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Abstract

In an era of increasing computational capabilities and growing environmental consciousness, or-

ganizations face a critical challenge in balancing the accuracy of their forecasting models with

computational efficiency and sustainability. Global forecasting models, which leverage data across

multiple time series to improve prediction accuracy, lowering the computational time, have gained

significant attention over the years. However, the common practice of retraining these models

with new observations raises important questions about the costs of producing forecasts. Using

ten different machine learning and deep learning models, we analyzed various retraining scenarios,

ranging from continuous updates to no retraining at all, across two large retail datasets. We

showed that less frequent retraining strategies can maintain the forecast accuracy while reducing

the computational costs, providing a more sustainable approach to large-scale forecasting. We

also found that machine learning models are a marginally better choice to reduce the costs of

forecasting when coupled with less frequent model retraining strategies as the frequency of the

data increases. Our findings challenge the conventional belief that frequent retraining is essential

for maintaining forecasting accuracy. Instead, periodic retraining offers a good balance between

predictive performance and efficiency, both in the case of point and probabilistic forecasting. These

insights provide actionable guidelines for organizations seeking to optimize forecasting pipelines

while reducing costs and energy consumption.
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1. Introduction

Forecasting plays a critical role in decision-making processes across industries, from supply

chain management to energy demand planning. Traditionally, time series forecasting has relied on

a Local Modeling approach (LM), meaning that separate models 1 are trained for each series in

isolation. However, recent advances have demonstrated the potential of Global forecasting Models

(GM), a paradigm also known as cross-learning, which in turn consists of fitting a single forecasting

model on the whole data set (Januschowski, Gasthaus, Wang, Salinas, Flunkert, Bohlke-Schneider

& Callot, 2020). This novel approach allows to leverage information across multiple time series to

improve accuracy and generalization by employing machine learning or deep learning architectures 2 .

Global modeling has affirmed itself as one of the most relevant innovations in time series forecasting

of recent years (Semenoglou, Spiliotis, Makridakis & Assimakopoulos, 2021), and its success is

not only due to the demonstrated forecast accuracy in most time series competitions, but also to

the particular computational benefit it provides. Indeed, while the local approach to time series

forecasting is potentially beneficial for forecast accuracy, it comes with substantial computational

overhead. Moreover, since the forecasts are usually produced through some cloud computing service

that relies on pay-as-you-go pricing (Fotios Petropoulos & Spiliotis, 2024), higher computing time

and resources directly translate into higher costs of forecasting for organizations.

The retail industry particularly exemplifies the complexity of modern forecasting challenges.

Retailers must predict demand for thousands or even millions of products across hundreds of stores

while accounting for seasonality, promotions, pricing strategies, and external factors such as weather

and local events. Accurate demand forecasts directly impact inventory decisions: overestimation

leads to excess inventory and waste, particularly critical for perishable goods, while underestimation

results in stockouts and direct money loss for companies (Fildes, Ma & Kolassa, 2022). Traditional

approaches involving separate models for each product-store combination have proven increasingly

inadequate, especially in contexts where the number of series (SKUs) to forecast is high, leading to

the adoption of global forecasting models that can learn patterns across the entire product hierarchy

1We use the words model and method interchangeably even if the two have distinct statistical meanings (Svetunkov

& Boylan, 2023).
2We distinguish between traditional machine learning models, like linear regression or tree-based methods, and

deep learning models, those that are based on some sort of neural network architecture.
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and can drastically reduce the costs of producing forecasts 3 .

Nevertheless, despite the growing adoption of global models, it is still common practice to update

the forecasting models when new observations are available, often motivated by the assumption that

continuous updates lead to better adaptability to changing patterns and more accurate predictions.

Unlike local models, global models benefit from learning shared dynamics across multiple time series,

potentially leading to more robust representations that are less sensitive to frequent retraining.

In the context of local models, Spiliotis & Petropoulos (2024) demonstrated that less frequent

model updates do not harm forecasting accuracy. However, in the context of global models, the

effects of retraining are not well understood. Is continuous retraining necessary to maintain forecast

performance, or can global models remain effective without frequent updates? This aspect remains

largely unexplored in the forecasting literature and investigating the impact of retraining is crucial

for both methodological and practical reasons. From a methodological perspective, understanding

whether global models degrade in performance without frequent retraining provides insights into

their stability and adaptability. If global models can maintain strong predictive accuracy with

less frequent updates, it would challenge conventional wisdom on the necessity of continuous

retraining in forecasting. Moreover, from a practical perspective, frequent retraining has significant

computational and environmental costs. Training large-scale forecasting models requires substantial

computational power, contributing to energy consumption and carbon emissions (Schwartz, Dodge,

Smith & Etzioni, 2020). Indeed, the energy consumption of model training extends beyond direct

computational costs. In recent years, the environmental impact of machine learning models has

become a growing concern. Data centers running these models contribute significantly to global

carbon emissions, with estimates suggesting that training a single large deep learning model can

emit as much carbon as five cars over their lifetimes Strubell, Ganesh & McCallum (2019). The

frequency of model retraining multiplies this impact, particularly in large organizations handling

millions of series, emphasizing the need for more computationally efficient training practices. The

implication is straightforward: reducing the retraining frequency of forecasting models could

contribute substantially to sustainability by lowering energy consumption, possibly without harming

accuracy performance.

3Most of the cost of producing forecasts is due to the algorithm’s training time. The global modeling approach

cuts it by training the model only once on the whole data set.
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1.1. Research Question

We aim to address the question ”Is frequent retraining necessary in the context of global

forecasting models?”. Specifically, we study whether skipping retraining when new observations

are available harms the forecasting performance of global models. To answer this question, we

use the two most recent and comprehensive retail forecasting datasets, namely the M5 and the

VN1 competitions’ data. Moreover, we also aggregate these two time series data sets to be able to

further investigate the research question across different frequencies.

To generally understand how retraining the forecasting models affects their performances, we

consider ten different global forecasting methods (five from the ”classical” machine learning domain

and five often used deep neural network architectures), and several possible retraining scenarios,

from continuous retraining to no retraining at all. We also explore intermediate periodic retraining

strategies to broadly cover the most reasonable and effective scenarios.

We also focus on the investigation of trade-offs between accuracy and sustainability, in terms of

the computational cost of resources, to produce the forecasts. This cost is indeed significant for

large-scale applications, like the retail industry, and being able to reduce (or control) it somehow

may result in direct and significant business savings.

1.2. Contributions

Our contribution is threefold:

• We provide the first comprehensive study of the relationship between retraining frequency

and forecast accuracy using 10 different global models, a diverse set of real-world datasets,

and focusing on both point and probabilistic forecasting.

• We compare different retraining scenarios (e.g., continuous, periodic, and no retraining) on

different datasets to quantify the impact of frequent retraining in terms of cost of forecasting.

• We present practical guidelines for organizations and practitioners on when and how often to

retrain global forecasting models to balance accuracy and cost.

