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panel regression-based trend-cycle decomposition approach, we find support for the
contribution of human-made GHG emissions to the deterioration of underlying ex-
treme weather conditions and their highly nonlinear pattern. We then conduct
a Growth-at-Risk analysis within a quantile panel regression framework to assess
the economic implications of our findings. We show that deteriorating extreme
weather conditions, as measured by the E3CI index, negatively impact the entire
GDP growth rate distribution. Yet the impact on the downside risk to growth is
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1 Introduction

Greenhouse gas (GHG) concentrations have increased since the Industrial Revolution
due to human activities, ultimately causing the Earth’s surface temperature to rise, the
so-called Global Warming effect. As Earth’s climate has warmed, more frequent and
intense weather events have been observed worldwide. A warming climate can contribute
to the intensity of heat waves by increasing the chances of very hot days and nights.
Climate warming also increases evaporation on land, which can worsen drought and create
conditions more prone to wildfires and a more extended wildfire season. A warming
atmosphere is also associated with heavier precipitation events (rain and snowstorms)
through increases in the air’s capacity to hold moisture. Earth’s warmer and moister
atmosphere and warmer oceans make it likely that the strongest hurricanes will be more
intense, produce more rainfall, affect new areas, and possibly be more extensive and
longer-lived. These consequences are expected to become more extreme in a warming
climate, potentially leading to sizable economic and human losses (National Academies
of Sciences, 2020).
There is a growing empirical literature on the economic impact of climate change (see

the surveys by Auffhammer, 2018; Moore et al., 2024). A simple neoclassical growth
model predicts that disasters destroying part of the capital stock lead to lower actual
output in the short term. These effects would dissipate over time as reconstruction
takes place. Noy (2009) and Kiley (2024) find that developing countries and smaller
economies might face more significant output declines than developed countries or larger
economies following a disaster of similar relative magnitude. This finding aligns with
the higher adaptation ability likely possessed by developed countries. Felbermayr and
Groschl (2014) show that geophysical disasters affect developing countries more strongly,
while meteorological events developed countries. This finding might reflect their different
geographical location, i.e., primarily the Northern Hemisphere for developed countries
and mainly the Southern Hemisphere for developing countries, and how evolving weather
conditions manifest across geographical zones. Other studies have identified some cli-
matic events that had more persistent consequences for activity. For instance, Kahn
et al. (2021) find that per-capita real output growth across countries is adversely af-
fected by persistent changes in temperature above or below its historical norm. Kotz et
al. (2021) find that daily fluctuations of temperatures can affect output, especially in
low-latitude, low-income regions, while Kotz et al. (2022) show that economic growth
rates are reduced by increases in the number of wet days and in extreme daily rainfall,
with high-income nations being the most strongly hindered. The most recent evidence
available for European countries, such as Usman et al. (2024), points to an aggregate
demand channel through which raising economic uncertainty, income losses, disruptions,
and emigration arising from climatic events might persistently depress economic activity
and employment and endogenously lower long-term output. They find that the impact
of extreme weather events in Europe is heterogeneous across event types (droughts, heat-
waves, and floods) and regional relative income characteristics and intensifies over time.
This latter characterization also aligns with the findings of Natoli (2023) for the US and
Ciccarelli and Marotta (2024) for OECD countries that disasters can lower output by
reducing aggregated demand.
In light of the ongoing GHG emissions trend and available empirical evidence, this

paper addresses the concern for the economic impact of deteriorating extreme weather
conditions in Europe. Europe is a region worth studying because it is warming faster
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than the global average. The mean annual temperature over European land areas in
the last decade was 2.12 to 2.19oC warmer than during the pre-industrial period. Since
instrumental records began, the warmest year in Europe is 2020, and the second warmest
is 2023. In addition, projections show that temperatures across European land areas will
continue to increase throughout this century at a rate higher than the global average.
The work most closely related to our paper is Kiley (2024), who first set the as-

sessment of the economic costs of climate change in the Growth-at-Risk framework of
Adrian et al. (2019), implementing it in a panel quantile framework. This methodology
yields insights into per capita GDP growth distribution rather than its mean compo-
nent only. Thus, it is ideal to tackle climate change’s worrying tail risks. However,
our study differs from Kiley (2024) in many respects. Using an innovative econometric
procedure allowing for a trend-cycle decomposition within a panel regression framework,
we first examine how anthropogenic GHG emissions drive underlying extreme weather
conditions, as measured by the European Extreme Events Climate Index (E3CI) and
its seven subcomponents, available for 40 European countries since 1981. Our analysis
focuses on extreme maximum and minimum temperatures, wind speed, precipitation,
droughts, wildfires, and hail. To the authors’knowledge, no previous study has been
based on such a detailed dataset. The approach builds on Morana (2024) and Morana
and Sbrana (2019). It directly exploits variation in extreme weather events across Eu-
ropean countries over time, conditioning the extraction of the trend component on their
likely determinant, i.e., radiative forcing, measured by changes in the atmospheric global
abundance of long-lived, well-mixed greenhouse gases. We also indirectly control for the
contribution of natural phenomena that impact weather behavior at low frequencies, such
as the Atlantic Multidecadal Oscillator or AMO. The approach allows us to account for
cross-county commonalities and heterogeneity. In this respect, we build on the idea that
climate change is a global externality, i.e., one country’s emissions affect all countries
by adding to the stock of heat-warming gases in the Earth’s atmosphere, from which
extreme events increase in severity and frequency. We find that the common component
is strongly dominant over idiosyncratic components, consistent with the global nature of
climate change and the additional contribution of natural oscillators with long periodicity
and global impact. This result aligns with the recent findings of Bilal and Kanzig (2024),
who also highlight the importance of considering common effects when studying climate
change. Overall, our study yields further evidence of the contribution of human-made
GHG emissions to the deterioration of underlying extreme weather conditions and their
highly nonlinear pattern.
We then exploit the above results in the Growth-at-Risk analysis, where we consider

the multifaceted dimensions of deteriorating weather conditions by assessing the impact
of various potential sources of economic, financial, and human losses beyond rising aver-
age temperatures. In this respect, we use the estimated underlying components for the
E3CI index and its seven subcomponents to assess the potential effects of extreme tem-
peratures (maximum and minimum), droughts, extreme precipitation, wildfires, extreme
wind speed, and hail, in addition to overall weather conditions, on economic growth in
Europe. As we focus on the current trend of the various extreme weather indicators,
our assessment of their economic impact is consistent with a “business-as-usual”GHG
growth scenario. We expect our broader conditioning set to lead to an accurate assess-
ment of the economic impact of rising physical risk in Europe. We find that the linkage
between deteriorating weather conditions, measured by the E3CI index, and the distri-
bution of economic growth are clear-cut and show the downside risks to growth being
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much more affected than the central tendency or upside risks. The negative impact of 
deteriorating weather conditions on the lowest quantiles of GDP growth is about fourfold 
that of the highest quantiles. Using single E3CI component regressions, we also find the 
downside risk to growth stronger than the upside risk for the extreme maximum temper-
ature, wind speed, drought, and wildfire indicators. On the other hand, for the extreme 
minimum temperature and precipitation indicators, the upside risk to growth is more 
affected than the central tendency or the downside risks to growth. We obtained similar 
findings when we jointly assessed the impact of the E3CI subcomponents, also finding a 
negative economic impact for hail. Under a business-as-usual scenario, extreme weather 
episodes might generate a median contraction in trend real per capita GDP growth 
of about -0.15% per year.
The rest of the paper is as follows. Section 2 presents the framework for modeling 

evolving climatic conditions. Section 3 describes the data used in this study. Section 4 an-
alyzes the extreme weather series trend developments. Section 5 discusses the framework 
for assessing growth-at-risk from climate change, including key aspects of the quantile 
regression approach and empirical results. Section 6 concludes.

2 Modeling evolving underlying extreme weather

Consider the vector of N country observations for the generic extreme weather indicator,
as, for instance, extreme maximum temperature, at period t {yt}. The multivariate 
decomposition into medium to long-term (MLT ) and short-term (ST ) components can
be written as

yt = mt + st, (1)

where mt is the (N × 1) vector of MLT components, and st is the (N × 1) zero-mean
vector of ST components. The vectors mt and st are assumed to be orthogonal. As
detailed below, the decomposition is implemented using a panel data regression approach
within an Autometrics general-to-specific procedure (Hendry et al., 2008).

2.1 The generic country MLT-ST decomposition

Consider the generic n, t element in the vector y, i.e., yn,t, n = 1, .., N , t = 1, .., T ,
yielding the tth period observation for the extreme weather indicator y for the generic
nth country. The generic decomposition equation is then

yn,t = mn,t + sn,t, (2)

where {mn,t} and {sn,t} are the generic MLT and ST components, respectively. It is
assumed that {sn,t} is zero-mean and orthogonal to {mn,t}. Following Morana (2024),
mn,t is the real valued function

mn,t = θ0,n +

j∗∑
j=1

θs,n,j sin(2πj
t

T
) +

j∗∑
j=1

θc,n,j cos(2πj
t

T
) +

j∗∑
j=1

θsx,n,j sin(2πjx∗t ) +

j∗∑
j=1

θcx,n,j cos(2πjx∗t ), (3)
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t = 1, ..., T is the linear time trend. In our application, xt is the NOAA Annual Green-
house Gas Index (AGGI), x∗t is the AGGI index re-scaled in the interval [0, 1], i.e.,
x∗t = (xt − min(x))/(max(x) − min(x)), θ0, θs,q,j, θc,q,j, θsx,q,j, θcx,q,j are parameters.
The MLT component measures the conditional expectation for the indicator yn,t, i.e.,
mn,t = E [yn,t|It]. Conditioning on AGGI allows to control for the human-made contribu-
tion to global warming when modelling the MLT or trend component in a given extreme
weather indicator.
The Data Generating Process (DGP) for the MLT (or trend) function is unknown,

and approximated, according to the Weierstrass Approximation Theorem, by the trigono-
metric polynomial specification in (3). In our application, the order of the trigonometric
polynomial j∗ is fixed in such a way to model fluctuations with periodicity (P ∗) larger
than 11 years, i.e., j∗ = bT/P ∗c, to avoid contamination from the contribution of near
periodic natural oscillators, such as the El Niño-Southern Oscillation (ENSO; with peri-
odicity between 2 and 7 years) and the North Atlantic Oscillation (NAO; with variable
periodicity) cycles, and from solar activity (with periodicity of about 11 years). This
helps to discriminate potential short-term changes in the weather indicators determined
by natural phenomena from the more long-term ones determined by human activity. In
this respect, we neglect any possible impact of human activity on the natural oscillators
themselves, as these are not the object of the current study. Accordingly, as annual data
are available over the period 1981-2023, i.e., T = 43, we set j∗ = 3, which yields anMLT
component associated with fluctuations with periodicity P ∗ = T/j∗ equal or larger than
14.3 years. Fluctuations with smaller periodicity are then captured by the ST component
sn,t = yn,t −mn,t, with E [sn,t|It] = 0.

