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Abstract

In this paper we introduce incomplete information à la global games into a deterministic two-
group contest with the best-shot impact function and binary actions and we characterize the set
of equilibria. Depending on whether the complete information assumption is relaxed on the value
of the prize or on the cost of providing effort, we obtain different results in terms of equilibrium
uniqueness: in the first case, there exist an equilibrium in (monotonic) switching strategies which
could be not unique, whereas in the second one there exists a unique equilibrium in (monotonic)
switching-strategies. Then, we discuss the presence of the group-size paradox for both classes of
games.The results are thus extended to the case of M groups, and the properties of Bayes-Nash
equilibria for these classes of games are investigated. Finally, we show a limit-uniqueness and a
noise independent selection result.
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1 Introduction

Mirroring the terminology introduced by Chowdhury, Lee, and Topolyan [2016] for deterministic group
contests with the weakest-link impact function, we call “max-max” group contests with the auction-
type contest success function and the best-shot impact function, so that the aggregated effort within a
group equals the maximum of the efforts provided. Group contests with the best-shot impact function
can describe competition by groups for the generation of innovative ideas in R&D, military conflict
and provision of a discrete public good, as stressed by Chowdhury, Lee, and Sheremeta [2013] and
Barbieri, Malueg, and Topolyan [2014]. In these settings we bolster the idea that effort provision choice
can be conceived and modeled as a binary variable for generation of innovative projects, delivery of
exceptional skill-based output, military attack and duels. Despite being non-standard, the assumption
of a binary action set is not new in contest theory, rather it has been adopted by a wide theoretical
and experimental literature, spanning from corporate science, to sabotage activities and contests for
status, as reviewed by Sheremeta [2018].

Deterministic group contests with the best-shot impact function display multiplicity of equilibria
under both complete and payoff-relevant incomplete information, as shown by Barbieri et al. [2014] and
Barbieri and Malueg [2016], respectively. However, a recent contribution by Barbieri and Topolyan
[2024] shows that group-public randomization delivers equilibrium uniqueness in best-shot group con-
tests. Group-public randomization is conceived by the authors as a source of extrinsic incomplete
information, that is not payoff-relevant. On the other hand, in Bosco, Gilli, and Sorrentino [2024], we
show that introducing incomplete information à la global games about the value of the prize or the
cost of effort in deterministic group contests with the weakest-link impact function delivers interest-
ing equilibrium selection properties. In this paper, as done for deterministic group contests with the
weakest-link impact function in Bosco et al. [2024], we follow Carlsson and van Damme [1993a] by
introducing payoff-relevant incomplete information à la global games about the value of the prize con-
tested and the cost of effort into a max-max two-group contest with binary actions. In the first case, we
prove the existence of an equilibrium in (monotonic) switching-strategies, without proving equilibrium
uniqueness, whereas in the second case we are able to show the existence of a unique equilibrium in
(monotonic) switching strategies, resulting by iterated deletion of (interim) strictly dominated strate-
gies, closely following Carlsson and van Damme [1993a] for 2 × 2 games. Risk-dominance is shown
to be a valid equilibrium selection criterion for two-group contests with two players per group, but
fails to be pivotal as the number of team members exceeds two, confirming what shown by Carlsson
and van Damme [1993b] for the generalization of stag-hunt games to the n-player case. These results
are very similar to what obtained for max-min group contests with incomplete information à la global
games, except for the non-existence of an equilibrium robust to incomplete information, in the sense
of Kajii and Morris [1997], in which no player exerts effort for any possible private value of the prize.
Other dimensions along which max-max group contests differ from the weakest-link counterpart are the
presence of the so-called group-size paradox and the generalization to the M -group case. As a matter
of fact, whether an increase in group size translates into a lower probability of winning and a lower
expected payoff cannot be established generally for this class of games, so that we provide numerical
examples, only. Moreover, the generalization of our analysis to the M -group case, highlights that the
equilibria in (monotonic) switching strategies in the two settings considered are rooted in different
thresholds with respect to the weakest-link M -group counterpart, as shown in Bosco et al. [2024].
Finally, as done in Bosco et al. [2024] for the weakest-link impact function, we deliver limit-uniqueness
and noise-independent selection results, but in a narrower sense with respect to the original work by
Carlsson and van Damme [1993a].

The paper is structured as follows. The paper is structured as follows. In Section 2 the formal
model with both complete information and incomplete information is presented under two different
specifications. Section 3 presents two examples which should clarify the parallelism between group
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contests and the supermodular payoff structure perturbed in the global games à la Carlsson and van
Damme [1993a] and how equilibrium selection naturally arises when modelling incomplete information
à la global games, stressing the difference incurring with the weakest-link case address in Bosco et al.
[2024]. Section 4 derives the set of Nash equilibria of the complete information game, while section
5 is the core of the paper deriving the set of Bayes-Nash equilibria for the two class of incomplete
information games. Section 6 addresses whether there is the so-called group-size paradox in the two
model specifications delivered in Section 5, providing numerical examples. Section 7 extends the two-
group contest model under incomplete information to an M-group contest model. Section 8 delivers
results regarding limit-uniqueness and noise independent selection. Finally, Section 9 concludes.

2 The Model

Let us consider a deterministic group contest defined by the following elements:

1. two groups, denoted by j ∈ {1, 2} ;

2. each group has nj ≥ 2 members, where n1 ≥ n2 without loss of generality. The total number of
agents is n1 + n2 = N . As notation device, let us write ij or j (i) for agents i ∈ {1, . . . , nj} of
group j;

3. the choice of member i ∈ {1, . . . , nj} in group j ∈ {1, 2} , to increase the possibility of getting
the prize, is denoted by xj (i) ∈ {0, 1}. Let xj be the vector of all agents’ efforts of group j, and
x the vector of all agents’ efforts. Moreover, let xj (i) = 1 be denoted by a and xj (i) = 0 by a;
let us define the average exerted effort in group j, or rather the participation rate in group j as

γj =
1

nj

nj∑
i=1

xij ∈ [0, 1] ;

Moreover, when γj ∈ (0, 1) , denote by

γ+
j =

1

nj

(
nj∑
i=1

xij + 1

)
∈ [0, 1]

the share of active agents at a marginal increase and by

γ−
j =

1

nj

(
nj∑
i=1

xij − 1

)
∈ [0, 1]

the share of active agents at a marginal decrease.

4. a club good prize worth v ∈ R is allocated to one of the two groups: thus, the prize v can be
worth negative utils, which means that it can be a bad;

5. the impact function of group j is given by the best-shot technology

Xj = max {xj (i) ∈ {0, 1} , i ∈ {1, ..., nj}} ;

6. the contest success function is given by the all-pay auction:

pj (X1, X2) =

 1 if Xj > X−j
1
2 if Xj = X−j

0 if Xj < X−j ;
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7. the individual costs of effort Cij (xj (i)) = xj (i).

As a consequence of these modelling characteristics, player ij has the expected payoff

πij (x1,x2) = pjv − xij =

=

 v − xj (i) if max {xj} > max {x−j}
1
2v − xj (i) if max {xj} = max {x−j}
−xj (i) if max {xj} < max {x−j} .

Now we are able to provide a formal definition of a binary max-min group contest with a public good

prize.

Definition 1 A Binary Max-Max Group Contest BMMAGC∗ is a one-stage game BMMAGC∗ =
⟨{1, 2} , N,Bij , πij⟩ defined by

1. the set of groups {1, 2} ;

2. the set of players N = {1, ..., n1 + n2} ;

3. the set of actions Bij = {0, 1} : for each player ij, the choice of the effort xj (i) ;

4. the payoff functions for each player ij ∈ N

πij (x1,x2) = pjv − xij =

=

 v − xj (i) if max {xj} > max {x−j}
1
2v − xj (i) if max {xj} = max {x−j}
−xj (i) if max {xj} < max {x−j} .

The notation used in this paper is summed up in table 1.

Variable Meaning
ij or j (i) agent i of group j
{1, ..., nj} set of agents in group j

xj (i) or xji effort of agent i in group j
Xj = max {xj (i) ∈ {0, 1} , i ∈ {1, ..., nj}} impact of effort of all agents in group j

x =(x1,x2) vector of efforts of all agents
Cij (xj (i)) = xj (i) cost of effort for agent i of group j

pj (X1, X2) probability of group j of winning the contest
πij (x1,x2) payoff function of agent i of group j

γj =
1
nj

∑nj

i=1 xij ∈ [0, 1] share of active agents in group j

Table 1
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3 An Example1

Let us consider a BMMAGC∗ with two members for each group. W.l.g., let players 1, 2 belong to
group 1 and players 3, 4 to group 2. Consider the following geometric representation of the game,
where player 3 “moves horizontally”, while player 4 “moves vertically”:

3 a

1/2 a a

a v
2
− 1; v

2
− 1; v

2
− 1; v

2
− 1 v

2
− 1; v

2
; v
2
− 1; v

2
− 1

a v
2
; v
2
− 1; v

2
− 1; v

2
− 1 0; 0; v − 1; v − 1

a

1/2 a a

a v
2
− 1; v

2
− 1; v

2
; v
2
− 1 v

2
− 1; v

2
; v
2
; v
2
− 1 a

a v
2
; v
2
− 1; v

2
; v
2
− 1 0; 0; v; v − 1

1/2 a a

a v
2
− 1; v

2
− 1; v

2
− 1; v

2
v
2
− 1; v

2
; v
2
− 1; v

2

a v
2
; v
2
− 1; v

2
− 1; v

2
0; 0; v − 1; v

1/2 a a

a v − 1; v − 1; 0; 0 v − 1; v; 0; 0 a

a v; v − 1; 0; 0 v
2
; v
2
; v
2
; v
2

4

3.1 The set of Nash Equilibria in the Two-player Two-group Example

It is straightforward to derive the following properties:

• if v > 2, there are four strict Nash equilibria in pure strategies

NE = {(a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a)}

and a Nash equilibrium in symmetric strictly-mixed strategies σ∗
i (a) = 1− 2

v ∀i ∈ {1, 2, 3, 4};

• if v = 2, there are four Nash equilibria in pure strategies

NE = {(a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a)}∪
∪ {(a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a)} ;

• if v < 2, the unique Nash equilibrium derived by strict-dominance is (a, a, a, a);

• if v > 2,

i. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 1;2

ii. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 2;

iii. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 3;

iv. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 4;

• if v = 2,

i. (a, a, a, a) is the payoff-dominant equilibrium for player 1;

1This section is a direct application of the example carried out by Carlsson and van Damme [1993a] in their intro-
duction.

2For the formulation of payoff-dominace and risk-dominance concepts see Harsanyi and Selten [1988].
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ii. (a, a, a, a) is the payoff-dominant equilibrium for player 2;

iii. (a, a, a, a) is the payoff-dominant equilibrium for player 3;

iv. (a, a, a, a) is the payoff-dominant equilibrium for player 4;

• if v > 4,

i. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 1.
As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) for player 1. Then,

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 .

Hence, for v > 4, (a, a, a, a) and (a, a, a, a) are associated with the largest deviation losses
for player 1;

ii. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 2.
As a matter of fact, let us compute the deviation losses of (a, a, a, a), (a, a, a, a), (a, a, a, a)
and (a, a, a, a) for player 2. Then,

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1.

Hence, for v > 4, (a, a, a, a) and (a, a, a, a) are associated with the largest deviation losses
for player 2;

iii. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 3.
As a matter of fact, let us compute the deviation losses of (a, a, a, a), (a, a, a, a), (a, a, a, a)
and (a, a, a, a) for player 3. Then,

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 .

Hence, for v > 4, (a, a, a, a) and (a, a, a, a) are associated with the largest deviation losses
for player 3;

iv. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 4.
As a matter of fact, let us compute the deviation losses of (a, a, a, a), (a, a, a, a), (a, a, a, a)
and (a, a, a, a) for player 4. Then,

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 .

Hence, for v > 4, (a, a, a, a) and (a, a, a, a) are associated with the largest deviation losses
for player 4;

• if 2 < v < 4,
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i. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 1;

ii. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 2;

iii. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 3;

iv. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 4.

Clearly this follows from what shown at the previous point for both groups;

• if v = 2,

i. (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 1. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 1.

Then,

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 = 0 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 = 0 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → 0− v
2 + 1 = 0 ;

- (a, a, a, a) → v − 1− v
2 = 0 ;

- (a, a, a, a) → v − v + 1 = 1 ;

- (a, a, a, a) → 0− v
2 + 1 = 0 ;

- (a, a, a, a) → v
2 − v + 1 = 0 .

Hence, for v = 2, (a, a, a, a) , (a, a, a, a) , (a, a, a, a) are associated with the largest deviation
losses for player 1;

ii. (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 2. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 2.
Then,

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 = 0 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 = 0;

- (a, a, a, a) → 0− v
2 + 1 = 0;

- (a, a, a, a) → v − v + 1 = 1 ;

- (a, a, a, a) → v − 1− v
2 = 0 ;

- (a, a, a, a) → 0− v
2 + 1 = 0;

- (a, a, a, a) → v
2 − v + 1 = 0 .

Hence, for v = 2, (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are associated with the largest devi-
ation losses for player 2;

iii. (a, a, a, a), (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 3. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 3.

Then,

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;
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- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 = 0 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 = 0 ;

- (a, a, a, a) → v − v + 1 = 1 ;

- (a, a, a, a) → 0− v
2 + 1 = 0 ;

- (a, a, a, a) → 0− v
2 + 1 = 0 ;

- (a, a, a, a) → v − 1− v
2 = 0 ;

- (a, a, a, a) → v
2 − v + 1 = 0 .

Hence, for v = 2, (a, a, a, a), (a, a, a, a) and (a, a, a, a) are associated with the largest devi-
ation losses for player 3;

iv. (a, a, a, a), (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 4. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 4.

Then,

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 = 0 ;

- (a, a, a, a) → v
2 − 1− 0 = v

2 − 1 = 0 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v
2 − v

2 + 1 = 1 ;

- (a, a, a, a) → v − 1− v
2 = 0 ;

- (a, a, a, a) → 0− v
2 + 1 = 0 ;

- (a, a, a, a) → 0− v
2 + 1 = 0 ;

- (a, a, a, a) → v − v + 1 = 1 ;

- (a, a, a, a) → v
2 − v + 1 = 0 .

Hence, for v = 2, (a, a, a, a), (a, a, a, a) and (a, a, a, a) are associated with the largest devi-
ation losses for player 4;

• overall, there is a one-sided dominance region: for v < 2, a is a strictly dominated action.

Finally, note that, for v > 4,

i. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 1, whereas (a, a, a, a) and
(a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 1;

ii. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 2, whereas (a, a, a, a) and
(a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 2;

iii. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 3, whereas (a, a, a, a) and
(a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 3;

iv. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 4, whereas (a, a, a, a) and
(a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 4.

Hence, there is a tension between payoff-dominance and risk-dominance.
Now let us consider a slight variation of the game above and let:

• the individual costs of effort Cij (xj (i)) = c with c ∈ R and the club good prize worth v > 0.
Thus, costs of effort may be negative, which means that agents could enjoy effort per se, while
the prize v is always worth positive utils, so that it is a good. 3

3Clearly, under complete information, for c ∈ R++ and v ∈ R++, the cost of effort Cij (xj (i)) can always be
normalized to one via a simple change of variables.
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Then, we have the following representation of the game, where player 3 “moves horizontally” and
player 4 “moves vertically”:

3 a

1/2 a a

a v
2
− c; v

2
− c; v

2
− c; v

2
− c v

2
− c; v

2
; v
2
− c; v

2
− c

a v
2
; v
2
− c; v

2
− c; v

2
− c 0; 0; v − c; v − c

a

1/2 a a

a v
2
− c; v

2
− c; v

2
; v
2
− c v

2
− c; v

2
; v
2
; v
2
− c a

a v
2
; v
2
− c; v

2
; v
2
− c 0; 0; v; v − c

1/2 a a

a v
2
− c; v

2
− c; v

2
− c; v

2
v
2
− c; v

2
; v
2
− c; v

2

a v
2
; v
2
− c; v

2
− c; v

2
0; 0; v − c; v

1/2 a a

a v − c; v − c; 0; 0 v − c; v; 0; 0 a

a v; v − c; 0; 0 v
2
; v
2
; v
2
; v
2

4

It is straightforward to derive the following properties:

• if c < 0, the unique Nash equilibrium derived by strict dominance is (a, a, a, a);

• if c > v
2 , the unique Nash equilibrium derived by strict dominance is (a, a, a, a);

• if 0 < c < v
2 , there are four strict Nash equilibria in pure strategies

NE = {(a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a)}

and an equilibrium in symmetric strictly mixed strategies σ∗
i (a) = 1− 2c

v ∀i ∈ {1, 2, 3, 4};

• if c = 0, there are nine Nash equilibria in pure strategies

NE = {(a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a)}∪
∪ {(a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a)} ;

• if c = v
2 , there are nine Nash equilibria in pure strategies

NE = {(a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a)}∪
∪ {(a, a, a, a) ; (a, a, a, a) ; (a, a, a, a) ; (a, a, a, a)}

• if v
4 < c < v

2 ,

i. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 1;4

ii. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 2;

iii. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 3;

iv. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 4;

• if c = 0, there is no payoff-dominant equilibrium for any player i ∈ {1, 2, 3, 4};

• if c = v
2 ,

4For the formulation of payoff-dominace and risk-dominance concepts see Harsanyi and Selten [1988].
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i. (a, a, a, a) is the payoff-dominant equilibrium for player 1;

ii. (a, a, a, a) is the payoff-dominant equilibrium for player 2;

iii. (a, a, a, a) is the payoff-dominant equilibrium for player 3;

iv. (a, a, a, a) is the payoff-dominant equilibrium for player 4;

• if 0 < c < v
4 ,

i. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 1.
As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) for player 1. Then,

- (a, a, a, a) → v
2 − c− 0 = v

2 − c ;

- (a, a, a, a) → v
2 − v

2 + c = c ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c ;

- (a, a, a, a) → v
2 − v

2 + c = c .

Hence, for 0 < c < v
4 , (a, a, a, a) and (a, a, a, a) are associated with the largest deviation

losses for player 1;

ii. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 2.
As a matter of fact, let us compute the deviation losses of (a, a, a, a), (a, a, a, a), (a, a, a, a)
and (a, a, a, a) for player 2. Then,

- (a, a, a, a) → v
2 − v

2 + c = c ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c ;

- (a, a, a, a) → v
2 − v

2 + c = c ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c.