By addressing these points, this paper contributes to both the forecasting and machine learning

communities, offering insights into the trade-offs between accuracy, efficiency, and sustainability in

global forecasting models.
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1.3. Overview

The rest of this paper is organized as follows. After a brief review of related works (Section 2),

in Section 3 we describe the design of the experiment used in our study. The datasets and their

characteristics are presented in 3.1, the methods adopted for global forecasting are discussed in 3.2,

and the concepts related to model update and retrain scenario are explained in 3.3. The evaluation

setup through rolling origin validation is presented in 3.4, and the metrics used to evaluate the

model performances are shown in 3.5. In Section 4 we discuss the empirical findings of our study,

including forecast accuracy, computing time, and cost analysis of the different scenarios. Finally,

Section 5 contains our summary and conclusions.

2. Related works

The literature on cross-learning approach has evolved significantly in recent years. Nowadays,

most of the works related to time series forecasting include at least some benchmark comparison

with global models, demonstrating their relevance in the field. Semenoglou et al. (2021) extensively

showed their accuracy on the M4 competition dataset, Hewamalage, Bergmeir & Bandara (2022)

evaluated the conditions when global forecasting models are competitive, and Montero-Manso &

Hyndman (2021) and (Montero-Manso, 2023) theoretically demonstrated that GM are at least

as accurate as local models with less complexity and without any assumption on the similarity

of the data. GM emerged as the most accurate approach in many forecasting areas, such as gas

consumption (Gawe l & Paliński, 2024), electricity demand (Buonanno, Caliano, Pontecorvo, Sforza,

Valenti & Graditi, 2022), water demand (Groß & Hans, 2024), crop production (Ibañez & Monterola,

2023), and retail demand (Spiliotis, Makridakis, Semenoglou & Assimakopoulos (2022), Bandara,

Shi, Bergmeir, Hewamalage, Tran & Seaman (2019), Juan R Trapero & Fildes (2015)). Moreover,

GM effectiveness shined during the M5 competition (Makridakis, Spiliotis & Assimakopoulos,

2022a), where tree-based models leveraging cross-learning were among almost all the top forecasting

solutions (Januschowski, Wang, Torkkola, Erkkilä, Hasson & Gasthaus, 2022). Several techniques

like clustering (Godahewa, Bandara, Webb, Smyl & Bergmeir (2021a), Bandara, Bergmeir & Smyl

(2020)), and data augmentation (Bandara, Hewamalage, Liu, Kang & Bergmeir, 2021) have been

tested to further increase the performances of GM. Furthermore, new machine learning (Godahewa,

Webb, Schmidt & Bergmeir, 2023) and deep learning (Oreshkin, Carpov, Chapados & Bengio, 2020)
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architectures specifically designed for cross-learning have been developed. Finally, a novel area of

research is emerging that tries to improve the ability of GM to capture local patterns (Sen, Yu &

Dhillon, 2019), and their explainability (Rajapaksha, Bergmeir & Hyndman, 2023).

From a forecasting evaluation perspective, most of the literature on GM is focused on point

prediction accuracy, possibly because most machine learning and deep learning methods do not

directly output probabilistic forecasts (Makridakis, Spiliotis, Assimakopoulos, Chen, Gaba, Tsetlin &

Winkler, 2022c). Nevertheless, in many forecasting contexts (like supply chain) it is very important

to be able to produce and evaluate predictions in a probabilistic way (being intervals, quantiles or

density based) (Fildes et al., 2022). Among others, Vovk, Gammerman & Shafer (2005) introduced

a novel tool for uncertainty quantification under any machine learning model, namely Conformal

Inference, that can also be applied in time series forecasting experiments (Stankeviciute, M. Alaa &

van der Schaar, 2021).

In the context of model retraining and updating strategies, instead, Spiliotis & Petropoulos

(2024) is the main only work related to time series forecasting. The authors explored extensively

the effects of different retraining scenarios and different forms of model parameter updates on the

model performance, although, they focused on the exponential smoothing family of models following

the traditional local approach. (Huber & Stuckenschmidt, 2020) briefly discussed retraining in

the context of retail demand, but with few models and retraining scenarios, and on a proprietary

daily dataset only. Despite the findings being promising, there has been little direct exploration

of whether global models specifically require frequent retraining or if they can retain competitive

accuracy with less frequent updates. However, this topic is under consideration of the broader

machine learning community (Getzner, Charpentier & Günnemann, 2023), advocating for Green AI

(Schwartz et al., 2020).

Our study builds upon these existing works, directly investigating the necessity of retraining

in global forecasting models. By evaluating many different retraining strategies and their impact

on the forecast accuracy of several global models, we aim to provide both theoretical insights and

practical recommendations for sustainable forecasting practices.
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3. Experimental design

This section describes the empirical analysis we conducted to study whether less frequent

retraining scenarios may produce similar accuracy results concerning the baseline scenario (that

with the highest retraining frequency). First, we describe the datasets used in the experiments, and

then explain the different machine learning and deep learning models adopted. The performance

measures, the several possible scenarios, and the strategy used to evaluate the forecasts are also

discussed.

3.1. Datasets

For the experiment, we used two retail forecasting datasets: the M5 and the VN1 competition

datasets. The M5 competition was organized by Spyros Makridakis and his colleagues as part of the

M-competitions series, which aimed to compare different forecasting methods in the context of retail

demand (Makridakis, Spiliotis & Assimakopoulos, 2022b). The M5 (Howard & Makridakis, 2020) is

a well-known and well-studied dataset containing 3.049 daily time series of Walmart’s unit sales of

products. It covers the sales of three categories of products (Food, Hobbies, and Household) sold into

ten different stores located in three US states (California, Texas, and Wisconsin). The time period

spans from 2011 until 2016. The time series are highly intermittent and are hierarchically organized,

allowing forecasting at multiple levels such as individual products, product categories, stores,

and States. Exogenous information that can influence sales, such as product prices, promotions,

and special events (e.g., holidays) are also available. The VN1 Forecasting - Accuracy Challenge

competition was jointly organized by Flieber, Syrup Tech, and SupChains in October 2024, and

it is the first of its series (Vandeput, 2024). The dataset contains weekly sales of 15.053 products

sold from 2020 until 2024 from e-vendors. In particular, they were mostly online from the US, and

the products were directly sold to the final consumers. Contrary to the M5 dataset, where all the

products were sold by a single retailer (Walmart) and from just a few stores, the VN1 dataset

includes product sales of 328 warehouses from 46 different retailers. As far as we know, we are

among the first to test forecasting models on this data. These sets of data are the most recent and

comprehensive time series datasets related to retail demand, allowing for a good generalization of

the results in the context of demand forecasting.

In both cases, in our experiment, we focused on the most disaggregated level (SKUs), since

the potential benefits of retraining the models less frequently are much larger at lower levels of
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Table 1: Characteristics of the different datasets used in the experiments.

Dataset Frequency N. Series Min Obs per Series

M5 Daily (7) 28.298 730

VN1 Weekly (52) 15.053 157

aggregation. Moreover, we did not consider the whole set of time series to be able to consistently

apply the evaluation setup described in Sections 3.4. In particular, for daily data, we kept only

time series with at least two years of data (730 observations), while weekly and monthly SKUs we

considered only those that had at least three years of data (157 and 36 observations respectively).

3.2. Forecasting models

In this section, we provide an overview of the global models employed for our experiments.

Let define Y as the set of all available time series in a dataset, such that Yi represents a single

component, and let F be the set of possible predictive functions, so that F corresponds to a single

model 4 . Without loss of generality, we can assume that all the necessary information for prediction

are contained in Y. Under the local approach, predictions for the forecast horizon h are obtained

training a model for each time series in the data set, implying that each time series has its own

model, defined by its own parameters’ values.