2.1.1 Empirical implementation

Empirically, the decomposition for the generic climatic indicator y, can be implemented
country by country through univariate OLS regression models. For the generic country
n it follows the regression model

yn,t = θ0,n +

j∗∑
j=0.5

θs,n,j sin(2πj
t

T
) +

j∗∑
j=0.5

θc,n,j cos(2πj
t

T
) +

j∗∑
j=0.5

θsx,n,j sin(2πjx∗t ) +

j∗∑
j=0.5

θcx,n,j cos(2πjx∗t ) + εn,t, (4)

where εn,t is i.i.d. with zero mean, variance σ2, and finite fourth moment, and the regres-
sors sin(2πjx∗t ), cos(2πjx∗t ), j = 0.5, 1, 2, ..., j∗, are weakly stationary processes. Under
the above conditions, OLS estimation of the model in (4) is consistent and asymptot-
ically normal, using Newey-West standard errors in the case of nonspherical residuals.
These results apply straightforwardly in the case the series yn,t is linear or non-linear
trend stationary. Even if the conditioning regressor xt were an I(1) process, its periodic
transformation behaves asymptotically as stationary, zero-mean, homoskedastic AR(1)
processes. Monte Carlo evidence shows that sine and cosine transforms of a random walk
process have strong short-term correlations but not even long memory (see details in
Morana, 2024).
Following Muller and Watson (2018), the above decomposition appears to be valid

also in the case the series yn,t were an I(1) process. In fact, the model in (3) generalizes
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Muller and Watson (2018), as it allows the extraction of the trend/medium to long-term
component in the extreme weather indicators of interest by conditioning on information
available on potential drivers of their medium to long term evolution, i.e. the series x∗t .
By setting θsx,n,j = θcx,n,j = 0, j = 0.5, 1, 2, .., j∗, and noting that

sin(z) = cos(z − π/2), (5)

for z ∈ [0, 1], the model in (3) can be rewritten as a function of cosine terms only,
delivering the medium to long-term components of the series of interest as its cosine
transform up to order j∗ as in Muller and Watson (2018).
The specification allows to assess the anthropogenic contribution to changing extreme

weather trend conditions while controlling for non-anthropogenic or natural sources of
long term swings in climatic conditions. For instance, a test for a null anthropogenic
contribution to evolving climatic conditions for country n involves testing the joint hy-
pothesis H0: θsx,n,j = θcx,n,j = 0, j = 1, ..., j∗ (Test 1). Moreover, a test for the hypothesis
of no contribution from natural sources, as for instance from multidecadal oscillators such
as the Atlantic Multidecadal Oscillation (AMO), requires testing H0: θs,n,j = θc,n,j = 0,
j = 1, ..., j∗ (Test 2). Finally, a test for no evolving climatic conditions requires testing
the joint hypothesis H0: θs,n,j = θc,n,j = θsx,n,j = θcx,n,j = 0, j = 1, ..., j∗ (Test 3).

2.2 The multi-country MLT-ST decomposition

The sequential, country-by-country decomposition is empirically straightforward but in-
effi cient, as it does not allow the exploitation of likely commonalities of evolving climatic
conditions across European countries. For instance, Cassola et al. (2024) find that the
European Extreme Events Climate Index (E3CI) across European countries is well de-
scribed by four principal components, accounting for about 85% of the total variance.
The first PC explains over 50% of the total variance and yields a common European
factor. The other factors carry information on excess risk based on geographical location,
i.e., Southern vs. Northern Europe excess risk, Atlantic vs. Continental excess risk, and
periphery vs. core Europe excess risk.
We can implement a more effi cient procedure through an Autometrics panel data

estimation procedure. Consider again the generic n, t element in the vector y, i.e., yn,t,
n = 1, .., N , t = 1, .., T , yielding the tth period observation for the extreme weather
indicator y for the generic nth country. It follows the panel regression

yn,t = θ0 +

j∗∑
j=0.5

θs,j sin(2πj
t

T
) +

j∗∑
j=0.5

θc,j cos(2πj
t

T
) +

j∗∑
j=0.5

θsx,j sin(2πjx∗t ) +

j∗∑
j=0.5

θcx,j cos(2πjx∗t ) +

N−1∑
n=1

θ0,nDn,t +
N−1∑
n=1

j∗∑
j=0.5

θs,n,j sin(2πj
t

T
)Dn,t +

N−1∑
n=1

j∗∑
j=0.5

θc,n,j cos(2πj
t

T
)Dn,t +

N−1∑
n=1

j∗∑
j=0.5

θsx,n,j sin(2πjx∗t )Dn,t +

N−1∑
n=1

j∗∑
j=0.5

θcx,n,j cos(2πjx∗t )Dn,t + εn,t, (6)

where Dn,t is a dummy variable taking unitary values for country n and zero elsewhere.
The first five terms in the regression function, whose marginal effects are measured by
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the parameters θ0, θs,j, θc,j, θsx,j, θcx,j yield the common drivers of evolving extreme
weather conditions across countries; the remaining elements capture heterogeneities across
countries.
The specification in (6) is over profligate and would not be estimable by OLS. For

instance, our application, where N = 40, T = 43, and j∗ = 3, would require estimating
680 parameters. However, estimation becomes feasible within an Autometrics general-
to-specific estimation approach (Hendry et al., 2008). The machine learning procedure
allows for effi cient model reduction, yielding a final parsimonious econometric model well
describing data properties (commonalities and heterogeneity). In the light of Cassola et
al. (2024), while some heterogeneity across countries should be expected, we also expect
a strong and dominant common component, keeping into account the global nature of
climate change. The tests of interest, i.e., Tests 1, 2, and 3 above, can also be implemented
within the panel data procedure.

3 The data

We assess the evolution of extreme weather conditions in Europe using the European
Extreme Events Climate Index (E3CI) and its seven subcomponents, available for forty
European countries monthly since January 1981. The data are available for Albania,
Andorra, Austria, Belarus, Belgium, Bosnia-Herzegovina, Bulgaria, Croatia, Cyprus,
Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ire-
land, Italy, Latvia, Lithuania, Luxembourg, Malta, Moldova, Montenegro, the Nether-
lands, North Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia,
Spain, Sweden, Switzerland, Ukraine, and the United Kingdom.
The E3CI subcomponents are based on ERA5 atmospheric re-analysis data (https://
cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview) and yield

information on seven extreme meteorological events associated with the temporal evolu-
tion of extreme maximum and minimum temperatures, precipitation, wind speed, hail,
drought, and wildfires. Specifically, the subcomponent indexes yield information on me-
teorological anomalies as measured by the standardized deviation (z-scores) of monthly
figures from their historical mean computed throughout 1981-2010. A larger than unity
value reveals excess risk intensity relative to the historical average for any subcompo-
nents. A larger than the unity threshold value, persisting over time and of increasing
magnitude, reveals a rising extreme weather risk intensity, i.e., a climatic change that
might be caused by global warming.
The overall E3CI index at any time is the simple average of the seven subcomponents,

yielding an overall and comprehensive assessment of evolving extreme weather conditions,
embedding seven relevant dimensions. Details on the construction of the anomalies are
available at https://climateindex.eu/en/the-7-indicators/.
The NOAA Annual Greenhouse Gas Index (AGGI) measures the climate-warming

influence of long-lived trace gases in the atmosphere. It is available annually and tracks
how GHG’s warming influence has changed globally over time. According to the Intergov-
ernmental Panel on Climate Change (IPCC) definition, climate forcing is “An externally
imposed perturbation in the radiative energy budget of the Earth’s climate system, i.e.,
through changes in solar radiation, changes in the Earth albedo, or changes in atmospheric
gases and aerosol particles.”The AGGI tracks changes in the atmospheric global concen-
tration of long-lived, well-mixed greenhouse gases, in particular, carbon dioxide (CO2),
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methane (CH4), nitrous oxide (N2O), and halogenated compounds (mainly CFCs). It is
available at https://gml.noaa.gov/aggi/aggi.html.
Global warming, i.e., the rise in average temperatures determined by anthropogenic

GHG emissions, is one of the most evident consequences of climatic change. It is associ-
ated with hot summers and heat waves, mild winters, and various other extreme weather
realizations, such as droughts, extreme precipitations and winds, wildfires, and hail, that
have intensified in frequency and intensity over time. Extreme heat contributes to in-
creased morbidity and mortality, and it has been of concern in Europe since the early
2000s, especially after the over 70,000 excess deaths registered in summer 2003. In Eu-
rope, heat-related deaths were 60,000 in 2022, 47,000 in 2023, and over 40,000 in 2024.
(Ballester et al., 2023; García-León et al., 2024). See also https://climate.copernicus.eu/
copernicus-summer-2024-hottest-record-globally-and-europe.
On a global scale, the last ten years were the warmest on record, and 2024 was the

seventh warmest year. Summer 2024 was the hottest ever measured at 0.76◦C above the
1991—2020 average and 1.64◦C above the 1850—1900 pre-industrial average. The warming
in Europe is almost 1◦C higher than the corresponding global increase and higher than in
any other continent. In 2022, the average temperature was 2.3◦C above the pre-industrial
reference value (https://news.un.org/en/story/2023/06/1137867). Extreme weather in
Europe is then indicative of changes to come for other continents in scenarios of unabated
GHG emissions.
The E3CI index effectively monitors extreme weather realization developments over

time, yielding an assessment relative to a historical benchmark referring to the 1980-
2010 period. Figure 1 reports average annual figures over the last four decades and the
most recent 2020-2023 period for the E3CI index and its subcomponents. The aggregate
figures are computed as cross-sectional averages over the forty European countries in the
sample. We calculate annual figures by averaging the monthly observations to highlight
trend-level changes. The figures reported are rescaled so that values larger than one
point to abnormal realizations for the E3CI index and its subcomponents, i.e., to weather
conditions more extreme than in the past.
Figure1 here
As shown in Figure 1, the E3CI index points to increased extreme weather realizations

over the last fifteen years, which also gets stronger over time. The increase in the index
on average since 2020 is even more significant than in the previous decade (2010-2019).
The evidence points to worsening weather conditions and extreme events becoming more
frequent at the trend level.
From Figure 1, the worsening in average weather conditions detected by the E3CI

index can be pinned down to its sources. Extreme-heat developments (max temp) appear
to be the most critical driver of the worsening registered by the E3CI index. Extreme
heat conditions have been worsening over the last thirty years, pointing to a 25% increase
in frequency in the 2000s over the 1990s, then a 60% increase in the 2010s over the 2000s,
and a further 20% increase in the last four years in the sample over the previous decade.
By comparing current values with those over the 1980s, the increase in extreme heat
frequency is over 180%.
Global warming is a two-sided phenomenon. On one side, it leads to hotter summers.

On the other hand, it leads to milder winters. The relevance of these implications is
evident from Figure 1, where trend developments in extreme-cold realizations (min temp)
are reported, too. The overall decrease in the indicator in the most recent period over the
1980s average value is about 30%. The evidence from previous decades shows that these
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developments have progressed over time. Therefore, the global warming effect appears
asymmetric, leading to more frequent extreme heat episodes than less frequent extreme
cold episodes.
Wildfires and drought are also phenomena showing an increasing realization intensity.

This finding is consistent with extreme heat developments. The frequency of drought
episodes has increased by 30% in the most recent sample relative to the 1980s values.
Developments in previous decades were less clear-cut. On the other hand, the frequency of
wildfire episodes has been progressive over time. The wildfire indicator points to a 150%
frequency increase in the most recent period compared to the 1980s. While the origin of
wildfires is most often human-made, their damage depends on their propagation, which
depends on weather conditions, especially air humidity and temperatures. In this respect,
the global warming effect appears to foster the joint realization of extreme weather events
of different types: the frequency increase in drought, wildfire, and heatwave episodes seem
to be connected and should be controlled for when evaluating the potential economic
damages stemming from global warming.
The frequency of extreme precipitation and wind episodes has also increased over the

fifteen years, about 10%-20% relative to the 1980s. The extreme wind frequency increase
is more marked in the most recent period (20%) than in the previous decade (10%). On
the other hand, the frequency of hail episodes has been decreasing over the last fifteen
years. This finding, however, has no implications for hailstorm intensity when they
occur. In 2023 and 2024, the size of hailstones has shown to be, on average, bigger than
in the past (European Severe Weather Database; https://eswd.eu/cgi-bin/eswd.cgi). In
Northern Italy, the probability of hailstones over five centimeters in diameter is currently
300% higher than in the 1980s: in summer 2024, a hailstone with a gigantic diameter of
19 centimeters was registered.
Figure 2 reports the time series for the aggregate European E3CI index and its seven

subcomponents. For graphical purposes, we remove the outlying values for the hail data
for 1985 and 2022 and replace them with estimated trend values delivered by a structural
time series interpolating model.
Figure 2 here
Table 1 reports the results of the Becker et al. (2006) augmented KPSS tests to

provide statistical support for the evolving trends noted in the previous descriptive sta-
tistics analysis. In particular, we compare results for testing the null hypothesis of level
stationarity with the findings obtained for testing the null hypothesis of nonlinear trend
stationarity.
Considering the generic time series {yt}, the auxiliary model used for testing is

yt = f(t) + µt + εt

where f(t) is the purely deterministic component, µt = µt−1+vt, vt ∼ w.n.(0, σ2v), εt is an
I(0) process potentially heteroskedastic. Under the null hypothesis, σ2v = 0 and µt = µ0,
yielding level stationarity if

