in this game. =

This setting, with a reservation utility (strategy 3) and contiguous sets
of players on the network, directly imposes the (Nash equilibrium) inducing
distribution prices, as determined by the indifference conditions of both piv-
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otal individuals. However, any equilibrium distribution is attainable with a
unique prices pair, given the monotonicity of V;(-) and h(-). Hence, as in
sections 3 and 4, prices and pivots are interchangeable.

5.1 Social planner

Now we analyse the problem of a benevolent social planner that has to choose
the network size and the inducing equilibrium prices, in order to maximize
the social welfare. Formally:

max /I[W(t) ~ (L — t))]dt +

t1,t2

t1
+ / [Va(t) — h(ty — ta)]dt — cmax[l — t1,t; — to]
to

He installs a capacity just sufficient to satisfy the peak demand. Unitary
fixed cost are c. A capacity larger than the peak demand would be unused
and its value lost. This is represented by the last term of the social welfare
function.

Consider the case t; —ty > 1—1tq, i.e., period 2 is the peak. This inequality
is the domain of a simplified maximization, where max[l — t1,%; — t5] is
substituted by t; — to. We assume again h(-) convex to make the objective
function concave. The first order conditions (FOCs) are

Au(tl) = h/(l — tl)(]_ — tl) — h,(tl — tg)(tl — tg) —C
and
Ug(tg) = h,(tl — tg)(tl — t2) +c

Because of the convexity of h(-), the rhs of the former FOC is nega-
tive. Therefore, we get that ui(¢;) < ws(t1). This means that, at the
social solution, there should be more individuals in period 1 than with-
out the planner’s intervention (at which Au(#7%") = 0, ¢7%" representing
the “spontaneous” pivotal agent). In other words, the first best solution
tends, once more, to equilibrate the distribution. The social planner equi-
librates the demands up to the point where the utility loss of the pivotal
(marginal) consumer (who must be displaced from period 2 to period 1),
net of his (negative) impact on all other agents due of his displacement (i.e.,
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R(1—1t)(1—t1) — R (t; —t2)(t1 — t2)), equals the costs saved by reducing
the installed capacity by “one” unit (—c).

The second FOC shows that the second pivotal agent is such that his
utility, net of his impact on the others (h'(t; —t2)(t; —t2)), i.e., his impact on
the social welfare, equals the cost of installing “one” more unit of capacity.

Hence, both pivotal individuals are determined in order to exactly offset
marginal social benefits and costs. Furthermore, when prices are introduced
to induce the first best distribution, notice that peak consumers (those in
period 2) pay for capacity®. Such prices are:

Pi=h(1-t)1-t)

P2 = h/(tl — tg)(tl — tg) +c

In the case t; — to < 1 —ty, i.e., period 1 is the peak, we get symmetric
conditions: there are less individuals in the first best than in spontaneous
distribution; the social planner tends to equilibrate the demands; the pivots
are such that marginal social benefits and costs are offset; peak consumer
pay for capacity.

Notice that in both cases, price peak reverse is never possible (i.e., the
peak is always greater than the off-peak price; see Bailey and White, 1974,
and Shy, 2001). Neither, quantity peak reverse is optimal.

Furthermore, it may be good to leave part of the capacity unused when
the off-peak is period 2: this is the case if the utility of one more consumer is
lower than his (negative) impact on the others. When period 1 is off-peak, at
the optimum, capacity is always partially unused, because it is not efficient to
displace one more individual from period 2 to period 1, and adding one more
agent in period 2, picked from those not connected. Otherwise the optimality
conditions would be violated: intuitively, this is because the former individual
would get u; < uy and the latter would have uy too low.

We resume this discussion in the following:

Proposition 8 Peak consumers pay for capacity. The social planner tends
to equilibrate the distribution. Prices are set to get a distribution which
equates marginal social costs and benefits. It is, in general, inefficient fulfill

2Remember that prices have to make both pivots indifferent between their two relevant
actions, i.e., t; indifferent between periods 1 and 2, and ¢, indifferent between period 2
and “no connection at all”.
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capacity in the off-peak period: in particular, when period 2 is off-peak, this
18 because of the congestion effect..

Finally, observe that prices are sufficient to completely cover the equip-
ment costs.

5.2 Monopolist

Now we discuss the monopoly framework.
The monopolist’s objective function (his profit) is represented by

rg&g( Pl(tl,tg)(l - tl) + Pg(tl,tg)(tl - tg) - cmaX[l - tl;tl - tg]

where P, and P, are functions of the pivotal individuals, determined in (15)
and (16).