Y h
i = F (Yi, θi). (1)

On the contrary, following the global modeling framework, forecasts for are each time series are

produced by a model trained on the whole data set.

Y h
i = Fk(Y,Θ). (2)

Notice how in the cross-learning methodology, the parameters Θ are not series-specific, but are

common to all time series.

4In our setting, F can be any predictive model in the machine learning or deep learning framework. We do not

consider classical statistical forecasting methods, like ARIMA or Exponential Smoothing, since in their common

formulations they are purely local models.
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In our experiment, we focused on analyzing the performances of global methods only since we

are mainly interested in testing whether this approach, as opposed to the local one, can benefit from

retraining the models less frequently. Indeed, nowadays cross-learning is the go-to approach for

most industries that are involved with huge time series datasets, as in the context of retail demand

forecasting, where the forecasts of many different SKUs have to be provided regularly (Januschowski

et al., 2020). For a comprehensive evaluation of global modeling approaches in demand forecasting

we used both traditional machine learning models and cutting-edge deep learning methodologies.

The models were selected for their established performance in time series forecasting tasks and their

diverse methodological approaches, enabling a wide comparison.

All the global models were trained using Python under Nixtla’s framework (Nixtla, 2022). The

mlforecast and the neuralforecast libraries were used to train machine learning and deep learning

models efficiently.

3.2.1. Machine learning models

Machine learning models have demonstrated their effectiveness in forecasting tasks due to their

ability to capture non-linear relationships in the data. Moreover, they are often easy to train and

usually produce very accurate results leveraging the cross-learning approach. In this study, we

experimented with Linear (Pooled) Regression and four different tree-based methods.

Linear Regression (LR) is a classical statistical model that assumes a linear relationship

between input features and the target variable. Despite its simplicity, LR can be effective for time

series forecasting when combined with appropriate feature engineering. The Pooled Regression

is considered a solid benchmark for global model performance evaluation ((Montero-Manso &

Hyndman, 2021), (Godahewa, Bergmeir, Webb, Hyndman & Montero-Manso, 2021b)), and it has

also proven to be quite effective (Bandara, Hewamalage, Godahewa & Gamakumara, 2022).

Random Forest (RF) is an ensemble learning method based on regression trees. It constructs

multiple trees during training and aggregates their predictions through averaging. RF excels in

capturing non-linear patterns and interactions between variables and it is robust to overfitting

making it a strong tree-based model for demand forecasting (Breiman, 2001). It was the method

used by Amazon until 2015 to forecast e-commerce products demand (Januschowski et al., 2022) 5.

5For the cost of computation, the Random Forest model is tested only on the VN1 weekly dataset.
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Extreme Gradient Boosting (XGBoost) is a gradient-boosted decision tree algorithm designed

for speed and performance. Iteratively optimizing an objective function combines weak learners’

predictions to form a solid predictive model (Chen & Guestrin, 2016). XGBoost incorporates

regularization techniques to prevent overfitting, making it particularly effective for datasets with

complex relationships (Shwartz-Ziv & Armon, 2022).

Light Gradient Boosting Machine (LGBM) is another gradient-boosted tree algorithm that

emphasizes efficiency and scalability. It uses a histogram-based approach to split features and a

leaf-wise growth strategy to reduce computation time. LGBM is particularly well-suited for large

datasets and high-dimensional data, often outperforming other boosting algorithms in terms of

speed and accuracy (Ke, Meng, Finley, Wang, Chen, Ma, Ye & Liu, 2017). In demand forecasting,

it is among the top solutions of all the major competitions (Favorita, Rossmann, M5, and VN1)

(Makridakis et al. (2022a), Makridakis et al. (2022c), In & Jung (2022), Lainder & Wolfinger

(2022)).

Categorical Boosting (CatBoost) is a gradient-boosted decision tree algorithm specifically de-

signed to handle categorical data. By leveraging ordered boosting and other innovations it fosters

accuracy and enhances generalization (Prokhorenkova, Gusev, Vorobev, Dorogush & Gulin, 2018).

CatBoost’s ability to handle categorical features without extensive preprocessing makes it advanta-

geous for forecasting tasks involving categorical covariates. During the last years, it consistently

showed top performance on many tabular data studies, becoming the go-to solution for many

practitioners in the field (Shmuel, Glickman & Lazebnik (2024), Ye, Liu, Cai, Zhou & Zhan (2025)).

Machine learning models have the advantage of being easier to train with respect to their deep

learning alternatives. However, they require extensive and careful feature engineering to produce

accurate results (Januschowski et al., 2022). For this reason, we followed simplified versions of

the M5 and VN1 top solutions to build time series features. In particular, we used lags, rolling

averages, expanding averages, calendar features (year, quarter, month, week, day of week, day) and

static features (store, category, location, product identifiers) based on the frequency of the dataset.

Moreover, for the M5 data, we used also external features related to special events since available.

The most relevant hyperparameters of the models were selected based on top performant solutions,

otherwise the default values suggested by the software provider were adopted.
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3.2.2. Deep learning models

Deep learning models have gained prominence in time series forecasting due to their capacity to

model longer-term dependencies in the data and to easily learn hierarchical representations from

raw data (Goodfellow, Bengio & Courville, 2016). In our experiment, we employed five different

neural network architectures, two well-known methods and three state-of-the-art models.

Multi-Layer Perceptron (MLP) is a feedforward neural network consisting of an input layer, one

or more hidden layers, and an output layer. Each layer applies a non-linear activation function

to capture complex relationships in the data (Rosenblatt, 1958). MLPs are a versatile and very

efficient solution. For this reason, many deep learning models specifically created for time series

forecasting are MLP-based.

Recurrent Neural Networks (RNN) are designed to model sequential data by maintaining a

hidden state that captures temporal dependencies. Standard RNNs, however, suffer from vanishing

gradient problems, limiting their ability to learn long-term dependencies (Cho, van Merriënboer,

Gulcehre, Bahdanau, Bougares, Schwenk & Bengio, 2014). Variants such as Long Short-Term

Memory (LSTM) networks and Gated Recurrent Units (GRUs) address this limitation and are

widely used for time series forecasting (Hochreiter & Schmidhuber, 1997) 6.

For a long time in deep learning, sequence modeling was synonymous with recurrent networks,

yet several papers have shown that simple convolutional architectures can outperform canonical

recurrent networks like LSTMs by demonstrating longer effective memory. Temporal Convolutional

Networks (TCN) are convolutional architectures tailored for sequential data that, by employing

causal convolutions and dilations, capture long-range dependencies (Van den Oord, Dieleman, Zen,

Simonyan, Vinyals, Graves, Kalchbrenner, Senior & Kavukcuoglu, 2016).

Neural Basis Expansion Analysis for Time Series (NBEATS) is a deep learning model specifically

designed for time series forecasting. It employs a sequence of fully connected layers organized

into blocks. Each block outputs both trend and seasonal components, enabling the model to

decompose and predict time series effectively. The network has an interpretable configuration

that sequentially projects the signal into polynomials and harmonic basis to learn trend and

seasonality components(Oreshkin et al., 2020). The Neural Basis Expansion Analysis with Exogenous

6In our work, we used only the LSTM version but, for the cost of computation, it was trained only on the VN1

weekly dataset.
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(NBEATSx), allows for the inclusion of exogenous temporal variables available at the time of the

prediction (Olivares, Challu, Marcjasz, Weron & Dubrawski, 2023). This method has shown

state-of-the-art performance on several benchmark datasets and competitions (Anderer & Li, 2022).