f(t) = θ0,

where θ0 is a constant term; linear trend stationarity if

f(t) = θ0 + θ1t,

where θ1 is a parameter and t = 1, 2, ..., T the linear time trend; non-linear trend station-
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arity of order r if

f(t) = θ0 +
r∑
j=1

θs,j sin(2πj
t

T
) +

r∑
j=1

θc,j cos(2πj
t

T
),

where θs,j and θc,j are parameters.
The Flexible Fourier form allows for effective modeling of unknown forms of trend

developments, accounting for nonlinear and non-monotonous paths over time, as evident
from the descriptive trend analysis. Our preferred third-order specification (r = 3) allows
the trend component to describe fluctuations with periodicity larger than 14 years. This
threshold is motivated by climatological arguments concerning the potential drivers of
the trend in these series discussed in the previous Section.
TABLE 1 here
As shown in Table 1, the null of level stationarity (column 1) is rejected at the 5%

level for the E3CI index and four of its subcomponents, i.e., extreme maximum and
minimum temperatures, extreme precipitation, and wildfires. The rejection is at the
1% level for the extreme maximum temperature component, too. On the other hand,
the null hypothesis is not rejected for extreme wind, drought, and hail. The null of
linear trend stationarity (column 2) is also rejected at the 5% level for the E3CI index
and its subcomponents, but the extreme minimum temperature and drought indicators.
Rejection at the 1% level is detected for the extreme maximum temperature, precipitation,
and wind components. These results suggest that, in general, neither level nor linear
trend stationarity well characterize the dynamic properties of the extreme weather series,
possibly pointing to more complex forms of non-stationary behavior, in alternative to
stochastic non-stationarity. The results reported in Table 1 (columns 3-5) support this
view, as the null hypothesis of nonlinear trend stationarity is never rejected even at the
5% level. Two exceptions can be noted for the most profligate third order specification
(column 5), i.e., for the E3CI index and its wildfire component, for which non-rejection
is only at the 1% level.
These findings are further corroborated by the results of the stationarity test carried

out on the country-level individual data reported in Figure 3, showing a widespread
rejection of the null hypothesis of level stationarity for any of the indicators and any
country, and of the null hypothesis of linear trend stationarity, too. On the other hand,
the evidence of nonlinear trend stationarity is never rejected for any country and indicator.
Figure3 here
Hence, significant nonlinear trend developments characterize extreme weather real-

izations in Europe. Testing the origin of these developments, specifically about global
warming and human-made GHG emissions, is the object of the following section. The
trend component is also included in Figure 3 for the E3CI index and its components,
highlighting the nonlinearity in their temporal evolution, allowing us to dig into their ori-
gins and potentially the interconnection between human-made and natural environment
contributions.

4 Human-made vs. natural environment climate change
drivers

The empirical analysis of extreme weather series trend developments is carried out using
the panel data model in (6). OLS estimation is performed through Autometrics, the
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automated general-to-specific model reduction strategy by Hendry et al. (2008). The
model reduction analysis is carried out for the E3CI index and its seven components,
i.e., extreme maximum and minimum temperatures, wind speed, precipitation, droughts,
wildfires, and hail, separately. The final econometric models obtained from the reduc-
tion analysis are reported in Tables 2 and 3. In particular, in Table 2, we report the
final specification for the common components across countries, while in Table 3, the
final specification for the components accounting for cross-country heterogeneity. Het-
eroskedasticity consistent standard errors are reported in all cases.
As shown in Tables 2 and 3, the common component is strongly dominant over the

idiosyncratic component, consistent with the global nature of climate change and the
potential additional contribution of natural oscillators with long periodicity and global
impact. In fact, for the E3CI index and any of its components, the contribution of the
Fourier transforms of the GHG emissions index (x = AGGI; sxi, cxi, i = 0.5, 1, 2, 3) and
the trigonometric components in the time trend (si, ci, i = 0.5, 1, 2, 3) sizably contribute
to the modeling of the nonlinear evolution of the underlying dynamics in all cases. No
evidence of a dominant impact of any of the two categories over the other can be found.
Our framework suggests that trend behavior in the weather series can be attributed partly
to human-made GHG emissions and some multidecadal natural oscillators, which might
also impact weather behavior at low frequencies. This aligns with previous evidence on
global temperatures by Morana and Sbrana (2019).
Not surprisingly, the largest contribution from idiosyncratic sources is detected for

the E3CI index, which summarizes the information reported in its components. Nordic
countries, i.e., Iceland, Norway, Finland, Sweden, but also Ireland and Switzerland, are
pointed as the countries where both the effects of human-driven climate change and
multidecadal natural oscillators might have impacted differently than the core group of
European countries. The E3CI components can gauge further insights into countries’het-
erogeneity. For instance, Iceland and Sweden are pointed as outlying countries according
to the extreme maximum temperature and wildfire indicators. Iceland was also selected
based on the drought component. Norway, Finland, Ireland, and Switzerland are selected
according to the wildfire indicator, and Switzerland is also selected according to the ex-
treme precipitation component. Many other countries are pointed as outlying according
to one or more other indicator’s components. Among the Northern Europeans, Latvia,
Estonia, Lithuania; among the Southern Europeans, Malta, Cyprus, Andorra, Greece,
Italy, Slovenia, Montenegro, Albania, and North Macedonia. Finally, some evidence of
idiosyncratic behavior can also be detected for Czechia, France, and the UK.
In Table 4, we finally report the results of the Wald tests for the null hypothesis of

no anthropogenic contribution to trend weather conditions (Test 1), i.e.,

H0 : θsx,j = θsx,n,j = θcx,j = θcx,n,j = 0,

the null hypothesis of no contribution from natural oscillators (Test 2), i.e.,

H0 : θs,j = θs,n,j = θc,j = θc,n,j = 0,

and the null hypothesis of non-evolving weather conditions (Test 3), i.e.,

H0 : θsx,j = θsx,n,j = θcx,j = θcx,n,j = θs,j = θs,n,j = θc,j = θc,n,j = 0,

and j = 0.5, 1, 2, 3 in all cases.
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The results are clear-cut and point to reject the null hypothesis in all cases, sup-
porting the view that underlying or trend weather conditions are evolving and driven by
the anthropogenic contribution of GHG emissions and their impact on global warming.
They, however, also reflect the impact of multidecadal oscillators such as the Atlantic
Multidecadal Oscillation (AMO), which are relevant to shaping weather conditions in
Europe.
The trend components reported in Figure 3 are computed by averaging the fitted com-

ponent delivered by the panel data specification (6). Disentangling the human-made and
natural environment contributions does not appear straightforward due to the potential
correlation that might affect the two sets of regressors involved, i.e., the transform in
AGGI and the transforms in the linear time trend component. Moreover, global warm-
ing might also impact the evolution of natural oscillators such as the ENSO and the
AMO (Zhiping et al., 2024). Hence, in what follows, we assess the linkages between
deteriorating overall trend weather conditions and economic activity.

5 The economic impact of climate change

We assess the economic impact of deteriorating weather conditions within the Growth-
at-Risk framework of Adrian et al. (2019) for the forty European countries for which the
E3CI extreme weather indicators have been available since 1981. We use real per capita
GDP growth data (annual %, constant local currency) from 1981 to 2023. The data are
available from theWorld Bank at https://databank.worldbank.org/metadataglossary/world-
development-indicators/series/NY.GDP.PCAP.KD.ZG. Our yearly panel data set is un-
balanced, as for some of the post-Soviet countries and East-European countries data
are available only for a shorter period. For instance, data for Belarus, Bosnia, Croatia,
Czechia, Estonia, Latvia, Lithuania, Moldova, North Macedonia, Poland, Romania, Slo-
vakia, and Slovenia are available since 1991. Data for Montenegro are available since
1998, for Serbia since 1996, and for Ukraine since 1988. In total, our dataset counts 1551
annual observations.
The Growth-at-Risk approach is best suited to measure the effects of tail events, such

as extreme weather realizations, on economic activity, yielding insights into their impact
on the entire distribution of GDP growth rather than on its mean component only. The
approach allows for insights into the effects of extreme weather episodes on downside
economic growth risk and potential asymmetries in their economic impact. It allows
control of various extreme weather realizations and their joint occurrence. For instance,
extreme heat episodes and droughts might create ideal conditions for the spread of wild-
fires. Therefore, amplification and interaction mechanisms might be controlled within
a multivariate specification, allowing for joint conditioning on various E3CI subcompo-
nents.
Our underlying extreme weather measures are conditioned to their potential chief

driver, i.e., human-made GHG emissions and their global warming effects, as measured
by the AGGI radiative forcing index. We measure these effects through the trigonometric
polynomial in the AGGI index. We also allow for the contribution of natural phenomena
inducing low-frequency changes in weather conditions, such as the Atlantic Multidecadal
Oscillation (AMO). While we do not directly address these potential contributors, we
aim to capture their effects through the trigonometric polynomial in the temporal index.
Our assessment of the economic impact of extreme weather realizations is consistent with
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a "business as usual" GHG growth scenario, as it exploits their current estimated trend.

5.1 Econometric methodology

We implement our Growth-at-Risk analysis within a quantile panel regression with fixed-
country effects. The first econometric model assesses the impact of overall extreme
weather conditions on per capita real GDP growth, allowing for time trend effects and
controlling for macro-financial and geopolitical conditions. The baseline regression is

∆yt,j = αj +
2∑
s=1

γst
s + βE3CIt,j +

3∑
r=1

δrxt,r + uj,t, (7)

where ∆yt,j is the percent change in the real per capita GDP in period t in country j,
E3CIt,j is the E3CI index in period t in country j, αj is the country fixed effect, and
uj,t is an i.i.d. residual. For s = 1, ts is the linear time trend included in the model to
capture evolving technical-progress induced underlying GDP growth following Phillipon
(2024). For robustness, we also estimate a version of the model allowing for a quadratic
linear trend component, i.e., s = 1, 2. Finally, xt,r, r = 1, ...3, are country-invariant
conditioning regressors capturing the state of geopolitical conditions, as measured by
the Geopolitical Condition Risk Index (GPR, r = 1), and overall macro-financial con-
ditions, as proxied by the New CISS Financial Condition Index (NCISS, r = 2) and
the Global Economic Policy Uncertainty Index (GEPU , r = 3). The New CISS is the
equal-weight version of the Composite Indicator of Systemic Stress originally contributed
by Hollo et al. (2012). It is comprised of 15 market-based financial stress measures
that assess conditions in the financial intermediaries sector, money markets, equity mar-
kets, bond markets, and foreign exchange markets. It is available from the ECB at
https://data.ecb.europa.eu/data/datasets/CISS/CISS.D.U2.Z0Z.4F.EC.SS_CIN.IDX. The
Geopolitical Risk Index is by Caldara and Iacoviello (2021) and yields a worldwide cover-
age of adverse geopolitical events and tensions. It is available at https://www.matteoiacoviello
.com/gpr.htm. The Global Economic Policy Uncertainty Index is available since

1997 at https://www.policyuncertainty.com/index.html. It is a GDP-weighted average
of national EPU indices for 21 countries, i.e., Australia, Brazil, Canada, Chile, China,
Colombia, France, Germany, Greece, India, Ireland, Italy, Japan, Mexico, the Nether-
lands, Russia, South Korea, Spain, Sweden, the United Kingdom, and the United States.
The missing years 1985-1996 are proxied by the US Economic Policy Uncertainty In-
dex; the years 1981-1984 by the Geopolitical Risk Index. We compute annual figures
by averaging monthly observations over the corresponding years. We plot these indi-
cators in Figure 4. In the plots, the gray shades correspond to periods of economic
recession, as measured according to the EABCN Eurozone business cycle chronology
(https://eabcn.org/dbc/peaksandtroughs/chronology-euro-area-business-cycles). Some as-
sociation with the state of the business cycle is noticeable for the NCISS and GEPU
indicators, which is consistent with their assumed information content.
Our additional econometric models are

∆yt,j = αj +
2∑
s=1

γst
s + βiEWIi,t,j +

3∑
r=1

δrxt,j + uj,t i = 1, ..., 7, (8)