Hence, for 0 < c < v
4 , (a, a, a, a) and (a, a, a, a) are associated with the largest deviation

losses for player 2;

iii. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 3.
As a matter of fact, let us compute the deviation losses of (a, a, a, a), (a, a, a, a), (a, a, a, a)
and (a, a, a, a) for player 3. Then,

- (a, a, a, a) → v
2 − v

2 + c = c ;

- (a, a, a, a) → v
2 − v

2 + c = c ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c .

Hence, for 0 < c < v
4 , (a, a, a, a) and (a, a, a, a) are associated with the largest deviation

losses for player 3;

iv. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 4.
As a matter of fact, let us compute the deviation losses of (a, a, a, a), (a, a, a, a), (a, a, a, a)
and (a, a, a, a) for player 4. Then,

- (a, a, a, a) → v
2 − c− 0 = v

2 − c ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c ;

- (a, a, a, a) → v
2 − v

2 + c = c ;

- (a, a, a, a) → v
2 − v

2 + c = c .

Hence, for 0 < c < v
4 , (a, a, a, a) and (a, a, a, a) are associated with the largest deviation

losses for player 4;
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• if v
4 < c < v

2 ,

i. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 1;

ii. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 2;

iii. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 3;

iv. (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 4.

Clearly this follows from what shown at the previous point for both groups;

• if c = 0,

i. (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 1. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 1.

Then,

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 .

Hence, for c = 0, (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are associated with the largest devia-
tion losses for player 1;

ii. (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 2. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 2.

Then,

- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 ;

- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 .

Hence, for c = 0, (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are associated with the largest devia-
tion losses for player 2;

iii. (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 3. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 3.

Then,
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- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − v

2 + c = 0 .

Hence, for c = 0, (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are associated with the largest devia-
tion losses for player 3;

iv. (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 4. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 4.

Then,

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 ;

- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 ;

- (a, a, a, a) → v
2 − c− v

2 = 0 ;

- (a, a, a, a) → v
2 − v

2 + c = 0 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 .

Hence, for c = 0, (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are associated with the largest devia-
tion losses for player 4;

• if c = v
2 ,

i. (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 1. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 1.

Then,

- (a, a, a, a) → v
2 − c− 0 = v

2 − v
2 = 0 ;

- (a, a, a, a) → v
2 − v

2 + c = v
2 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − v
2 = 0 ;

- (a, a, a, a) → v
2 − v

2 + c = v
2 ;

- (a, a, a, a) → 0− v
2 + c = 0 ;

- (a, a, a, a) → v − c− v
2 = 0 ;

- (a, a, a, a) → v − v + c = v
2 ;

- (a, a, a, a) → 0− v
2 + c = 0 ;

- (a, a, a, a) → v
2 − v + c = 0 .

Hence, for c = v
2 , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) are associated with the largest deviation

losses for player 1;

12



ii. (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 2. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 2.
Then,

- (a, a, a, a) → v
2 − v

2 + c = v
2 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c = 0 ;

- (a, a, a, a) → v
2 − v

2 + c = v
2 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c = 0;

- (a, a, a, a) → 0− v
2 + c = 0;

- (a, a, a, a) → v − v + c = v
2 ;

- (a, a, a, a) → v − c− v
2 = 0 ;

- (a, a, a, a) → 0− v
2 + c = 0;

- (a, a, a, a) → v
2 − v + c = 0 .

Hence, for c = v
2 , (a, a, a, a) , (a, a, a, a) and (a, a, a, a) are associated with the largest devi-

ation losses for player 2;

iii. (a, a, a, a), (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 3. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 3.

Then,

- (a, a, a, a) → v
2 − v

2 + c = c ;

- (a, a, a, a) → v
2 − v

2 + c = c ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c = 0 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c = 0 ;

- (a, a, a, a) → v − v + c = c ;

- (a, a, a, a) → 0− v
2 + c = 0 ;

- (a, a, a, a) → 0− v
2 + c = 0 ;

- (a, a, a, a) → v − c− v
2 = 0 ;

- (a, a, a, a) → v
2 − v + c = 0 .

Hence, for c = v
2 , (a, a, a, a), (a, a, a, a) and (a, a, a, a) are associated with the largest devi-

ation losses for player 3;

iv. (a, a, a, a), (a, a, a, a) and (a, a, a, a) are the risk-dominant equilibrium strategy profiles for
player 4. As a matter of fact, let us compute the deviation losses of (a, a, a, a) , (a, a, a, a) ,
(a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) , (a, a, a, a) for player 4.

Then,

- (a, a, a, a) → v
2 − c− 0 = v

2 − c = 0 ;

- (a, a, a, a) → v
2 − c− 0 = v

2 − c = 0 ;

- (a, a, a, a) → v
2 − v

2 + c = v
2 ;

- (a, a, a, a) → v
2 − v

2 + c = v
2 ;

- (a, a, a, a) → v − c− v
2 = 0 ;

- (a, a, a, a) → 0− v
2 + c = 0 ;

- (a, a, a, a) → 0− v
2 + c = 0 ;

- (a, a, a, a) → v − v + c = v
2 ;

- (a, a, a, a) → v
2 − v + c = 0 .
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Hence, for c = v
2 , (a, a, a, a), (a, a, a, a) and (a, a, a, a) are associated with the largest devi-

ation losses for player 4;

• overall, there are two dominance regions: for c > v
2 , a is a strictly dominated action; for c < 0,

a ia a strictly dominated action.

Finally, note that, for 0 < c < v
4 ,

i. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 1, whereas (a, a, a, a) and
(a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 1;

ii. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 2, whereas (a, a, a, a) and
(a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 2;

iii. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 3, whereas (a, a, a, a) and
(a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 3;

iv. (a, a, a, a) and (a, a, a, a) are the payoff-dominant equilibria for player 4, whereas (a, a, a, a) and
(a, a, a, a) are the risk-dominant equilibrium strategy profiles for player 4.

Hence, there is a tension between payoff-dominance and risk-dominance.

3.1.1 Introducing Incomplete Information à la Global Games

We would like to draw a possible comparison with the classical example due to Carlsson and van
Damme [1993a] about a 2× 2 game under complete information, reported in table 1.

α2 β2

α1 x, x x, 0

β1 0, x 4, 4

Table 1: Game g(x) by Carlsson and van Damme [1993a] .

Carlsson and van Damme [1993a] highlight the following properties of this game under complete
information:

• if x > 4, the unique Nash equilibrium derived by strict dominance is (α1, α2);

• if x < 0, the unique Nash equilibrium derived by strict dominance is (β1, β2);

• if 0 < x < 4, there are two strict Nash equilibria, that is (α1, α2) and (β1, β2);

• if x ∈ (2, 4), (α1, α2) is the risk-dominant equilibrium;

• if x ∈ (0, 2), (β1, β2) is the risk-dominant equilibrium;

• overall, there are two dominance regions.

Finally, note that, for 2 < x < 4, (β1, β2) is the payoff-dominant equilibrium, whereas (α1, α2) is the
risk-dominant equilibrium: there is a tension between payoff-dominance and risk-dominance.
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3.1.2 Incomplete Information about the Prize

Let us consider the case where the individual costs of effort is Cij (xj (i)) = xj (i) . Henceforth, we
refer to this game as g (v). We closely follow Carlsson and van Damme [1993a] introducing incomplete
information about the prize v as follows:

• let V be a random variable which is uniform on some interval [v, v] including the dominance
region and the threshold for the risk-dominance, e.g. [1, 5];

• given the realization v, each player i ∈ {1, 2, 3, 4} idiosyncratically observes the realization of
a random variable Vi, uniform on [v − ε, v + ε] for some ε> 0, so that the players’ observation
errors V1 − v, V2 − v, V3 − v and V4 − v are independent;

• after these idiosyncratic observations, each player i ∈ {1, 2, 3, 4} simultaneously and indepen-
dently decides whether to exert effort or not and gets a payoff as described by the strategic form
game of g (v);

• note that E (V |vi) = vi, if i observes vi ∈ [v + ε, v − ε] so that V |vi ∼ U (vi − ε, vi + ε);

• furthermore, for vi ∈ [v + ε, v − ε], the conditional distribution of the teammate’s or opponents’
observation will be centered around vi with support [vi − 2ε, vi + 2ε] . Hence, Prob [V−i < vi|vi] =
Prob[V−i > vi|vi] = 1

2 .

Now, let us further assume ε<
∣∣ v
2 − 1

∣∣ and suppose player i ∈ {1, 2, 3, 4} observes vi < 2. Then,
i’s conditionally expected payoff from exerting effort, that is choosing a, is smaller than the one from
exerting no effort, that is choosing a. Accordingly, a is a conditionally strictly dominant action for
player i ∈ {1, 2, 3, 4} whenever she observes vi < 2. Suppose i = 1 without loss of generality. Iterating
this dominance argument, if players −i ∈ {2, 3, 4} are forced to play a whenever they observe v−i < 2,

then player i, observing vi = 2 has to assign at least probability
(
1
2

)3
= 1

8 to (a2, a3, a4). Thus,
i’s conditionally expected payoff from not exerting effort, that is choosing ai, will be at least 3

4 , so
that ai can be discarded by iterated dominance for vi = 2, since the conditionally expected payoff
from exerting effort equals 1

4 . Let v∗i be the smallest observation such that ai cannot be excluded by
iterated dominance. Then, it is possible to show that v∗i = 4. Note that vi = 4 is the threshold for the
risk-dominance regions as well. As a matter of fact, when vi = 4, the conditionally expected payoff
from exerting effort equals

1

8

(
4

2
− 1

)
+
1

8

(
4

2
− 1

)
+
1

8

(
4

2
− 1

)
+
1

8

(
4

2
− 1

)
+
1

8

(
4

2
− 1

)
+
1

8

(
4

2
− 1

)
+
1

8
(4− 1)+

1

8
(4− 1) =

3

2
,

while the conditionally expected payoff from not exerting effort equals

1

8

(
4

2

)
+

1

8
∗ 0 + 1

8

(
4

2

)
+

1

8
∗ 0 + 1

8

(
4

2

)
+

1

8
∗ 0 + 1

8
(4) +

1

8

(
4

2

)
=

3

2
.

The cutoff v∗i = 4 is the unique threshold that can be established from the lower dominance regions
by iterated deletion of strictly dominated strategies, since it is the unique value for vi ∈ [v − ε, v + ε]
solving
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+
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The same kind of reasoning cannot be carried out for large observations of v, since it does not exist an
upper dominance region. Conversely, this is possible in our second setting in which there is incomplete
information about the cost of effort itself. As a matter of fact, in the latter there are both a lower
dominance region and an upper dominance region. However, in contrast with what we showed in
Bosco et al. [2024] for the weakest-link impact function, it is not possible to establish the existence of
an equilibrium robust to incomplete information in the sense of Kajii and Morris [1997] in which no
player exerts effort, since xi (vi) = 1 is not a dominated action ∀vi ∈ [v + ε, v − ε] and ∀i ∈ {1, 2, 3, 4} .

Hence, we conclude that in g (v) under incomplete information à la global games, for sufficiently
small ε, there is an equilibrium in (monotonic) cutoff strategies, such that ∀i ∈ {1, 2, 3, 4}:

x∗
i (vi) =

{
1 if vi > 4
0 if vi ≤ 4 .

3.1.3 Incomplete Information about the Cost of Effort

Let us consider the case where the individual costs of effort is Cij (xj (i)) = c with c ∈ R and the
club good prize worth v > 0. Henceforth, we refer to this game as g (c). We closely follow Carlsson
and van Damme [1993a] introducing incomplete information about the cost of effort c as follows:

• let C be a random variable which is uniform on some interval [c, c] including both dominance
regions, e.g. [−v,+v];

• given the realization c, each player i ∈ {1, 2, 3, 4} idiosyncratically observes the realization of
a random variable Ci, uniform on [c− ε, c+ ε] for some ε> 0, so that the players’ observation
errors C1 − c, C2 − c, C3 − c and C4 − c are independent;

• after these idiosyncratic observations, each player i ∈ {1, 2, 3, 4} simultaneously and indepen-
dently decides whether to exert effort or not and gets a payoff as described by the strategic form
game g (c) ;

• note that E (C|ci) = ci, if i observes ci ∈ [c+ ε, c− ε] so that C|ci ∼ U (ci − ε, ci + ε);

• furthermore, for ci ∈ [c+ ε, c− ε], the conditional distribution of the teammate’s or opponents’
observation will be centered around ci with support [ci − 2ε, ci + 2ε]. Hence, Prob [C−i < ci|ci] =
Prob[C−i > ci|ci] = 1

2 .

Now, let us further assume ε<
∣∣ 2c−v

4

∣∣ and suppose player i ∈ {1, 2, 3, 4} observes ci >
v
2 . Then,

i’s conditionally expected payoff from exerting effort, that is choosing a, is smaller than the one from
exerting no effort, that is choosing a. Accordingly, a is a conditionally strictly dominant action for
player i ∈ {1, 2, 3, 4} whenever she observes ci >

v
2 . Suppose i = 1 without loss of generality. Iterating

this dominance argument, if players −i ∈ {2, 3, 4} are forced to play a whenever they observe c−i >
v
2 ,

then player i, observing ci = v
2 has to assign at least probability

(
1
2

)3
= 1

8 to (a2, a3, a4). Thus,
i’s conditionally expected payoff from not exerting effort, that is choosing ai will be at least 3

8v, so
that ai can be discarded by iterated dominance for ci = v

2 , since the conditionally expected payoff
from exerting effort equals v

8 . Let c∗i be the smallest observation such that ai cannot be excluded by
iterated dominance. Then, it is possible to show that c∗i = v

4 . Note that ci =
v
4 is the threshold for the

risk-dominance regions as well. As a matter of fact, when ci =
v
4 , the conditionally expected payoff

from exerting effort equals

1

8

(v
2
− v

4

)
+

1

8

(v
2
− v

4

)
+

1

8

(v
2
− v

4

)
+

1

8

(v
2
− v

4

)
+

1

8

(v
2
− v

4

)
+

1

8

(v
2
− v

4

)
+
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+
1

8

(
v − v

4

)
+

1

8

(
v − v

4

)
=

3

8
v

and the conditionally expected payoff from not exerting effort equals

1

8

(v
2

)
+

1

8
∗ 0 + 1

8

(v
2

)
+

1

8
∗ 0 + 1

8

(v
2

)
+

1

8
∗ 0 + 1

8
(v) +

1

8

(v
2

)
=

3

8
v .

The cutoff c∗i = v
4 is the unique threshold that can be established from the upper dominance region

by iterated deletion of strictly dominated strategies, since it is the unique value for ci ∈ [c− ϵ, c+ ϵ]
solving

1

8

(v
2
− ci

)
+
1

8

(v
2
− ci

)
+
1

8

(v
2
− ci

)
+
1

8

(v
2
− ci

)
+
1

8

(v
2
− ci

)
+
1

8

(v
2
− ci

)
+
1

8
(v − ci)+

1

8
(v − ci) =

=
1

8

(v
2

)
+

1

8
∗ 0 + 1

8

(v
2

)
+

1

8
∗ 0 + 1

8

(v
2

)
+

1

8
∗ 0 + 1

8
(v) +

1

8

(v
2

)
.

The same kind of reasoning can be carried out for small observations of c, since it does exist a lower
dominance region. Again, let us assume ε<

∣∣− c
2

∣∣ and suppose player i ∈ {1, 2, 3, 4} observes ci < 0.
Then, i’s conditionally expected payoff from exerting effort, that is choosing a, is positive and greater
than the one from exerting no effort, that is choosing a. Accordingly, a is a conditionally strictly
dominant action for player i ∈ {1, 2, 3, 4} whenever she observes ci < 0. Iterating this dominance
argument, suppose i = 1 without loss of generality. Then, if players −i ∈ {2, 3, 4} are forced to play a

whenever they observe c−i < 0, player i, observing ci = 0 has to assign at least probability
(
1
2

)3
= 1

8 to
(a2, a3, a4). Thus, i’s conditionally expected payoff from exerting effort, that is choosing ai will be at
least 5

8v, so that ai can be discarded by iterated dominance for ci = 0, since the conditionally expected
payoff from not exerting effort equals 3

8v. Let c∗∗i be the smallest observation such that ai cannot be
excluded by iterated dominance. Then, it is possible to show that c∗∗i = v

4 . Note that ci =
v
4 is the

threshold for the risk-dominance regions as well. As a matter of fact, when ci =
v
4 , the conditionally

expected payoff from exerting effort equals

1

8

(v
2
− v

4

)
+

1

8

(v
2
− v

4

)
+

1

8

(v
2
− v

4

)
+

1

8

(v
2
− v

4

)
+

1

8

(v
2
− v

4

)
+

1

8

(v
2
− v

4

)
+

+
1

8

(
v − v

4

)
+

1

8

(
v − v

4

)
=

3

8
v

and the conditionally expected payoff from not exerting effort equals

1

8

(v
2

)
+

1

8
∗ 0 + 1

8

(v
2

)
+

1

8
∗ 0 + 1

8

(v
2

)
+

1

8
∗ 0 + 1

8
(v) +

1

8

(v
2

)
=

3

8
v .

The cutoff c∗∗i = v
4 is the unique threshold that can be established from the lower dominance region

by iterated deletion of strictly dominated strategies, since it is the unique value for ci ∈ [c− ε, c+ ε]
solving

1

8

(v
2
− ci

)
+
1

8

(v
2
− ci

)
+
1

8

(v
2
− ci

)
+
1

8

(v
2
− ci

)
+
1

8

(v
2
− ci

)
+
1

8

(v
2
− ci

)
+
1

8
(v − ci)+

1

8
(v − ci) =

=
1

8

(v
2

)
+

1

8
∗ 0 + 1

8

(v
2

)
+

1

8
∗ 0 + 1

8

(v
2

)
+

1

8
∗ 0 + 1

8
(v) +

1

8

(v
2

)
.