Neural Hierarchical Interpolation for Time Series (NHITS) builds upon the success of NBEATS

by incorporating hierarchical interpolation mechanisms to better capture time-hierarchies in time

series data. Multi-rate input pooling, hierarchical interpolation, and backcast residual connections

together induce the specialization of the additive predictions in different signal bands, reducing

memory and computational time, thus improving the architecture’s parsimony and accuracy (Challu,

Olivares, Oreshkin, Garza, Mergenthaler-Canseco & Dubrawski, 2022).

Deep learning models typically do not require the extensive feature engineering step needed by

their machine learning counterpart, since they create such features (like lags and rolling averages)

internally. Nevertheless, they usually are more difficult to train since they have much more

hyperparameters to select affecting the forecasting performance (Smyl, 2020). We trained the global

deep learning models by adding static, calendar, and external features only, and relying on top

competitions’ solutions to set the hyperparameters’ values.

3.3. Retrain scenarios

To answer our research question we explored several possible retraining scenarios. A retrain

scenario or retrain window, r, is identified as a positive integer representing the frequency at which

the model is re-trained or updated. Essentially, it represents how many data points need to be

passed before a new training step is performed. The retrain scenarios strongly depend on the

frequency of the dataset considered because the frequency drives both the forecast horizon and

the business review periods. Therefore, we defined different set of retrain scenarios based on the

frequencies of our datasets:

• for weekly data, r = {1, 2, 3, 4, 6, 8, 10, 13, 26, 52}

• for daily data, r = {7, 14, 21, 30, 60, 90, 120, 150, 180, 364}

For instance, in the case of daily data, r = 7 implies that the model is retrained every 7 new

observations come in, that is, every week. Each set contains ten different values, being as exhaustive

and computationally feasible as possible.
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Note that we are training global models, hence the training data set is composed by the

training set of each time series in the dataset. Since the datasets we considered are all aligned, this

implies that, at every retrain period, we fit the model on a new training data set containing r new

observations for each time series (where r is the chosen retrain scenario). Moreover, note also that

we are considering only two different forms of model update: a model can either be completely

updated when retraining is performed, or used as is to produce forecasts for r subsequent periods.

Therefore, we are not examining the effect of hyperparameter tuning within each retrain scenario,

given the expensive computational cost of this process and minor changes are expected.

Table 2: The retraining scenarios associated with each dataset. The test windows and the forecasting horizons are

chosen based on the frequency of the dataset.

Dataset Frequency Retraining Scenarios (r) Test Window (T) Horizon (h)

M5 Daily (7) 7, 14, 21, 30, 60, 90, 120, 150, 180, 364 364 28

VN1 Weekly (52) 1, 2, 3, 4, 6, 8, 10, 13, 26, 52 52 13

The scenario r = 1 is the so-called continuous retraining, and it is the most expensive since it

implies that the model is retrained every new observation. Theoretically, but usually also practically,

it should be the most accurate forecasting scenario, because the model used to predict has been

trained on all the available data points up to that moment. For this reason, we considered this

scenario as the benchmark both in terms of forecasting accuracy and computational cost. For daily

data only, however, the benchmark scenario is r = 7, because it is not common to retrain a global

model every day, and usually the update is performed once a week. The scenario r = T is the no

retraining scenario, meaning that the forecasting model is fitted just once on the initial training set,

then it is used to produce the forecasts for the entire test set T . It is the lowest computationally

expensive but it should also be the lowest accurate. All the other scenarios such that 1 < r < T are

considered as periodic updating strategies. Both the accuracy and the computing time should be

non-increasing functions of r.

3.4. Evaluation setup

In time series forecasting, out-of-sample testing is crucial for assessing how well a model can

generalize to unseen data. This is particularly important because patterns in historical data may
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not fully represent future trends, and unexpected changes in the data may occur (Tashman, 2000).

As suggested by Bergmeir & Beńıtez (2012), rolling origin evaluation is the most widely used

and correct method for conducting such tests, offering a systematic way to evaluate forecasting

models over multiple iterations.

The rolling origin evaluation process begins by dividing the time series into two parts: a training

set, which is used to build the model, and a test set, which is used for evaluation. The test set

always follows the training set chronologically to maintain the temporal order of the data. At each

step, the model is trained on the training set and generates forecasts for a specified number of

future points, the forecast horizon h. These forecasts are then compared to the actual values in the

test set using a chosen evaluation metric (see Section 3.5). What makes rolling origin evaluation

unique is its iterative nature. After each forecasting step, the forecast origin (the last point in

the training set) is shifted forward by a fixed number of periods, the step size. The model is then

retrained using the updated training set, which may either expand to include all available data up

to the new forecast origin or remain fixed to a specific window size. This process is repeated until

the test set is fully utilized, and the overall performance of the model is calculated by averaging the

results across all the iterations.

Compared to the fixed origin evaluation setup, that allows for a single evaluation step, the

rolling origin evaluation is preferable for its ability to provide a more comprehensive assessment of

a model’s performance under different conditions, such as varying seasonal patterns, level shifts, or

data trends. By simulating multiple forecast cycles, indeed, this method reduces the risk of bias

that can arise from evaluating a model a single time and at a single forecast origin Bergmeir &

Beńıtez (2012). This approach is beneficial in industries like retail and supply chain management,

where forecasts need to be continuously updated to reflect real-time changes. By simulating multiple

scenarios and evaluating a model’s performance across different cycles, rolling origin evaluation

provides valuable insights into the robustness and reliability of the forecasting methods adopted.

In practice, the rolling origin evaluation setup can be adjusted based on the data and forecasting

goals. For instance, the training set can be fixed to a rolling window of the most n recent observations

(fixed window), or it can expand to include the full historical data (expanding window) Bergmeir &

Beńıtez (2012). In real-life applications, most forecast practitioners use this second option, especially

when the length of the time series is small (Petropoulos & et al., 2022). In our study, we adopted
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the expanding window approach, because we are interested in simulating a forecasting experiment

as close as possible to the business reality. Moreover, it is also the only reasonable option when

dealing with short time series, like the case for the weekly VN1 datasets.

The size of the test set, the length of the forecast horizon, and the step size for shifting the

forecast origin are also customizable parameters that depend on the specific use case. Table 2

shows the parameters selected in our experiments. We set the size of the test set to cover at least

one complete year so that the evaluation of the different scenarios does not depend on intra-year

variations, such as any specific season or period of the year. We selected the forecast horizons based

on the type of business decisions that usually daily and weekly forecasts support, i.e. operational

vs strategic planning. Finally, the step size was set always equal to one to maximize the number of

evaluations of each scenario.