∆yt,j = αj +
2∑
s=1

γst
s +

7∑
i=1

βiEWIi,t,j +
3∑
r=1

δrxt,j + uj,t, (9)
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where, rather than the composite E3CI index, we use its seven components in the con-
ditioning information set. Hence, EWIi,t,j is the ith E3CI index component in period
t in country j. The E3CI index components are the extreme maximum and minimum
temperatures, wind speed and precipitation indicators, and the drought, hail, and wild-
fire components. In regressions (8), we assess the impact of worsening extreme weather
conditions by considering each component at the time. In the (9) regression, we jointly
assess the impact of all seven E3CI index components. Therefore, our econometric model
allows for a richer specification than in previous work, such as Kiley (2024), where the
average temperature is the only climatological variable included. As our empirical re-
sults show, focusing on a single, yet fundamental, dimension of weather change might
lead to an information loss at best and a misspecified growth regression in the worst-case
scenario.
Different from classical linear regression analysis, which yields the mean response of

the dependent variable to changes in a set of conditioning regressors, quantile regression
analysis yields a more flexible alternative, allowing the study of the distributional rela-
tionships of variables, i.e., how the various quantiles of the distribution of the dependent
variables depend on the realization of the conditioning regressors.
Denoting the cumulative distribution function of the real per capita GDP growth

rate in country j in period t conditional on time t information It as Gj(∆yt|It), its τth
conditional quantile is defined

Qm
j,t = inf {∆yt : Gj(∆yt|It) ≥ τ} , (10)

i.e., the minimum value of ∆yt from amongst all those values whose cumulative distrib-
ution function value exceeds m, and τ = 0.1, 0.2, ..., 0.9 in our analysis.
The lowest quantile, i.e., τ = 0.1, yields the real per capita GDP growth lower tail out-

come, i.e., the smallest value in period t, such that there is a 10% (or greater) probability
that the real GDP per capita change will be larger than the value. Symmetrically, the
upper quantile, i.e., τ = 0.9, yields the real per capita GDP growth upper tail outcome.
The median corresponds to τ = 0.5.
The rationale of quantile regression can be understood by starting with the intuition

of ordinary least squares. Given the model

yi = β′xi + ui, (11)

the least square estimate minimizes the sum of the squared error terms∑
i

(yi − β̂
′
xi)

2. (12)

The quantile regression estimate minimizes a weighted sum of the positive and negative
error terms

τ
∑

yi>β̂
′
τxi

∣∣∣yi − β̂′τxi∣∣∣+ (1− τ)
∑

yi<β̂
′
τxi

∣∣∣yi − β̂′τxi∣∣∣ , (13)

where the weight is the τ quantile. The optimization of the loss function in (13) yields an
estimated linear relationship between yi and xi where a proportion of data τ (1− τ) lies
above (below) the quantile regression line β̂

′
τxi. Consistency and asymptotic normality

of the quantile regression estimator is established in Koenker and Bassett (1978). For
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comparison, we also report results for panel OLS regressions allowing for i) country-fixed
effects and ii) country-fixed effects and time-random effects. Some evidence of collinearity
dictates the selection of the random-time effects, rather than the fixed-time effects, in
our OLS panel regressions. Moreover, we estimated Autometrics OLS panel regressions
where the fixed-country and time effects are selected endogenously based on an impulse
saturation algorithm (Hendry et al., 2008). As usual in the literature, fixed-country
effects in the quantile panel regressions are specified as quantile-invariant.

5.2 Empirical results

Tables 5-8 report the estimation results for the linear time trend models (s = 1). Columns
1-3 in each Table report results for the country fixed effects (Least Squares), the coun-
try fixed effects plus random time effects panel regressions (Least Squares w/ Time Ef-
fects), and the Autometrics panel regressions (Least Squares Autometrics), respectively.
Columns 4-12 report results for the quantile panel regressions for the various quantiles
τ = 0.1, 0.2, ..., 0.9. In particular, column 8, labeled (5), reports results for the 0.5 quan-
tile, i.e., the median, and therefore for the least absolute deviation regression (MAD).
We report robust standard errors in all cases.
Moreover, row 1 in each Table reports the results for the E3CI regressions (7), rows

2-8 the results for the E3CI single components regressions (8), and rows 9-15 the results
for the multivariate (9) regressions.
More specifically, the figures reported in Table 5 refer to the estimated β or βi co-

effi cients measuring the impact of the various extreme weather indicators on the real
GDP growth rate. As the climatological variables are z-scores, the reported coeffi cients
measure the real GDP growth rate response per unit of each indicator’s Standard Devia-
tion increment. Figures 6-8 report the real GDP growth rate response to the Geopolitical
Risk (GPR, δ1), macro-financial conditions (NCISS, δ2), and economic policy uncertainty
(GEPU, δ3) control variables, respectively.
For robustness, we report the results obtained from the quadratic trend models (s =

1, 2) in Tables A1-A4 in the Appendix.
Table 5 here
Concerning the E3CI regression (7), the evidence is robust to the estimation method

and the country and time-fixed effects specification. A comparison between OLS and
MAD estimation points to a negative impact of deteriorating weather conditions on eco-
nomic growth. The point estimates are similar, from -2.4% to -2.7%. The panel quantile
regressions show that the negative impact of deteriorating weather conditions on eco-
nomic growth holds for most of the per capita GDP growth distribution. The down-
side risk to growth (τ = 0.1, 0.2, 0.3) is much more affected than the central tendency
(τ = 0.4, 0.5, 0.6) or upside risk (τ = 0.7, 0.8, 0.9). For instance, the point estimate for the
0.3 quantile (-4.0%) is about fourfold that of the 0.7 quantile (-1.2%). Point estimates for
the 0.8 and 0.9 quantiles are insignificant even at the 10% level. The detected asymmetric
distributional impact is interesting and deserves further investigation. Hsiang and Jina
(2014) show that the state of the business cycle can affect the readiness to invest in a
region following a disaster and shape the longer-term recovery of economic activity. A
natural disaster can make an ongoing economic contraction more severe due to limited
adaptation mechanisms. On the other hand, during expansions, economies can adapt
and redirect funds to reconstruct areas hit by those events. See also Kiley (2024).
On average across the 40 countries considered in the study, over the period 1981-2023,
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the E3CI index has increased by about 2.7 standard deviations. Hence, the estimated
figures convey information on the expected real per capita GDP growth over roughly
fifteen years, which yields an expected median contraction in trend real per capita GDP
growth of about 0.15% per year over the next fifteen years in a business-as-usual scenario.
Given the detected asymmetrical impact, the expected annual impact ranges from -0.08%
to -0.25%. Accordig to the EEA assessment, between 1980 and 2023, economic losses
caused by climate-related extremes amounted to an estimated EUR 738 billion (2023
prices) in the EU (https://www.eea.europa.eu/en/analysis/indicators/economic-losses-
from-climate-related). The average annual (2023 prices) economic losses have increased
over time and amount to 8.5 billion in 1980-1989 and 44.5 billion in 2020-2023, i.e., about
0.06% and 0.3% of 2023 EU GDP, respectively. These figures appear to be consistent
with our estimated quantile range.
Turning to the single E3CI component regressions (8), we find similar evidence in

terms of a negative impact of deteriorating weather conditions on economic growth and a
stronger impact on the downside than the upside risk to growth for the extreme maximum
temperature and wind indicators, and the droughts and wildfires indicators. Yet, we also
find some differences from the baseline regression. For instance, OLS and MAD point
estimates are not statistically significant for droughts, even at the 10% level. A significant
negative impact can be detected only for the lowest quantiles (τ = 0.1, 0.2, 0.3), from -
4.6% to -1.3%. The OLS and MAD point estimates are significant and numerically close
for the other three indicators, ranging from -3.7% to -2.9% for extreme wind, -1.2% to
-0.7% for wildfires, and -0.6% to -0.5% for extreme maximum temperatures. Yet, while
the extreme maximum temperatures and droughts impacts are negative and significant
throughout the per capita GDP growth distribution (but for τ = 0.9), for wildfires, the
impact is negative and significant only for the lowest and central quantiles. On the other
hand, for the extreme minimum temperature and precipitation indicators, the upside risk
to growth (τ = 0.7, 0.8, 0.9) is more affected than the central tendency (τ = 0.4, 0.5, 0.6)
or the downside risk (τ = 0.1, 0.2, 0.3). For the extreme minimum temperature indicator,
the estimates range from -3.1% to -1.3% for the highest quantiles (τ = 0.6, 0.7, 0.8, 0.9)
and are not significant otherwise, neither for the MAD nor the OLS regressions. The
impact of the extreme precipitation indicator is negative throughout the entire per capita
GDP growth distribution but significant over the 0.3 through 0.8 quantile range. In this
respect, the point estimates are -2.7% and -3.8% for the 0.3 and 0.7 quantiles, respectively.
No significant impact can be found for hail, even at the 10% level, neither for the OLS
nor the quantile panel regressions.
The evidence from the joint E3CI components regression (9) is less clear-cut than for

the single component regressions. When jointly assessed, all the E3CI components show
a negative coeffi cient in the OLS regressions. Yet, a significant impact (1% level) is found
only for the extreme minimum temperature and the hail indicators. The Autometrics
OLS panel regression also points to a negative significant impact (at the 10% level) for
the extreme maximum temperature and precipitation indicators. On the other hand, the
MAD regression points to a negative significant impact (1% level) for the extreme maxi-
mum and minimum temperature indicators only. Consistent with the single component
regressions, the impact of the extreme minimum temperature indicator is stronger for the
highest (-5.5% to -4.0%) than the central (-3.7% to -3.0%) quantiles and not significant
for the lowest quantiles (τ = 0.1, 0.2). A negative and significant impact is also found
for the extreme maximum temperature indicator for the central part of the per capita
GDP distribution only (-1.1% to -0.9%). The negative impact of droughts and wildfires
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is only significant for the lowest quantiles (-2.5% to -3.1%, -6.0% to -2.1%). The impact
of the extreme precipitation, wind, and hail indicators is negative throughout the per
capita GDP distribution. Yet, in general, it is significant only for the lowest and highest
quantiles. In this respect, the impact of extreme precipitation on the downside risk to
growth is almost double that on the upside risk (-9.7% vs. -4.9%), while for hail the
impact is more uniform (-1.9% to -1.5%). The effect is significant for extreme wind only
for the highest quantiles (-6% to -3.9%).
By considering again the median point estimates and normalizing their figures to

the average time required for a unitary standard deviation change in the indicator of
interest from the single (joint) component regressions we find an annual median expected
contraction in real per capita GDP growth of about -0.04% (-0.07%) due to increasing
maximum temperatures, -0.02% (-0.12%) due to increasing minimum temperatures, -
0.14% (-0.11%) due to extreme precipitations, -0.12% (0.01%) due to extreme wind speed,
-0.002% (-0.03%) due to droughts, -0.05% (0.03%) due to wildfires, 0.02% (-0.02%) due
to hail. The latter figures point to potential bias in growth regressions that neglect
interaction across indicators.
Tables 6-8 here
As shown in Tables 6-8, the impact of the conditioning country-invariant macroeco-

nomic, financial, and geopolitical risk regressors is generally negative and significant,
consistent with the fact that an increase in these indicators is associated with adverse
macroeconomic, financial, or geopolitical developments. In particular, the Geopolitical
Risk indicator GPR is significant at the 5% level in all the cases for the Autometrics
and MAD models. It is also significant in most cases for the central part of the per
capita GDP distribution (τ = 0.3, 0.4, 0.5, 0.6, 0.7). On the other hand, the overall
Financial Condition Index NCISS is statistically significant for the highest quantiles
regressions (τ = 0.8, 0.9). The Global Economic Policy Uncertainty Index GEPU is sig-
nificant for all the OLS panel specifications and some of the extreme quantiles regressions
(τ = 0.1, 0.2, 0.7, 0.8).
The results are strongly robust to the inclusion of the quadratic trend component. As

shown in Table A1, we do not detect any significant changes concerning the impact of
the climatological variables on per capita GDP growth, but for one case (E3CI baseline
specification, τ = 0.7). Including the quadratic trend makes significantGPR for two more
cases for the lowest quantile regressions (τ = 0.1, 0.2) while weakening its significance in
one case (τ = 0.2). It also weakens the significance of theNCISS indicator for three cases
for the highest quantile regressions (τ = 0.8, 0.9). Including the quadratic trend appears
to be a substitute for GEPU , which is mainly insignificant across various specifications.
This latter finding is consistent with results in the literature suggesting that including a
quadratic trend helps to control for fixed-time effects (Tables A2-A4).