Hence, c∗i = c∗∗i and we conclude that in g (c) under incomplete information à la global games, for
sufficiently small ε, there exists a unique equilibrium in switching strategies such that ∀i ∈ {1, 2, 3, 4}

x∗
i (ci) =

{
1 if ci <

v
4

0 if ci ≥ v
4 .
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3.2 Observations

Overall, we can state some general points from the example above:

• under complete information, there are multiple Nash equilibria in pure strategies in a max-max
two-group four-player contest with binary actions and a public good prize, independently from
whether the cost of effort equates effort itself or a parameter belonging to the set of real numbers.

• In both examples we highlight a tension between payoff-dominance and risk-dominance, as in
the example due to Carlsson and van Damme [1993a].

• Assuming incomplete information à la global games induces the existence of an equilibrium
in (monotonic) switching strategies, whose cutoff coincides with the one of the risk-dominance
region.

• Equilibrium selection happens even for “a pinch of uncertainty”, no matter how small ε is.

• Whether the selection induced delivers uniqueness or not crucially depends on the properties of
the payoffs structure under complete information: in particular, the presence of both an upward
and a downward dominance region is conducive to a unique equilibrium in (monotonic) switching
strategies by deletion of iterated interim-strictly dominated strategies when departing from the
complete information assumption in the sense of Carlsson and van Damme [1993a].

• Focusing on mixed-strategies would not affect the equilibria in (monotonic) switching strategies,
since they are derived by iterated deletion of conditionally strictly dominated strategies and pure
dominated strategies cannot be part of the support of any mixed strategy equilibrium.

• Differently from what shown in Bosco et al. [2024] for the weakest-link impact function, the
presence of a one-sided dominance region is not conducive to the coexistence of an equilibrium
in (monotonic) switching-strategies and an equilibrium robust to incomplete information à la
Kajii and Morris [1997] in which no player exerts effort, since, at (a1, a2, a3, a4), xi (vi) = 1 is
not a strictly dominated action ∀vi ∈ [v + ε, v − ε] and i ∈ {1, 2, 3, 4} . Moreover, note that in
the complete information game with v ∈ R and Cij (xj (i)) = xj (i) there does not exist any
equilibrium strategy profile which is played for every possible value for v, that is v ∈ R, in
contrast with what happens under the weakest-link technology for (a1, a2, a3, a4).

• Finally, note that whether the risk-dominant equilibrium in g (vi) and g (ci) coincides with the
risk-dominant equilibrium in the actual game selected by Nature, i.e. g (v) and g (c) respectively,
or not, depends on whether ε is sufficiently small, that is for ε < |v − 2| and ε <

∣∣c− v
4

∣∣ ,
respectively.

Once highlighted the main properties of our example, the general model and the mechanisms
guiding to the related results should be more transparent.

4 The Set of Nash Equilibria of Binary Max-Max Group Con-
tests

To simplify notation and presentation, the NE of the BMMAGC∗ will be presented in terms of share
of active agents, i.e. (γ1, γ2) ∈ [0, 1]× [0, 1] . The following results characterize the set of Nas equilibria
of BMMAGC∗.

Proposition 1 In the BMMAGC∗,
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• if v > 2, there are n1 · n2 strict Nash equilibria in pure strategies

NE ≡

{
(γ1, γ2) such that γj ∈ (0, 1) and

nj∑
i=1

1xij=1 = 1 ∀j ∈ {1, 2}

}

and a Nash equilibrium in within-group symmetric strictly-mixed strategies

σ∗
ij (xij = 1) =

(
1− 2

v

)1/(nj−1)

∀ i ∈ {1, . . . , nj} and j ∈ {1, 2} ;

• if v = 2, there are n1 · n2 + n1 + n2 + 1 Nash equilibria in pure strategies

NE ≡

{
(γ1, γ2) such that γj ∈ (0, 1) and

nj∑
i=1

1xij=1 = 1 ∀j ∈ {1, 2}

}
∪

∪

{
(γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and

nj∑
i=1

1xij=1 = 1 ∀j ∈ {1, 2}

}
∪

∪ {(γ1, γ2) = (0, 0)}

• if v < 2, there is a unique Nash equilibrium in pure strategies derived by strict-dominance

(γ1, γ2) = (0, 0) .

Overall, there is a one-sided dominance region: for v < 2, xij = 1 is a strictly dominated action ∀
ij ∈ {1, . . . , N}.

Moreover, it is easy to prove the following result.

Proposition 2 In the BMMAGC∗,

• for v > 2, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the payoff-
dominant equilibrium strategy profiles for any ij such that xij = 0;

• for v > 4, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-dominant
equilibrium strategy profiles for any ij such that xij = 1 ;

• for 2 < v < 4, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-
dominant equilibrium strategy profiles for any ij such that xij = 0 ;

• for v = 2, (γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the
payoff-dominant equilibrium strategy profiles for any player ij such that xij = 0 ;

• for v = 2, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} and (γj , γ−j) =
(γj , 0) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 0 ∀j ∈ {1, 2} are the risk-dominant equilibria
for any ij such that xij = 0 .

Remark 1 Note that, for v > 4, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2}
are the payoff-dominant equilibria for any ij such that xij = 0, whereas (γ1, γ2) such that γj ∈
(0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-dominant equilibria for any ij such that xij = 1 :
there is a tension between payoff-dominance and risk-dominance.

Now consider a slight variation of the game above and let:
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• the individual cost of effort Cij (xj (i)) = c with c ∈ R. Thus, costs of effort may be negative,
which means that agents could enjoy effort per se;

• the club good prize v > 0, i.e. the prize v is always worth positive utils, so that it is a good. 5

Henceforth, we term this variation as BMMAGC∗b. Then, it is straightforward to derive the following
results.

Proposition 3 In the BMMAGC∗b,

• if c < 0, there is a unique Nash equilibrium in pure strategies derived by strict-dominance

(γ1, γ2) = (1, 1) ;

• if c > v
2 , there is a unique Nash equilibrium in pure strategies derived by strict-dominance

(γ1, γ2) = (0, 0) ;

• if 0 < c < v
2 , there are n1 · n2 strict Nash equilibria in pure strategies

NE ≡

{
(γ1, γ2) such that γj ∈ (0, 1) and

nj∑
i=1

1xij=1 = 1 ∀j ∈ {1, 2}

}

and an equilibrium in within-group symmetric strictly mixed strategies

σ∗
i (xij = 1) =

(
1− 2c

v

)1/(nj−1)

∀ i ∈ {1, . . . , nj} and j ∈ {1, 2} ;

• if c = 0, the set of Nash equilibria in pure strategies is

NE ≡{(γ1, γ2) such that γj ∈ (0, 1) and ∀j ∈ {1, 2}}∪
∪ {(γj , γ−j) = (γj , 1) such that γj ∈ (0, 1) and ∀j ∈ {1, 2}}∪
∪ {(γ1, γ2) = (1, 1)}

• if c = v
2 , there are n1 · n2 + n1 + n2 + 1 Nash equilibria in pure strategies

NE ≡

{
(γ1, γ2) such that γj ∈ (0, 1) and

nj∑
i=1

1xij=1 = 1 ∀j ∈ {1, 2}

}
∪

∪

{
(γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and

nj∑
i=1

1xij=1 = 1 ∀j ∈ {1, 2}

}
∪

∪ {(γ1, γ2) = (0, 0)}

Overall, there are two dominance regions: for c < 0, xij = 0 is a strictly dominated action for any
ij ∈ {1, . . . , N}: for c > v

2 , xij = 1 is a strictly dominated action for any ij ∈ {1, . . . , N}.

As before, it is easy prove the following result.

5As stressed previously in our example, under complete information, for c ∈ R++ and v ∈ R++, the cost of effort
Cij (xj (i)) can always be normalized to one via a simple change of variables.
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Proposition 4 In the BMMAGC∗b,

• for 0 < c < v
2 , (γ1, γ2) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the payoff-
dominant equilibrium strategy profiles for any ij such that xij = 0;

• for 0 < c < v
4 , (γ1, γ2) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-
dominant equilibrium strategy profiles for any ij such that xij = 1 ;

• for v
4 < c < v

2 , (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-
dominant equilibrium strategy profiles for any ij such that xij = 0 ;

• for c = v
2 , (γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the
payoff-dominant equilibrium strategy profiles for any player ij such that xij = 0 ;

• for c = v
2 , (γ1, γ2) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} and (γj , γ−j) =
(γj , 0) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 0 ∀j ∈ {1, 2} are the risk-dominant equilibria
for any ij such that xij = 0 .

• for c = 0, there is no payoff-dominant equilibrium strategy profile ∀ij ∈ {1, . . . , N};

• for c = 0, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-dominant
equilibrium strategy profiles for any ij such that xij = 1 .

Remark 2 Note that, for v
4 < c < v

2 and any group j ∈ {1, 2}, (γj , γ−j) = (1, 0) is the payoff-dominant
equilibrium strategy profile for group j ∈ {1, 2}, whereas (γj , γ−j) = (0, 1) and (γj , γ−j) = (0, 0) are
the risk-dominant equilibrium strategy profiles for group j ∈ {1, 2}: there is a tension between payoff-
dominance and risk-dominance.

5 The Set of Bayes-Nash Equilibria with Incomplete Informa-
tion à la Global Games.

5.1 Incomplete Information à la Global Games about the Prize

Let us consider the case where the individual costs of effort Cij (xj (i)) = xj (i), that is the
BMMAGC∗ model. We closely follow Carlsson and van Damme [1993a] introducing incomplete
information about the prize v as follows:

• let V be a random variable which is uniform on some interval [v, v] including the dominance
region and the threshold for the risk-dominance, e.g. [1, 5];

• given the realization v, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} idiosyncratically observes the
realization of a random variable Vij , uniform on [v − ε, v + ε] for some 0 < ε <

∣∣ v
2 − 1

∣∣, so that
the players’ observation errors Vij − v ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2} are independent;

• after these idiosyncratic observations, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} simultaneously
and independently decides whether to exert effort or not and gets a payoff as described above.

Henceforth, we refer to this game as g1 (v). Then, we are able to obtain the following result.
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Proposition 5 In the g1 (v), there is an equilibrium in (monotonic) switching strategies, such that
∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2} :

x∗
ij (vij) =

{
1 if vij > 2nj

0 if vij ≤ 2nj .

Remark 3 Note that proposition 5 delivers an existence result, not a uniqueness result, that is we are
able to find an equilibrium in (monotonic) switching strategies in g3 (v), which may not be unique.

Remark 4 in contrast with what we showed in Bosco et al. [2024] for the weakest-link impact function,
it is not possible to establish the existence of an equilibrium robust to incomplete information in the
sense of Kajii and Morris [1997] in which no player exerts effort, since xij (vij) = 1 is not a dominated
action ∀vij ∈ [v + ε, v − ε] and ∀ij ∈ {1, . . . , N} .

Remark 5 The existence of an equilibrium in (monotonic) switching strategies in the g1 (v) is ensured
as long as 0 < ε <

∣∣ v
2 − 1

∣∣. However, equilibrium selection happens even for “a pinch of uncertainty”,
no matter how small ε is.

Remark 6 Note that the cutoff of the equilibrium in (monotonic) switching strategies, i.e. vij = 2nj ,
does not coincide with the one of the risk-dominance region, that is vij = 4 for any j ∈ {1, 2},
differently from what happens in the two-group four-player example. This is very close to the point
made by Carlsson and van Damme [1993b] for n-player stag hunt games, where the authors stress that
risk-dominance fails as an equilibrium selection criterion when we depart from the 2×2 case.

5.2 Incomplete Information à la global games about the Cost of Effort

Let us consider the case where the individual costs of effort is Cij (xj (i)) = c with c ∈ R and the
club good prize worth v > 0, that is the BMMAGC∗b model . We closely follow Carlsson and van
Damme [1993a] introducing incomplete information about the cost of effort c as follows:

• let C be a random variable which is uniform on some interval [c, c] including both dominance
regions, e.g. [−v,+v];

• given the realization c, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} idiosyncratically observes the
realization of a random variable Cij , uniform on [c− ε, c+ ε] for some 0 < ε < min

{∣∣ 2c−v
4

∣∣ , ∣∣ c2 ∣∣},
so that the players’ observation errors Cij − c ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2} are independent;

• after these idiosyncratic observations, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} simultaneously
and independently decides whether to exert effort or not and gets a payoff as described above;

Henceforth, we refer to this game as g2 (c). Then we are able to obtain the following result.

Proposition 6 In the g2 (c), there is a unique equilibrium in (monotonic) switching strategies, such
that ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2}:

x∗
ij (cij) =

{
1 if cij < 2−njv
0 if cij ≥ 2−njv .

Remark 7 The presence of both an upward dominance region and a downward dominance region is
conducive to the selection of a unique equilibrium in (monotonic) switching strategies.

Remark 8 The existence of a unique equilibrium in (monotonic) switching strategies in the g2 (c) is
ensured as long as 0 < ε < min

{∣∣ 2c−v
4

∣∣ , ∣∣ c2 ∣∣}. However, equilibrium selection happens even for “a
pinch of uncertainty”, no matter how small ε is.
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Remark 9 Note that the cutoff of the equilibrium in (monotonic) switching strategies, i.e. cij =
2−njv, does not coincide with the one of the risk-dominance region, that is cij =

v
4 for any j ∈ {1, 2},

differently from what happens in the two-group four-player example. This is very close to the point
made by Carlsson and van Damme [1993b] for n-player stag hunt games, where the authors stress that
risk-dominance fails as an equilibrium selection criterion when we depart from the 2×2 case.

6 The Group-Size Paradox

In this section we calculate the probabilities of winning the prize v and the expected payoffs for both
groups at the unique equilibrium in (monotonic) switching strategies in g1 (v) and g2 (c), in order to
assess the presence of the so-called group-size paradox.

6.1 The Group-Size Paradox in g1 (v)

Let us consider the g1 (v). Then it is posssible to derive the probability of winning the prize v for
group j ∈ {1, 2}, as the following proposition shows.

Proposition 7 In the g1 (v), the probability of winning the prize v for group j ∈ {1, 2} at the cutoff
equilibrium equals:

• if v + ε ≤ 2nj ≤ v − ε and v + ε ≤ 2n−j ≤ v − ε,

Prob (j wins v) =

[
1−

(
2nj − v − ε

v − ε− v − ε

)nj
]
·
(
2n−j − v − ε

v − ε− v − ε

)n−j

+

+
1

2

(
2nj − v − ε

v − ε− v − ε

)nj

·
(
2n−j − v − ε

v − ε− v − ε

)n−j

+

+
1

2

[
1−

(
2nj − v − ε

v − ε− v − ε

)nj
]
·
[
1−

(
2n−j − v − ε

v − ε− v − ε

)n−j
]

;

• if v + ε ≤ 2nj ≤ v − ε and 2n−j > v − ε,

Prob (j wins v) =1−
(
2nj − v − ε

v − v − 2ε

)nj

+
1

2

(
2nj − v − ε

v − v − 2ε

)nj

;

• if 2nj > v − ε and v + ε ≤ 2n−j ≤ v − ε,

Prob (j wins v) =
1

2

[(
2n−j − v − ε

v − v − 2ε

)n−j
]

;

• if 2nj > v − ε and 2n−j > v − ε,

Prob (j wins v) =
1

2
.

Corollary 1 In the g1 (v), the probability of winning the prize v for group j at the equilibrium in
(monotonic) switching strategies is:

• decreasing in nj at the threshold n∗
j = log(v − ε)/log(2) ∀ 0 < ε < |v2 − 1| ;

• increasing in n−j at the threshold n∗
−j = log(v − ε)/log(2) ∀ 0 < ε < |v2 − 1| .
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Remark 10 Note that, for v + ε ≤ 2nj ≤ v − ε and v + ε ≤ 2n−j ≤ v − ε , whether the probability
of winning the prize v ∀j ∈ {1, 2} is increasing or decreasing with respect to group size nj cannot
be established analytically for any v, v and ε, so that the presence of the so-called group-size paradox
depends on the specific details of the uniform prior distribution and group sizes. Nonetheless, numerical
solutions can be found as the following example clarifies.

Example 1 Let us consider:

• [v + ε, v − ε] = [1, 1000] ;

• nj = 2 and n−j = 3 .

Then,

∆jProb ( j wins v ) = Prob ( j wins v ; nj + 1)− Prob ( j wins v ; nj) =

=

((
2n−j − v − ε

v − ε− v − ε

)n−j

− 1

)((
−2nj+1 + v + ε

v − v

)nj+1

−
(
−2nj + v + ε

v − v

)nj
)

,

so that we can find numerically:

• ∆jProb ( j wins v ) > 0 if nj < 5 ,

• ∆jProb ( j wins v ) < 0 if nj ≥ 5 .

Moreover,

∆−jProb ( j wins v ) = Prob ( j wins v ; n−j + 1)− Prob ( j wins v ; n−j) =

=

((
2nj − v − ε

v − ε− v − ε

)nj
)((

−2n−j+1 + v + ε

v − v

)n−j+1

−
(
−2n−j + v + ε

v − v

)n−j
)

,

so that we can find numerically:

• ∆−j ( j wins v ) < 0 if n−j < 5 ,

• ∆−jProb ( j wins v ) > 0 if n−j ≥ 5 .

Therefore, in this specific example, the impact of an increase of the group sizes on the probability
of winning the prize for a group is non-monotonic. Furthermore, the finite differences with respect to
the two group sizes display opposite signs.

Finally, let us check whether the probability for a group winning the prize decreases in nj and
increases in n−j at the thresholds highlighted in the corollary above.

• log (v − ε) /log (2) = log (1000) /log (2) = 9.96578 ;

• for nj = n−j = 9 < log (1000) /log (2), Prob ( j wins v ) = 0.5 ;

• for nj = 10 > log (1000) /log (2) > n−j = 9, Prob ( j wins v ) = 0.00119858 ;

• for n−j = 10 > log (1000) /log (2) > nj = 9, Prob ( j wins v ) = 0.998801 .
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Moreover, once computed the probabilities of winning, it is immediate to retrieve the expected
payoffs at the equilibrium in (monotonic) switching strategies.