3.5. Performance metrics

The accuracy evaluation of point predictive models is a controversial topic in time series

forecasting: many metrics are available to capture models’ performances but no consensus has been

reached in the literature on whether one metric is better than others (Hewamalage, Ackermann &

Bergmeir, 2023). However, since we are dealing with demand forecasting at SKU-level, implying

that data intermittency is very much likely, all the metrics based on absolute or percentage errors

are not optimal since they optimize for the median (Kolassa, 2020). Moreover, being the scale

possibly different among the series, a scaled accuracy measure is preferable. For this reason, we

considered the Root Mean Squared Scaled Error (RMSSE), proposed by Hyndman & Koehler

(2006), to evaluate the point forecast accuracy of the models. The RMSSE is defined as:

RMSSE =

√√√√ 1
h

∑n+h
t=n+1(yt − ŷt)2

1
n−s

∑n
t=s+1(yt − yt−s)2

. (3)

The RMSSE measures the relative prediction accuracy of a forecasting method by comparing

the mean squared errors of the prediction and the observed value against the mean squared errors

of the seasonal naive model. This metric was the official metric used to assess the performance of

models in the M5 competition (with s = 1) Makridakis et al. (2022b), which is one of the datasets

we used in our experiments. Lower RMSSE values suggest higher model accuracy.

Our work is not limited to the evaluation of point forecasting accuracy, but we aim also to

assess the probabilistic performance of the models throughout each different retrain scenario.
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However, since the machine learning and deep learning models adopted for the experiments do

not output density (or probabilistic) predictions by default, we relied on Conformal Inference as

a general framework to build prediction intervals. Conformal Inference is a powerful tool that

allows quantification of the uncertainty associated with out-of-sample predictions simply using a

validation set on a point forecaster model to produce intervals at the desired levels (Vovk et al., 2005).

It was originally proposed for non-temporal data, because the data exchangeability assumption,

nevertheless in recent years it has been extended to be used also in the context of time series

data (Stankeviciute et al., 2021). In particular, given its guaranteed coverage, distribution-free,

model-agnostic, computational efficiency, and low dataset size requirements, Conformal Inference

is likely the only tool available to evaluate the uncertainty in a global forecasting setting where

different models are compared among several datasets and scenarios.

Once the prediction intervals are obtained, we used the Multi-Quantile Loss to comprehensively

measure the goodness of the probabilistic predictions. The Quantile Loss (also known as Pinball

Loss) and the Multi-Quantile Loss are defined as:

QL =
1

h

n+h∑
t=n+1

(q · (yt − ŷt) · Iyt≥ŷt + (1 − q) · (ŷt − yt) · Iyt<ŷt) , (4)

MQL =
1

Q
∑
q∈Q

QL(q). (5)

The QL, being a proper scoring rule, allows for the correct evaluation of the probabilistic forecasts

(Kolassa, 2016). Moreover, the (Weighted) MQL was the official metric used to evaluate the overall

performance of the forecasting methods during the M5 Uncertainty competition (Makridakis et al.,

2022c).

Note that we considered the median and 6 central prediction intervals, namely 60%, 70%, 80%,

90%, 95% and 99%, for a total of 13 different quantiles. The median and the 60% and 70% central

prediction intervals provide a good description of the center of the forecast distribution, while the

90%, 95%, and 99% give information about its tails that, in retail demand forecasting problems are

fundamental to determine the appropriate safety stock levels (Barrow & Kourentzes, 2016). These

quantiles provide sufficient information about the uncertainty of the forecasts and allow for the

effective description of the whole distribution.

Note also that we computed conformal prediction intervals on a validation set at least twice as

long as the forecast horizon. This was the main reason that forced us to reduce the number of time
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series for weekly and monthly datasets, that is to be able to obtain a reliable estimate of the model

uncertainty through prediction intervals.

Finally, we addressed the problem of evaluating the cost associated to producing the forecasts by

calculating the Computing Time (CT). CT is defined as the time in seconds required for training and

predicting the next h time steps ahead with the model. Among the possible measures of complexity,

such as the number of parameters, number of iterations, model’s depth, etc, CT is the most directly

related to the monetary cost of forecasting since the forecasts are usually produced through some

sort of cloud computing service that relies on pay-as-you-go fares (Spiliotis & Petropoulos, 2024).

Hence, CT is analyzed for each forecasting model and retrain scenario combination. Lower CT

values imply lower forecasting costs.

Note that we related each evaluation metric result to the baseline retraining scenario, depending

on the frequency of the dataset, to be able to easily compare the performance among different

models and retrain windows. Furthermore, to statistically verify our research question we tested

the scenario’s results using the Friedman-Nemenyi test for multiple comparisons (Demšar, 2006).

For the experiments, we used a cloud computing machine NC6s v3 hosted on Microsoft Azure,

with Linux Ubuntu 24 operating system, 1 Graphical Processing Unit, 6 Computing Processing

Units, 112GB of memory. Parallelization and GPUs were used whenever possible within the model

libraries. The utilsforecast library was used to evaluate the model performance.

4. Results and discussion

In general, the models tested performed better, in absolute terms, on the M5 dataset compared

to the VN1 (see the RMSSE and MQL tables in the supplementary materials of the article) 7.

This may be due to different factors like the dataset size, the frequency of the time series, the

availability of external regressors to account for promotions, events, etc, and the absence of reference

hyperparameter values to use during the training process.

Figure 1 shows the forecast accuracy of each model along the different retraining scenarios for

the M5 and the VN1 datasets. To simplify comparisons, for each dataset we report the results in

7Results are obtained by averaging over the whole dataset after trimming almost 0.5% of the time series at the

extremes of the distribution of each metric. This is a standard practice, since those time series that exhibit completely

out-of-scale values of the evaluation metric should be modeled separately.
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relative terms with respect to the corresponding baseline scenario, that is r = 7 for M5 and r = 1

for VN1. With the only exception of the CatBoost model, the RMSSE profiles are very stable over

the retraining frequencies. Indeed, the accuracy remains practically the same in the M5 dataset

and even improves in the VN1 dataset, regardless of the retraining scenario considered. Especially

for low periodic retraining scenarios, the performances of most global models are indistinguishable

from the baseline, and even if some deterioration is present for higher retraining frequencies, this is

less than 5% also for the no retraining setup. These results imply that less frequent retraining does

not harm the point forecast accuracy of global models. This can be explained by the fact that, if

the data remains stable without significant trends or concept drifts, as is the case for both the M5

and VN1 datasets, the forecasts will accurately track demand over extended periods.

Figure 2 statistically confirms the above results for the M5 dataset 8. It is clear that the

retraining scenarios are not statistically different in terms of point forecast accuracy at the 5% level.

Indeed, even though the mean rank of the continuous retraining scenario is lower, the intervals

intersect with the other scenarios, hence we can not differentiate between them. For the VN1

dataset (see supplementary materials), less frequent retrainings are even statistically significant,

meaning that periodic retraining does improve accuracy over continuous retraining.

In a similar fashion to Figure 1, Figure 3 summarizes the relative accuracy in a probabilistic

forecasting setting, as defined in 3.5. In this context, we observe that for the M5 dataset the accuracy

(as measured by Multi Quantile Loss) is clearly an increasing function of the retrainig scenario,

meaning that less frequent updates harm the probabilistic forecasting performance of the models.