6 Conclusions

It is now widely acknowledged that human activities have been responsible for Earth’s
warming since the Industrial Revolution, i.e., Global Warming. As Earth’s climate has
warmed, more frequent and intense extreme weather episodes have been observed world-
wide, such as heat waves, drought, wildfires, floods, snowstorms, hail, and hurricanes.
These phenomena will worsen in a warming climate, yielding economic, financial, and
human costs. In this respect, Europe is warming faster than the global average and will
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continue to do so throughout this century. The mean annual temperature over European
land areas in the last decade was 2.12 to 2.19oC warmer than during the pre-industrial
period, already higher than the Paris Agreement target. Without further mitigation poli-
cies, land temperatures in Europe are projected to increase further by 1.2 to 3.4oC under
the SSP1-2.6 scenario and by 4.1 to 8.5oC under the SSP5-8.5 scenario (by 2071-2100,
compared to 1981-2010). The highest level of warming is projected across north-eastern
Europe, northern Scandinavia, and inland areas of Mediterranean countries. The lowest
warming is expected in Western Europe, especially in the United Kingdom, Ireland, west-
ern France, Benelux countries, and Denmark (EEA, 2024). In light of the above evidence,
this paper focuses on Europe and yields two original contributions. First, building on
Morana (2024) and Morana and Sbrana (2019), we assess the linkage between anthro-
pogenic GHG emissions and underlying extreme weather conditions using an innovative
panel regression trend-cycle decomposition approach. The analysis is based on the Euro-
pean Extreme Events Climate Index (E3CI) and its seven subcomponents, i.e., extreme
maximum and minimum temperatures, wind speed, precipitation, droughts, wildfires,
and hail, available for 40 European countries since 1981. To the authors’knowledge, this
is the first study to investigate such a detailed dataset. The approach accounts for the
human-made contribution, as measured by changes in the atmospheric global GHG con-
centrations of GHG, as well as of natural phenomena, to evolving weather conditions. It
allows for potential unknown nonlinearities in the relationship between extreme weather
and its drivers. It also accounts for cross-countries potential commonalities and hetero-
geneity, as climate change is a global externality, i.e., one country’s emissions affect all
countries by adding to the GHG stock in the Earth’s atmosphere, from which extreme
weather episodes might increase in frequency and intensity. Our findings support the
evidence on the contribution of human-made GHG emissions to the deterioration of un-
derlying extreme weather conditions and their highly nonlinear pattern. Consistent with
the global nature of climate change and the additional contribution of natural oscilla-
tors with long periodicity and global impact, we also point to a dominant common over
idiosyncratic component. This finding aligns with Bilal and Kanzig (2024).
We exploit the above findings and assess the economic impact of the multifaceted

dimensions of underlying deteriorating weather conditions, focusing on GDP growth dy-
namics and the 40 European countries for which the E3CI index and its components are
available. We conduct our Growth-at-Risk analysis within a quantile panel regression
framework, which is best suited to measure the effects of tail events, such as extreme
weather realizations, yielding insights into their impact on the entire distribution of GDP
growth rather than on its mean component only. It allows for the uncovering of poten-
tial distributional asymmetries in their economic impact. Our empirical findings support
these nonlinearities. For instance, our baseline regressions assessing the impact of dete-
riorating overall extreme weather conditions, as measured by the E3CI index, show that
their negative impact holds through the GDP growth rate distribution. Yet the effect on
the lowest quantiles of GDP growth is about fourfold that of the highest quantiles. The
results of the single E3CI component regressions also show the downside risk to growth
being stronger than the upside risk for various factors, such as rising extreme maxi-
mum temperature, wind speed, drought, and wildfire indicators. Albeit less clear-cut,
the negative economic impact of worsening extreme weather conditions in Europe is also
confirmed when the E3CI subcomponents are jointly assessed. Under a business-as-usual
scenario, extreme weather episodes might generate a median contraction in trend real per
capita GDP growth of about -0.15%.per year.
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Worsening weather conditions is a multifaceted phenomenon. Overall, our findings
point to the relevance of directly considering other dimensions beyond the impact of rising
temperatures and accounting for their interactions in growth regressions. However, more
research is needed to pin down the transmission mechanism of these adverse climatological
developments. Recent discussions on the aggregate demand channels in Usman et al.
(2024), Natoli (2023), and Ciccarelli and Marotta (2024) are surely of interest in this
respect.

7 Appendix

Tables A1-A4 here
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Figure 1: Extreme weather events in Europe

Note: This figure reports average annual values over the last four decades and the most recent 2020-2023 period
for the E3CI index and its subcomponents. The aggregate values are computed as cross-sectional averages
over the forty European countries in the sample. The values reported are rescaled such that values larger than
one point to abnormal realizations for the E3CI index and its subcomponents, i.e., to weather conditions more
extreme than in the past.
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Figure 2: Evolving extreme weather conditions in Europe

Note: This figure reports the time series for the actual values and their fitted trend components for the aggregate European E3CI index and its seven subcomponents
for the period 1981-2023. The aggregate values are computed as cross-sectional averages over the forty European countries in the sample.
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Figure 3: Stationarity tests for the extreme weather indicators across countries

(a) level (b) linear trend

(c) first-order nonlinear trend (d) second-order nonlinear trend

(e) third-order nonlinear trend

Note: This figure reports the results of the Becker et al. (2006) stationarity tests carried out on the country-level
E3CI index and its seven subcomponents for the period 1981-2023.
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Figure 4: Macro-financial and geopolitical risk indicators

Note: This figure reports the time series for the NCISS, GPR, and GEPU indices for the period 1981-2023,
with recessions in the Euro area shaded in grey.
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Table 1: Stationarity tests for the extreme weather indicators for Europe (average)

level linear trend first-order
nonlinear trend

second-order
nonlinear trend

third-order
nonlinear trend

E3CI 0.649 0.177 0.137 0.087 0.083
Max temp 0.754 0.219 0.094 0.078 0.073
Min temp 0.624 0.098 0.073 0.042 0.043
Precipitation 0.576 0.452 0.047 0.052 0.032
Wind 0.388 0.233 0.089 0.056 0.062
Drought 0.113 0.100 0.104 0.040 0.037
Fire 0.637 0.159 0.112 0.084 0.109
Hail 0.260 0.155 0.067 0.059 0.059
C.V. 1% 0.739 0.216 0.267 0.162 0.115
C.V. 5% 0.463 0.146 0.169 0.102 0.073
This table reports the results of the Becker et al. (2006) stationarity tests for the average
European values of the E3CI index and its subcomponents. The average values are computed
as cross-sectional averages over the forty European countries in the sample.
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Table 2: Common drivers of evolving extreme weather conditions across countries

Dependent variable
E3CI Max temp Min temp Precipitation Wind Drought Fire Hail

Psx05 2.677 -2.437 38.679 - 24.554 - - -21.780
(0.992) (0.569) (4.342) (6.043) (3.783)

Psx1 -2.616 -6.180 0.115 - -7.239 - 0.392 -
(0.606) (1.163) (0.045) (1.867) (0.059)

Psx2 0.343 -0.382 - - -1.628 1.438 1.909 -
(0.151) (0.137) (0.457) (0.285) (0.324)

Psx3 -0.269 - - 0.133 -0.165 -0.365 -0.402 -0.403
(0.052) (0.023) (0.063) (0.051) (0.066) (0.078)

Pcx05 5.903 10.129 2.704 - 9.387 -5.430 - 4.164
(1.122) (2.178) (0.467) (2.192) (0.872) (0.574)

Pcx1 - -3.644 15.901 -0.748 9.228 2.770 - -9.400
(0.734) (1.692) (0.122) (2.428) (0.225) (1.429)

Pcx2 0.089 -1.452 2.215 - - - 0.539 -
(0.029) (0.252) (0.232) (0.092)

Pcx3 0.151 - 0.284 -0.231 - 1.133 0.712 -0.424
(0.035) (0.053) (0.043) (0.101) (0.112) (0.086)

Ps05 -2.825 - -41.655 -1.825 -28.299 6.607 3.718 21.132
(0.986) (4.801) (0.286) (6.897) (0.540) (0.719) (3.852)

Ps1 3.022 6.869 - - 7.432 - - -
(0.640) (1.234) (1.886)

Ps2 -0.326 0.649 - - 1.905 -1.347 -1.990 -0.322
(0.164) (0.174) (0.538) (0.280) (0.334) (0.038)

Ps3 0.107 - - -0.102 0.326 - - 0.231
(0.048) (0.022) (0.098) (0.061)

Pc05 -6.073 -11.056 -2.499 -0.078 -9.464 5.358 -0.224 -3.796
(1.118) (2.188) (0.482) (0.008) (2.192) (0.863) (0.044) (0.536)

Pc1 - 2.675 -17.154 - -11.006 - 1.731 9.215
(0.823) (1.904) (2.851) (0.320) (1.454)

Pc2 - 1.439 -2.690 -0.160 -0.450 0.662 - -
(0.192) (0.275) (0.024) (0.124) (0.054)

Pc3 -0.194 - -0.499 0.158 - -0.851 -0.638 0.211
(0.036) (0.059) (0.033) (0.088) (0.103) (0.069)

Constant 0.046 1.690 1.851 1.138 2.386 -3.958 -2.606 0.282
(0.035) (0.401) (0.336) (0.173) (0.565) (0.325) (0.453) (0.154)

R2 0.381 0.601 0.278 0.117 0.093 0.150 0.323 0.169
R̄2 0.372 0.598 0.270 0.109 0.083 0.142 0.315 0.164

This table reports the regression coefficients for the common components across countries of the panel data
model in (6). OLS estimation is performed through Autometrics, the automated general-to-specific model
reduction strategy by Hendry et al. (2008). The model reduction analysis is carried out for the E3CI
index and for each of its components separately. Heteroskedasticity-consistent standard errors are shown in
parentheses.
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Table 3: Heterogeneities of evolving extreme weather conditions across countries

Dependent variable
E3CI Max temp Min temp Precipitation Wind Drought Fire

Pcos05xIS 0.174 Pcos05tMT -0.294 Psin3xAL -0.171 Psin1xLT 0.137 Psin3xSI 0.138 Psin1tIT 0.205 Psin05tIE -0.685
(0.026) (0.136) (0.060) 0.043 (0.053) (0.082) (0.095)

Pcos05xIE 0.107 Pcos05tSI -0.347 Psin3xMK -0.117 Psin1xLU 0.126 Pcos05xCY -0.097 Psin1tMK 0.247 Psin05tMT 0.383
(0.039) (0.118) (0.049) 0.034 (0.048) (0.110) (0.080)

Pcos05xNO 0.115 Pcos05tSE 0.223 Pcos05xLV -0.132 Pcos05xFR 0.083 Pcos05xEL -0.098 Psin3tIS 0.237 PintAD -0.344
(0.030) (0.089) (0.051) 0.026 (0.034) (0.082) (0.047)

Psin05tAT -0.076 Pcos1tIS -0.325 Psin05tLV 0.101 Pcos05xMT 0.134 Pcos05xMK -0.115 Pcos05tAL 0.280 PintAT -0.354
(0.025) (0.088) (0.043) 0.074 (0.048) (0.097) (0.043)

Pcos05tFI 0.114 Pcos05tCY 0.195 Pcos05xCH 0.114 Pcos2xUK -0.122 Pcos05tEL 0.223 PintEE -0.273
(0.036) (0.076) 0.037 (0.047) (0.080) (0.046)

Pcos05tSE 0.113 Pcos05tEE -0.120 Pcos1xLU 0.099 Pcos1tCZ -0.128 Pcos05tME 0.183 PintFI -0.331
(0.029) (0.052) (0.051) (0.059) (0.092) (0.040)

Psin05tCH -0.109 Pcos1tUK 0.100 Psin1tMK -0.088 PintIS -0.716
(0.022) (0.041) (0.041) (0.036)