Proposition 8 In the g1 (v), the expected payoff at the cutoff equilibrium x∗
ij (vij) for any ij ∈

{1, . . . , nj} ∀j ∈ {1, 2} equals: 6

• for v + ε ≤ 2nj ≤ v − ε and v + ε ≤ 2n−j ≤ v − ε,

E
[
πij

(
x∗
j ,x

∗
−j

)]
=

(
1− 2nj − v − ε

v − ε− v − ε

)
·
(
2n−j − v − ε

v − ε− v − ε

)n−j

·
(
v + v

2
− 1

)
+

+

(
2nj − v − ε

v − ε− v − ε

)
·

[
1−

(
2nj − v − ε

v − ε− v − ε

)nj−1
]
·
(
2n−j − v − ε

v − ε− v − ε

)n−j

· v + v

2
+

+

(
1− 2nj − v − ε

v − ε− v − ε

)
·
(
1−

(
2n−j − v − ε

v − ε− v − ε

)n−j
)
·
(
v + v

4
− 1

)
+

+

(
2nj − v − ε

v − ε− v − ε

)
·

(
1−

(
2nj − v − ε

v − ε− v − ε

)nj−1
)

·
(
1−

(
2n−j − v − ε

v − ε− v − ε

)n−j
)
·

· v + v

4
+

+

(
2nj − v − ε

v − ε− v − ε

)nj

·
(
2n−j − v − ε

v − ε− v − ε

)n−j

· v + v

4
;

• for v + ε ≤ 2nj ≤ v − ε and 2n−j > v − ε,

E
[
πij

(
x∗
j ,x

∗
−j

)]
=

(
1− 2nj − v − ε

v − ε− v − ε

)
·
(
v + v

2
− 1

)
+

(
2nj − v − ε

v − ε− v − ε

)
·

[
1−

(
2nj − v − ε

v − ε− v − ε

)nj−1
]
· v + v

2
+

+

(
2nj − v − ε

v − ε− v − ε

)nj

· v + v

4
;

• for 2nj > v − ε and v + ε ≤ 2n−j ≤ v − ε,

E
[
πij

(
x∗
j ,x

∗
−j

)]
=

(
2n−j − v − ε

v − ε− v − ε

)n−j

· v + v

4
;

• for 2nj > v − ε and 2n−j > v − ε,

E
[
πij

(
x∗
j ,x

∗
−j

)]
=

v + v

4
.

Corollary 2 In the g1 (v), the expected payoff ∀ij at the equilibrium in (monotonic) switching strate-
gies x∗

ij (vij) for any ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} is:

• decreasing in nj at the threshold n∗
j = log(v − ε)/log(2) ∀ 0 < ε < |v2 − 1| ;

6By E
[
πij

(
x∗
j ,x

∗
−j

)]
we mean the expected payoff at the cutoff equilibrium x∗

ij (vij) for any ij ∈ {1, . . . , nj} ∀j ∈
{1, 2}, where x∗

j ,x
∗
−j are the vectors of equilibrium strategies profiles for the two groups.
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• increasing in n−j at the threshold n∗
−j = log(v − ε)/log(2) ∀ 0 < ε < |v2 − 1| .

Remark 11 Note that, for v + ε ≤ 2nj ≤ v − ε and v + ε ≤ 2n−j ≤ v − ε , whether the expected
payoff ∀ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} is increasing or decreasing with respect to group size nj cannot
be established analytically for any v, v and ε, so that the presence of the so-called group-size paradox
depends on the specific details of the uniform prior distribution and group sizes. Nonetheless, numerical
solutions can be found as the following example clarifies.

Example 2 Let us consider:

• [v + ε, v − ε] = [1, 1000] ;

• nj = 2 and n−j = 3 ;

• E [V ] = v+v
2 .

Then,

∆jE
[
πij

(
x∗
j ,x

∗
−j

)]
= E

[
πij

(
x∗
j ,x

∗
−j ;nj + 1

)]
− E

[
πij

(
x∗
j ,x

∗
−j ;nj

)]
=

=
2nj

v − ε− v − ε
+

(v − ε+ v + ε)

((
2nj−v−ε
v−ε−v−ε

)nj

−
(

2nj+1−v−ε
v−ε−v−ε

)nj+1
)

4

so that we can find numerically:

• ∆jE
[
πij

(
x∗
j ,x

∗
−j

)]
> 0 if nj < 8 ,

• ∆jE
[
πij

(
x∗
j ,x

∗
−j

)]
< 0 if nj ≥ 8 .

Moreover,

∆−jE
[
πij

(
x∗
j ,x

∗
−j

)]
= E

[
πij

(
x∗
j ,x

∗
−j ;n−j + 1

)]
− E

[
πij

(
x∗
j ,x

∗
−j ;n−j

)]
=

(v − ε+ v + ε)

((
−2n−j+1+v−ε

v−v

)n−j+1

−
(

−2n−j+v−ε
v−v

)n−j
)

4

so that we can find numerically:

• ∆−jE
[
πij

(
x∗
j ,x

∗
−j

)]
if n−j < 5 ,

• ∆−jE
[
πij

(
x∗
j ,x

∗
−j

)]
> 0 if n−j ≥ 5 .

Therefore, in this specific example, the impact of an increase in the group sizes on the expected payoff
at the cutoff equilibrium ∀ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} is non-monotonic. Note that for nj ∈ {5, 6, 7},
the expected payoff of group j is increasing in nj, notwithstanding the probability of winning for group
j is decreasing in nj, as shown in the previous numerical example.

Finally, let us check whether the equilibrium individual expected payoff decreases in nj and increases
in n−j at the thresholds highlighted in the corollary above.

• log (v − ε) /log (2) = log (1000) /log (2) = 9.96578 ;

• for nj = n−j = 9 < log (1000) /log (2), Prob ( j wins v ) = 249.762 ;

• for nj = 10 > log (1000) /log (2) > n−j = 9, Prob ( j wins v ) = 0.599892 ;

• for n−j = 10 > log (1000) /log (2) > nj = 9, Prob ( j wins v ) = 499.412 .
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6.2 The Group-Size Paradox in g2 (c)

Let us now turn to the g2 (c) model. Then it is posssible to derive the probability of winning the prize
v for group j ∈ {1, 2}, as the following proposition shows.

Proposition 9 In the g2 (c), the probability of winning the prize v for group j ∈ {1, 2} at the cutoff
equilibrium equals:

Prob (j wins v) =

[
1−

(
1− 2−njv − c− ε

c− c− 2ε

)nj
]
·
(
1− 2n−jv − c− ε

c− c− 2ε

)n−j

+

+
1

2

(
1− 2−njv − c− ε

c− c− 2ε

)nj

·
(
1− 2−n−jv − c− ε

c− c− 2ε

)n−j

+

+
1

2

[
1−

(
1− 2−njv − c− ε

c− c− 2ε

)nj
]
·
[
1−

(
1− 2n−jv − c− ε

c− c− 2ε

)n−j
]

.

Remark 12 Contrary to g1 (v), in the g2 (c) the probability of winning the prize v for group j at
the equilibrium in (monotonic) switching strategies is not increasing in nj at the threshold n∗

j =

log( v
c−ε )/log(2) ∀0 < ε < min

{
| 2c−v

4 |, | c2 |
}
and increasing in n−j at the threshold n∗

−j = log( v
c−ε )/log(2)

∀ 0 < ε < min
{
| 2c−v

4 |, | c2 |
}
, since 2−njv > c+ ε ∀ c < 0, 0 < ε < min

{
| 2c−v

4 |, | c2 |
}
and ∀nj ≥ 2 and

2−njv < c− ε ∀ c > v
2 , 0 < ε < min

{
| 2c−v

4 |, | c2 |
}
and ∀ nj ≥ 2 .

Remark 13 Note that whether the probability of winning the prize v∀j ∈ {1, 2} is increasing or
decreasing with respect to group size nj cannot be established analytically for any c, c, ε and v, so
that the presence of the so-called group-size paradox depends on the specific details of the uniform
prior distribution, prize value and group sizes. Nonetheless, numerical solutions can be found as the
following example clarifies.

Example 3 Let us consider:

• [c+ ε, c− ε] = [−1, 1000] ;

• nj = 2 and n−j = 3 ;

• v = 800 utils ;

• E [C] = c+c
2 .

Then,

∆jProb ( j wins v ) = Prob ( j wins v ;nj + 1)− Prob ( j wins v ;nj)

=
1

4

(
2−nj

(
v − 2nj+1 (c− ε)

) (
c−ε−2−nj−1v

c−ε−c−ε

)nj

c− ε− c− ε
+

+ 2

(
c− ε− 2−njv

c− ε− c− ε

)nj
)

.

so that we can find numerically:

• ∆jProb ( j wins v ) < 0 if nj ≤ 12 ,

• ∆jProb ( j wins v ) > 0 if nj > 12 .
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Moreover,

∆−jProb ( j wins v ) = Prob ( j wins v ;n−j + 1)− Prob ( j wins v ;n−j)

=
1

4

(
2−n−j

(
v − 2n−j+1 (c− ε)

) (
c−ε−2−n−j−1v

c−ε−c−ε

)n−j

c− ε− c− ε
+

− 2

(
c− ε− 2−n−jv

c− ε− c− ε

)n−j
)

.

so that we can find numerically:

• ∆−j ( j wins v ) > 0 if n−j ≤ 12,

• ∆−jProb ( j wins v ) < 0 if n−j > 12 .

Therefore, in this specific example, the impact of an increase of group sizes on the probability of
winning the prize is non-monotonic. Furthermore, the finite differences with respect to the two group
sizes display different signs.

Moreover, once computed the probabilities of winning, it is immediate to retrieve the expected
payoffs at the equilibrium in (monotonic) switching strategies.

Proposition 10 In the g2 (c), the expected payoff at the cutoff equilibrium x∗
ij (cij) for any ij ∈

{1, . . . , nj} ∀j ∈ {1, 2} equals: 7

E
[
πij

(
x∗
j ,x

∗
−j

)]
=

(
2−njv − c− ε

c− ε− c− ε

)
·
(
1− 2−n−jv − c− ε

c− ε− c− ε

)n−j

·
(
v − c+ c

2

)
+

+

(
1− 2−njv − c− ε

c− ε− c− ε

)
·

[
1−

(
1− 2−njv − c− ε

c− ε− c− ε

)nj−1
]
·

·
(
1− 2−n−jv − c− ε

c− ε− c− ε

)n−j

· v +

+

(
2−njv − c− ε

c− ε− c− ε

)
·

(
1−

(
1− 2−n−jv − c− ε

c− ε− c− ε

)−n−j
)

·
(
v

2
− c+ c

2

)
+

+

(
1− 2−njv − c− ε

c− ε− c− ε

)
·

(
1−

(
1− 2−njv − c− ε

c− ε− c− ε

)nj−1
)
·

·
(
1−

(
1− 2−n−jv − c− ε

c− ε− c− ε

)n−j
)
· v
2
+

+

(
1− 2−njv − c− ε

c− ε− c− ε

)nj

·
(
1− 2−n−jv − c− ε

c− ε− c− ε

)n−j

· v
2
.

Remark 14 Contrary to g1 (v), in the g2 (c) the expected payoff for any ij ∈ {1, . . . , nj} ∀j ∈
{1, 2} at the equilibrium in (monotonic) switching strategies is not increasing in nj at the thresh-
old n∗

j = log( v
c−ε )/log(2) ∀0 < ε < min

{
| 2c−v

4 |, | c2 |
}

and increasing in n−j at the threshold n∗
−j =

log( v
c−ε )/log(2) ∀ 0 < ε < min

{
| 2c−v

4 |, | c2 |
}
, since 2−njv > c + ε ∀ c < 0, 0 < ε < min

{
| 2c−v

4 |, | c2 |
}

and ∀ nj ≥ 2 and 2−njv < c− ε ∀ c > v
2 , 0 < ε < min

{
| 2c−v

4 |, | c2 |
}
and ∀ n−j ≥ 2 .

7By E
[
πij

(
x∗
j ,x

∗
−j

)]
we mean the expected payoff at the cutoff equilibrium x∗

ij (cij) for any ij ∈ {1, . . . , nj}
∀j ∈ {1, 2}, where x∗

j ,x
∗
−j are the vectors of equilibrium strategies profiles for the two groups.
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Remark 15 Note that whether the expected payoff ∀ ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} is increasing or
decreasing with respect to group size nj cannot be established analytically for any c, c, ε and v, so
that the presence of the so-called group-size paradox depends on the specific details of the uniform
prior distribution, prize value and group sizes. Nonetheless, numerical solutions can be found as the
following example clarifies.

Example 4 Let us consider:

• [c+ ε, c− ε] = [−1, 1000] ;

• nj = 2 and n−j = 3 ;

• v = 800 utils ;

• E [C] = c+c
2 .

Then,

∆jE
[
πij

(
x∗
j ,x

∗
−j

)]
= E

[
πij

(
x∗
j ,x

∗
−j ;nj + 1

)]
− E

[
πij

(
x∗
j ,x

∗
−j ;nj

)]
=

2−nj−2
(
(c+ ε+ c− ε) v −

(
2nj+1 (c− ε)− v

) (
c−ε−2−nj−1v

c−ε−c−ε

)nj
)

c− ε− c+ ε
+

+
2−nj−2

(
2nj+1 (c− ε− c− ε) v

(
c−ε−2−nj v
c−ε−c−ε

)nj
)

c− ε− c− ε
,

so that we can find numerically:

• ∆jE
[
πij

(
x∗
j ,x

∗
−j

)]
> 0 if nj = 2 or nj ≥ 12 ,

• ∆jE
[
πij

(
x∗
j ,x

∗
−j

)]
< 0 if 2 < nj < 12 .

Moreover,

∆−jE
[
πij

(
x∗
j ,x

∗
−j

)]
= E

[
πij

(
x∗
j ,x

∗
−j ;n−j + 1

)]
− E

[
πij

(
x∗
j ,x

∗
−j ;n−j

)]
=

v

4

(2−n−j
(
2n−j+1 (c− ε)− v

) (
c−ε−2−n−j−1v

c−ε−c−ε

)n−j

c− ε− c− ε

)
+

− v

2

(
c− ε− 2−n−jv

c− ε− c− ε

)n−j

,

so that we can find numerically:

• ∆−jE
[
πij

(
x∗
j ,x

∗
−j

)]
> 0 if n−j ≤ 12 ,

• ∆−jE
[
πij

(
x∗
j ,x

∗
−j

)]
< 0 if n−j > 12 .

Remark 16 The need of numerical examples to verify the presence of the so-called group-size paradox
constitutes a sharp difference with respect to what obtained for the weakest-link case, as shown in Bosco
et al. [2024], where in the general case , i.e. log (v + ε) /log (2) ≤ 2nj ≤ log (v − ε) /log (2) − 1 , an
increase in group size translates into a lower probability of winning and a lower expected payoff for
sufficiently high value of the prize and a sufficiently low cost effort in the two cases considered.
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7 Extension to an M-Group Model

In this section we assess the robustness of the results obtained under the two-group assumption by
extending our model to the M-group case with M ≥ 2. We will directly inspect the two incomplete
information cases separately as done for the two-group setting, that is about the prize contested and
the cost of exerting effort.

7.1 Incomplete Information à la Global Games about the Prize and M
Groups

Let us define the BMMAMGC∗ as the BMMAGC∗ with M groups, where M ≥ 2, and n1 ≥ . . . ≥
nM ≥ 2 without loss of generality.

We closely follow Carlsson and van Damme [1993a] introducing incomplete information about the
prize v as follows:

• let V be a random variable which is uniform on some interval [v, v] including the dominance
region and the threshold for the risk-dominance, e.g. [1, 5];

• given the realization v, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M} idiosyncratically observes
the realization of a random variable Vij , uniform on [v − ε, v + ε] for some 0 < ε <

∣∣ v
2 − 1

∣∣, so
that the players’ observation errors Vij − v ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2} are independent;

• after these idiosyncratic observations, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M} simultane-
ously and independently decides whether to exert effort or not and gets a payoff as described
above.

Henceforth, we refer to this game as g3 (v). Then, we are able to obtain the following result.

Proposition 11 In the g3 (v), there is an equilibrium in (monotonic) switching strategies such that
∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, . . . ,M}:

x∗
ij (vij) =

{
1 if vij > v∗j
0 if vij ≤ v∗j ,

where v∗j = A
B , with

A = 2−
∑

−j ̸=j n−j +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)
,

B = 21−nj−
∑

−j ̸=j n−j

(
1− 1

M

)
+ 21−nj

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
,

Qk = {−J ∈ {{1, . . . ,M} − {j}} | | − J | = k} .

Remark 17 Note that proposition 11 delivers an existence result, not a uniqueness result, that is we
are able to find an equilibrium in (monotonic) switching strategies in g3 (v), which may not be unique.

Remark 18 The cutoff v∗j = A
B is different for M > 2 with respect to the the one obtained under the

weakest-link impact function in Bosco et al. [2024] . Hence, the parallelism holds just in the two-group
setting.
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7.2 Incomplete Information à la Global Games about the Cost of Effort
and M Groups

Let us define the BMMAMGC∗b as the BMMAGC∗b with M groups, where M ≥ 2, and n1 ≥ . . . ≥
nM ≥ 2 without loss of generality.

We closely follow Carlsson and van Damme [1993a] introducing incomplete information about the
cost of effort c as follows:

• let C be a random variable which is uniform on some interval [c, c] including both dominance
regions, e.g. [−v,+v];

• given the realization c, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M} idiosyncratically observes the
realization of a random variable Cij , uniform on [c− ε, c+ ε] for some 0 < ε < min

{∣∣ 2c−v
4

∣∣ , ∣∣ c2 ∣∣},
so that the players’ observation errors Cij − c ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2} are independent;

• after these idiosyncratic observations, each player ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M} simultane-
ously and independently decides whether to exert effort or not and gets a payoff as described
above;

Henceforth, we refer to this game as g4 (c). Then we are able to obtain the following result.

Proposition 12 In g4 (c) under incomplete information à la global games there is a unique equilibrium
in (monotonic) cutoff strategies, such that ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, . . . ,M}:

x∗
ij (cij) =

{
1 if cij < c∗j
0 if cij ≥ c∗j ,

where c∗j = B
Av, with

A = 2−
∑

−j ̸=j n−j +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)
,

B = 21−nj−
∑

−j ̸=j n−j

(
1− 1

M

)
+ 21−nj

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
,

Qk = {−J ∈ {{1, . . . ,M} − {j}} | | − J | = k} .

Remark 19 Note that proposition 12 delivers both an existence and a uniqueness result, that is we
are able to find a unique equilibrium in (monotonic) switching strategies in g3 (v), differently from
what achieved in g4 (c). This result is intimately related to the presence of both an upper and a lower
dominance region, as the the proof should clarify.