This is true regardless of the method used. Nonetheless, the differences in accuracy are irrelevant

for low retraining scenarios and slightly more pronounced for higher retraining levels, but in any

case less than 5/6% points. We also note a small difference in the performances of machine learning

and deep learning models, where the formers perform consistently better as the retraining scenario

increases. For the VN1 dataset, instead, we observe an almost convex relationship between the

accuracy and the retraining period. On average, models’ performance improves for low retraining

scenarios and then starts deteriorating around r = 4. The only exception are NBEATSx and NHITS

models, designed also for long-term forecasting, which are consistently better compared to the

8The Friedman-Nemenyi test is usually adopted to compare and rank the performance of different models. Here

we use it to compare the accuracy produced by the same model over different retraining scenarios.
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Figure 1: RMSSE results for each method and retrain scenario combination in relative terms with respect to the

baseline scenario, r = 7 for the M5 dataset and r = 1 for the VN1 dataset.

Figure 2: M5 Friedman-Nemenyi test results based on RMSSE.
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Figure 3: MQL results for each method and retrain scenario combination in relative terms with respect to the baseline

scenario, r = 7 for the M5 dataset and r = 1 for the VN1 dataset.

others for longer retraining scenarios, both for point and probabilistic forecasting.

The statistical test to compare probabilistic forecasting performances among the different

retraining scenarios on the M5 dataset as depicted in Figure 4 confirms that there are significant

differences in accuracy. In particular, lower restraining scenarios tend to produce more accurate

probabilistic forecasts, that is, less frequent retraining effectively harms the accuracy. However,

this is not true for low retraining scenarios where the differences are not statistically significant,

implying that even in the context of probabilistic forecasting the frequency of retaining may be

reduced to at least once a month (or every two months). For the VN1 (results in supplementary

materials), instead, some level of periodic retaining is better than continuous retraining most of the

time.

Figure 5 shows the relative computational time of each retraining scenario for the two datasets.

We observe that CT decreases exponentially as the retraining scenario increases. On average,

reductions are similar for both, the M5 and the VN1: going from the baseline to the lowest periodic

retraining scenario (r = 14 or r = 2) almost halves CT, retraining the models every month often

reduces computing time by 75%, and this reduction reaches 90% in the no retraining scenario,

where the models are trained just once. However, we observe that there is a strong difference

between machine learning and deep learning models in the M5 data. While the former continuously
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Figure 4: M5 Friedman-Nemenyi test results based on MQL.

undergoes CT reductions, the latter seems to plateau at 50%, experiencing much lower gains over

increasing retraining scenarios. As expected, this difference is less evident in the VN1 dataset, since

it is smaller and of lower frequency compared to the M5. These results will have direct implications

in terms of costs of forecasting, which in turn may guide in the choice of the model to adopt.

Overall, the results of Figures 1, 3, and 5, combined with the Friedman-Nemenyi tests, suggest

that retraining the global models less frequently does not harm (or even improves) forecast accuracy,

while at the same time significantly reduces the computing time of producing the forecasts. Thus,

extending the retraining time from the standard practice of continuous retaining to some level

of periodic retraining allows to effectively manage the computing time, and in turn the costs of

forecasting. Indeed, as already observed, the computational time can be directly translated into

actual costs for the company. Following Nikolopoulos & Petropoulos (2018) and Fotios Petropoulos

& Spiliotis (2024), we assumed some standard costs for computing services to estimate the costs of

forecasting associated with each retrain scenario. Note that costs and savings are normalized by

the number of SKUs in each datasets so that they can be directly compared and conclusions can be

drawn in terms of the frequency of the time series. Figures 6, and 7 show the costs and associated
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Figure 5: CT results for each method and retrain scenario combination in relative terms with respect to the baseline

scenario, r = 7 for the M5 dataset and r = 1 for the VN1 dataset.

savings for a large retailer, given a fixed computing service cost of $3.5/hour, 200,000 unique SKUs

and 5,000 stores, which is approximately the size of the forecasting problem of Walmart (Spiliotis

& Petropoulos, 2024). As expected, the costs decrease exponentially with less frequent retraining.

For daily data, forecasting with machine learning models usually costs less than with deep learning

models. On average, the continuous retraining scenario costs approximately $750,000 and this cost

drops down to almost $250,000 in the no retraining scenario, implying direct savings of more than

60%. Moreover, machine learning models permit to reach higher savings. Indeed, even if the models

have to be updated, going from retraining every week to retraining every month allows to get direct

savings of almost 75%, while it can be less than 30% for deep learning models. This implies that,

machine learning methods are a marginally better choice to reduce the costs of forecasting when

coupled with less frequent model retraining as the frequency of the data increases. For weekly

data, these differences are less evident, meaning that machine learning and deep learning models

have usually very similar costs and savings profiles (without considering the Random Forest model,

which is usually more than 10 times slower than other methods). This is to be expected since,

lower frequencies imply also smaller datasets and lower computing time. In this case, the average

cost of forecasting under a continuous retraining scenario is $250,000 (1/3 of that of daily data)

and it drops to $15,000 in the least frequent retraining scenario, producing direct savings of 90%.
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Figure 6: Daily data estimated costs and percentage savings for each method and retrain scenario combination. The

black line represents the average. Costs are in real values, while savings are expressed in relative terms with respect

to the baseline scenario, r = 7.

Nevertheless, for weekly data too, moving from retraining a model every week (r = 1) to just once

a month (r = 4) allows to reduce the costs of almost 75%.

It may be argued that for a large retailer (like Walmart) these costs (and savings) may be

negligible. However, it has to be noted that the cost reduction obtained from less frequent retraining

comes with no shortcomings in terms of forecasting accuracy (especially for point forecasting).

Indeed, as already mentioned, models under a periodic retraining scenario result in at least the

same (if not even better) forecasting performance compared to the usual practice of continuous

retraining. Moreover, periodic retraining may be a good practice even when probabilistic forecasts

are needed, balancing costs and accuracy effectively.

5. Conclusions

In this study, we went beyond the traditional evaluation of forecasting models by also exploring

the computational cost associated with generating forecasts. We examined the effects of retraining

frequency on the accuracy and computational efficiency of global time series forecasting models. By

systematically evaluating various retraining scenarios, ranging from continuous retraining to no

retraining at all, across multiple machine learning and deep learning models, we aimed to address
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Figure 7: Weekly data estimated costs and percentage savings for each method and retrain scenario combination.

The black line represents the average. Costs are in real values, while savings are expressed in relative terms with

respect to the baseline scenario, r = 1.

a key question in forecasting: is frequent retraining necessary for maintaining high predictive

performance? Our findings, derived from an extensive evaluation of ten different global models

across two large-scale, real-world retail datasets, challenge the conventional wisdom of continuous

model retraining. Indeed, our results indicate that the conventional practice of continuous retraining

may not always be justified, and that periodic retraining strategies can offer substantial benefits in

terms of computational efficiency without a significant loss in accuracy.

Our empirical evaluation provides evidence that the forecasting accuracy of global models

remains stable even when retraining frequency is significantly reduced. For point forecasting, the

root mean squared scaled error (RMSSE) results indicate that models trained less frequently do

not exhibit substantial performance degradation. In fact, in some cases, particularly for periodic

retraining frequencies, we observe marginal improvements in accuracy. For probabilistic forecasting,

the results are slightly more nuanced. While less frequent retraining does lead to minor reductions

in accuracy as measured by the Multi-Quantile Loss (MQL), the degradation is relatively small

(typically within 5-6%). This implies that for most practical applications, especially those where

forecasting costs are key considerations, periodic retraining provides a favorable balance between

accuracy and efficiency. This suggests that global models, that learn shared dynamics across
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multiple time series, are robust to the absence of frequent updates, especially in contexts with

relatively stable demand patterns.