PintFI -0.092 Psin3tLU 0.101 PintNO -0.524
(0.023) (0.040) (0.030)

PintIS -0.163 PintSE -0.350
(0.016) (0.035)

PintIE -0.127 PintCH -0.543
(0.022) (0.041)

PintNO -0.109 PintUK -0.352
(0.017) (0.052)

PintSE -0.083
0.019

This table reports the regression coefficients for the components accounting for cross-country heterogeneity of the panel data model in (6). OLS estimation is performed
through Autometrics, the automated general-to-specific model reduction strategy by Hendry et al. (2008). The model reduction analysis is carried out for the E3CI index
and for each of its components separately. Heteroskedasticity-consistent standard errors are shown in parentheses.
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Table 4: Wald tests

Test 1 Test 2 Test 3
E3CI 10.978 [0.000] 12.224 [0.000] 26.789 [0.000]

F(10,1694) F(10,1694) F(20,1694)
Max temp 18.363 [0.000] 15.055 [0.000] 128.28 [0.000]

F(6,1704) F(9,1704) F(15,1704)
Min temp 23.746 [0.000] 23.3 [0.000] 32.819 [0.000]

F(9,1701) F(9,1701) F(18,1701)
Precipitation 10.168 [0.000] 28.743 [0.000] 12.849 [0.000]

F(9,1703) F(7,1703) F(16,1703)
Wind 4.9724 [0.000] 3.9944 [0.000] 8.1602 [0.000]

F(11,1700) F(8,1700) F(19,1700)
Drought 48.223 [0.000] 17.192 [0.000] 17.645 [0.000]

F(5,1703) F(11,1703) F(16,1703)
Fire 12.142 [0.000] 37.595 [0.000] 47.76 [0.000]

F(5,1698) F(7,1698) F(21,1698)
Hail 15.822 [0.000] 14.749 [0.000] 20.475 [0.000]

F(5,1708) F(6,1708) F(11,1708)
This table reports the results of the Wald tests for the null hypoth-
esis of no anthropogenic contribution to evolving extreme weather
conditions (Test 1), of no contribution from natural sources (Test
2), and of no evolving extreme weather conditions (Test 3).
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Table 5: Economic impact of extreme weather events, linear trend specification

Least Squares Least Squares
w/ time effects

Least Squares
Autometrics (1) (2) (3) (4) (5) (6) (7) (8) (9)

Single-component models
E3CI -2.649*** -2.559*** -2.246*** -8.658*** -5.491*** -3.989*** -2.864*** -2.337*** -1.743** -1.186* -0.280 1.054

(0.737) (0.737) (0.711) (1.480) (1.226) (1.102) (0.795) (0.660) (0.706) (0.705) (0.777) (0.971)
Max temp -0.463** -0.436** -0.450*** -1.198*** -0.618** -0.569*** -0.555*** -0.607*** -0.474*** -0.375** -0.185 0.180

(0.198) (0.198) (0.175) (0.419) (0.272) (0.203) (0.165) (0.158) (0.180) (0.187) (0.229) (0.281)
Min temp -0.908 -1.026 -0.720 2.747 0.968 -0.452 -0.194 -0.443 -1.253** -1.414** -1.293* -3.105***

(0.797) (0.800) (0.590) (2.153) (0.860) (0.697) (0.654) (0.604) (0.572) (0.623) (0.771) (0.911)
Drought -0.821 -0.767 0.225 -4.567*** -2.921*** -1.344* -0.231 -0.067 1.082* 1.081* 1.780** 2.621***

(0.555) (0.554) (0.551) (0.945) (0.617) (0.760) (0.594) (0.635) (0.596) (0.574) (0.702) (1.014)
Wind -3.391*** -3.408*** -2.874*** -7.158** -4.952** -4.314*** -3.316*** -3.637*** -2.310** -2.779** -2.251* -1.448

(1.203) (1.202) (1.083) (3.115) (2.023) (1.441) (0.963) (0.877) (1.017) (1.128) (1.201) (1.848)
Precipitation -2.722* -2.560* -3.849*** -0.287 -1.544 -2.747** -3.401*** -4.260*** -4.427*** -3.803*** -4.720*** -3.209

(1.395) (1.390) (1.116) (4.345) (1.691) (1.222) (1.079) (1.027) (1.059) (1.116) (1.346) (2.617)
Fire -1.206*** -1.156*** -0.698* -5.249*** -3.238*** -2.181*** -1.083** -1.011** -0.291 -0.027 0.552 0.779*

(0.407) (0.406) (0.408) (0.677) (0.593) (0.668) (0.453) (0.396) (0.448) (0.415) (0.415) (0.430)
Hail 0.461 0.420 0.204 1.642 0.485 0.700 0.871 1.120* 0.654 0.311 -0.070 -0.487

(0.601) (0.601) (0.546) (1.223) (0.704) (0.690) (0.602) (0.589) (0.606) (0.566) (0.681) (0.872)
Multi-component model
Max temp -0.591 -0.570 -0.823* 1.451 0.294 -0.459 -0.882** -1.092** -1.105** -1.074** -0.983 -0.474

(0.567) (0.568) (0.468) (0.949) (0.546) (0.490) (0.440) (0.437) (0.447) (0.512) (0.739) (0.892)
Min temp -3.959*** -4.027*** -3.697*** 0.157 -1.939 -3.119*** -3.033*** -3.023*** -3.658*** -4.199*** -4.018*** -5.544***

(1.125) (1.130) (0.926) (2.127) (1.224) (0.967) (0.932) (0.959) (1.003) (1.092) (1.482) (1.659)
Drought -0.955 -0.874 -0.770 -2.806* -3.090*** -2.454** -1.088 -0.947 -0.424 -0.075 -0.159 1.413

(0.878) (0.876) (0.809) (1.657) (1.180) (1.041) (0.887) (0.787) (0.763) (0.744) (1.009) (1.527)
Wind -1.618 -1.927 -0.873 -0.815 -1.449 -2.007 -0.806 0.215 0.686 -1.233 -3.831* -6.038*

(1.826) (1.824) (1.415) (3.182) (2.463) (1.722) (1.389) (1.330) (1.302) (1.524) (2.086) (3.562)
Precipitation -3.026 -2.778 -3.794* -9.661** -8.499** -3.873 -2.878 -3.391 -3.102 -2.689 -2.961 -4.867*

(2.593) (2.593) (2.150) (4.258) (3.418) (2.605) (2.166) (2.076) (1.931) (2.036) (2.551) (2.832)
Fire -0.745 -0.744 -0.109 -6.120*** -2.145** -0.648 0.146 0.577 0.811 0.978 1.741* 1.380

(0.765) (0.763) (0.684) (1.415) (0.864) (0.834) (0.672) (0.660) (0.640) (0.667) (0.976) (1.270)
Hail -2.144*** -2.163*** -1.944*** -1.658 -1.847* -0.932 -1.177 -1.062 -1.467** -1.813** -1.616 -1.084

(0.829) (0.832) (0.665) (1.416) (0.955) (0.806) (0.733) (0.739) (0.738) (0.750) (1.045) (1.574)
This table reports the regression coefficients obtained from regressing real GDP per capita growth on the E3CI index and its subcomponents. Single-component models report the
regression coefficients obtained from regressing real GDP per capita growth on the E3CI index and its subcomponents, separately (one at a time). Multi-component model reports
the regression coefficients obtained from a multivariate regression of real GDP per capita growth on the E3CI index subcomponents. These regressions contain a linear time trend
and the additional control variables NCISS, GPR, and GEPU. The first column reports OLS coefficients with country fixed effects. The second column reports OLS coefficients with
country fixed effects and time random effects. Period weights (PCSE) standard errors are shown in parentheses in both columns. The third column reports OLS coefficients using
Autometrics panel regressions. Heteroskedasticity-consistent (HCSE) standard errors are shown in parentheses. Columns (1)-(9) refer to quantile regression of the related decile, e.g.,
(5) refers to 0.5 quantile/median regression. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 6: GPR coefficients, linear trend specification

Least Squares Least Squares
w/ time effects

Least Squares
Autometrics (1) (2) (3) (4) (5) (6) (7) (8) (9)

Single-component model with
E3CI -0.554 -0.561 -0.646** -1.344 -0.861 -0.787** -0.697** -0.576** -0.586** -0.710** -0.386 0.271

(0.361) (0.455) (0.306) (0.934) (0.567) (0.333) (0.292) (0.278) (0.281) (0.286) (0.379) (0.526)
Max temp -0.548 -0.556 -0.668** -1.518 -1.035* -0.667* -0.505* -0.559** -0.560** -0.654** -0.334 0.274

(0.361) (0.454) (0.302) (1.110) (0.567) (0.341) (0.289) (0.273) (0.273) (0.288) (0.387) (0.519)
Min temp -0.559 -0.569 -0.798*** -1.536 -0.835 -0.631* -0.463 -0.468* -0.784*** -0.884*** -0.558 0.283

(0.363) (0.473) (0.301) (1.808) (0.538) (0.354) (0.304) (0.266) (0.267) (0.271) (0.345) (0.615)
Drought -0.544 -0.553 -0.708** -1.579 -0.436 -0.532 -0.480 -0.589** -0.729*** -0.852*** -0.236 0.493

(0.362) (0.466) (0.306) (1.241) (0.435) (0.350) (0.305) (0.269) (0.265) (0.279) (0.388) (0.481)
Wind -0.550 -0.560 -0.677** -1.461 -0.712 -0.639* -0.631** -0.551** -0.598** -0.595** -0.300 0.152

(0.361) (0.477) (0.302) (1.265) (0.441) (0.351) (0.292) (0.280) (0.280) (0.300) (0.375) (0.502)
Precipitation -0.552 -0.560 -0.731** -1.347 -0.683 -0.871** -0.529* -0.604** -0.552** -0.721** -0.412 0.104

(0.361) (0.449) (0.303) (1.507) (0.516) (0.359) (0.294) (0.269) (0.275) (0.287) (0.390) (0.500)
Fire -0.539 -0.547 -0.668** -1.080 -0.941* -0.654** -0.557* -0.565** -0.686** -0.815*** -0.397 0.200

(0.361) (0.451) (0.303) (0.960) (0.541) (0.331) (0.297) (0.271) (0.274) (0.281) (0.372) (0.542)
Hail -0.554 -0.563 -0.794*** -1.649 -0.762 -0.654* -0.489 -0.617** -0.704*** -0.809*** -0.385 0.195

(0.362) (0.473) (0.301) (1.456) (0.560) (0.349) (0.305) (0.278) (0.269) (0.276) (0.375) (0.513)
Multi-component model

-0.535 -0.546 -0.595** -0.970 -0.411 -0.618** -0.666** -0.574** -0.762*** -0.354 -0.456 0.637
(0.359) (0.437) (0.298) (0.999) (0.429) (0.309) (0.278) (0.276) (0.275) (0.316) (0.344) (0.546)

This table reports the regression coefficients of the variable GPR when regressing real GDP per capita growth on the E3CI index and its subcomponents. Single-
component models report the regression coefficients obtained from regressing real GDP per capita growth on the E3CI index and its subcomponents, separately (one
at a time). Multi-component model reports the regression coefficients obtained from a multivariate regression of real GDP per capita growth on the E3CI index
subcomponents. These regressions contain a linear time trend and the additional control variables NCISS and GEPU. The first column reports OLS coefficients with
country fixed effects. The second column reports OLS coefficients with country fixed effects and time random effects. Period weights (PCSE) standard errors are shown
in parentheses in both columns. The third column reports OLS coefficients using Autometrics panel regressions. Heteroskedasticity-consistent (HCSE) standard errors
are shown in parentheses. Columns (1)-(9) refer to quantile regression of the related decile, e.g., (5) refers to 0.5 quantile/median regression. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 7: NCISS coefficients, linear trend specification

Least Squares Least Squares
w/ time effects

Least Squares
Autometrics (1) (2) (3) (4) (5) (6) (7) (8) (9)

Single-component model with
E3CI 0.310 0.336 -0.555 -0.509 0.699 0.713 0.501 0.182 -0.021 -0.514 -1.663** -2.766**