Remark 20 The cutoff c∗j = B
Av is different for M > 2 with respect to the the one obtained under the

weakest-link impact function in Bosco et al. [2024] . Hence, the parallelism holds just in the two-group
setting.

8 Further Results

8.1 Limit-Uniqueness Result

One of the main results due to Carlsson and van Damme [1993a] is about the robustness of the
equilibrium in (monotonic) switching strategies as the noise tends to zero, i.e. the so-called limit-
uniqueness result. We can easily show that, under our uniform information structure, the main results
obtained so far hold as the noise fades away, as stated by the following result.
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Proposition 13 As the size of noise tends to zero, i.e. ε → 0, propositions 5, 6, 11, 12 hold.

8.2 Noise Independent Selection

The strength of the equilibrium selection phenomenon in global games highlighted by Carlsson and
van Damme [1993a] is also due to its invariance with respect to both the prior distribution and the
distribution of the noise, as long as the the support of the latter is sufficiently small and all other
assumptions about independence and continuity in the information structure are preserved. Moreover,
if it is employed a uniform improper prior, then exact results hold, as shown by Carlsson and van
Damme [1993a], even without assuming a sufficiently small support for the noise. We will focus on the
latter case to prove the invariance of our results with respect to the choice of the noise distribution.

Proposition 14 Under the uniform improper prior distribution for V and C, the results in proposi-
tions 5-11 and 6-11, respectively, are invariant to the exact distribution of the noise, provided that it
is symmetric, with mean zero and unit variance.

9 Conclusions

We introduced incomplete information à la global games in a two-group max-max group contest with
binary actions, relaxing the complete information assumption about the value of the prize contested
and the cost of providing effort, separately. In the first case, we prove the existence of an equilibrium
in (monotonic) switching strategies which may be not unique; in the second one, a unique equilibrium
in (monotonic) switching-strategies emerges. These results are extended to the general M-group case.
Moreover, in the two-group setting, given the uniform information structure, it is straightforward
to calculate the probability of winning for each group and the expected payoffs at the equilibrium in
switching strategies in both incomplete information cases, but numerical examples are needed to assess
the presence of the group-size paradox. Finally we somehow replicate the limit-uniqueness and noise-
independent selection results due to Carlsson and van Damme [1993a], but in a more restrictive fashion.
Therefore, introducing incomplete information à la global games in deterministic group contests with
binary actions and the best-shot impact function does not only deliver informational realism, but it
also reduces significantly the burden of equilibrium multiplicity, or rather indeterminacy, which affects
deterministic group contests with continuous efforts and a public good prize under both complete
information and under incomplete information, as in Barbieri et al. [2014] and Barbieri and Malueg
[2016], respectively. Therefore, we find a setting in which payoff-relevant incomplete information,
that is intrinsic private information, can lead to equilibrium uniqueness, complementing the results by
Barbieri and Topolyan [2024] obtained through the adoption of a group-public randomization device.
We would like to stress that this selection result could be relevant for applications of deterministic
two-group contests with binary actions, among which we emphasized the classical examples stemming
from the related literature in the introduction, such as R&D competition and military conflict.
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10 APPENDIX: PROOFS

10.1 Proof of Proposition 1

Suppose

(γ1, γ2) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 1 ∀j ∈ {1, 2} .8

Then,

max {x1} = max {x2} .

Suppose 2 ≤
∑nj

i=1 1xij=1 ≤ nj − 1 and xj (i) = 1, then

πij (γj , γ−j) =
v

2
− 1 .

If agent ij deviates to xj (i) = 0, then

max {x1} = max {x2}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for player ij there is an incentive to deviate ∀v ∈ R, since

v

2
− 1 <

v

2
∀v ∈ R .

On the other hand, suppose
∑nj

i=1 1xij=1 = 1 and xj (i) = 1, then

πij (γj , γ−j) =
v

2
− 1 .

If agent ij deviates to xj (i) = 0, then

max {x1} < max {x2}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
= 0.

Hence, for player ij there is no incentive to deviate if and only if v ≥ 2, since

v

2
− 1 ≥ 0 ∀v ≥ 2 .

Moreover, suppose
∑nj

i=1 1xij=1 = 0 and xj (i) = 1, then

πij (γj , γ−j) =
v

2
.

If agent ij deviates to xj (i) = 1, then

max {x1} = max {x2}
8
1xij=1 stands for the Indicator random variable taking value 1 when player ij chooses xij = 1, that is she exerts

effort.
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so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
− 1 .

Hence, for player ij there is no incentive to deviate ∀v ∈ R, since

v

2
− 1 <

v

2
∀v ∈ R .

Thus,

(γ1, γ2) such that γj ∈ (0, 1) and

nj∑
i=1

1xij=1 = 1 ∀j ∈ {1, 2}

is a Nash equilibrium in pure strategies ∀v ≥ 2 .

Suppose

(γ1, γ2) = (1, 1) .

Then,

max {x1} = max {x2}

so that

πij (γj , γ−j) =
v

2
− 1 .

If agent ij deviates to xj (i) = 0, then

max {xj} = max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for player ij there is an incentive to deviate ∀v ∈ R since

v

2
− 1 <

v

2
∀v ∈ R .

Thus,

(γ1, γ2) = (1, 1)

is not a Nash equilibrium in pure strategies ∀v ∈ R .
Suppose

(γj , γ−j) = (1, 0)∀j ∈ {1, 2} .

Then,

max {xj} = 1 > max {x−j} = 0

so that

πij (γj , γ−j) = v − 1 .

If agent ij deviates to xj (i) = 0, then

max {xj} > max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
= v .

Hence, for agent ij there is an incentive to deviate ∀v ∈ R, since

v − 1 < v∀v ∈ R .
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On the other hand, for completeness sake, if agent i− j deviates to x−j (i) = 1, then

max {xj} = max {x−j} = 1

so that the deviation payoff is

πD
i−j

(
γj , γ

+
−j

)
=

v

2
− 1 .

Hence, for player i− j there are no incentives to deviate if and only if

πi−j (γj , γ−j) = 0 ≥ πD
i−j

(
γj , γ

+
−j

)
=

v

2
− 1 ⇔ v ≤ 2 .

Thus,

(γj , γ−j) = (1, 0) ∀j ∈ {1, 2}

is not a Nash equilibrium in pure strategies for any v ∈ R .

Suppose

(γ1, γ2) = (0, 0) .

Then

max {x1} = max {x2}

so that

πij (γ1, γ2) =
v

2
∀j ∈ {1, 2} .

If agent ij deviates to xj (i) = 1, then

max {xj} > max {x−j}

so that

πD
ij

(
γ+
j , γ−j

)
= v − 1 .

Hence, for player ij there is no incentive to deviate if and only if

πij (γj , γ−j) =
v

2
≥ πD

ij

(
γD
j , γ−j

)
= v − 1 ⇔ v ≤ 2 ∀j ∈ {1, 2} .

Thus,

(γ1, γ2) = (0, 0)

is a Nash equilibrium in pure strategies for any v ≤ 2 .
Let σij (xij = 1) be the within-group symmetric randomization over pure strategy xij = 1 for player ij,

then

EUij (xij = 1) = EUij (xij = 0) ⇔

⇔ Prob (n−jγ−j = 0) · (v − 1) + Prob (n−jγ−j ≥ 1) ·
(v
2
− 1
)
=

=
(
Prob (njγj ≥ 1) · Prob (n−jγ−j ≥ 1) + Prob (njγj = 0) · Prob (n−jγ−j = 0)

)
· v
2
+

+Prob (njγj = 0) · Prob (n−jγ−j ≥ 1) · (0) + Prob (njγj ≥ 1) · Prob (n−jγ−j = 0) · v ⇔

⇔
(
1− (σi−j (xi−j = 1))

n−j

)
· (v − 1) +

(
1− (1− σi−j (xi−j = 1))

n−j

)
·
(v
2
− 1
)
=

=
((

1− (1− σij (xij = 1))
nj−1

)
· (1− (1− σi−j (xi−j = 1))

n−j )+

+ (1− σij (xij = 1))
nj−1 · (1− σi−j (xi−j = 1))

n−j

)
· v
2
+
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+
(
1− (1− σij (xij = 1))

nj−1
)
· (1− σi−j (xi−j = 1))

n−j · v

⇔ σ∗
ij (xij = 1) =

(
1− 2

v

)1/(nj−1)

∀i ∈ {1, . . . , nj} and j ∈ {1, 2} .

Thus,

σ∗
ij (xij = 1) =

(
1− 2

v

)1/(nj−1)

∀i ∈ {1, . . . , nj} and j ∈ {1, 2} .

is a Nash equilibrium in within-group symmetric strictly-mixed strategies ∀v > 2 .

■

10.2 Proof of Proposition 2

Following the formulation of payoff-dominance and risk-dominance concepts by Harsanyi and Selten [1988], it

is straightforward to state that:

• for v > 2 and any ij such that xij = 0, any (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 =
1 ∀j ∈ {1, 2} payoff-dominate (γ1, γ2) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} in

which xij = 1, since

πij ((γj , γ−j) s.t. xij = 0) =
v

2
> πij ((γj , γ−j) s.t. xij = 1) =

v

2
− 1∀v > 2 and ∀j ∈ {1, 2} .

• for v > 4, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-dominant

equilibrium strategy profiles for any ij such that xij = 1. As a matter of fact, let us compare the

deviation losses of (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} for any ij such

that xij = 1 and (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} for any ij such

that xij = 0. Then, for any ij:(v
2
− 1− 0

)
>
(v
2
−
(v
2
− 1
))

⇔ v > 4,

that is, for v > 4, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} for any ij such

that xij = 1 are associated with the largest Nash difference; 9

• for 2 < v < 4, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-

dominant equilibrium strategy profiles for any ij such that xij = 0 . Clearly this follows from what

shown at the previous point for both groups;

• for v = 2, (γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the

payoff-dominant equilibria for any player ij such that xij = 0, since

πij ((γj , 0) s.t. xij = 0)= v ,

which is the highest attainable payoff;

9Here we do not employ deviation losses to determine the risk-dominant equilibrium, since we define it at a single-
player level and not at group level. In the latter case, for v > 2 all Nash equilibria in pure strategies would be clearly
equivalent in terms of risk-dominance.
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• for v = 2, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} and (γj , γ−j) =
(γj , 0) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 0 ∀j ∈ {1, 2} are the risk-dominant equilibria

for any ij such that xij = 0 . As a matter of fact, let us compare the deviation losses of the set of

equilibria above with the ones of (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 0 ∀j ∈ {1, 2}
, (γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} for any ij such that

xij = 1 and (γ1, γ2) = (0, 0). Then,

(v
2
−
(v
2
− 1
))

=(v − (v − 1))>
(v
2
− 1− 0

)
=
(
v − 1− v

2

)
=
(
0−

(v
2
− 1
))

=
(v
2
− (v − 1)

)
.

■

10.3 Proof of Proposition 3

• Suppose

(γ1, γ2) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 1 ∀j ∈ {1, 2} .

Then,

max {x1} = max {x2} .

Suppose xj (i) = 1 and
∑nj

i=1 1xij=1 = 1, then

πij (γj , γ−j) =
v

2
− c .

If agent ij deviates to xj (i) = 0, then

max {xj} < max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
= 0 .

Hence, for player ij there is no incentive to deviate ∀v ∈ R++ if and only if

v

2
− c ≥ 0 ⇔ c ≤ v

2
.

Moreover, suppose xj (i) = 0, then

πij (γj , γ−j) =
v

2
.

If agent ij deviates to xj (i) = 1, then

max {x1} = max {x2}

so that the deviation payoff is

πD
ij

(
γ+
j , γ−j

)
=

v

2
− c .

Hence, for player ij there is no incentive to deviate if and only if

v

2
≥ v

2
− c ⇔ c ≥ 0 .
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Conversely, suppose xj (i) = 1 and 1 <
∑nj

i=1 1xij=1 ≤ nj − 1, then

πij (γj , γ−j) =
v

2
− c .

If agent ij deviates to xj (i) = 0, then

max {xj} = max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for player ij there is no incentive to deviate ∀v ∈ R++ if and only if

v

2
− c ≥ v

2
⇔ c ≤ 0 .

On the other hand, suppose xj (i) = 0, then

πij (γj , γ−j) =
v

2
.

If agent ij deviates to xj (i) = 1, then

max {x1} = max {x2}

so that the deviation payoff is

πD
ij

(
γ+
j , γ−j

)
=

v

2
− c .

Hence, for player ij there is no incentive to deviate if and only if

v

2
≥ v

2
− c ⇔ c ≥ 0 .

Thus, for 0 < c ≤ v
2 ,

(γ1, γ2) such that γj ∈ (0, 1)

is a Nash equilibrium if and only if
∑nj

i=1 1xij=1 = 1 .

Moreover,

(γ1, γ2) such that γj ∈ (0, 1) and 1 <

nj∑
i=1

1xij=1 ≤ nj − 1 ∀j ∈ {1, 2}

is a Nash equilibrium if and only if c = 0 .

- Suppose

(γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 1 ∀j ∈ {1, 2} .

Then,

max {xj} > max {x−j} .

Suppose xj (i) = 1 and
∑nj

i=1 1xij=1 = 1 , then

πij (γj , γ−j) = v − c and πi−j (γj , γ−j) = 0 .
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If agent ij deviates to xj (i) = 0, then

max {xj} = max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for player ij there is no incentive to deviate ∀v ∈ R++ if and only if

v − c ≥ v

2
⇔ c ≤ v

2
.

Moreover, if agent i− j deviates to x−j (i) = 1, then

max {xj} = max {x−j}

so that the deviation payoff is

πD
ij

(
γj , γ

−
−j

)
=

v

2
− c .

Hence, for player i− j there is no incentive to deviate ∀v ∈ R++ if and only if

0 ≥ v

2
− c ⇔ c ≥ v

2
.

Conversely, suppose xj (i) = 1 and 1 <
∑nj

i=1 1xij=1 ≤ nj − 1, then

πij (γj , γ−j) = v − c and πi−j (γj , γ−j) = 0 .

For player i − j everything remains unchanged from the previous case, whereas if agent ij deviates to

xj (i) = 0, then
max {xj} > max {x−j}

so that the deviation payoff is

πij

(
γ−
j , γ−j

)
= v .

Hence, for player ij there is no incentive to deviate ∀v ∈ R++ if and only if

v − c ≥ v ⇔ c ≤ 0 .

Clearly, for players ij such that xij = 0, everything remains unchanged with respect to the previous

case.

Thus,

(γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and

nj∑
i=1

1xij=1 = 1 ∀j ∈ {1, 2} .

is a Nash equilibrium if and only if c = v
2 .

- Suppose

(γj , γ−j) = (γj , 1) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 1 ∀j ∈ {1, 2} .

Then,

max {xj} = max {x−j} .
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Suppose xj (i) = 1 and 1 <
∑nj

i=1 1xij=1 ≤ nj − 1, then

πij (γj , γ−j) =
v

2
− c and πi−j (γj , γ−j) =

v

2
− c .

If agent ij deviates to xj (i) = 0, then

max {xj} = max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for player ij there is no incentive to deviate ∀v ∈ R++ if and only if

v

2
− c ≥ v

2
⇔ c ≤ 0 .

Conversely, suppose xj (i) = 0 and 1 <
∑nj

i=1 1xij=1 ≤ nj − 1, then

πij (γj , γ−j) =
v

2
− c and πi−j (γj , γ−j) =

v

2
.

If agent ij deviates to xj (i) = 1, then

max {xj} = max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
− c .

Hence, for player ij there is no incentive to deviate ∀v ∈ R++ if and only if

v

2
≥ v

2
− c ⇔ c ≥ 0 .

The same arguments hold for player i−j, so that for player ij there is no incentive to deviate ∀v ∈ R++

if and only if
v

2
− c ≥ v

2
⇔ c ≤ 0 .

On the other hand, suppose xj (i) = 1 and
∑nj

i=1 1xij=1 = 1, then

πij (γj , γ−j) =
v

2
− c and πi−j (γj , γ−j) =

v

2
− c .

If agent ij deviates to xj (i) = 0, then

max {xj} < max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
= 0 .

Hence, for player ij there is no incentive to deviate ∀v ∈ R++ if and only if

v

2
− c ≥ 0 ⇔ c ≤ v

2
.
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Conversely, suppose xj (i) = 0 and
∑nj

i=1 1xij=1 = 1, then

πij (γj , γ−j) =
v

2
− c and πi−j (γj , γ−j) =

v

2
.

If agent ij deviates to xj (i) = 1, then

max {xj} = max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
− c .

Hence, for player ij there is no incentive to deviate ∀v ∈ R++ if and only if

v

2
≥ v

2
− c ⇔ c ≥ 0 .

If agent i− j deviates to xj (i) = 0, then

max {xj} = max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for player ij there is no incentive to deviate ∀v ∈ R++ if and only if

v

2
− c ≥ v

2
⇔ c ≤ 0 .

Thus,

(γj , γ−j) = (γj , 1) such that γj ∈ (0, 1) and 1 ≤
nj∑
i=1

1xij=1 ≤ nj − 1 ∀j ∈ {1, 2}

is a Nash equilibrium in pure strategies if and only if c = 0.

- Suppose

(γ1, γ2) = (1, 1) .

Then,

max {x1} = max {x2}
so that

πij (γj , γ−j) =
v

2
− c .

If agent ij deviates to xj (i) = 0, then

max {xj} = max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
=

v

2
.

Hence, for player ij there is no incentive to deviate if and only if

v

2
− c ≥ v

2
⇔ c ≤ 0 .

Thus,

(γ1, γ2) = (1, 1)

is a Nash equilibrium in pure strategies if and only if c ≤ 0 .
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- Suppose

(γj , γ−j) = (1, 0)∀j ∈ {1, 2} .

Then,

max {xj} > max {x−j}
so that

πij (γj , γ−j) = v − c .

If agent ij deviates to xj (i) = 0, then

max {xj} > max {x−j}

so that the deviation payoff is

πD
ij

(
γ−
j , γ−j

)
= v .

Hence, for agent ij there is no incentive to deviate if and only if

v − c ≥ v ⇔ c ≤ 0 .