Considering periodic retraining scenarios allows to effectively manage the computing time,

and in turn the costs of forecasting. Indeed, we have shown how the computational time can

be directly translated into actual costs for the company. One of the most significant findings of

this study is the exponential reduction in computational costs as retraining frequency decreases.

The computational time (CT) analysis demonstrates that moving from continuous retraining to a

monthly retraining schedule can reduce computational costs by approximately 75%. In the extreme

case of no retraining, the cost reductions approach 90%, representing a resource-saving opportunity

with no-shortcomings. Furthermore, the cost analysis performed on realistic retail settings (e.g.,

Walmart-sized operations) reveals that periodic retraining can yield relevant financial savings. The

estimated costs of forecasting, which scale with computing service expenses, decrease sharply when

retraining is performed less frequently. This suggests that organizations can achieve economic

benefits by optimizing their retraining schedules, without compromising the forecast quality.

The implications of these findings are highly relevant for both academic research and industry

applications. First, they challenge the prevailing assumption that forecasting models require frequent

updates to maintain high predictive performance. Instead, our results suggest that global models

remain effective over extended periods, meaning that retraining can be strategically planned rather

than performed continuously. For practitioners, our results provide concrete guidelines on how

often retraining should occur. In general, retraining every monthly appears to be a viable option to

balance probabilistic accuracy and costs. Instead, if the forecasting objective is on point forecast,

then even longer retraining scenarios may be adopted. Moreover, our results shed some light on the

computational comparison between machine learning and deep learning models. We found that the

former benefit more from less frequent retraining as the frequency of the data increases. This implies

that, for large-scale applications, like the retail industry, where the forecasts of many different

SKUs have to be provided regularly, machine learning models are a marginally better choice to

reduce the costs of forecasting when coupled with less frequent model retraining strategies as the

frequency of the data increases. These insights also have broader implications for sustainability

in machine learning and AI-driven forecasting. The computational cost savings associated with

reduced retraining directly translate into lower energy consumption, making forecasting operations
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more environmentally sustainable. This aligns with recent discussions on ”Green AI”, which

emphasizes the importance of optimizing computational resources to reduce the environmental

impact of machine learning applications.

While our findings provide strong evidence for the feasibility of less frequent retraining in global

forecasting models, some limitations remain. First, our study focused on two large retail datasets

(M5 and VN1), which may not fully capture all possible time series patterns. Moreover, in this paper,

we assumed that the data generating process remains stable without exhibiting significant trends or

concept drifts, but in some real-world applications this assumption may simply not be valid. Future

research could extend this analysis to other domains, such as financial time series or industrial

production data, to verify the general validity of these findings. Furthermore, our study did not

explore adaptive retraining strategies, where models are updated only when a significant drift in

data distribution is detected. Such adaptive approaches could provide an even more refined balance

between accuracy and computational efficiency. Future work could investigate the integration of

drift detection mechanisms to optimize retraining schedules dynamically. Another direction for

future studies may be the analysis of the effect of different retraining scenarios on the stability of

global models, that is, answering the question ”Does global models produce stable forecasts even if

not continuously retrained?”. Extending the analysis to some very recent global forecasting methods

that demonstrate state-of-the-art performance (e.g. transformers) would also be a natural path for

future research. Finally, we encourage further studies to explore the interaction between retraining

frequency and hyperparameter optimization. Indeed, different models may respond differently to

retraining strategies depending on their hyperparameter configurations, and understanding these

interactions could lead to even more efficient forecasting strategies.

In summary, our study shows that frequent retraining is not necessarily required to maintain

high forecasting accuracy in global models. Less frequent retraining can significantly reduce

computational costs while maintaining competitive forecasting performance. These findings have

important implications for organizations seeking to optimize their forecasting pipelines, offering a

pathway toward more efficient and sustainable forecasting practices. By shifting from a continuous

retraining paradigm to a periodic retraining approach, businesses can achieve relevant cost savings

while still ensuring high predictive performance.
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Supplementary material

In this section, we provide tables and figures related to the empirical results of the M5 and VN1

datasets.

The Tables 3 and 4 show the forecast accuracy of the different models along the examined

retrain scenarios for the M5 daily dataset, while Table 5 depicts the computing time in seconds.

Method 7 14 21 30 60 90 120 150 180 364

LR 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.778 0.779

XGBoost 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.754 0.755 0.755

LGBM 0.771 0.772 0.771 0.772 0.772 0.772 0.772 0.772 0.772 0.772

CatBoost 0.947 0.961 0.954 0.960 0.952 0.968 0.957 0.963 0.966 0.958

MLP 0.821 0.818 0.818 0.819 0.819 0.820 0.818 0.819 0.819 0.820

TCN 0.865 0.865 0.865 0.865 0.865 0.865 0.865 0.865 0.865 0.864

NBEATSx 0.815 0.814 0.813 0.825 0.815 0.815 0.815 0.815 0.815 0.816

NHITS 0.828 0.826 0.835 0.825 0.826 0.825 0.825 0.825 0.826 0.825

Table 3: M5 RMSSE values for each method and retrain scenario combination.

The Tables in 6 and 7 show the forecast accuracy of the different models along the examined

retrain scenarios for the VN1 weekly dataset, while 8 depicts the computing time in seconds.

Figures 8 and 9 show the results of the Friedman-Nemenyi test on in the context of both point

and probabilistic forecasting for the VN1 dataset.

The costs tables 9 and 10 show the estimated cost in real values of each scenario for daily and

weekly data respectively.
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Method 7 14 21 30 60 90 120 150 180 364

LR 0.267 0.268 0.269 0.269 0.270 0.271 0.272 0.271 0.272 0.274

XGBoost 0.258 0.259 0.260 0.260 0.262 0.263 0.264 0.263 0.264 0.267

LGBM 0.256 0.256 0.257 0.257 0.258 0.259 0.260 0.259 0.260 0.262

CatBoost 0.263 0.292 0.262 0.295 0.294 0.296 0.291 0.297 0.298 0.296

MLP 0.281 0.282 0.283 0.285 0.288 0.291 0.290 0.291 0.294 0.297

TCN 0.290 0.291 0.292 0.293 0.296 0.297 0.299 0.299 0.301 0.305

NBEATSx 0.279 0.280 0.281 0.288 0.286 0.289 0.289 0.289 0.292 0.295

NHITS 0.284 0.284 0.290 0.287 0.290 0.292 0.293 0.293 0.297 0.300

Table 4: M5 MQL values for each method and retrain scenario combination.