(0.782) (0.975) (0.639) (1.080) (1.294) (0.762) (0.648) (0.604) (0.609) (0.627) (0.661) (1.249)
Max temp 0.440 0.459 -0.505 1.029 0.910 0.885 0.623 0.194 -0.072 -0.451 -1.687** -2.898**

(0.787) (0.977) (0.640) (1.535) (1.137) (0.775) (0.648) (0.604) (0.605) (0.623) (0.662) (1.243)
Min temp 0.301 0.324 -0.772 1.319 1.116 0.240 0.179 0.178 -0.175 -0.993* -1.586** -2.089*

(0.788) (1.014) (0.635) (1.984) (1.014) (0.755) (0.711) (0.683) (0.622) (0.600) (0.667) (1.143)
Drought 0.203 0.238 -0.562 0.770 0.609 0.483 0.248 0.020 -0.213 -0.607 -1.277* -2.057*

(0.789) (1.001) (0.633) (1.569) (1.053) (0.812) (0.712) (0.667) (0.617) (0.610) (0.765) (1.087)
Wind 0.323 0.353 -0.597 0.704 0.959 0.420 0.492 0.082 0.082 -0.646 -1.762*** -2.404*

(0.786) (1.026) (0.637) (1.494) (1.073) (0.798) (0.641) (0.610) (0.629) (0.654) (0.658) (1.254)
Precipitation 0.464 0.482 -0.523 1.021 0.932 0.418 0.360 0.377 -0.129 -0.671 -1.502** -2.456*

(0.788) (0.970) (0.635) (1.763) (1.052) (0.751) (0.667) (0.606) (0.592) (0.616) (0.731) (1.394)
Fire 0.273 0.301 -0.631 0.214 1.128 0.699 -0.021 -0.028 -0.234 -0.614 -1.455** -2.792**

(0.783) (0.968) (0.632) (1.174) (1.046) (0.766) (0.688) (0.620) (0.632) (0.613) (0.679) (1.227)
Hail 0.344 0.372 -0.733 0.976 0.986 0.512 0.452 0.287 -0.083 -0.522 -1.452** -2.867**

(0.785) (1.012) (0.632) (1.536) (1.063) (0.728) (0.679) (0.677) (0.628) (0.610) (0.669) (1.265)
Multi-component model

0.176 0.197 -0.455 0.782 0.801 0.528 0.183 0.065 -0.197 -0.763 -1.376 -0.849
(0.803) (0.961) (0.649) (1.296) (0.968) (0.783) (0.715) (0.631) (0.599) (0.608) (0.900) (1.002)

This table reports the regression coefficients of the variable NCISS when regressing real GDP per capita growth on the E3CI index and its subcomponents. Single-
component models report the regression coefficients obtained from regressing real GDP per capita growth on the E3CI index and its subcomponents, separately
(one at a time). Multi-component model reports the regression coefficients obtained from a multivariate regression of real GDP per capita growth on the E3CI
index subcomponents. These regressions contain a linear time trend and the additional control variables GPR and GEPU. The first column reports OLS coefficients
with country fixed effects. The second column reports OLS coefficients with country fixed effects and time random effects. Period weights (PCSE) standard errors
are shown in parentheses in both columns. The third column reports OLS coefficients using Autometrics panel regressions. Heteroskedasticity-consistent (HCSE)
standard errors are shown in parentheses. Columns (1)-(9) refer to quantile regression of the related decile, e.g., (5) refers to 0.5 quantile/median regression. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 8: GEPU coefficients, linear trend specification

Least Squares Least Squares
w/ time effects

Least Squares
Autometrics (1) (2) (3) (4) (5) (6) (7) (8) (9)

Single-component model with
E3CI -0.763** -0.781* -0.304 -1.359** -0.585 -0.411 -0.391 -0.300 -0.364 -0.684** -0.405 -0.206

(0.347) (0.432) (0.278) (0.582) (0.651) (0.303) (0.293) (0.309) (0.323) (0.309) (0.287) (0.639)
Max temp -0.845** -0.857** -0.398 -1.471** -0.755 -0.479 -0.548* -0.306 -0.400 -0.715** -0.434 0.017

(0.351) (0.436) (0.283) (0.703) (0.545) (0.313) (0.294) (0.309) (0.319) (0.313) (0.286) (0.645)
Min temp -0.732** -0.745 -0.281 -1.147 -0.793* -0.222 -0.439 -0.342 -0.198 -0.403 -0.322 -0.093

(0.357) (0.459) (0.286) (0.765) (0.468) (0.306) (0.295) (0.346) (0.334) (0.319) (0.301) (0.553)
Drought -0.713** -0.735 -0.346 -0.730 -0.382 -0.362 -0.411 -0.256 -0.366 -0.522* -0.485* -0.692

(0.356) (0.451) (0.284) (1.082) (0.445) (0.328) (0.301) (0.340) (0.317) (0.301) (0.293) (0.442)
Wind -0.781** -0.802* -0.322 -0.972 -0.939* -0.451 -0.391 -0.319 -0.342 -0.603* -0.412 -0.131

(0.349) (0.455) (0.279) (0.661) (0.507) (0.307) (0.284) (0.321) (0.338) (0.319) (0.275) (0.628)
Precipitation -0.863** -0.873** -0.454 -1.187 -0.752 -0.325 -0.504* -0.466 -0.425 -0.547* -0.644** -0.406

(0.355) (0.436) (0.285) (0.840) (0.501) (0.318) (0.298) (0.313) (0.318) (0.301) (0.286) (0.679)
Fire -0.736** -0.754* -0.308 -0.918 -0.434 -0.386 -0.273 -0.229 -0.373 -0.542* -0.302 -0.218

(0.350) (0.432) (0.280) (0.571) (0.396) (0.323) (0.294) (0.306) (0.325) (0.309) (0.282) (0.627)
Hail -0.770** -0.789* -0.316 -1.256* -0.717 -0.315 -0.439 -0.392 -0.340 -0.540* -0.349 0.043

(0.354) (0.456) (0.283) (0.711) (0.492) (0.314) (0.292) (0.335) (0.322) (0.310) (0.301) (0.635)
Multi-component model

-0.691* -0.702* -0.447 -0.759 -0.408 -0.299 -0.317 -0.304 -0.194 -0.292 -0.468 -0.743*
(0.355) (0.424) (0.301) (0.560) (0.441) (0.300) (0.316) (0.328) (0.338) (0.322) (0.291) (0.428)

This table reports the regression coefficients of the variable GEPU when regressing real GDP per capita growth on the E3CI index and its subcomponents. Single-
component models report the regression coefficients obtained from regressing real GDP per capita growth on the E3CI index and its subcomponents, separately
(one at a time). Multi-component model reports the regression coefficients obtained from a multivariate regression of real GDP per capita growth on the E3CI
index subcomponents. These regressions contain a linear time trend and the additional control variables NCISS and GPR. The first column reports OLS coefficients
with country fixed effects. The second column reports OLS coefficients with country fixed effects and time random effects. Period weights (PCSE) standard errors
are shown in parentheses in both columns. The third column reports OLS coefficients using Autometrics panel regressions. Heteroskedasticity-consistent (HCSE)
standard errors are shown in parentheses. Columns (1)-(9) refer to quantile regression of the related decile, e.g., (5) refers to 0.5 quantile/median regression. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Appendix

Table A1: Economic impact of extreme weather events, quadratic trend specification

Least Squares Least Squares
w/ time effects

Least Squares
Autometrics (1) (2) (3) (4) (5) (6) (7) (8) (9)

Single-component models
E3CI -2.656*** -2.559*** -2.260*** -9.000*** -5.543*** -4.393*** -2.851*** -2.347*** -1.789** -1.034 -0.283 0.893

(0.738) (0.738) (0.713) (1.742) (1.193) (1.109) (0.801) (0.661) (0.705) (0.705) (0.776) (0.891)
Max temp -0.465** -0.436** -0.455*** -1.178** -0.572** -0.634*** -0.502*** -0.634*** -0.446** -0.362* -0.189 0.170

(0.198) (0.198) (0.176) (0.458) (0.272) (0.211) (0.166) (0.159) (0.182) (0.186) (0.230) (0.266)
Min temp -0.912 -1.034 -0.715 1.801 0.579 -0.483 -0.014 -0.281 -1.317** -1.127* -1.293* -3.065***

(0.800) (0.802) (0.593) (2.652) (0.922) (0.708) (0.632) (0.597) (0.570) (0.631) (0.772) (0.899)
Drought -0.824 -0.766 0.221 -4.346*** -3.218*** -1.423* -0.050 -0.123 1.137* 1.107* 1.932*** 2.428***

(0.556) (0.555) (0.551) (1.056) (0.636) (0.766) (0.589) (0.639) (0.594) (0.574) (0.695) (0.863)
Wind -3.391*** -3.409*** -2.874*** -7.581** -4.555** -4.356*** -3.138*** -3.480*** -2.310** -2.782** -2.254* -0.658

(1.203) (1.202) (1.084) (3.470) (2.032) (1.404) (0.957) (0.879) (1.018) (1.120) (1.206) (1.722)
Precipitation -2.724* -2.554* -3.843*** -0.790 -1.421 -2.400* -3.642*** -4.296*** -4.427*** -3.866*** -4.788*** -3.412

(1.396) (1.390) (1.114) (4.611) (1.709) (1.226) (1.083) (1.036) (1.059) (1.115) (1.390) (2.627)
Fire -1.211*** -1.158*** -0.705* -5.255*** -3.300*** -2.303*** -1.189*** -0.979** -0.298 -0.069 0.556 0.907**

(0.408) (0.407) (0.410) (0.781) (0.586) (0.675) (0.456) (0.395) (0.449) (0.415) (0.412) (0.436)
Hail 0.461 0.419 0.201 1.717 0.492 0.620 0.846 1.159** 0.667 0.199 -0.034 -0.485

(0.602) (0.602) (0.546) (1.176) (0.687) (0.684) (0.597) (0.586) (0.606) (0.563) (0.702) (0.863)
Multi-component model
Max temp -0.599 -0.575 -0.857* 1.455 0.253 -0.473 -0.927** -1.087** -1.139** -0.995* -0.874 -0.478

(0.573) (0.572) (0.468) (0.952) (0.546) (0.523) (0.449) (0.439) (0.460) (0.512) (0.732) (0.915)
Min temp -3.961*** -4.023*** -3.709*** 0.187 -2.107* -3.099*** -3.173*** -2.971*** -3.750*** -4.272*** -4.074*** -5.577***

(1.126) (1.130) (0.924) (2.251) (1.187) (0.982) (0.934) (0.956) (1.016) (1.109) (1.515) (1.729)
Drought -0.955 -0.879 -0.769 -2.763* -2.685** -2.189** -0.843 -0.946 -0.179 -0.075 -0.169 1.344

(0.878) (0.876) (0.808) (1.668) (1.246) (1.058) (0.872) (0.789) (0.771) (0.739) (1.020) (1.524)
Wind -1.601 -1.900 -0.799 -0.964 -2.271 -1.983 -0.289 0.199 0.757 -1.025 -3.909* -6.086*

(1.833) (1.830) (1.420) (3.198) (2.429) (1.753) (1.419) (1.323) (1.321) (1.512) (2.155) (3.592)
Precipitation -3.003 -2.781 -3.697* -9.353** -6.935* -3.680 -2.755 -3.480 -2.798 -2.813 -3.389 -5.069*

(2.608) (2.604) (2.144) (4.280) (3.577) (2.749) (2.206) (2.137) (1.990) (2.034) (2.427) (2.986)
Fire -0.743 -0.744 -0.106 -6.186*** -2.504*** -0.801 -0.064 0.642 0.693 0.772 1.708* 1.430

(0.766) (0.763) (0.685) (1.446) (0.925) (0.898) (0.672) (0.661) (0.651) (0.667) (0.947) (1.302)
Hail -2.152*** -2.166*** -1.980*** -1.719 -2.047** -1.181 -1.141 -1.041 -1.342* -1.797** -1.519 -1.118