On the other hand, if agent i− j deviates to x−j (i) = 1, then

max {xj} = max {x−j} = 0

so that the deviation payoff is

πD
i−j

(
γj , γ

+
−j

)
=

v

2
− c .

Hence, for player i− j there is no incentive to deviate if and only if

πi−j (γj , γ−j) = 0 ≥ πD
i−j

(
γj , γ

+
−j

)
=

v

2
− c ⇔ c ≥ v

2
.

Thus,

(γj , γ−j) = (1, 0) ∀j ∈ {1, 2}
is a not a Nash equilibrium in pure strategies for any c ∈ R .

- Suppose

(γ1, γ2) = (0, 0) .

Then

max {x1} = max {x2}
so that

πij (γ1, γ2) =
v

2
∀j ∈ {1, 2} .

If agent ij deviates to xj (i) = 1, then

max {x1} > max {x2}

so that

πD
ij

(
γ+
j , γ−j

)
= v − c .

Hence, for player ij there is no incentive to deviate if and only if

πij (γj , γ−j) =
v

2
≥ πD

ij

(
γD
j , γ−j

)
= v − c ⇔ c ≥ v

2
∀j ∈ {1, 2} .

Thus,

(γ1, γ2) = (0, 0)

is a Nash equilibrium in pure strategies for any c ≥ v
2 .
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- Let σij (xij = 1) be the within-group symmetric randomization over pure strategy xij = 1 for player

ij ∀j ∈ {1, 2}, then
EUij (xij = 1) = EUij (xij = 0) ⇔

⇔ Prob (n−jγ−j = 0) · (v − c) + Prob (n−jγ−j ≥ 1) ·
(v
2
− c
)
=

=
(
Prob (njγj ≥ 1) · Prob (n−jγ−j ≥ 1) + Prob (njγj = 0) · Prob (n−jγ−j = 0)

)
· v
2
+

+Prob (njγj = 0) · Prob (n−jγ−j ≥ 1) · (0) + Prob (njγj ≥ 1) · Prob (n−jγ−j = 0) · v ⇔

⇔
(
1− (σi−j (xi−j = 1))

n−j

)
· (v − c) +

(
1− (1− σi−j (xi−j = 1))

n−j

)
·
(v
2
− c
)
=

=
((

1− (1− σij (xij = 1))
nj−1

)
· (1− (1− σi−j (xi−j = 1))

n−j )+

+ (1− σij (xij = 1))
nj−1 · (1− σi−j (xi−j = 1))

n−j

)
· v
2
+

+
(
1− (1− σij (xij = 1))

nj−1
)
· (1− σi−j (xi−j = 1))

n−j · v

⇔ σ∗
ij (xij = 1) =

(
1− 2c

v

)1/(nj−1)

∀i ∈ {1, . . . , nj} and j ∈ {1, 2} .

Thus,

σ∗
ij (xij = 1) =

(
1− 2c

v

)1/(nj−1)

∀i ∈ {1, . . . , nj} and j ∈ {1, 2} .

is a Nash equilibrium in within-group symmetric strictly-mixed strategies ∀ 0 < c < v
2 .

■

10.4 Proof of Proposition 4

Following the formulation of payoff-dominance and risk-dominance concepts by Harsanyi and Selten (1988), it

is straightforward to state that in the BMMAGC∗b:

• for 0 < c < v
2 and any ij such that xij = 0, any (γ1, γ2) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 =
1 ∀j ∈ {1, 2} payoff-dominate (γ1, γ2) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} in

which xij = 1, since

πij ((γj , γ−j) s.t. xij = 0) =
v

2
> πij ((γj , γ−j) s.t. xij = 1) =

v

2
−c ∀ 0 < c <

v

2
and ∀j ∈ {1, 2} .

• for 0 < c < v
4 , (γ1, γ2) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-

dominant equilibrium strategy profiles for any ij such that xij = 1. As a matter of fact, let us compare

the deviation losses of (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} for any ij
such that xij = 1 and (γ1, γ2) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} for any ij
such that xij = 0. Then, for any ij:(v

2
− c− 0

)
>
(v
2
−
(v
2
− c
))

⇔ 0 < c <
v

4
,

that is, for 0 < c < v
4 , (γ1, γ2) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} for any ij
such that xij = 1 are associated with the largest Nash difference; 10

10Here we do not employ Nash products to determine the risk-dominant equilibrium, since we define it at a single-
player level and not at group level. In the latter case, for 0 < c < v

2
all Nash equilibria in pure strategies would be

clearly equivalent in terms of risk-dominance.
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• for v
4 < c < v

2 , (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-

dominant equilibrium strategy profiles for any ij such that xij = 0 . Clearly this follows from what

shown at the previous point for both groups.

• for c = v
2 , (γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the

payoff-dominant equilibria for any player ij such that xij = 0, since

πij ((γj , 0) s.t. xij = 0)= v ,

which is the highest attainable payoff;

• for c = v
2 , (γ1, γ2) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} and (γj , γ−j) =
(γj , 0) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 0 ∀j ∈ {1, 2} are the risk-dominant equilibria

for any ij such that xij = 0 . As a matter of fact, let us compare the deviation losses of the set of

equilibria above with the ones of (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 0 ∀j ∈ {1, 2}
, (γj , γ−j) = (γj , 0) such that γj ∈ (0, 1) and

∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} for any ij such that

xij = 1 and (γ1, γ2) = (0, 0). Then,

(v
2
−
(v
2
− c
))

=(v − (v − c))>
(v
2
− c− 0

)
=
(
v − c− v

2

)
=
(
0−

(v
2
− c
))

=
(v
2
− (v − c)

)
.

• for c = 0, there is no payoff-dominant equilibrium strategy profile ∀ij ∈ {1, . . . , N}. As a matter of

fact,

πij (∀ (γ1, γ2) ∈ NE) =
v

2
.

• for c = 0, (γ1, γ2) such that γj ∈ (0, 1) and
∑nj

i=1 1xij=1 = 1 ∀j ∈ {1, 2} are the risk-dominant

equilibrium strategy profiles for any ij such that xij = 1 . As a matter of fact, let us compare the

deviation losses of the set of equilibria above with the ones of {(γ1, γ2) such that γj ∈ (0, 1) and
∀j ∈ {1, 2}} in which xij = 0 ,{(γj , γ−j) = (γj , 1) such that γj ∈ (0, 1) and ∀j ∈ {1, 2}} and

{(γ1, γ2) = (1, 1)} . Then,(v
2
− c− 0

)
>
(v
2
−
(v
2
− c
))

=
(v
2
− c− v

2

)
=
(v
2
−
(v
2
− c
))

=
(v
2
− c− v

2

)
.

■

10.5 Proof of Proposition 5

In the g1 (v), note thatE (V |vij) = vij , if ij observes vij ∈ [v + ε, v − ε] so that V |vij ∼ U (vij − ε, vij + ε).
Furthermore, for vij ∈ [v + ε, v − ε], the conditional distribution of the teammates’ or opponents’ observation

will be centered around vij with support [vij − 2ε, vij + 2ε] . Hence, Prob [V−ij < vij |vij ] = Prob[V−ij >
vij |vij ] = 1

2 ∀ij ∈ {1, . . . , nj} and j ∈ {1, 2}.
Now, suppose player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} observes vij < 2. Then, ij’s conditionally ex-

pected payoff from exerting effort, that is choosing xij = 1, is smaller than the one from exerting no ef-

fort, that is choosing xij = 0. Accordingly, xij = 0 is a conditionally strictly dominant action for player

ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} whenever she observes vij < 2. Iterating this dominance argument, if players

−ij ∈
⋃2

q=1

⋃nq

l=1{lq} − {ij} are forced to play x−ij = 0 whenever they observe v−ij < 2, then player ij,

observing vij = 2 has to assign at least probability
(
1
2

)nj−1+n−j
to
∑

−ij ̸=ij x−ij = 0. Thus, ij’s condition-

ally expected payoff from not exerting effort, that is choosing xij = 0 will be at least 1− 21−nj + 2−n−j , so
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that xij = 1 can be discarded by iterated dominance for vij = 2, since the conditionally expected payoff from

exerting effort equals 2−n−j . Note that we imposed by assumption that 0 < ε <
∣∣ v
2 − 1

∣∣, so that vij −2ε > v
for vij = 2 . Let v∗ij be the smallest observation such that xij = 1 cannot be excluded by iterated dominance.

Then, it is possible to show that v∗ij = 2nj . Note that vij = 4 is the threshold for the risk-dominance regions.

As a matter of fact, when vij = 2nj , the conditionally expected payoff from exerting effort equals

Prob (n−jγ−j = 0) · (2nj − 1) + Prob (n−jγ−j ≥ 1) ·
(
2nj

2
− 1

)
=

=

(
1

2

)n−j

· (2nj − 1) +

(
1−

(
1

2

)n−j
)
·
(
2nj

2
− 1

)
= 2nj−1 + 2nj−n−j−1 − 1,

while the conditionally expected payoff from not exerting effort equals(
Prob (njγj ≥ 1) · Prob (n−jγ−j ≥ 1) + Prob (njγj = 0) · Prob (n−jγ−j = 0)

)
· 2

nj

2
+

+Prob (njγj = 0) · Prob (n−jγ−j ≥ 1) · (0) + Prob (njγj ≥ 1) · Prob (n−jγ−j = 0) · 2nj ⇔

⇔

((
1−

(
1

2

)nj−1
)

·
(
1−

(
1

2

)n−j
)
+

(
1

2

)nj−1

·
(
1

2

)n−j
)

· 2
nj

2
+

+

(
1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
· 0 +

(
1−

(
1

2

)nj−1
)

·
(
1

2

)n−j

· 2nj = 2nj−1 + 2nj−n−j−1 − 1 .

The cutoff v∗ij = 2nj is the unique threshold that can be established from the lower dominance regions by

iterated deletion of strictly dominated strategies, since it is the unique value for vij solving(
1

2

)n−j

· (vij − 1) +

(
1−

(
1

2

)n−j
)
·
(vij

2
− 1
)
=

((
1−

(
1

2

)nj−1
)

·
(
1−

(
1

2

)n−j
)
+

+

(
1

2

)nj−1

·
(
1

2

)n−j
)

· vij
2

+

(
1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
· 0 +

(
1−

(
1

2

)nj−1
)

·
(
1

2

)n−j

· vij

The same kind of reasoning cannot be carried out for large observations of v, since it does not exist an upper

dominance region. Conversely, this is possible in our second setting in which there is incomplete information

about the cost of effort itself. As a matter of fact, in the latter there are both a lower and an upper dominance

region.

Hence, in g1 (v) under incomplete information à la global games there is an equilibrium in (monotonic)

cutoff strategies, such that ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, 2}:

x∗
ij (vij) =

{
1 if vij > 2nj

0 if vij ≤ 2nj .

■

10.6 Proof of Proposition 6

In the g2 (c), note that E (C|cij) = cij , if ij observes cij ∈ [c+ ε, c− ε] so that C|cij ∼ U (cij − ε, cij + ε).
Furthermore, for cij ∈ [c− ε, c+ ε], the conditional distribution of the teammates’ or opponents’ observation

will be centered around cij with support [cij − 2ε, cij + 2ε]. Hence, Prob [C−ij < cij |cij ] = Prob[C−ij >
cij |cij ] = 1

2 .
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Now, suppose player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} observes cij > v
2 . Then, ij’s conditionally ex-

pected payoff from exerting effort, that is choosing xij = 1, is smaller than the one from exerting no ef-

fort, that is choosing xij = 0. Accordingly, xij = 0 is a conditionally strictly dominant action for player

ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} whenever she observes cij > v
2 . Iterating this dominance argument, if players

−ij ∈
⋃2

q=1

⋃nq

l=1{lq}−{ij} are forced to play xi−j = 0 whenever they observe c−ij >
v
2 , then player ij, ob-

serving cij =
v
2 has to assign at least probability

(
1
2

)nj−1+n−j
to
∑

−ij ̸=ij x−ij = 0. Thus, ij’s conditionally

expected payoff from not exerting effort, that is choosing xij = 0 will be at least 1
2

(
1− 21−nj + 2−n−j

)
v, so

that xij = 1 can be discarded by iterated dominance for cij =
v
2 , since the conditionally expected payoff from

exerting effort equals 2−n−j−1v. Note that we imposed by assumption that ε <
∣∣ 2c−v

4

∣∣, so that cij + 2ε < c
for cij =

v
2 . Let c∗ij be the smallest observation such that xij = 1 cannot be excluded by iterated dominance.

Then, it is possible to show that c∗ij = 2−njv. Note that cij = v
4 is the threshold for the risk-dominance

regions. As a matter of fact, when cij = 2−njv, the conditionally expected payoff from exerting effort equals

Prob (n−jγ−j = 0) ·
(
v − 2−njv

)
+ Prob (n−jγ−j ≥ 1) ·

(v
2
− 2−njv

)
=

=

(
1

2

)n−j

·
(
v − 2−njv

)
+

(
1−

(
1

2

)n−j
)
·
(v
2
− 2−njv

)
=

1

2

(
1− 21−nj + 2−n−j

)
v,

while the conditionally expected payoff from not exerting effort equals(
Prob (njγj ≥ 1) · Prob (n−jγ−j ≥ 1) + Prob (njγj = 0) · Prob (n−jγ−j = 0)

)
· v
2
+

+Prob (njγj = 0) · Prob (n−jγ−j ≥ 1) · (0) + Prob (njγj ≥ 1) · Prob (n−jγ−j = 0) · v ⇔

⇔

((
1−

(
1

2

)nj−1
)

·
(
1−

(
1

2

)n−j
)
+

(
1

2

)nj−1

·
(
1

2

)n−j
)

· v
2
+

+

(
1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
· 0 +

(
1−

(
1

2

)nj−1
)

·
(
1

2

)n−j

· v =
1

2

(
1− 21−nj + 2−n−j

)
v .

The cutoff c∗ij = 2−njv is the unique threshold that can be established from the upper dominance region

by iterated deletion of strictly dominated strategies, since it is the unique value for cij solving(
1

2

)n−j

·
(
v − 2−njv

)
+

(
1−

(
1

2

)n−j
)
·
(v
2
− 2−njv

)
=

((
1−

(
1

2

)nj−1
)

·
(
1−

(
1

2

)n−j
)
+

+

(
1

2

)nj−1

·
(
1

2

)n−j
)

· v
2
+

(
1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
· 0 +

(
1−

(
1

2

)nj−1
)

·
(
1

2

)n−j

· v .

The same kind of reasoning can be carried out for small observations of c, since it does exist a lower

dominance region. Again, let us assume ε< − c
2 and suppose player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} observes

cij < 0. Then, ij’s conditionally expected payoff from exerting effort, that is choosing xij = 1, is positive and

greater than the one from exerting no effort, that is choosing xij = 0. Accordingly, xij = 1 is a conditionally

strictly dominant action for player ij ∈ {1, . . . , nj} ∀j ∈ {1, 2} whenever she observes cij < 0. Iterating

this dominance argument, if players −ij ∈
⋃2

q=1

⋃nq

l=1{lq} − {ij} are forced to play x−ij = 1 whenever

they observe c−ij < 0, then player ij, observing cij = 0 has to assign at least probability
(
1
2

)nj−1+n−j
to∑

−ij ̸=ij x−ij = N−1. Thus, ij’s conditionally expected payoff from exerting effort, that is choosing xij = 1,

will be at least 1
2 (1 + 2−n−j ) v, so that xij = 0 can be discarded by iterated dominance for cij = 0, since the

conditionally expected payoff from not exerting effort equals 1
2

(
1− 21−nj + 2−n−j

)
v. Note that we imposed
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by assumption that 0 < ε <
∣∣ c
2

∣∣, so that cij − 2ε > c for cij = 0 . Let c∗∗ij be the smallest observation such

that xij = 0 cannot be excluded by iterated dominance. Then, it is possible to show that c∗∗ij = 2−njv. Note

that cij = v
4 is the threshold for the risk-dominance regions. As a matter of fact, when cij = 2−njv, the

conditionally expected payoff from exerting effort equals

Prob (n−jγ−j = 0) ·
(
v − 2−njv

)
+ Prob (n−jγ−j ≥ 1) ·

(v
2
− 2−njv

)
=

=

(
1

2

)n−j

·
(
v − 2−njv

)
+

(
1−

(
1

2

)n−j
)
·
(v
2
− 2−njv

)
=

1

2

(
1− 21−nj + 2−n−j

)
v,

while the conditionally expected payoff from not exerting effort equals(
Prob (njγj ≥ 1) · Prob (n−jγ−j ≥ 1) + Prob (njγj = 0) · Prob (n−jγ−j = 0)

)
· v
2
+

+Prob (njγj = 0) · Prob (n−jγ−j ≥ 1) · (0) + Prob (njγj ≥ 1) · Prob (n−jγ−j = 0) · v ⇔

⇔

((
1−

(
1

2

)nj−1
)

·
(
1−

(
1

2

)n−j
)
+

(
1

2

)nj−1

·
(
1

2

)n−j
)

· 2
nj

2
+

+

(
1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
· 0 +

(
1−

(
1

2

)nj−1
)

·
(
1

2

)n−j

· 2nj =
1

2

(
1− 21−nj + 2−n−j

)
v .

The cutoff c∗∗ij = 2−njv is the unique threshold that can be established from the lower dominance region

by iterated deletion of strictly dominated strategies, since it is the unique value for cij solving(
1

2

)n−j

·
(
v − 2−njv

)
+

(
1−

(
1

2

)n−j
)
·
(v
2
− 2−njv

)
=

((
1−

(
1

2

)nj−1
)

·
(
1−

(
1

2

)n−j
)
+

+

(
1

2

)nj−1

·
(
1

2

)n−j
)

· v
2
+

(
1

2

)nj−1

·
(
1−

(
1

2

)n−j
)
· 0 +

(
1−

(
1

2

)nj−1
)

·
(
1

2

)n−j

· v .

Hence, c∗ij = c∗∗ij and there exists a unique equilibrium in switching strategies in g2 (c) such that ∀ij ∈
{1, . . . , nj} and ∀j ∈ {1, 2}

x∗
ij (cij) =

{
1 if cij < 2−njv
0 if cij ≥ 2−njv .