Obviously, also a monopolist installs the capacity exactly necessary to
satisfy the peak demand.

There are two cases, as before. The first case is 1 — t; > t; — to, i.e. day
is the peak period. Simple computations give:

. 8P1 apl 8P2 8P2
Pi(ty,t) = (1 —t;) {atl + (‘%J (t1 — t2) {8151 + 8152} +c
5P1 8P2
Py(ty,t) = (1 —t1) 5~ + (1 —t2)
2( 1 2) ( 1) Ots ( 1 2) Ot9

The second case is 1 — t; < t; — to, i.e. night is the peak period. Simple
computations give:

Pu(tants) = (1) {% +@} (b — 1) {@ +@}

8t1 8t2 atl atQ
0P, 0P,
Py(t1,ts) = (1 — t) == + (t; — to)—2
5(t1,t2) = ( 1)8t2+(1 2)8t2+c

It is apparent that, at the Nash equilibrium distribution induced by the
monopolist, the capacity costs are paid by the peak demand, as in the stan-
dard peak load pricing theory. What is remarkable, in the second case, is
that P, may be higher that P,, although P, is the price associated to the
peak demand. This is more likely when c is low and when many individuals
have V, > V;. This feature is the price peak reverse phenomenon.

Here is a simple example:
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Example 1 Let Vi(z) =z, Vao(z) = 42+ 2 , h(z) = 2 and ¢ = &. Remark

that just % of people prefer day connection to night connection. The unique

solution of the monopolist’s problem is for t; = % and ty = %. The Nash
Equilibrium distribution is then (¢ = %,qg = %,qg = %). Clearly the

peak is period 2 (night). Prices inducing this distribution are P, = % and
P, = %( both higher than the marginal cost of installation c). Finally, the
monopolist’s profit is % ~ 0, 25.

Two issues are worth to be discussed. Firstly, it is not possible to sepa-
rately set a period price. For instance, if the monopolist wishes to increase
night demand, he can not simply cut P,. Accepting more night consumers
(decreasing t2) has an (negative) effect also on Pj, in order to obtain a new
equilibrium distribution. But, a lower P, may induce some night consumer
to switch towards day connection. The overall effect, especially on profits, is
not easily computable.

Secondly, because of the congestion effect on payoffs, accepting only few
consumers in a given period allows to extract from them more surplus as
discussed in section 4. If h(-) depended also on the available capacity, this
effect would be more relevant. However, also in this simplified setting it may
be profitable keep part of the capacity unused in the off-peak period.

Proposition 9 Peak consumers pay for capacity. Nevertheless, with low
implant cost and a high peak valuation, the peak-reverse phenomenon may
arise, i.e. off-peak is higher than peak price.

6 Conclusions

The setting analysed in this paper makes the demand levels endogenous as
well as the peak period. Congestion is the way to obtain this endogenity: the
players’ payoff depends negatively on the “number” of players consuming at
the same time. This phenomenon is particularly important in services such
as internet connection or road transport.

Firstly, we have analyzed the consumption of such goods, where the
crowding level matters in the consumers’ decisions. We have argued that
prices, set by a social planner, are able to modify the equilibrium distribu-
tion and, hence, they allow to allocate the congestion costs better than the
“spontaneous” and strategical choice of the players.
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Thereafter, we have studied what kind of effects prices have in a monopoly
context. In a first case, we have assumed that the monopolist maximizes his
profit under the constraint of universal service. Several scenarios are possible
depending on the chosen payoff functions. He may equilibrate the players’
distribution or he may even increase the peak demand. Also the quantity
peak reverse phenomenon may occur. However, what matters is always how
much additional surplus he may extract by moving some players from a period
to another.

In a second case, we have permitted supply restriction. We get that a
well defined set of players can not access to the network, given the monopoly
prices. Reducing access allows the monopolist to extract more from the re-
mained individuals. Furthermore, the lower congestion increases their surplus
and, therefore, it worsens the access reduction of monopoly.

We have also discussed a more general model, where the supply size is a
constraint. We have supposed that either a social planner or a monopolist
decides it. In both situations, peak consumers pay the installation costs, as
in the traditional peak-load pricing literature. Under certain hypothesis, in
monopoly we have price peak-reverse: off-peak is higher than peak price,
although this last “embodies” the fixed costs.
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