(0.832) (0.834) (0.664) (1.429) (0.974) (0.817) (0.712) (0.733) (0.747) (0.773) (1.082) (1.594)
This table reports the regression coefficients obtained from regressing real GDP per capita growth on the E3CI index and its subcomponents. Single-component models report the
regression coefficients obtained from regressing real GDP per capita growth on the E3CI index and its subcomponents, separately (one at a time). Multi-component model reports
the regression coefficients obtained from a multivariate regression of real GDP per capita growth on the E3CI index subcomponents. These regressions contain a quadratic time trend
and the additional control variables NCISS, GPR, and GEPU. The first column reports OLS coefficients with country fixed effects. The second column reports OLS coefficients with
country fixed effects and time random effects. Period weights (PCSE) standard errors are shown in parentheses in both columns. The third column reports OLS coefficients using
Autometrics panel regressions. Heteroskedasticity-consistent (HCSE) standard errors are shown in parentheses. Columns (1)-(9) refer to quantile regression of the related decile, e.g.,
(5) refers to 0.5 quantile/median regression. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A2: GPR coefficients, quadratic trend specification

Least Squares Least Squares
w/ time effects

Least Squares
Autometrics (1) (2) (3) (4) (5) (6) (7) (8) (9)

Single-component model with
E3CI -0.546 -0.555 -0.630** -1.538* -0.603 -0.701** -0.635** -0.543* -0.526* -0.730** -0.406 0.157

(0.362) (0.462) (0.309) (0.912) (0.423) (0.315) (0.289) (0.279) (0.284) (0.296) (0.430) (0.515)
Max temp -0.541 -0.550 -0.656** -1.756 -0.539 -0.591* -0.508* -0.598** -0.491* -0.741** -0.310 0.145

(0.362) (0.459) (0.306) (1.234) (0.465) (0.330) (0.289) (0.279) (0.277) (0.292) (0.452) (0.517)
Min temp -0.562 -0.574 -0.795*** -1.535 -0.685 -0.619* -0.443 -0.519* -0.752*** -0.884*** -0.547 0.604

(0.364) (0.481) (0.304) (2.099) (0.451) (0.346) (0.299) (0.267) (0.266) (0.267) (0.391) (0.536)
Drought -0.540 -0.550 -0.702** -1.472 -0.510 -0.453 -0.451 -0.625** -0.737*** -0.857*** -0.379 0.397

(0.364) (0.474) (0.310) (1.254) (0.408) (0.341) (0.300) (0.271) (0.264) (0.284) (0.404) (0.506)
Wind -0.550 -0.561 -0.680** -1.219 -0.753* -0.498 -0.668** -0.552* -0.615** -0.596* -0.303 0.172

(0.362) (0.486) (0.304) (1.236) (0.434) (0.342) (0.289) (0.283) (0.281) (0.317) (0.435) (0.505)
Precipitation -0.554 -0.563 -0.725** -1.788 -0.582 -0.788** -0.498* -0.644** -0.550** -0.721** -0.356 0.236

(0.362) (0.457) (0.307) (1.903) (0.438) (0.356) (0.290) (0.272) (0.278) (0.304) (0.444) (0.522)
Fire -0.532 -0.541 -0.657** -1.156 -0.467 -0.659** -0.628** -0.544** -0.696** -0.884*** -0.397 0.249

(0.362) (0.456) (0.307) (0.984) (0.391) (0.331) (0.291) (0.273) (0.275) (0.273) (0.419) (0.546)
Hail -0.554 -0.565 -0.789*** -1.893 -0.486 -0.631* -0.459 -0.553** -0.694** -0.846*** -0.368 0.177

(0.364) (0.482) (0.304) (1.652) (0.426) (0.349) (0.299) (0.277) (0.270) (0.271) (0.435) (0.532)
Multi-component model

-0.531 -0.543 -0.577* -0.954 -0.483 -0.610** -0.682** -0.622** -0.773*** -0.388 -0.529 0.597
(0.361) (0.432) (0.301) (1.059) (0.386) (0.308) (0.273) (0.282) (0.274) (0.346) (0.359) (0.570)

This table reports the regression coefficients of the variable GPR when regressing real GDP per capita growth on the E3CI index and its subcomponents. Single-
component models report the regression coefficients obtained from regressing real GDP per capita growth on the E3CI index and its subcomponents, separately (one
at a time). Multi-component model reports the regression coefficients obtained from a multivariate regression of real GDP per capita growth on the E3CI index
subcomponents. These regressions contain a quadratic time trend and the additional control variables NCISS and GEPU. The first column reports OLS coefficients
with country fixed effects. The second column reports OLS coefficients with country fixed effects and time random effects. Period weights (PCSE) standard errors are
shown in parentheses in both columns. The third column reports OLS coefficients using Autometrics panel regressions. Heteroskedasticity-consistent (HCSE) standard
errors are shown in parentheses. Columns (1)-(9) refer to quantile regression of the related decile, e.g., (5) refers to 0.5 quantile/median regression. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A3: NCISS coefficients, quadratic trend specification

Least Squares Least Squares
w/ time effects

Least Squares
Autometrics (1) (2) (3) (4) (5) (6) (7) (8) (9)

Single-component model with
E3CI 0.235 0.272 -0.733 -0.520 -0.294 0.325 0.122 0.118 -0.183 -0.390 -1.644** -3.267**

(0.901) (1.134) (0.720) (1.630) (1.342) (0.833) (0.783) (0.745) (0.729) (0.691) (0.696) (1.286)
Max temp 0.371 0.400 -0.642 1.279 0.301 0.403 0.284 -0.117 -0.180 -0.374 -1.603** -3.340**

(0.907) (1.133) (0.711) (1.798) (1.256) (0.873) (0.768) (0.732) (0.726) (0.687) (0.699) (1.282)
Min temp 0.328 0.365 -0.807 1.719 0.316 -0.095 0.009 0.042 -0.225 -0.747 -1.607** -2.311**

(0.911) (1.186) (0.711) (2.099) (1.168) (0.883) (0.827) (0.799) (0.731) (0.679) (0.697) (1.156)
Drought 0.165 0.209 -0.630 1.388 -0.133 0.243 -0.024 -0.212 -0.129 -0.571 -0.994 -2.496**

(0.914) (1.170) (0.708) (1.870) (1.214) (0.927) (0.827) (0.794) (0.714) (0.679) (0.814) (1.246)
Wind 0.322 0.359 -0.571 1.167 0.222 0.302 0.102 -0.139 0.084 -0.642 -1.739** -3.387**

(0.907) (1.196) (0.720) (1.664) (1.219) (0.892) (0.780) (0.760) (0.740) (0.712) (0.692) (1.246)
Precipitation 0.478 0.502 -0.598 2.058 0.281 0.327 0.085 0.233 -0.128 -0.636 -1.290 -2.428

(0.912) (1.133) (0.707) (1.974) (1.215) (0.859) (0.796) (0.745) (0.693) (0.669) (0.785) (1.535)
Fire 0.196 0.233 -0.750 -0.037 -0.492 0.097 -0.495 -0.366 -0.273 -0.450 -1.367* -3.501***

(0.903) (1.123) (0.705) (1.463) (1.168) (0.889) (0.819) (0.745) (0.741) (0.680) (0.705) (1.190)
Hail 0.348 0.383 -0.791 1.491 0.020 0.279 -0.128 -0.028 -0.077 -0.403 -1.499** -3.351**

(0.909) (1.185) (0.709) (1.727) (1.205) (0.867) (0.809) (0.795) (0.739) (0.679) (0.711) (1.304)
Multi-component model

0.132 0.164 -0.650 0.733 0.317 0.125 -0.069 -0.208 -0.084 -0.530 -1.125 -0.687
(0.918) (1.085) (0.726) (1.358) (1.043) (0.851) (0.813) (0.801) (0.703) (0.681) (0.925) (1.257)

This table reports the regression coefficients of the variable NCISS when regressing real GDP per capita growth on the E3CI index and its subcomponents. Single-
component models report the regression coefficients obtained from regressing real GDP per capita growth on the E3CI index and its subcomponents, separately
(one at a time). Multi-component model reports the regression coefficients obtained from a multivariate regression of real GDP per capita growth on the E3CI index
subcomponents. These regressions contain a quadratic time trend and the additional control variables GPR and GEPU. The first column reports OLS coefficients
with country fixed effects. The second column reports OLS coefficients with country fixed effects and time random effects. Period weights (PCSE) standard errors
are shown in parentheses in both columns. The third column reports OLS coefficients using Autometrics panel regressions. Heteroskedasticity-consistent (HCSE)
standard errors are shown in parentheses. Columns (1)-(9) refer to quantile regression of the related decile, e.g., (5) refers to 0.5 quantile/median regression. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A4: GEPU coefficients, quadratic trend specification

Least Squares Least Squares
w/ time effects

Least Squares
Autometrics (1) (2) (3) (4) (5) (6) (7) (8) (9)

Single-component model with
E3CI -0.709 -0.732 -0.174 -1.148 0.126 -0.233 -0.123 -0.257 -0.291 -0.752** -0.417 0.361

(0.464) (0.589) (0.369) (1.197) (0.608) (0.373) (0.391) (0.413) (0.401) (0.365) (0.374) (0.846)
Max temp -0.794* -0.813 -0.298 -1.657 -0.263 -0.211 -0.377 -0.141 -0.320 -0.767** -0.509 0.255

(0.468) (0.591) (0.366) (1.081) (0.773) (0.403) (0.376) (0.401) (0.403) (0.368) (0.364) (0.868)
Min temp -0.752 -0.775 -0.256 -1.539 -0.249 -0.003 -0.166 -0.230 -0.195 -0.610 -0.318 -0.036

(0.476) (0.627) (0.371) (1.110) (0.688) (0.421) (0.383) (0.431) (0.405) (0.387) (0.399) (0.696)
Drought -0.685 -0.713 -0.296 -1.076 0.132 -0.143 -0.152 -0.176 -0.415 -0.523 -0.615* -0.012

(0.475) (0.615) (0.371) (1.461) (0.624) (0.430) (0.388) (0.428) (0.400) (0.370) (0.368) (0.694)
Wind -0.781* -0.806 -0.341 -1.201 -0.330 -0.217 -0.160 -0.246 -0.340 -0.652* -0.424 0.310

(0.467) (0.623) (0.367) (0.987) (0.749) (0.406) (0.381) (0.418) (0.417) (0.378) (0.357) (0.849)
Precipitation -0.873* -0.888 -0.399 -1.688 -0.244 -0.125 -0.238 -0.357 -0.423 -0.583 -0.828** -0.217

(0.476) (0.597) (0.369) (1.326) (0.720) (0.420) (0.387) (0.410) (0.403) (0.359) (0.358) (0.923)
Fire -0.679 -0.703 -0.221 -0.602 0.331 -0.034 0.074 -0.042 -0.344 -0.642* -0.389 0.413

(0.468) (0.587) (0.365) (1.061) (0.487) (0.416) (0.389) (0.396) (0.400) (0.374) (0.366) (0.737)
Hail -0.773 -0.797 -0.274 -1.842* -0.085 -0.243 -0.121 -0.117 -0.316 -0.641* -0.332 0.263

(0.474) (0.625) (0.369) (1.049) (0.714) (0.418) (0.388) (0.423) (0.400) (0.370) (0.379) (0.873)
Multi-component model

-0.659 -0.677 -0.304 -0.662 0.201 0.049 -0.167 -0.126 -0.310 -0.447 -0.530 -0.797
(0.471) (0.560) (0.390) (0.828) (0.536) (0.378) (0.413) (0.437) (0.420) (0.380) (0.370) (0.591)

This table reports the regression coefficients of the variable GEPU when regressing real GDP per capita growth on the E3CI index and its subcomponents.
Single-component models report the regression coefficients obtained from regressing real GDP per capita growth on the E3CI index and its subcomponents,
separately (one at a time). Multi-component model reports the regression coefficients obtained from a multivariate regression of real GDP per capita growth
on the E3CI index subcomponents. These regressions contain a quadratic time trend and the additional control variables NCISS and GPR. The first column
reports OLS coefficients with country fixed effects. The second column reports OLS coefficients with country fixed effects and time random effects. Period
weights (PCSE) standard errors are shown in parentheses in both columns. The third column reports OLS coefficients using Autometrics panel regressions.
Heteroskedasticity-consistent (HCSE) standard errors are shown in parentheses. Columns (1)-(9) refer to quantile regression of the related decile, e.g., (5) refers
to 0.5 quantile/median regression. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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