■

10.7 Proof of Proposition 7

In the g1 (v), given the contest success function Pj (Xj , X−j)∀j ∈ {1, 2}, the probability of winning the prize

v for group j ∈ {1, 2} is: 11

Prob (j wins v) =Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
+

1

2
Prob

[(
X∗

j , X
∗
−j

)
= (0, 0)

]
+

+
1

2
Prob

[(
X∗

j , X
∗
−j

)
= (1, 1)

]
.

On the other hand, the probability of winning the prize v for group j ∈ {1, 2} at the cutoff equilibrium

x∗
ij (vij) depends on whether or not 2nj belongs to [v + ε, v − ε], where vij is uniformly distributed. Hence,

we will consider all possible cases:

11X∗
j ∀j ∈ {1, 2} stands for the impact function of group j at the equilibrium x∗

ij (vij) ∀ij ∈ {1, . . . , nj} .
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• if v + ε ≤ 2nj ≤ v − ε and v + ε ≤ 2n−j ≤ v − ε , 12

Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
=

[
1−

(
2nj − v − ε

v − ε− v − ε

)nj
]
·
(
2n−j − v − ε

v − ε− v − ε

)n−j

;

Prob
[(
X∗

j , X
∗
−j

)
= (0, 0)

]
=

(
2nj − v − ε

v − ε− v − ε

)nj

·
(
2n−j − v − ε

v − ε− v − ε

)n−j

;

Prob
[(
X∗

j , X
∗
−j

)
= (1, 1)

]
=

[
1−

(
2nj − v − ε

v − ε− v − ε

)nj
]
·
[
1−

(
2n−j − v − ε

v − ε− v − ε

)n−j
]

.

Hence,

Prob (j wins v) = Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
+

1

2
Prob

[(
X∗

j , X
∗
−j

)
= (0, 0)

]
+

+
1

2
Prob

[(
X∗

j , X
∗
−j

)
= (1, 1)

]
=

[
1−

(
2nj − v − ε

v − ε− v − ε

)nj
]
·
(
2n−j − v − ε

v − ε− v − ε

)n−j

+

+
1

2

(
2nj − v − ε

v − ε− v − ε

)nj

·
(
2n−j − v − ε

v − ε− v − ε

)n−j

+

+
1

2

[
1−

(
2nj − v − ε

v − ε− v − ε

)nj
]
·
[
1−

(
2n−j − v − ε

v − ε− v − ε

)n−j
]

.

• If v + ε ≤ 2nj ≤ v − ε and 2n−j > v − ε,

Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
=1−

(
2nj − v − ε

v − v − 2ε

)nj

;

Prob
[(
X∗

j , X
∗
−j

)
= (0, 0)

]
=

(
2nj − v − ε

v − v − 2ε

)nj

;

Prob
[(
X∗

j , X
∗
−j

)
= (1, 1)

]
=0 .

Hence,

Prob (j wins v) = Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
+

1

2
Prob

[(
X∗

j , X
∗
−j

)
= (0, 0)

]
+

+
1

2
Prob

[(
X∗

j , X
∗
−j

)
= (1, 1)

]
= 1−

(
2nj − v − ε

v − v − 2ε

)nj

+
1

2

(
2nj − v − ε

v − v − 2ε

)nj

.

• If 2nj > v − ε and v + ε ≤ 2n−j ≤ v − ε,

Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
=0 ;

Prob
[(
X∗

j , X
∗
−j

)
= (0, 0)

]
=

(
2n−j − v − ε

v − v − 2ε

)n−j

;

Prob
[(
X∗

j , X
∗
−j

)
= (1, 1)

]
=0 .

12Note that for X∗
j = 1, it suffices that just one ij chooses xi−j (vi−j) = 1, due to the best-shot impact function.
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Hence,

Prob (j wins v) = Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
+

1

2
Prob

[(
X∗

j , X
∗
−j

)
= (0, 0)

]
+

+
1

2
Prob

[(
X∗

j , X
∗
−j

)
= (1, 1)

]
=

1

2

[(
2n−j − v − ε

v − v − 2ε

)n−j
]

.

• If 2nj > v − ε and 2n−j > v − ε,

Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
= 0 ;

Prob
[(
X∗

j , X
∗
−j

)
= (0, 0)

]
= 1 ;

Prob
[(
X∗

j , X
∗
−j

)
= (1, 1)

]
= 0 .

Hence,

Prob (j wins v) = Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
+

1

2
Prob

[(
X∗

j , X
∗
−j

)
= (0, 0)

]
+

+
1

2
Prob

[(
X∗

j , X
∗
−j

)
= (1, 1)

]
=

1

2
.

Finally, note that 2nj ≥ v + ε ∀ v < 2 and 0 < ε < |v2 − 1| .

■
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10.8 Proof of Proposition 8

First of all, in the g1 (v) the expected value of the prize according to the uniform prior distribution is E [V ] =
v+v
2 .

Then, let us consider all the distinct cases:

• for v + ε ≤ 2nj ≤ v − ε and v + ε ≤ 2n−j ≤ v − ε,

E
[
πij

(
x∗
j ,x

∗
−j

)]
= Prob ( ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) ·
(
v + v

2
− 1

)
+

+ Prob ( ij receives a signal lower than or equal to 2nj ) ·
· Prob ( at least one -ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) · v + v

2
+

+ Prob ( ij receives a signal higher than 2nj ) ·

· Prob ( at least one i-j receives a signal higher than 2n−j ) ·
(
v + v

4
− 1

)
+

+ Prob ( ij receives a signal smaller than 2nj ) ·
· Prob ( at least one -ij receives a signal higher than 2nj ) ·
· Prob ( at a least one i-j receives a signal higher than or equal to 2n−j ) ·

· v + v

4
+

+ Prob ( no ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) · v + v

4
,

where

Prob ( ij receives a signal higher than 2nj ) = 1− 2nj − v − ε

v − ε− v − ε
,

Prob ( no i-j receives a signal higher than 2n−j ) =

(
2n−j − v − ε

v − ε− v − ε

)n−j

,

P rob ( ij receives a signal lower than or equal to 2nj ) =
2nj − v − ε

v − ε− v − ε
,

Prob ( at least one agent -ij receives a signal higher than 2nj ) = 1−
(

2nj − v − ε

v − ε− v − ε

)nj−1

,

P rob ( at least one i-j receives a signal higher than 2n−j ) = 1−
(
2n−j − v − ε

v − ε− v − ε

)n−j

Prob ( no ij receives a signal higher than 2nj ) =

(
2nj − v − ε

v − ε− v − ε

)nj

.
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Hence,

E
[
πij

(
x∗
j ,x

∗
−j

)]
=

(
1− 2nj − v − ε

v − ε− v − ε

)
·
(
2n−j − v − ε

v − ε− v − ε

)n−j

·
(
v + v

2
− 1

)
+

+

(
2nj − v − ε

v − ε− v − ε

)
·

[
1−

(
2nj − v − ε

v − ε− v − ε

)nj−1
]
·
(
2n−j − v − ε

v − ε− v − ε

)n−j

· v + v

2
+

+

(
1− 2nj − v − ε

v − ε− v − ε

)
·
(
1−

(
2n−j − v − ε

v − ε− v − ε

)n−j
)
·
(
v + v

4
− 1

)
+

+

(
2nj − v − ε

v − ε− v − ε

)
·

(
1−

(
2nj − v − ε

v − ε− v − ε

)nj−1
)

·
(
1−

(
2n−j − v − ε

v − ε− v − ε

)n−j
)
·

· v + v

4
+

+

(
2nj − v − ε

v − ε− v − ε

)nj

·
(
2n−j − v − ε

v − ε− v − ε

)n−j

· v + v

4
;

• for v + ε ≤ 2nj ≤ v − ε and 2n−j ≥ v − ε,

E
[
πij

(
x∗
j ,x

∗
−j

)]
= Prob ( ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) ·
(
v + v

2
− 1

)
+

+ Prob ( ij receives a signal lower than or equal to 2nj ) ·
· Prob ( at least one -ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) · v + v

2
+

+ Prob ( ij receives a signal higher than 2nj ) ·

· Prob ( at least one i-j receives a signal higher than 2n−j ) ·
(
v + v

4
− 1

)
+

+ Prob ( ij receives a signal smaller than 2nj ) ·
· Prob ( at least one -ij receives a signal higher than 2nj ) ·
· Prob ( at a least one i-j receives a signal higher than or equal to 2n−j ) ·

· v + v

4
+

+ Prob ( no ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) · v + v

4
,

where
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Prob ( ij receives a signal higher than 2nj ) = 1− 2nj − v − ε

v − ε− v − ε
,

Prob ( no i-j receives a signal higher than 2n−j ) = 1 ,

P rob ( ij receives a signal lower than or equal to 2nj ) =
2nj − v − ε

v − ε− v − ε
,

Prob ( at least one agent -ij receives a signal greater than 2nj ) = 1−
(

2nj − v − ε

v − ε− v − ε

)nj−1

,

P rob ( at least one i-j receives a signal higher than 2n−j ) = 0

Prob ( no ij receives a signal higher than 2nj ) =

(
2nj − v − ε

v − ε− v − ε

)nj

.

Hence,

E
[
πij

(
x∗
j ,x

∗
−j

)]
=

(
1− 2nj − v − ε

v − ε− v − ε

)
·
(
v + v

2
− 1

)
+

(
2nj − v − ε

v − ε− v − ε

)
·

[
1−

(
2nj − v − ε

v − ε− v − ε

)nj−1
]
· v + v

2
+

+

(
2nj − v − ε

v − ε− v − ε

)nj

· v + v

4
;

• for 2nj > v − ε and v + ε ≤ 2n−j ≤ v − ε,

E
[
πij

(
x∗
j ,x

∗
−j

)]
= Prob ( ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) ·
(
v + v

2
− 1

)
+

+ Prob ( ij receives a signal lower than or equal to 2nj ) ·
· Prob ( at least one -ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) · v + v

2
+

+ Prob ( ij receives a signal higher than 2nj ) ·

· Prob ( at least one i-j receives a signal higher than 2n−j ) ·
(
v + v

4
− 1

)
+

+ Prob ( ij receives a signal smaller than 2nj ) ·
· Prob ( at least one -ij receives a signal higher than 2nj ) ·
· Prob ( at a least one i-j receives a signal higher than or equal to 2n−j ) ·

· v + v

4
+

+ Prob ( no ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) · v + v

4
,
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where

Prob ( ij receives a signal higher than 2nj ) = 0 ,

P rob ( no i-j receives a signal higher than 2n−j ) =

(
2n−j − v − ε

v − ε− v − ε

)n−j

,

P rob ( ij receives a signal lower than or equal to 2nj ) = 1 ,

P rob ( at least one agent -ij receives a signal greater than 2nj ) = 0 ,

P rob ( at least one i-j receives a signal higher than 2n−j ) = 1−
(
2n−j − v − ε

v − ε− v − ε

)n−j

Prob ( no ij receives a signal higher than 2nj ) = 1 .

Hence,

E
[
πij

(
x∗
j ,x

∗
−j

)]
=

(
2n−j − v − ε

v − ε− v − ε

)n−j

· v + v

4
;

• for 2nj > v − ε and 2n−j > v − ε,

E
[
πij

(
x∗
j ,x

∗
−j

)]
= Prob ( ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) ·
(
v + v

2
− 1

)
+

+ Prob ( ij receives a signal lower than or equal to 2nj ) ·
· Prob ( at least one -ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) · v + v

2
+

+ Prob ( ij receives a signal higher than 2nj ) ·

· Prob ( at least one i-j receives a signal higher than 2n−j ) ·
(
v + v

4
− 1

)
+

+ Prob ( ij receives a signal smaller than 2nj ) ·
· Prob ( at least one -ij receives a signal higher than 2nj ) ·
· Prob ( at a least one i-j receives a signal higher than or equal to 2n−j ) ·

· v + v

4
+

+ Prob ( no ij receives a signal higher than 2nj ) ·

· Prob ( no i-j receives a signal higher than 2n−j ) · v + v

4
,

where
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Prob ( ij receives a signal higher than 2nj ) = 0 ,

P rob ( no i-j receives a signal higher than 2n−j ) = 1 ,

P rob ( ij receives a signal lower than or equal to 2nj ) = 1 ,

P rob ( at least one agent -ij receives a signal greater than 2nj ) = 0 ,

P rob ( at least one i-j receives a signal higher than 2n−j ) = 0

Prob ( no ij receives a signal higher than 2nj ) = 1 .

Hence,

E
[
πij

(
x∗
j ,x

∗
−j

)]
=

v + v

4
.

■

10.9 Proof of Proposition 9

In the g2 (c), given the contest success function Pj (Xj , X−j)∀j ∈ {1, 2}, the probability of winning the prize

v for group j ∈ {1, 2} is: 13

Prob (j wins v) =Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
+

1

2
Prob

[(
X∗

j , X
∗
−j

)
= (0, 0)

]
+

+
1

2
Prob

[(
X∗

j , X
∗
−j

)
= (1, 1)

]
.

On the other hand, the probability of winning the prize v for group j ∈ {1, 2} at the cutoff equilibrium x∗
ij (cij)

depends on whether or not 2−njv belongs to [c+ ε, c− ε], where cij is uniformly distributed. However, note

that 2−njv > c+ ε ∀ c < 0, 0 < ε < min
{
| 2c−v

4 |, | c2 |
}
and ∀ nj ≥ 2 . Moreover, 2−njv < c− ε ∀ c > v

2 ,

0 < ε < min
{
| 2c−v

4 |, | c2 |
}

and ∀ n−j ≥ 2 . Therefore, we will consider restrict our attention to the unique

possible case, i.e. c+ ε < 2−njv < c− ε and c+ ε < 2−n−jv < c− ε .

Accordingly,

Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
=

[
1−

(
1− 2−njv − c− ε

c− c− 2ε

)nj
]
·
(
1− 2n−jv − c− ε

c− c− 2ε

)n−j

;

Prob
[(
X∗

j , X
∗
−j

)
= (0, 0)

]
=

(
1− 2−njv − c− ε

c− c− 2ε

)nj

·
(
1− 2−n−jv − c− ε

c− c− 2ε

)n−j

;

Prob
[(
X∗

j , X
∗
−j

)
= (1, 1)

]
=

[
1−

(
1− 2−njv − c− ε

c− c− 2ε

)nj
]
·
[
1−

(
1− 2n−jv − c− ε

c− c− 2ε

)n−j
]

.

13Note that for Xj = 1, it suffices that just one ij chooses xij (cij) = 1, due to the best-shot impact function.
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Hence,

Prob (j wins v) =Prob
[(
X∗

j , X
∗
−j

)
= (1, 0)

]
+

1

2
Prob

[(
X∗

j , X
∗
−j

)
= (0, 0)

]
+

+
1

2
Prob

[(
X∗

j , X
∗
−j

)
= (1, 1)

]
=

[
1−

(
1− 2−njv − c− ε

c− c− 2ε

)nj
]
·
(
1− 2n−jv − c− ε

c− c− 2ε

)n−j

+

+
1

2

(
1− 2−njv − c− ε

c− c− 2ε

)nj

·
(
1− 2−n−jv − c− ε

c− c− 2ε

)n−j

+

+
1

2

[
1−

(
1− 2−njv − c− ε

c− c− 2ε

)nj
]
·
[
1−

(
1− 2n−jv − c− ε

c− c− 2ε

)n−j
]

.

■

10.10 Proof of Proposition 10

First of all, in the g2 (c) the expected value of the cost of effort according to the uniform prior distribution is

E [C] = c+c
2 . Moreover, 2−njv > c+ε ∀ c < 0, 0 < ε < min

{
| 2c−v

4 |, | c2 |
}
and ∀nj ≥ 2 and 2−njv < c−ε

∀ c > v
2 , 0 < ε < min

{
| 2c−v

4 |, | c2 |
}
and ∀ n−j ≥ 2 .

Then,

E
[
πij

(
x∗
j ,x

∗
−j

)]
= Prob ( ij receives a signal smaller than 2v ) ·

· Prob
(
no i-j receives a signal smaller than 2−n−jv

)
·
(
v

2
− c+ c

2

)
+

+ Prob
(
ij receives a signal higher than or equal to 2−njv

)
·

· Prob
(
at least one -ij receives a signal lower than 2−njv

)
·

· Prob
(
no i-j receives a signal lower than 2−n−jv

)
· v
2
+

+ Prob
(
ij receives a signal lower than 2−njv

)
·

· Prob
(
at least one i-j receives a signal lower than 2−n−jv

)
·
(
v

2
− c+ c

2

)
+

+ Prob
(
ij receives a signal higher than or equal to 2−njv

)
·

· Prob
(
at least one -ij receives a signal smaller than 2−njv

)
·

· Prob
(
at a least one i-j receives a signal smaller than 2−n−jv

)
· v
2
+

+ Prob
(
no ij receives a signal smaller than 2−njv

)
·

· Prob
(
no i-j receives a signal smaller than 2−n−jv

)
· v
2
,

where
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Prob
(
ij receives a signal lower than 2−njv

)
=

2−njv − c− ε

c− ε− c− ε
,

Prob
(
no i-j receives a signal lower than 2−n−jv

)
=

(
1− 2−n−jv − c− ε

c− ε− c− ε

)n−j

,

P rob
(
ij receives a signal higher than or equal to 2−njv

)
= 1− 2−njv − c− ε

c− ε− c− ε
,

Prob
(
at least one agent -ij receives a signal lower than 2−njv

)
= 1−

(
1− 2−njv − c− ε

c− ε− c− ε

)nj−1

,

P rob
(
at least one i-j receives a signal lower than 2−n−jv

)
= 1−

(
1− 2−n−jv − c− ε

c− ε− c− ε

)n−j

Prob
(
no ij receives a signal smaller than 2−njv

)
=

(
1− 2−njv − c− ε

c− ε− c− ε

)nj

.