Method 7 14 21 30 60 90 120 150 180 364

LR 11,372 6,068 4,388 3,275 2,012 1,517 1,410 1,358 1,133 964

XGBoost 15,417 8,189 5,843 4,413 2,567 2,022 1,748 1,750 1,402 1,160

LGBM 44,428 23,835 17,279 13,245 8,332 6,656 5,802 5,966 4,971 4,256

CatBoost 10,423 5,521 3,907 2,901 1,693 1,285 1,082 1,113 891 709

MLP 17,583 14,044 12,864 12,219 11,411 11,156 11,080 10,972 10,711 10,639

TCN 33,363 27,960 25,931 25,102 23,721 23,332 23,046 23,033 22,825 22,591

NBEATSx 21,226 16,331 14,965 13,583 12,387 11,969 11,670 11,681 11,458 11,265

NHITS 21,969 16,684 14,863 13,682 12,390 11,929 11,722 11,712 11,440 11,219

Table 5: M5 CT values for each method and retrain scenario combination.
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Method 1 2 3 4 6 8 10 13 26 52

LR 6.549 6.557 6.573 6.545 6.540 6.554 6.549 6.552 6.574 6.639

RF 1.868 1.869 1.869 1.865 1.864 1.862 1.858 1.859 1.848 1.835

XGBoost 1.890 1.863 1.861 1.858 1.834 1.842 1.800 1.826 1.843 1.787

LGBM 3.542 3.523 3.473 3.283 3.411 3.74 3.405 3.333 3.354 3.544

CatBoost 5.762 5.647 6.014 5.134 4.945 5.282 4.494 4.807 5.264 5.653

MLP 1.543 1.475 1.469 1.464 1.464 1.467 1.471 1.472 1.46 1.446

LSTM 1.913 1.908 1.907 1.907 1.906 1.905 1.904 1.901 1.898 1.89

TCN 1.913 1.908 1.907 1.907 1.906 1.905 1.904 1.901 1.898 1.89

NBEATSx 1.698 1.69 1.656 1.555 1.512 1.518 1.539 1.455 1.449 1.449

NHITS 1.699 1.674 1.623 1.55 1.54 1.454 1.522 1.447 1.449 1.444

Table 6: VN1 RMSSE values for each method and retrain scenario combination.

Method 1 2 3 4 6 8 10 13 26 52

LR 2.896 2.916 2.953 2.949 2.949 2.953 2.959 2.999 3.043 3.136

RF 2.590 2.626 2.623 2.645 2.661 2.688 2.713 2.686 2.728 2.773

XGBoost 2.469 2.474 2.497 2.498 2.508 2.533 2.526 2.537 2.585 2.609

LGBM 2.625 2.593 2.687 2.609 2.619 2.636 2.646 2.664 2.693 2.745

CatBoost 2.845 2.823 2.936 2.728 2.736 2.813 2.739 2.728 2.774 2.860

MLP 2.492 2.410 2.420 2.406 2.414 2.432 2.430 2.463 2.471 2.503

LSTM 2.843 2.842 2.847 2.856 2.868 2.871 2.887 2.899 2.956 3.064

TCN 2.843 2.842 2.847 2.856 2.868 2.871 2.887 2.899 2.956 3.064

NBEATSx 2.626 2.613 2.580 2.456 2.470 2.507 2.495 2.450 2.480 2.568

NHITS 2.632 2.552 2.562 2.485 2.484 2.430 2.461 2.421 2.478 2.512

Table 7: VN1 MQL values for each method and retrain scenario combination.
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Method 1 2 3 4 6 8 10 13 26 52

LR 236 121 89 66 50 39 33 34 23 17

RF 24,862 12,380 8,715 6,177 4,355 3,084 2,461 2,570 1,262 602

XGBoost 530 274 198 146 108 81 69 70 44 31

LGBM 7,824 4,037 2,894 2,144 1,576 1,188 1,007 1,027 630 429

CatBoost 805 412 287 207 149 109 90 93 51 31

MLP 962 534 409 327 265 223 202 202 159 138

LSTM 1,284 759 602 495 418 363 338 340 285 258

TCN 1,127 639 494 394 322 272 247 253 200 175

NBEATSx 1,244 694 531 421 342 285 258 259 203 175

NHITS 1,251 704 537 427 346 288 261 261 208 180

Table 8: VN1 CT values for each method and retrain scenario combination.

Figure 8: VN1 Friedman-Nemenyi test results based on RMSSE.
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Figure 9: VN1 Friedman-Nemenyi test results based on MQL.

Method 7 14 21 30 60 90 120 150 180 364

LR 390,732$ 208,499$ 150,791$ 112,547$ 69,132$ 52,131$ 48,474$ 46,678$ 38,937$ 33,151$

XGBoost 529,679$ 281,358$ 200,778$ 151,635$ 88,200$ 69,495$ 60,082$ 60,155$ 48,189$ 39,861$

LGBM 1,526,424$ 818,569$ 593,676$ 455,075$ 286,262$ 228,698$ 199,337$ 204,972$ 170,802$ 146,252$

CatBoost 358,123$ 189,714$ 134,258$ 99,699$ 58,167$ 44,164$ 37,206$ 38,266$ 30,622$ 24,362$

MLP 604,120$ 482,505$ 441,981$ 419,823$ 392,046$ 383,287$ 380,697$ 376,968$ 368,023$ 365,525$

TCN 1,146,256$ 960,626$ 890,924$ 862,432$ 815,006$ 801,612$ 791,801$ 791,348$ 784,201$ 776,181$

NBEATSx 729,263$ 561,105$ 514,166$ 466,683$ 425,593$ 411,232$ 400,953$ 401,352$ 393,673$ 387,058$

NHITS 754,783$ 573,233$ 510,655$ 470,077$ 425,684$ 409,844$ 402,731$ 402,394$ 393,071$ 385,470$

Average 754,922$ 509,451$ 429,654$ 379,746$ 320,011$ 300,058$ 290,160$ 290,267$ 278,440$ 269,733$

Table 9: M5 estimated costs for each method and retrain scenario combination.

37



Method 1 2 3 4 6 8 10 13 26 52

LR 15,234$ 7,839$ 5,731$ 4,292$ 3,205$ 2,508$ 2,140$ 2,190$ 1,463$ 1,099$

RF 1,605,768$ 799,597$ 562,896$ 398,954$ 281,246$ 199,214$ 158,959$ 165,975$ 81,529$ 38,865$

XGBoost 34,254$ 17,687$ 12,796$ 9,413$ 6,944$ 5,262$ 4,473$ 4,534$ 2,863$ 2,005$

LGBM 505,304$ 260,721$ 186,904$ 138,460$ 101,775$ 76,738$ 65,013$ 66,335$ 40,721$ 27,701$

CatBoost 52,021$ 26,594$ 18,515$ 13,366$ 9,611$ 7,022$ 5,798$ 5,977$ 3,311$ 2,023$

MLP 62,102$ 34,489$ 26,431$ 21,149$ 17,121$ 14,391$ 13,027$ 13,015$ 10,255$ 8,891$

LSTM 82,927$ 49,019$ 38,851$ 31,962$ 27,022$ 23,465$ 21,829$ 21,932$ 18,415$ 16,652$

TCN 72,763$ 41,291$ 31,910$ 25,464$ 20,791$ 17,579$ 15,983$ 16,365$ 12,936$ 11,284$

NBEATSx 80,337$ 44,837$ 34,283$ 27,179$ 22,057$ 18,387$ 16,686$ 16,702$ 13,085$ 11,277$

NHITS 80,776$ 45,458$ 34,688$ 27,585$ 22,336$ 18,607$ 16,888$ 16,855$ 13,405$ 11,601$

Average 259,149$ 132,753$ 95,301$ 69,782$ 51,211$ 38,317$ 32,080$ 32,988$ 19,798$ 13,140$

Table 10: VN1 estimated costs for each method and retrain scenario combination.
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