Hence,

E
[
πij

(
x∗
j ,x

∗
−j

)]
=

(
2−njv − c− ε

c− ε− c− ε

)
·
(
1− 2−n−jv − c− ε

c− ε− c− ε

)n−j

·
(
v − c+ c

2

)
+

+

(
1− 2−njv − c− ε

c− ε− c− ε

)
·

[
1−

(
1− 2−njv − c− ε

c− ε− c− ε

)nj−1
]
·

·
(
1− 2−n−jv − c− ε

c− ε− c− ε

)n−j

· v +

+

(
2−njv − c− ε

c− ε− c− ε

)
·

(
1−

(
1− 2−n−jv − c− ε

c− ε− c− ε

)−n−j
)

·
(
v

2
− c+ c

2

)
+

+

(
1− 2−njv − c− ε

c− ε− c− ε

)
·

(
1−

(
1− 2−njv − c− ε

c− ε− c− ε

)nj−1
)
·

·
(
1−

(
1− 2−n−jv − c− ε

c− ε− c− ε

)n−j
)
· v
2
+

+

(
1− 2−njv − c− ε

c− ε− c− ε

)nj

·
(
1− 2−n−jv − c− ε

c− ε− c− ε

)n−j

· v
2
.

■

10.11 Proof of Proposition 11

In the g3 (v), note thatE (V |vij) = vij , if ij observes vij ∈ [v + ε, v − ε] so that V |vij ∼ U (vij − ε, vij + ε).
Furthermore, for vij ∈ [v + ε, v − ε], the conditional distribution of the teammates’ or opponents’ observation

will be centered around vij with support [vij − 2ε, vij + 2ε] . Hence, Prob [V−ij < vij |vij ] = Prob[V−ij >
vij |vij ] = 1

2 ∀ij ∈ {1, . . . , nj} and j ∈ {1, . . . ,M}. Moreover, let us define Qk as the set of all subsets of

cardinality k formed by groups different from j, that is Qk = {−J ∈ {{1, . . . ,M} − {j}} | | − J | = k} .

Now, suppose player ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M} observes vij < 2. Then, ij’s conditionally

expected payoff from exerting effort, that is choosing xij = 1, is smaller than the one from exerting no

effort, that is choosing xij = 0. Accordingly, xij = 0 is a conditionally strictly dominant action for player
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ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M} whenever she observes vij < 2. Iterating this dominance argument, if

players −ij ∈
⋃M

q=1

⋃nq

l=1{lq}−{ij} are forced to play x−ij = 0 whenever they observe v−ij < 2, then player

ij, observing vij = 2 has to assign at least probability
(
1
2

)−1+
∑M

j=1 nj
to
∑

−i ̸=i x−ij +
∑

−j ̸=j

∑
i xi−j = 0

. Thus, ij’s conditionally expected payoff from not exerting effort, that is choosing xij = 0 will be at least

2−nj+2−
∑

−j ̸=j n−j 1
M + 2−

∑
−j ̸=j n−j

(
1− 21−nj

)
2 + 2

(
1− 21−nj

) ∑M−1
k=1

∑
−J∈Qk

∏
−j∈−J(1−2−n−j )
k+1 , so

that xij = 1 can be discarded by iterated dominance for vij = 2, since the conditionally expected payoff from

exerting effort equals 2−
∑

−j ̸=j n−j +
∑M−1

k=1

(
2

k+1 − 1
)
(1− 2−n−j ). Note that we imposed by assumption

that 0 < ε <
∣∣ v
2 − 1

∣∣, so that vij − 2ε > v for vij = 2 .

Let v∗ij be the smallest observation such that xij = 1 cannot be excluded by iterated dominance. Then, it

is possible to show that v∗ij = A/B where

A = 2−
∑

−j ̸=j n−j +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)
,

B = 21−nj−
∑

−j ̸=j n−j

(
1− 1

M

)
+ 21−nj

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
.

As a matter of fact, following iterated dominance, the conditionally expected payoff from exerting effort equals14

Prob

∑
−j ̸=j

n−jγ−j = 0

 · (vij − 1) +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

Prob (n−jγ−j ≥ 1) ·
(

vij
k + 1

− 1

)
=

= 2−
∑

−j ̸=j n−j (vij − 1) +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)( vij
k + 1

− 1

)
,

while the conditionally expected payoff from not exerting effort equals

Prob

 M∑
j=1

njγj = 0

 · vij
M

+ Prob (njγj ≥ 1) · Prob

∑
−j ̸=j

n−jγ−j = 0

 · vij+

+ Prob (njγj ≥ 1) ·
M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

Prob (n−jγ−j) ·
vij

k + 1

= 2−nj+1−
∑

−j ̸=j n−j · vij
M

+ 2−
∑

−j ̸=j n−j
(
1− 21−nj

)
· vij+

+
(
1− 21−nj

)M−1∑
k=1

vij
∑

−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
.

Hence, by equating the two conditionally expected payoffs we obtain the cutoff value v∗ij = A/B, as above.

The cutoff v∗ij = A/B is the unique threshold that can be established from the lower dominance regions by

iterated deletion of strictly dominated strategies, since it is the unique value for vij equating the conditionally

expected payoff from exerting effort and the conditionally expected payoff from not exerting effort.

The same kind of reasoning cannot be carried out for large observations of v, since it does not exist an upper

dominance region. Conversely, this is possible in our second setting in which there is incomplete information

14Due the auction-type contest success function and the presence of M ≥ 2 groups, we have to consider the possibility
of a tie with up to M − 1 groups.
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about the cost of effort itself. As a matter of fact, in the latter there are both a lower and an upper dominance

region.

Hence, in g3 (v) under incomplete information à la global games there is an equilibrium in (monotonic)

cutoff strategies, such that ∀ij ∈ {1, . . . , nj} and ∀j ∈ {1, . . . ,M}:

x∗
ij (vij) =

{
1 if vij > v∗j
0 if vij ≤ v∗j ,

where v∗j = A
B , with

A = 2−
∑

−j ̸=j n−j +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)
,

B = 21−nj−
∑

−j ̸=j n−j

(
1− 1

M

)
+ 21−nj

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
.

■

10.12 Proof of Proposition 12

In the g4 (c), note that E (C|cij) = cij , if ij observes cij ∈ [c+ ε, c− ε] so that C|cij ∼ U (cij − ε, cij + ε).
Furthermore, for cij ∈ [c− ε, c+ ε], the conditional distribution of the teammates’ or opponents’ observation

will be centered around cij with support [cij − 2ε, cij + 2ε]. Hence, Prob [C−ij < cij |cij ] = Prob[C−ij >
cij |cij ] = 1

2 . Moreover, let us define Qk as the set of all subsets of cardinality k formed by groups different

from j, that is Qk = {−J ∈ {{1, . . . ,M} − {j}} | | − J | = k}.
Now, suppose player ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M} observes cij > v

2 . Then, ij’s conditionally

expected payoff from exerting effort, that is choosing xij = 1, is smaller than the one from exerting no

effort, that is choosing xij = 0. Accordingly, xij = 0 is a conditionally strictly dominant action for player

ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M} whenever she observes cij > v
2 . Iterating this dominance argument, if

players −ij ∈
⋃M

q=1

⋃nq

l=1{lq}−{ij} are forced to play x−ij = 0 whenever they observe c−ij >
v
2 , then player

ij, observing cij =
v
2 has to assign at least probability

(
1
2

)−1+
∑M

j=1 nj
to
∑

−i ̸=i x−ij +
∑

−j ̸=j

∑
i xi−j = 0

. Thus, ij’s conditionally expected payoff from not exerting effort, that is choosing xij = 0 will be at least

2−nj+1−
∑

−j ̸=j n−j · v
M + 2−

∑
−j ̸=j n−j

(
1− 21−nj

)
· v +

(
1− 21−nj

)∑M−1
k=1

v
∑

−J∈Qk

∏
−j∈−J(1−2−n−j )
k+1 ,

so that xij = 1 can be discarded by iterated dominance for cij = v
2 , since the conditionally expected payoff

from exerting effort equals 2−
∑

−j ̸=j n−j
(
v − v

2

)
+
∑M−1

k=1

∑
−J∈Qk

∏
−j∈−J (1− 2−n−j )

(
v

k+1 − v
2

)
. Note

that we imposed by assumption that ε <
∣∣ 2c−v

4

∣∣, so that cij + 2ε < c for cij = v
2 . Let c∗ij be the smallest

observation such that xij = 1 cannot be excluded by iterated dominance. Then, it is possible to show that

c∗ij = (Bv)/A, where

A = 2−
∑

−j ̸=j n−j +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)
,

B = 21−nj−
∑

−j ̸=j n−j

(
1− 1

M

)
+ 21−nj

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
.
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As a matter of fact, following iterated dominance, the conditionally expected payoff from exerting effort equals15

Prob

∑
−j ̸=j

n−jγ−j = 0

 · (v − cij) +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

Prob (n−jγ−j ≥ 1) ·
(

v

k + 1
− cij

)
=

= 2−
∑

−j ̸=j n−j (v − cij) +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)( v

k + 1
− cij

)
,

while the conditionally expected payoff from not exerting effort equals

Prob

 M∑
j=1

njγj = 0

 · v

M
+ Prob (njγj ≥ 1) · Prob

∑
−j ̸=j

n−jγ−j = 0

 · v+

+ Prob (njγj ≥ 1) ·
M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

Prob (n−jγ−j) ·
v

k + 1

= 2−nj+1−
∑

−j ̸=j n−j · v

M
+ 2−

∑
−j ̸=j n−j

(
1− 21−nj

)
· v+

+
(
1− 21−nj

)M−1∑
k=1

v
∑

−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
.

Hence, by equating the two conditionally expected payoffs we obtain the cutoff value c∗ij = A/B, as above.

The cutoff c∗ij = (Bv)/A is the unique threshold that can be established from the lower dominance regions by

iterated deletion of strictly dominated strategies, since it is the unique value for cij equating the conditionally

expected payoff from exerting effort and the conditionally expected payoff from not exerting effort.

The same kind of reasoning can be carried out for small observations of c, since it does exist a lower

dominance region. Again, let us assume ε< − c
2 and suppose player ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M}

observes cij < 0. Then, ij’s conditionally expected payoff from exerting effort, that is choosing xij = 1, is
positive and greater than the one from exerting no effort, that is choosing xij = 0. Accordingly, xij = 1 is

a conditionally strictly dominant action for player ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M} whenever she observes

cij < 0. Iterating this dominance argument, if players −ij ∈
⋃M

q=1

⋃nq

l=1{lq} − {ij} are forced to play

x−ij = 1 whenever they observe c−ij < 0, then player ij, observing cij = 0 has to assign at least probability(
1
2

)−1+
∑M

j=1 nj
to
∑

−i ̸=i x−ij +
∑

−j ̸=j

∑
i xi−j = N − 1. Thus, ij’s conditionally expected payoff from

exerting effort, that is choosing xij = 1, will be at least

2−
∑

−j ̸=j n−j (v − 0) +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)( v

k + 1
− 0

)
,

so that xij = 0 can be discarded by iterated dominance for cij = 0, since the conditionally expected payoff

from not exerting effort equals

2−nj+1−
∑

−j ̸=j n−j · v
M

+2−
∑

−j ̸=j n−j
(
1− 21−nj

)
·v+

(
1− 21−nj

)M−1∑
k=1

v
∑

−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
.

Note that we imposed by assumption that 0 < ε <
∣∣ c
2

∣∣, so that cij − 2ε > c for cij = 0 . Let c∗∗ij be the

smallest observation such that xij = 0 cannot be excluded by iterated dominance. Then, it is possible to show

15Due the auction-type contest success function and the presence of M ≥ 2 groups, we have to consider the possibility
of a tie with up to M − 1 groups.
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that c∗∗ij = (Bv)/A, where

A = 2−
∑

−j ̸=j n−j +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)
,

B = 21−nj−
∑

−j ̸=j n−j

(
1− 1

M

)
+ 21−nj

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
.

As a matter of fact, the conditionally expected payoff from exerting effort equals 16

Prob

∑
−j ̸=j

n−jγ−j = 0

 · (v − cij) +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

Prob (n−jγ−j ≥ 1) ·
(

v

k + 1
− cij

)
=

= 2−
∑

−j ̸=j n−j (v − cij) +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)( v

k + 1
− cij

)
,

while the conditionally expected payoff from not exerting effort equals

Prob

 M∑
j=1

njγj = 0

 · v

M
+ Prob (njγj ≥ 1) · Prob

∑
−j ̸=j

n−jγ−j = 0

 · v+

+ Prob (njγj ≥ 1) ·
M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

Prob (n−jγ−j) ·
v

k + 1

= 2−nj+1−
∑

−j ̸=j n−j · v

M
+ 2−

∑
−j ̸=j n−j

(
1− 21−nj

)
· v+

+
(
1− 21−nj

)M−1∑
k=1

v
∑

−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
.

Hence, by equating the two conditionally expected payoffs we obtain the cutoff value c∗∗ij = (Bv)/A, as

above. The cutoff c∗∗ij = (Bv)/A is the unique threshold that can be established from the upper dominance

regions by iterated deletion of strictly dominated strategies, since it is the unique value for cij equating the

conditionally expected payoff from exerting effort and the conditionally expected payoff from not exerting

effort.

Hence, c∗ij = c∗∗ij and there exists a unique equilibrium in switching strategies in g4 (c) such that ∀ij ∈
{1, . . . , nj} and ∀j ∈ {1, . . . ,M}:

x∗
ij (cij) =

{
1 if cij < c∗j
0 if cij ≥ c∗j .

where c∗j = Bv
A , with

A = 2−
∑

−j ̸=j n−j +

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J

(
1− 2−n−j

)
,

B = 21−nj−
∑

−j ̸=j n−j

(
1− 1

M

)
+ 21−nj

M−1∑
k=1

∑
−J∈Qk

∏
−j∈−J (1− 2−n−j )

k + 1
.

16Due the auction-type contest success function and the presence of M ≥ 2 groups, we have to consider the possibility
of a tie with up to M − 1 groups.
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■

10.13 Proof of Proposition 13

Under the uniform information structure of g1 (v) and g3 (v), as the noise ε tends to zero,it holds for any ij:

lim
ε→0

Prob [V−ij < vij |vij ] = lim
ε→0

Prob [V−ij > vij |vij ] = lim
ε→0

vij − vij + 2ε

vij + 2ε− vij + 2ε
=

1

2
.

Then, iterated deletion of conditionally/interim strictly-dominated strategies follows until the threshold ob-

tained in g1 (v) and g3 (v), as proved for propositions 5 and 11.

On the other hand, under the uniform information structure of g2 (c) and g4 (c), as the noise ε tends to

zero,it holds for any ij:

lim
ε→0

Prob [C−ij < cij |cij ] = lim
ε→0

Prob [C−ij > cij |cij ] = lim
ε→0

cij − cij + 2ε

cij + 2ε− cij + 2ε
=

1

2
.

Then, iterated deletion of conditionally/interim strictly-dominated strategies follows until the threshold ob-

tained in g1 (v) and g3 (v), as proved for propositions 6 and 12.

■

10.14 Proof of Proposition 14

We first consider incomplete information about the prize, as follows:

• let V be a random variable which is uniformly distributed on R ;

• each player ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M} , with M ≥ 2, idiosyncratically observes the realization

of a random variable Vij = V + εEij , where Eij are independent and symmetric random variables

with mean zero and variance one and ε > 0 is a scale parameter, so that players’ observation errors are

independent.

• Then, the prior distribution for V is the uniform improper, so that f(V ) ∝ 1, that is it is constant over
R .

• Moreover, the likelihood distribution is

f (Vij = vij |V ) = f

(
Eij =

vij − V

ε

)
.

Note that the likelihood function is maximized for V = vij , since Eij is symmetric around 0.

• Using Bayes’ rule, the posterior for V given vij , is proportional to the likelihood

f (V |vij) ∝ f (Vij = vij |V ) · f (V ) .

Since f (V ) ∝ 1, this simplifies to

f (V |vij) ∝ f

(
Eij =

vij − V

ε

)
.

The posterior is symetric around V = vij , so that

E [V |vij ] = vij .
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• Accordingly, to evaluate the conditional distribution of V−ij |vij , we can write V−ij = V + εE−ij as

V−ij = (vij − εEij) + εE−ij = vij + ε (E−ij − Eij) .

Conditional on vij , the term E−ij − Eij is symmetric around 0, since E−ij and Eij are symmetric

independent random variables, so that f (V−ij |vij) is symmetric around vij .

• It follows,

Prob (V−ij < vij |vij) = Prob (V−ij > vij |vij) =
1

2
.

• Clearly, Prob [Vi−j < vij |vij ] = Prob [Vi−j > vij |vij ] = 1
2 ∀i ∈ {1, . . . , n−j} and ∀ − j ̸= j .

• Iterated deletion of conditionally/interim strictly-dominated strategies follows until the threshold ob-

tained in g1 (v) and g3 (v), as proved for propositions 5 and 11.

We then consider incomplete information about the cost of effort, as follows:

• let C be a random variable which is uniformly distributed on R ;

• each player ij ∈ {1, . . . , nj} ∀j ∈ {1, . . . ,M}, with M ≥ 2, idiosyncratically observes the realization

of a random variable Cij = C + εEij , where Eij are independent and symmetric random variables

with mean zero and variance one and ε > 0 is a scale parameter, so that players’ observation errors are

independent.

• Then, the prior distribution for C is the uniform improper, so that f(C) ∝ 1, that is it is constant over
R .

• Moreover, the likelihood distribution is

f (Cij = cij |C) = f

(
Eij =

cij − C

ε

)
.

Note that the likelihood function is maximized for C = cij , since Eij is symmetric around 0.

• Using Bayes’ rule, the posterior for C given cij , is proportional to the likelihood

f (C|cij) ∝ f (Cij = cij |C) · f (C) .

Since f (C) ∝ 1, this simplifies to

f (C|cij) ∝ f

(
Eij =

cij − C

ε

)
.

The posterior is symetric around C = cij , so that

E [C|cij ] = cij .

• Accordingly, to evaluate the conditional distribution of C−ij |cij , we can write C−ij = C + εE−ij as

C−ij = (cij − εEij) + εE−ij = cij + ε (E−ij − Eij) .

Conditional on cij , the term E−ij − Eij is symmetric around 0, since E−ij and Eij are symmetric

independent random variables, so that f (C−ij |cij) is symmetric around cij .
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• It follows,

Prob (C−ij < cij |cij) = Prob (C−ij > cij |cij) =
1

2
.

• Clearly, Prob [Ci−j < cij |cij ] = Prob [Ci−j > cij |cij ] = 1
2 ∀i ∈ {1, . . . , n−j} and ∀ − j ̸= j .

• Iterated deletion of conditionally/interim strictly-dominated strategies follows until the threshold ob-

tained in g2 (c) and g4 (c), as proved for propositions 6 and 12.

■
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